

Trenco 818 Soundside Rd Edenton, NC 27932

Re: CL 2695 A CC 2695 A

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

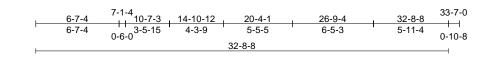
Pages or sheets covered by this seal: I71166358 thru I71166384

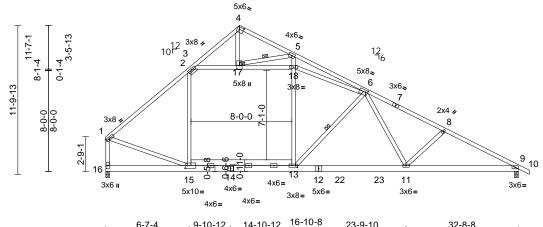
My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

February 4,2025

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A01	Roof Special	6	1	Job Reference (optional)	171166358

Scale = 1:82.5

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:29 ID:GRiMROFG6Vf79xilAcg6DRyp_zV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

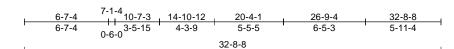
Page: 1

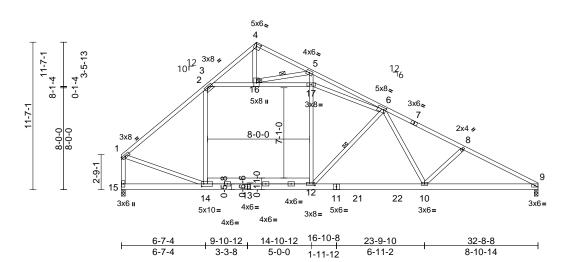
6-7-4	9-10-12	14-10-12		23-9-10	32-8-8	1
6-7-4	3-3-8	5-0-0	1-11-12	6-11-2	8-10-14	

Plate Offsets (X, Y):	[4:0-3-14.0-2-4].	[6:0-2-1.0-2-0].	[13:0-1-12.0-1-8].	[15:0-2-0,0-2-8], [17:0-3-8,0-2-8]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Plate Grip DOL Lumber DOL * Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.67 0.78 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.35 -0.66 0.04 -0.18	(loc) 11-13 11-13 9 13-15	l/defl >999 >591 n/a >549	L/d 240 180 n/a 360	PLATES MT20 Weight: 251 lb	GRIP 244/190 FT = 20%
WEBS 2x4 SP No.2 *Exa 8-11,16-1,4-17,18 BRACING Structural wood s 2-6-8 oc purlins, TOP CHORD Structural wood s 2-6-8 oc purlins, BOT CHORD Rigid ceiling direction bracing, Except 6-0-0 oc bracing; WEBS 1 Row at midpt JOINTS 1 Brace at Jt(s): 1 REACTIONS (size) 9=0-3- Max Horiz 16=-25 Max Uplift FORCES (lb) - Maximum C Tension TOP CHORD 1-2=-1904/138, 2 3-4=-769/117, 4- 6-8=-2591/329, 8 1-16=-1827/129 BOT CHORD 15-16=-147/315, 11-13=-40/2020, 6-11=-73/558, 8- 2-15=-19/335, 13 5-18=-40/1541, 6	B-Ġ,17-5:2x4 SP No.3 heathing directly applied except end verticals. xtly applied or 10-0-0 oc 15-16. 6-13, 5-17 7 8, 16=0-3-8 4 (LC 8) (LC 13) 9 (LC 2), 16=1729 (LC 2) ompression/Maximum -3=-1506/244, 5=-572/89, 5-6=-3531/363 -9=-2791/369, 9-10=0/23, 13-15=0/1515, 9-11=-236/2439 11=-316/228, 1-15=0/1488 -18=-66/1060, -13=-994/310, 17-18=-323/1933, 18=-331/1910,	 Vasd=103i II; Exp B; E and C-C E & MWFRS grip DOL= or 3) This truss chord live I 4) * This truss on the bott 3-06-00 tai chord and 5) Ceiling dea 17-18; Wa 13-18 6) Bottom cha chord dead 7) Bearings a SP No.2. 8) One H2.5A recommen 3, UPLIFT at does not c 9) ATTIC SP, UNINHABI LOAD CASE(5) 	has been designed oad nonconcurren is has been designed om chord in all are by 2-00-00 wide ' any other member id load (5.0 psf) or II dead load (5.0 psf) ord live load (40.0 I load (5.0 psf) app re assumed to be: . Simpson Strong- ded to connect tru it(s) 9. This conne onsider lateral forc ACE SHOWN IS D TABLE.	f; BCDL=6 (envelope C for merr vn; Lumbe d for a 10.1 t with any ed for a live as where will fit betw will fit betw s, with BC n memberr sf) on men psf) and a blied only t Joint 16 S Tie conne ss to bear ction is for es.	.0psf; h=30ff a) exterior zo bers and for r DOL=1.60 D psf bottom other live loa e load of 20. a rectangle ween the bott IDL = 10.0ps (s). 2-3, 3-17 nber(s).2-15, dditional bott to room. 13-1 SP DSS , Joi ctors ing walls due uplift only a	ne ces plate ads. Opsf f. f. f. f. f. f. f. f. f. f. f. f. f.				SEA 0363	22 EER RUUM

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932


G minim February 4,2025

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A01A	Roof Special	4	1	Job Reference (optional)	171166359

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:30 ID:wukKaVZdjOzqKPm7NI23W0yp_se-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

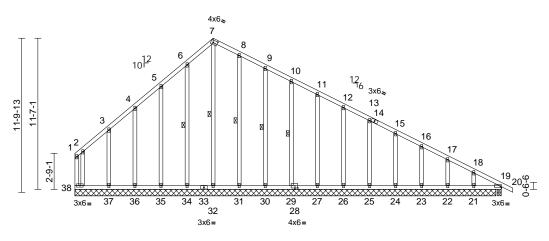
Scale = 1:81.6

Plate Offsets (X, Y): [4:0-3-14,0-2-4], [6:0-2-1,0-2-0], [12:0-1-12,0-1-8], [14:0-2-0,0-2-8], [16:0-3-8,0-2-8]

												i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.67	Vert(LL)	-0.35	10-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.66	10-12	>591	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.79	Horz(CT)	0.04	9	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		Attic	-0.18	12-14	>548	360	Weight: 250 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x6 SP No.2 *Excep 2x4 SP No.2 *Excep 8-10,15-1,4-16,16-5, Structural wood she 2-6-8 oc purlins, exx Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 14 1 Row at midpt 1 Brace at Jt(s): 16 (size) 9=0-3-8, 1 Max Horiz 15=-286 (Max Uplift) 9=-92 (LC Max Grav 9=1465 (L (lb) - Maximum Com Tension 1-2=-1905/139, 2-3= 3-4=-770/117, 4-5=- 6-8=-2595/331, 8-9= 1-15=-1828/130 14-15=-154/307, 12- 10-12=-58/2022, 9-1 6-10=-75/560, 8-10= 12-17=-67/1061, 5-1 2-14=-19/335, 6-12= 3-16=-1013/207, 16 4-16=-45/564, 5-16= 6-17=-331/1911	t* 17-6:2x4 SP No.3 athing directly applied cept end verticals. applied or 10-0-0 oc -15. 6-12, 5-16 (5=0-3-8 LC 8) :13) .C 2), 15=1730 (LC 2 pression/Maximum -1506/245, 572/89, 5-6=-3533/36 -2796/371, 14=0/1510, 0=-255/2444 -318/229, 1-14=0/14 7=40/1542, -997/311, 17=-323/1935, -2753/367,	1 or 3) 4) 5) 6)) 7) 8) 54, 9) LO	Vasd=103mp II; Exp B; En and C-C Extt & MWFRS for grip DOL=1.6 This truss ha chord live loa * This truss h chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Ceiling dead 16-17; Wall 2-14 Bottom chord chord dead la Bearings are SP No.2. One H2.5A S recommende UPLIFT at jt(does not com	s been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members, load (5.0 psf) on in dead load (5.0 psf) d live load (40.0 ps bad (5.0 psf) applie assumed to be: Jo Simpson Strong-Tie ed to connect truss s) 9. This connecti sider lateral forces ES SHOWN IS DES ABLE.	BCDL=6 envelope for mem ; Lumbe or a 10.0 vith any for a liv s where Il fit betw on mem end only f boint 15 s e connee to bear on is for s.	.0psf; h=30ft a) exterior zoubers and forrer r DOL=1.60 D psf bottom other live load e load of 20.1 a rectangle veen the bott DL = 10.0ps (s). 2-3, 3-16 nber(s).12-17 dditional bott to room. 12-1 SP DSS , Join ctors ing walls due vulift only an	ne ces plate ads. Opsf om f. , , , , , , , , , , , , , , , , , ,				SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


G minum February 4,2025

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A01E	Roof Special Supported Gable	1	1	Job Reference (optional)	171166360

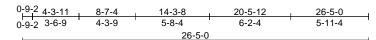
Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:30 ID:_bjGR4M1AgHTEYpoF9EXBxyp_rc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

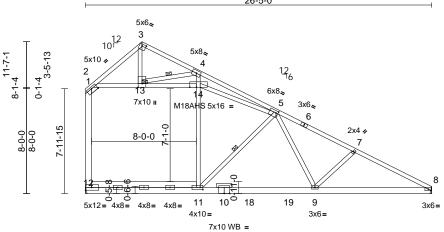
Page: 1

32-8-8

Scale = 1:80.2 Plate Offsets (X, Y): [7:0-3-14,0-2-4], [29:0-2-8,0-1-4]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP		
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.10	Vert(LL)	0.00	21-41	>999	240	MT20	244/190		
TCDL		10.0	Lumber DOL	1.15		BC	0.10	Vert(CT)	0.00	37-38	>999	180				
BCLL		0.0*	Rep Stress Incr	YES		WB	0.19	Horz(CT)	0.02	19	n/a	n/a				
BCDL		10.0	Code	IRC2	015/TPI2014	Matrix-MS							Weight: 255 lb	FT = 20%		
LUMBER					FORCES	(lb) - Maximum (Compressi	on/Maximum						otherwise indicate		
TOP CHORD						Tension					5) Gable studs spaced at 2-0-0 oc.6) This truss has been designed for a 10.0 psf bottom					
BOT CHORD					TOP CHORD	1-38=-74/75, 1-2	. ,	,								
WEBS	2x4 SP N					3-4=-125/152, 4-		,	,					any other live load		
OTHERS	2x4 SP N	o.2 *Excep	ot*			6-7=-314/382, 7-		29,					a live load of 20.0p			
	37-3,38-2	,25-13,24-	15,23-16,22-17,21-1	8:2x		9-10=-256/301, 1							rd in all areas wh			
	4 SP No.3	3				11-12=-223/253,		,						between the bottor		
BRACING						13-15=-217/204,							er members.			
TOP CHORD	Structura	wood she	athing directly applie	d or		16-17=-245/155,							ssumed to be SP			
			cept end verticals.			18-19=-295/132,								others) of truss to		
BOT CHORD			applied or 10-0-0 oc	;	BOT CHORD	37-38=-93/274, 3								ng 39 lb uplift at joi		
	bracing.					35-36=-93/274, 3								ft at joint 34, 94 lb		
WEBS	1 Row at	midpt	7-32, 6-34, 8-31, 9-3	30		32-34=-93/274, 3								36, 138 lb uplift at		
WEB0	i non at	mapt	10-29	,		30-31=-93/274, 2				joir	nt 37, 37	lb uplif	t at joint 31, 54 lb	o uplift at joint 30, 4		
REACTIONS	(cizo)	10_0 2 0	, 21=32-3-8, 22=32-3	0		27-29=-93/274, 2	26-27=-93/	274,		lb u	uplift at jo	oint 29,	49 lb uplift at joir	nt 27, 49 lb uplift at		
REACTIONS	(5120)		8, 24=32-3-8, 22=32-3 8, 24=32-3-8, 25=32-3			25-26=-93/274, 2	24-25=-93/	274,		joir	nt 26, 49	lb uplif	t at joint 25, 48 lb	o uplift at joint 24, 5		
		26=32-3-8, 27=32-3-8, 29=32-3-8,				23-24=-93/274, 2	22-23=-93/	274,		lb u	uplift at jo	oint 23,	38 lb uplift at joir	nt 22, 89 lb uplift at		
	30=32-3-8, 31=32-3-8, 32=32-3-8,					21-22=-93/274, 2	19-21=-93/	274		joir	nt 21 and	57 lb	uplift at joint 19.			
					WEBS	7-32=-334/220, 6	6-34=-138/	94,		LOAD	CASE(S) Sta	ndard			
		34=32-3-8, 35=32-3-8, 36=32-3-8, 37=32-3-8, 38=32-3-8				5-35=-151/118, 4	4-36=-129/	93,			• • •	,				
						3-37=-188/156, 2	3/61,									
	Max Horiz			a)		9-30=-119/91, 10-29=-120/81, 11-27=-120/83,										
	Max Uplift		C 12), 21=-89 (LC 1			12-26=-120/83, 1	13-25=-12	0/83,						11		
			C 13), 23=-51 (LC 1			15-24=-120/83, 1	16-23=-12	0/83,					11111 00	- 11, ·		
			-C 13), 25=-49 (LC 1			17-22=-119/81, 1	18-21=-12	3/95					I'TH UA	ROUL		
			-C 13), 27=-49 (LC 1									~ Y	A	and the		
		29=-48 (L	_C 13), 30=-54 (LC 1	3),	NOTES						/	1	FESS	S. Vi		
			C 13), 32=-46 (LC 1			d roof live loads ha	avo boon (oncidered for			7	S	KP /			
			C 12), 35=-94 (LC 1		this design		ave been (5	:0			
			-C 12), 37=-138 (LC	12),	0	E 7-10; Vult=130r	anh (2 aac	and quat)			-		054	n 1. 1		
		38=-39 (L				nph; TCDL=6.0ps			Cat				SEA	L i		
	Max Grav		LC 19), 21=169 (LC 2			inclosed; MWFRS					- E		0363	22		
			LC 1), 23=161 (LC 24			xterior (2) zone;C-							0505			
			LC 1), 25=160 (LC 24			for reactions show							•			
			LC 1), 27=160 (LC 24		grip DOL=		vii, Luinde	1 DOL=1.00 p	ale		5	-	i. A.	airs		
			LC 24), 30=159 (LC			gned for wind load	c in the nl	and of the true				-15	A SAGINI	FERMAN		
			LC 24), 32=358 (LC									11	710	E. S.		
			LC 19), 35=180 (LC			tuds exposed to w							A G	ILBEN		
			LC 19), 37=232 (LC	19),		ard Industry Gable				SEAL 036322 A. GILBER February 4,2025						
		38=117 (LC 1)		or consult	qualified building c	lesigner as	or consult qualified building designer as per ANSI/TPI 1.					<u></u>	LT 192		


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A02	Roof Special	7	1	Job Reference (optional)	171166361

11-7-1

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:31 ID:X0Q7P8BTqe2iOAhU0DsP2Myp0Rq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	8-7-4	10-7-0	17-6-2	26-5-0	_
Scale = 1:79.7	8-7-4	1-11-12	6-11-2	8-10-14	

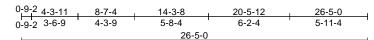
Plate Offsets (X, Y)	[1:0-5-0,Edge], [3:0-3-10,0-1-12], [5:0-1-13,0-2-0], [11:0-2-8,0-2-0], [13:0-3-8,0-3-8], [14:0-6-0,0-0-1]	
----------------------	---	--

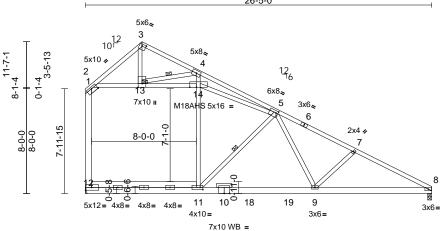
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.96	Vert(LL)	-0.56	9-11	>559	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-1.12	9-11	>282	180	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Attic	-0.52	11-12	>387	360	Weight: 218 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-10; Vult=130m	ph (3-seo	ond gust)						
TOP CHORD	2x4 SP No.2 *Excep	t* 3-6:2x4 SP DSS	,	Vasd=103m	oh; TCDL=6.0psf;	BCDL=6	.0psf; h=30ft	; Cat.					
BOT CHORD			2	II; Exp B; En	closed; MWFRS (envelope	e) exterior zor	ne					
WEBS	2x4 SP No.3 *Excep	t* 5-9,5-11:2x4 SP N	lo.2,	and C-C Ext	erior (2) zone;C-C	for mem	bers and for	ces					
	12-1:2x6 SP No.2, 4	-11,2-14,14-5:2x4 SI	P		or reactions shown	n; Lumbe	r DOL=1.60	olate					
	No.1			grip DOL=1.									
OTHERS	2x4 SP No.3		3)		e MT20 plates unle			d.					
BRACING			4)		ion Tolerance at j								
TOP CHORD	Structural wood she	athing directly applie	dor 5)		s been designed								
	2-2-0 oc purlins, ex	cept end verticals.			ad nonconcurrent								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	; 6)		has been designed			Jpst					
	bracing.				n chord in all area			~~~					
WEBS		5-11, 4-13			by 2-00-00 wide w by other members								
JOINTS	1 Brace at Jt(s): 13		7)		load (5.0 psf) on								
REACTIONS		nical, 12= Mechanic	al ()		ad (5.0psf) on me			14,					
	Max Horiz 12=-352 (LC 13)	8)					om					
	Max Uplift 8=-80 (LC) ''	 Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 11-12 									
	Max Grav 8=1100 (L	_C 1), 12=1574 (LC 2	2) 9)		er(s) for truss to tr			-					
FORCES	(lb) - Maximum Com	pression/Maximum			hanical connectio			0					
	Tension				e capable of withs								
TOP CHORD	1-2=-770/196, 2-3=-	1451/171,			uplift at joint 8.	Ŭ	, ,						
	3-4=-1103/149, 4-5=		11) ATTIC SPAC	CE SHOWN IS DE	SIGNED	AS						111 Sec.
	5-7=-1846/292, 7-8=	-2040/330,		UNINHABIT	ABLE.							IN CA	D'''
	1-12=-990/164		L0	DAD CASE(S)	Standard							THUA	TO MA
BOT CHORD	,	,									1.	on .:	D. All
WEBS	5-9=-78/658, 7-9=-2		350,							4	X	201-2	Vision
	4-14=-102/2658, 2-1	,								-			2 Aller
	13-14=-451/5181, 3-										<u>е</u> в	.~	1 1 1 E
	5-11=-1584/363, 5-1	4=-455/5225,								=		SEA	L 🗄 🗄
	4-13=-4423/493									=			• –
NOTES										-	•	0363	LL · -

NOTES

 Unbalanced roof live loads have been considered for this design. SEAL 036322 February 4,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A02A	Roof Special	1	1	Job Reference (optional)	171166362

11-7-1

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:31 ID:X0Q7P8BTqe2iOAhU0DsP2Myp0Rq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	8-7-4	10-7-0	17-6-2	26-5-0	L
Scale = 1:79.7	8-7-4	1-11-12	6-11-2	8-10-14	

Plate Offsets (X, Y)	: [1:0-5-0,Edge], [3:0-3-10,0-1-	-12], [5:0-1-13,0-2-0], [11:0-2-8	8,0-2-0], [13:0-3-8,0-3-8], [14:0-6-0,0-0-1]
----------------------	----------------------------------	-----------------------------------	--

						-							
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.96	DEFL Vert(LL)	in -0.56	(loc) 9-11	l/defl >559	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.54	Vert(CT)	-1.12	9-11	>282	180	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES		WB	0.98	Horz(CT)	0.01	8	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Attic	-0.52	11-12	>387	360	Weight: 218 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x4 SP No.2 *Excep 2x6 SP DSS *Excep	t* 12-11:2x6 SP No.2		Vasd=103mj II; Exp B; En	7-10; Vult=130m oh; TCDL=6.0psf; closed; MWFRS (erior (2) zone;C-C	BCDL=6 (envelope	.0psf; h=30ft e) exterior zoi	ne					
WEBS	2x4 SP No.3 *Excep 12-1:2x6 SP No.2, 4 No.1			& MWFRS fo grip DOL=1.	or reactions shown	n; Lumbe	r DOL=1.60	plate					
OTHERS	2x4 SP No.3		3)		MT20 plates unl			ed.					
BRACING			4)		ion Tolerance at j								
TOP CHORD	Structural wood she		dor 5)		as been designed ad nonconcurrent			ds					
BOT CHORD	2-2-0 oc purlins, exe Rigid ceiling directly		6)		has been designe	,							
BOT CHORD	bracing.	applied of 10-0-0 oc	- /	on the bottor	n chord in all area	as where	a rectangle	•					
WEBS	0	5-11, 4-13			by 2-00-00 wide w								
JOINTS	1 Brace at Jt(s): 13		7)		ny other members load (5.0 psf) on								
		2= Mechanical	',		ad (5.0psf) on me			14,					
	Max Horiz 12=-352 (Max Uplift 8=-80 (LC	; 13), 12=-57 (LC 13)		Bottom chore	d live load (40.0 p oad (5.0 psf) appl	sf) and a	dditional bott						
	Max Grav 8=1100 (L		, 3)		assumed to be: ,								
FORCES	(lb) - Maximum Com Tension	pression/Maximum			er(s) for truss to ti								
TOP CHORD	1-2=-770/196, 2-3=- 3-4=-1103/149, 4-5=	-5844/557,		bearing plate 12.	hanical connectio capable of withs	tanding 5	57 lb uplift at j					TH CA	um.
	5-7=-1846/292, 7-8= 1-12=-990/164	-2040/330,	1:		Simpson Strong-T ed to connect trus			to				"TH CA	ROUN
BOT CHORD WEBS	11-12=0/341, 9-11=- 5-9=-78/658, 7-9=-2 4-14=-102/2658, 2-1	98/218, 11-14=-83/13	350,	UPLIFT at jt does not cor	(s) 8. This connect nsider lateral force CE SHOWN IS DE	tion is for	uplift only a			4	E.	ORIFESS	N. N.
	13-14=-451/5181, 3-	,	1.			SIGNEL	AU AU			4		1	44
	5-11=-1584/363, 5-1 4-13=-4423/493		L	DAD CASE(S)								SEA	• -
NOTES										_		0363	22 : -

NOTES

 Unbalanced roof live loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A02E	Roof Special Supported Gable	1	1	Job Reference (optional)	171166363

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:31 ID:RkL1puH6HBLn9_K3iEMIfRyp0HN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4-3-11 26-5-0 4-3-11 22-1-5 26-5-0 5x6 👟 3 10¹² 4 2 5 6 7 12 16 3×6≈ 8 9 11-7-1 10 $\overline{}$ 11 7-11-15 12 13 14 15ფ ფ⊥ ი 29 ***** 28 27 26 25 2423 22 21 20 19 18 17 16 3x8 II 3x6=

26-5-0

Scale = 1:77.5

	(X, Y): [3:0-3-14,0-2	-4j, [10:0-3-8,⊑age]									1					
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2015/TPI201	CSI TC BC WB 4 Matrix-MS	0.07 0.11 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 211 lb	GRIP 244/190				
BCDL	10.0	Code	IRC2015/191201	+ Watrix-WS	-						weight: 211 lb	FT = 20%				
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Exc 20-9,19-11,18-12, Right: 2x4 SP No.3 Structural wood st 6-0-0 oc purlins, e	17-13,16-14:2x4 SP No.:	BOT CHOF	3-4=-117/139, 6-7=-111/73, 7 9-11=-197/50, 13-14=-324/48 26-27=-58/35(24-25=-58/35(21-22=-58/35(19-20=-58/35)	4-5=-105/12 7-8=-132/61, 11-12=-240 3, 14-15=-37 9, 27-28=-58 9, 25-26=-58 9, 22-24=-58 9, 22-24=-58 9, 20-21=-58 9, 18-19=-58	21, 5-6=-97/9 8-9=-159/51 /50, 12-13=-2 5/68 /349, /350, /350, /350, /350, /350,	5, , 284/50,	on 3-0 chc 9) All 10) On rec UP and cor	the botto 6-00 tall ord and a bearings e H2.5A ommeno LIFT at j	om cho by 2-0 iny oth are as Simps led to o t(s) 29 s conn eral fo	rd in all areas wh 10-00 wide will fit 1er members. ssumed to be SP ion Strong-Tie co connect truss to b , 28, 26, 25, 24, 2 ection is for uplift rces.	between the bottor No.2.				
	bracing.			17-18=-58/350, 16-17=-58/350, 15-16=-58/350												
WEBS	1 Row at midpt	1-29, 3-27, 2-28, 4-26 5-25, 6-24	' WEBS													
REACTIONS	18=26-5 21=26-5 25=26-5 28=26-6 28=26-6 28=26-6 18=-53 20=-49 22=-49 22=-49 22=-49 22=-49 25=-52 28=-95 Max Grav 15=195 17=151 19=160 21=160 24=160	5-0, 16=26-5-0, 17=26-5 5-0, 19=26-5-0, 20=26-5 5-0, 22=26-5-0, 24=26-5 5-0, 26=26-5-0, 27=26-5 5-0, 29=26-5-0	-0, -0, -0, -0, -0, -1) Unbala this der -2) Wind: / -2) Wind: / -2 -2) Wind: / -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	SCE 7-10; Vult=13 03mph; TCDL=6.0 3; Enclosed; MWFI C Exterior (2) zone; RS for reactions sh L=1.60 esigned for wind lo or studs exposed to ndard Industry Gat ult qualified building as are 2x4 () MT20	9-20=-120/8 I, 13-17=-11 16 have been 0mph (3-sec psf; BCDL=6 RS (envelope C-C for men own; Lumber ads in the pl o wind (norm ble End Deta g designer a) unless oth	 33, 11-19=-12 7/77, considered fc cond gust) copsf; h=30ft s) exterior zon bers and ford or DOL=1.60 ane of the trual to the face is as applica s per ANSI/Ti erwise indica 	20/82, or ; Cat. ne ces plate uss ;), ble, PI 1.				SEA 0363	RO(1111 22				
FORCES		(LC 19), 29=72 (LC 19) mpression/Maximum	6) Gable s7) This true	equires continuous tuds spaced at 2-0 ss has been desigr ve load nonconcurr	-0 oc. ned for a 10.	0 psf bottom	ıds.				SEA 0363					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

February 4,2025

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A02G	Flat Girder	1	2	Job Reference (optional)	171166364

11-5-12

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:32 ID:lrkgJAnJ2ttjSMJ45o_OTyp09?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-3-8

5-9-12

⊠ 15

22

17-1-12

5-8-0

6x10=

 $\overset{5}{\bowtie}$

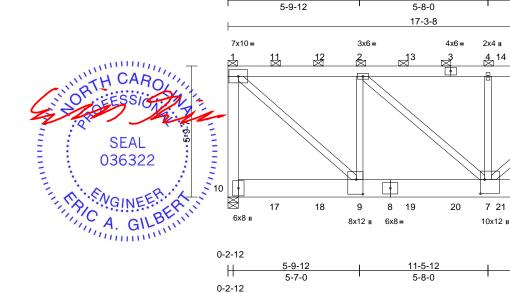
6

 \mathbb{X}

4x8 II

17-3-8

+


0-1-12

23

16

 \bowtie

Page: 1

5-9-12

Scale = 1:46.5

Plate Offsets (X, Y): [7:0-7-8,0-2-4], [9:0-7-12,0-3-8]

Plate Offsets (.	X, Y): [7:0-7-8,0-2-4],	, [9:0-7-12,0-3-8]									-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TPI201	CSI TC BC WB 4 Matrix-MS	0.78 0.38 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.17 0.01	(loc) 7-9 7-9 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 341 lb	GRIP 244/190 p FT = 20%
	5-6:2x4 SP No.2, 9- 2-0-0 oc purlins (4-3 end verticals. Rigid ceiling directly bracing.	3-8 max.): 1-5, excep 7 applied or 10-0-0 oc 5-6 10=0-5-8 (LC 8), 10=-2284 (LC (LC 19), 10=10204 (L	this de 4) Wind: Vasd= II; Exp and C- 5) Provid 6) This tri- 7) * This on the 3-06-0 chord a 8) Bearin	AŠCE 7-10; Vult=130r 103mph; TCDL=6.0ps B; Enclosed; MWFRS C Exterior (2) zone;C- FRS for reactions shor DL=1.60 e adequate drainage t uss has been designe ive load nonconcurrer truss has been design bottom chord in all arr 0 tall by 2-00-00 wide and any other membe gs are assumed to be	nph (3-sea f; BCDL=6 c (envelope C for men wn; Lumbe o prevent d for a 10. at with any ed for a liv eas where will fit betw rs.	cond gust) 6.0psf; h=30ft e) exterior zon bers and ford er DOL=1.60 p water ponding 0 psf bottom other live loa re load of 20.0 a rectangle ween the bottom	; Cat. ne ces plate g. ds. Dpsf om	pro lb d lb u 803 388 10-1 lb d 388 and 4-0 dow at 155 dow des	vided su lown and p at 2-0 b lb down b lb up at 0-12, 80 lown and b lb up -12, 155 vn and 6 10-0-12, 64 lb dov vn and 6 ign/sele	afficient d 400 l)-12, 8 n and 3 t 8-0-1 (3 lb dc d 388 l t 16-0 p at 2- d 388 l t 16-0 p at 2- d lb dc g lb up , 1554 vn and g lb up ction c	b up at 0-2-12, 03 lb down and 388 lb up at 6-0 12, 803 lb down wm and 388 lb u b up at 14-0-12 -12 on top chorc 0-12, 1554 lb di wm and 69 lb up o at 8-0-12, 155 lb down and 69 69 lb up at 14- 0 at 16-0-12 on f such connection	vice(s) shall be centrated load(s) 823 803 lb down and 388 388 lb up at 4 -0-12, -12, 803 lb down and and 388 lb up at up at 12-0-12, and 803 4, and 803 lb down and d, and 1554 lb down and b at 6-0-12, 1554 lb own and 69 lb up at p at 6-0-12, and 80 lb up at 12-0-12, and 0-12, and 1554 lb bottom chord. The on device(s) is the
TOP CHORD BOT CHORD WEBS	Tension 1-10=-8746/2213, 1 2-4=-7853/1559, 4-5 5-6=-8105/1905	-2=-7895/1591, 5=-7853/1559, -1591/7895, 6-7=-26/8 -9=-2514/1300,	using / design 10) Provid 32 bearing joint 10	g at joint(s) 10, 6 cons NSI/TPI 1 angle to gr er should verify capac e mechanical connect g plate capable of with 0 and 2022 lb uplift at cal purlin representati	ain formul ity of bear ion (by oth standing 2 joint 6.	a. Building ing surface. ers) of truss t 2284 lb uplift a	to at	LOAD (1) De Pla Ur	ead + Ro ate Incre niform Lo) Sta cof Live ease=1 oads (I 5=-60,	ndard e (balanced): Lu .15 b/ft) 6-10=-20	umber Increase=1.15,
(0.148"x3" Top chords staggered Bottom cho staggered Web conno Except me	4-7=-2572/1337 to be connected toge) nais as follows: s connected as follows at 0-9-0 oc, 2x4 - 1 ro ords connected as foll at 0-7-0 oc. ected as follows: 2x4 - mber 2-9 2x4 - 1 row re considered equally	ther with 10d s: 2x6 - 2 rows w at 0-9-0 oc. lows: 2x10 - 2 rows - 1 row at 0-9-0 oc, at 0-8-0 oc.	or the	chord.								

except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

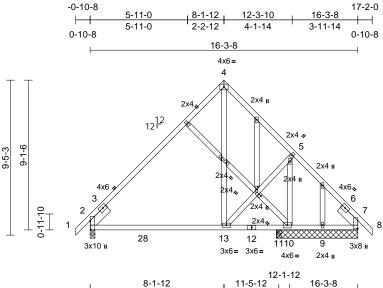
February 4,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Section of them been section of the prevent of the prevent of them been section of the prevent of the prevent of the prevent of them been section of the prevent and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	A02G	Flat Girder	1	2	Job Reference (optional)	171166364

Vert: 1=-728, 3=-693, 9=-1220 (F), 2=-693, 11=-693, 12=-693, 13=-693, 14=-693, 15=-693, 16=-693, 17=-1220 (F), 18=-1220 (F), 19=-1220 (F), 20=-1220 (F), 21=-1220 (F), 22=-1220 (F), 23=-1220 (F)

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:32 ID:IrkgJAnJ2ttjSMJ45o_OTyp09?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	B01E	Common Structural Gable	1	1	Job Reference (optional)	171166365

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:32 ID:SYzBXh_Fyq57Vki7fmhtRtyp0b7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 8-1-12
 11-5-12
 16-3-8

 8-1-12
 3-4-0
 4-1-12

 0-8-0
 0-8-0

Scale = 1:62.9

Plate Offsets (X, Y): [2:0-6-11,Edge], [7:0-5-11,0-0-1], [14:0-2-0,0-0-8], [14:0-2-0,0-0-12]

						-								
Loading	(r	osf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		0.0	Plate Grip DOL	1.15		тс	0.38		0.20	13-22	>690	240	MT20	244/190
TCDL		0.0	Lumber DOL	1.15		BC	0.70	Vert(CT)	-0.26	13-22	>533	180	-	
BCLL		0.0*	Rep Stress Incr	YES		WB	0.18	Horz(CT)	-0.09	2	n/a	n/a		
BCDL		0.0	Code	IRC2	015/TPI2014	Matrix-MS		- (-)					Weight: 120 lb	FT = 20%
-				-									U U	
LUMBER						ned for wind loads								
TOP CHORD						ids exposed to wir								
BOT CHORD	2x4 SP No.2					d Industry Gable E								
WEBS		Excep	t* 13-4:2x4 SP No.2			alified building de spaced at 2-0-0 o		s per ANSI/ I	PI 1.					
OTHERS	2x4 SP No.3	•				is been designed f		0 pof bottom						
SLIDER	1-6-0	o.2 '	1-6-0, Right 2x6 SP N	10.2		ad nonconcurrent			she					
	1-0-0					has been designed								
BRACING TOP CHORD	Structural was	d cho	athing directly applied	lor		n chord in all area			-1					
TOP CHORD	6-0-0 oc purlin		atting directly applied	101	3-06-00 tall I	by 2-00-00 wide wi	ill fit betv	veen the bott	tom					
BOT CHORD			applied or 10-0-0 oc			y other members,			f.					
201 0110112	bracing.					are assumed to be								
REACTIONS	(size) 2=0	-3-8.7	7=4-11-8, 9=4-11-8,			Simpson Strong-Ti								
	· · ·		3, 11=0-3-8			ed to connect truss								
	Max Horiz 2=-2	223 (L	.C 10)			(s) 2, 10, 9, and 7. d does not consid			or					
			2 12), 7=-139 (LC 12),			on Strong-Tie con			ot be					
			C 19), 10=-129 (LC 12	:),		s to bearing walls								
			LC 19)			tion is for uplift only								
			C 19), 7=742 (LC 19),		lateral forces		,							
			11), 10=314 (LC 19),		LOAD CASE(S)	Standard								
505050			_C 12)		(-)									
FORCES	(ID) - Maximun Tension	n Com	pression/Maximum										IIIIII	1111
TOP CHORD		686/	288, 4-5=-622/260,										WH CA	Pall
	5-7=-748/219,		, , ,									1	alri	10/11/
BOT CHORD	2-13=-361/482											N's	Q'EESS	dia Nº 1
		·)=-62/499, 7-9=-62/49	99								25	18 /	1 and the second
WEBS	4-13=-134/440), 5-13	8=-187/196									-		
NOTES													CEA	1 E
	ed roof live loads	have	been considered for								= =		SEA	• -
this design											-		0363	22 : =
			(3-second gust)								-			- j z
			CDL=6.0psf; h=30ft; 0									2	1. Sec. 1. Sec	1 I S
			velope) exterior zone									21	N. ENG	ERIAS
			or members and force									1	S. GINI	1 PS
		iown;	Lumber DOL=1.60 pla	aie								1	CA C	II BEIN
grip DOL=	1.00												11. A. G	L'IIII
													20000	1.0005
													Februar	ry 4,2025

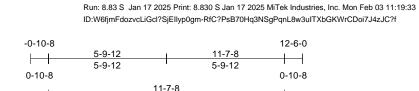
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	B01G	Common Girder	1	2	Job Reference (optional)	171166366

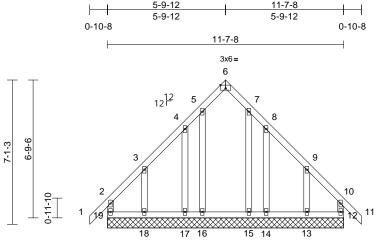
Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:33 ID:15NW3aly51haBF?D9rYDkzyp_IE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932


4-3-9 8-1-12 11-11-15 16-3-8 4-3-9 3-10-3 3-10-3 4-3-9 16-3-8 5x6 II 3 12 12 3x6 3x6、 2 4 9-1-6 R 5 0-11-10 nhł ПП ΠŪ hñ Ш hh ПП ⊠ ₿ 16 9 17 7 18 6 19 6x8= 8 6x8= 3x8 II 7x10 🛛 3x8 II LUS26 LUS26 LUS26 6x8= LUS26 LUS26 LUS26 LUS26 11-11<u>-15</u> 4-3-9 16-3-8 8-1-12 4-3-9 3-10-3 3-10-3 4-3-9

Scale = 1:57.9


Plate Offsets	(X, Y): [1:Edge,0-0-5],	, [5:Edge,0-0-5], [6:0-6	6-4,0-1-8], [7	7:0-6-4,0-3-8	3], [9:0-6-4,0-1-8]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/T	FPI2014	CSI TC BC WB Matrix-MS	0.15 0.20 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.01	(loc) 6-7 6-7 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 297 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x8 SP DSS 2x4 SP No.3 *Excep Left: 2x6 SP No.2 Right: 2x6 SP No.2 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 4 Max Horiz 1=-201 (L Max Uplift 1=-376 (L Max Grav 1=4453 (I (lb) - Maximum Corr Tension 1-2=-4962/509, 2-3= 3-4=-3585/478, 4-5=	eathing directly applied r applied or 10-0-0 oc 5=0-3-8 C 8) C 13), 5=-373 (LC 12 LC 1), 5=4409 (LC 1) npression/Maximum =-3585/478, =-4961/509 =-346/3424, =-267/3407 =-1408/288,	t 4) \ 4) \ 4) \ 4 5) T 6) t 6) t 6) t 6) t 6) t 7) 4 8) C 10 F 10) F	his design. Wind: ASCE Vasd=103mg: I; Exp B; En and C-C Ext. & MWFRS fc grip DOL=1.1 This truss ha chord live loa This truss h on the bottor a-06-00 tall b chord and ar All bearings : Done H2.5A S recommende JPLIFT at jt(JPLIFT	is been designed ad nonconcurrent has been designe in chord in all area y 2-00-00 wide w hy other members are assumed to b simpson Strong-Ti ed to connect trus s) 1 and 5. This c t consider lateral in Strong-Tie LUS; ss, Single Ply Gir nax. starting at 2-t onnect truss(es) to bles where hange	ph (3-sec BCDL=6 (envelope) for merm n; Lumber for a 10. with any d for a liv as where vill fit betv s. e SP DS Tie conne is to bear connectio forces. 26 (4-SD der) or ec 0-12 from o back fa	cond gust) 6.0psf; h=30ff a) exterior zo bers and for r DOL=1.60 0 psf bottom other live loz re load of 20. a rectangle veen the bott S. ctors ing walls due n is for uplift 9112 Girder, uivalent span the left end ce of bottom	; Cat. ne ces plate ads. 0psf om to only 4- ced to				NITH CA	ROV	<i>v.</i>
 (0.148"x3 Top chord staggered Bottom ch staggered Web conn All loads a except if r CASE(S) provided t 	s to be connected toge ") nails as follows: ds connected as follows d at 0-9-0 oc. hords connected as foll d at 0-6-0 oc. hected as follows: 2x4- are considered equally hoted as front (F) or ba section. Ply to ply com to distribute only loads herwise indicated.	s: 2x6 - 2 rows ows: 2x8 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA nections have been	1)	Plate Increa Uniform Los Vert: 1-3 Concentrate Vert: 9=-	of Live (balanced) ase=1.15	0-13=-20 0 (B), 6=∙	1080 (B),			M. minner		SEA 0363	L 22 E.E.R. P	

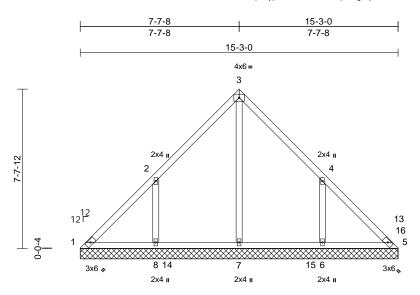
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	B02E	Common Supported Gable	1	1	Job Reference (optional)	171166367

11-7-8

Scale =	1:50.3	

Plate Offsets (X, Y): [6:0-3-0,Edge]


			1											
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL		10.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.00	12	n/a	n/a		
BCDL		10.0	Code	IRC2015/	TPI2014	Matrix-MR							Weight: 82 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift Max Grav	lo.2 lo.3 lo.3 lo.3 lo.3 lo.3 lo.3 lo.3 lo.3	athing directly applie cept end verticals. applied or 10-0-0 oc 8, 13=11-7-8, 14=11- 8, 16=11-7-8, 17=11- 8, 19=11-7-8	2) d or 3) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Wind: ASCE Vasd=103mp II; Exp B; En and C-C Exte & MWFRS fc grip DOL=1.6 Truss design only. For stu see Standard or consult qu All plates are Gable requir Truss to be f braced again Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings	7-10; Vult=130m, bc; TCDL=6.0psf; closed; MWFRS (erior (2) zone;C-C or reactions shown 60 ed for wind loads dids exposed to wind d Industry Gable B alified building de e 2x4 (II) MT20 ur es continuous bot ully sheathed from ist lateral movement spaced at 2-0-0 o is been designed ad nonconcurrent has been designed ad nonconcurrent has been designed and nonconcurrent has been designed has	BCDL=6 (envelope) for mern n; Lumber in the pl nd (norm End Deta essigner a: none face ent (i.e. co co. for a 10.1 with any d for a liv as where vill fit betw. c, with BC	.0psf; h=30ff e) exterior zo bers and for r DOL=1.60 ane of the tru al to the face ils as applica s per ANSI/T erwise indica d bearing. e or securely iagonal web; 0 psf bottom other live loa e load of 20. a rectangle ween the bott DL = 10.0ps 2.	ne ces plate uss e), able, Pl 1. tted. y). ads. Opsf com f.				vregnit oz ID	1 1 = 2070
FURGES	Tension		pression/maximum			hanical connectio capable of withs								11111
TOP CHORD	3-4=-92/6 6-7=-90/8	61, 4-5=-11 86, 7-8=-11)/43, 2-3=-171/113, 8/132, 5-6=-90/86, 9/133, 8-9=-86/54, 11=0/43, 10-12=-148	/50	19, 41 lb upli uplift at joint at joint 13.	ft at joint 12, 100 18, 103 lb uplift at	lb uplift a	it joint 17, 19	9 lb			1111	OP. FESS	ROUNT
BOT CHORD	16-17=-9	9/157, 15- 9/157, 13-	18=-99/157, 16=-99/157, 14=-99/157,	LOA	AD CASE(S)	Siandard							SEA	L
WEBS NOTES		0/174, 8-14	=-100/23, 4-17=-157/ 4=-158/146,	145,							1111		SEA 0363	EER. R. III
		loads have	been considered for									11	A. C	ILBERTIN ILBERTIN
													Februa	ry 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	BV1	Valley	1	1	Job Reference (optional)	171166368

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:33 ID:aeQF4JnuSOnHIVFIvISpT_yp0hs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-3-0

DEFL

in (loc)

Scale :	= 1:50.5

Loading

TCLL (roof) TCDL BCLL BCDL	20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC201	5/TPI2014	TC BC WB Matrix-MP	0.23 0.18 0.19	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.00	- - 5	n/a n/a n/a	999 999 n/a	MT20 Weight: 73 lb
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-3-0 7=15-3-0 Max Horiz 1=183 (LI Max Uplift 1=-41 (LC (LC 13),8 Max Grav 1=142 (LI 8=462 (LI 8=462 (LI	athing directly applie applied or 6-0-0 oc 5=15-3-0, 6=15-3-0 8=15-3-0 C 9) 3 8, 5=-3 (LC 9), 6= 3=-244 (LC 12) C 20), 5=107 (LC 22 C 20), 7=405 (LC 22 C 19)	8) 9) , 	chord live lo * This truss on the botto 3-06-00 tall chord and a All bearings Provide med bearing plate		nt with any ed for a liv eas where will fit betw rs, with BC be SP No ion (by oth estanding 4	other live load re load of 20. a rectangle ween the bott CDL = 10.0ps .2. hers) of truss 11 lb uplift at	ads. Opsf tom if. to joint				
FORCES	(lb) - Maximum Con Tension 1-2=-185/183, 2-3=-		25									
BOT CHORD	4-5=-148/147	,	,									
WEBS	5-6=-120/149	1/281, 4-6=-361/279	,									mmm

CSI

NOTES

 Unbalanced roof live loads have been considered for this design.

(psf)

Spacing

2-0-0

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

L/d PLATES

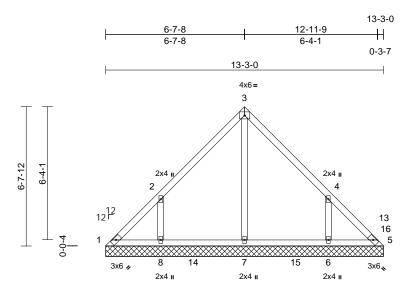
GRIP 244/190

FT = 20%

l/defl

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	BV2	Valley	1	1	Job Reference (optional)	171166369

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:33 ID:HIVccwhV5FvGyQDy?nqAhWyp0hz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP 244/190

FT = 20%

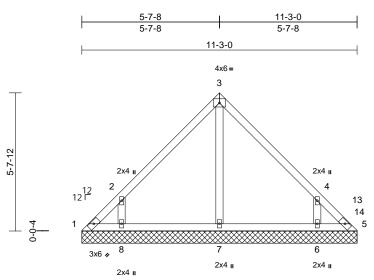
13-3-0

Scale	= 1	:48.5	

Loading TCLL (roof) TCDL BCLL BCDL	(psi 20. 10. 0. 10.	Plate Grip DOLLumber DOLRep Stress Incr	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.16 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 61 lb
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins. Rigid ceiling dire bracing. (size) 1=13- 7=13- Max Horiz 1=155 Max Uplift 1=-44	sheathing directly appl actly applied or 10-0-0 of 3-0, 5=13-3-0, 6=13-3- 3-0, 8=13-3-0 9 (LC 9) (LC 8), 5=-12 (LC 11), 3 (LC 13), 8=-219 (LC	8) pc 9) 0, L(chord live lo. * This truss l on the bottoo 3-06-00 tall l chord and au All bearings Provide med bearing plate		nt with any ed for a liv eas where will fit betw rs, with BC be SP No ion (by oth estanding 4	other live loa re load of 20.0 a rectangle veen the bott CDL = 10.0psi 2 . ers) of truss t 14 lb uplift at j	0psf om f. to joint				
	Max Grav 1=126 6=390	5 (LC 20), 5=94 (LC 22) 0 (LC 20), 7=342 (LC 22) 7 (LC 19)), ´									
FORCES	(lb) - Maximum (Tension	Compression/Maximum	1									
TOP CHORD	1-2=-168/145, 2 4-5=-138/101	-3=-161/135, 3-4=-143/	,									
BOT CHORD	1-8=-64/115, 7-8 5-6=-64/115	8=-64/115, 6-7=-64/115	,									
WEBS	3-7=-145/0, 2-8=	-346/269, 4-6=-345/26	7									minin

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.


WITTER COMPANY VIIIIIIIIIIII SEAL 036322 G mmm February 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	BV3	Valley	1	1	Job Reference (optional)	171166370

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:33 ID:WI0bwBbU_nvP?CcPX5hIMqyp0i5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

11-3-0

Scale = 1:42.8

		1											
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.21	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 50 lb	FT = 20%
LUMBER			6)	This truss ha	as been designed	d for a 10 () nsf hottom						
TOP CHORD	2x4 SP No.2		0)		ad nonconcurren			ds.					
BOT CHORD	2x4 SP No.2		7)	* This truss I	has been designe	ed for a liv	e load of 20.0	Opsf					
OTHERS	2x4 SP No.3				m chord in all are								
BRACING					by 2-00-00 wide		veen the botte	om					
TOP CHORD	Structural wood she	athing directly applie	ed or		ny other member		•						
	6-0-0 oc purlins.		8)		are assumed to								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c 9)		hanical connecti								
bracing. bracing a for the second sec													
REACTIONS		, 5=11-3-0, 6=11-3-0),	uplift at joint		o apine ac je							
		, 8=11-3-0	L	OAD CASE(S)									
	Max Horiz 1=134 (LC	,			etandara								
	Max Uplift 1=-68 (LC	.C 13), 8=-209 (LC 11)											
	Max Grav 1=114 (L0												
		C 20), 7=201 (LC 3),											
	8=361 (L		,										
FORCES	(lb) - Maximum Corr	pression/Maximum											
	Tension												
TOP CHORD	1-2=-194/139, 2-3=-	174/118, 3-4=-164/	113,										
	4-5=-169/119												
BOT CHORD	1-8=-53/94, 7-8=-39	/89, 6-7=-39/89,											
	5-6=-58/98	4/202 4 0 204/202	`									OP. FESS	
WEBS	3-7=-113/0, 2-8=-38	1/303, 4-0=-381/302	2									111110	1111
NOTES											"TH UA	ROUT	
,	ed roof live loads have	been considered to	r								1	A SECO	in Init
this design	1. CE 7 10: \/ult_120mph	(2 accord quat)								/	22	FEUD	IN SI

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.

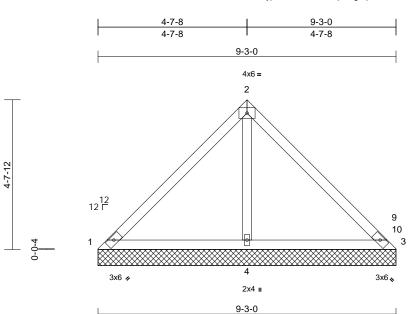
G 111111111

February 4,2025

SEAL

036322

anninnan ar


Put and a straight

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	CC 2695 A			
CL 2695 A	BV4	Valley	1	1	Job Reference (optional)	171166371		

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:34 ID:DP5xSnW5de0Of7a3c73faMyp0iC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scal	= 1:3	270

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0		1.15		тс	0.29	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0		1.15		BC	0.27	Vert(TL)	n/a	-	n/a	999	-	
BCLL	0.0		YES		WB	0.20	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MP							Weight: 38 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	9-3-0 oc purlins. Rigid ceiling direc bracing. (size) 1=9-3- Max Horiz 1=109 Max Uplift 1=-33 4=-185	heathing directly applie ttly applied or 6-0-0 oc 0, 3=9-3-0, 4=9-3-0 (LC 9) (LC 24), 3=-40 (LC 23) (LC 12) _C 12), 3=68 (LC 12), -	L ,	on the botto 3-06-00 tall chord and a) All bearings) Provide med bearing plate	has been desig m chord in all a by 2-00-00 widd ny other membr are assumed to chanical connect e capable of witt t at joint 3 and 1 Standard	reas where e will fit betw ers. b be SP No. tion (by oth hstanding 3	a rectangle veen the bott 2 . ers) of truss 3 lb uplift at	to					
FORCES	(LC 1) (Ib) - Maximum C	ompression/Maximum											

Tension TOP CHORD 1-2=-146/284, 2-3=-148/279 BOT CHORD 1-4=-263/188, 3-4=-263/188 2-4=-548/266

WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

11111111 February 4,2025

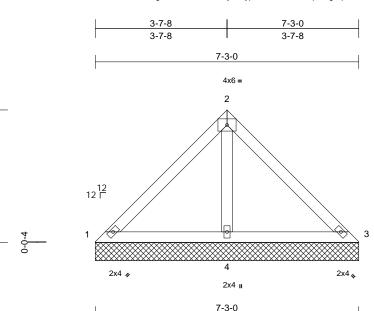
C

Variation

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

SEAL


036322

11111111111

Job	Truss	Truss Type		Ply	CC 2695 A				
CL 2695 A	BV5	Valley	1	1	Job Reference (optional)	171166372			

3-7-12

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:34 ID:OFkgCkRK2oGFxC6vGsyFK5yp0il-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:23.4

					1								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MP							Weight: 29 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-3-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-3-0, 3 Max Horiz 1=-85 (LC Max Uplift 1=-5 (LC 2)	applied or 6-0-0 oc 3=7-3-0, 4=7-3-0 8)	ed or ^Q	 on the botton 3-06-00 tall l chord and an All bearings Provide med bearing plate 	has been design n chord in all an by 2-00-00 wide y other member are assumed to hanical connec e capable of witt oint 3 and 112 Standard	eas where will fit betw ers. be SP No. tion (by oth nstanding 5	a rectangle veen the both 2. ers) of truss b b uplift at jo	tom					

(LC 12) Max Grav 1=68 (LC 23), 3=68 (LC 24), 4=495 (LC 1)

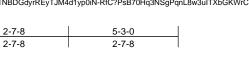
FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-77/183, 2-3=-77/175 BOT CHORD 1-4=-174/134, 3-4=-174/134 2-4=-347/162 WEBS

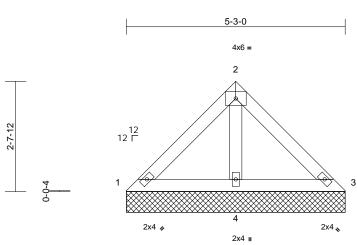
NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type		Ply	CC 2695 A	
CL 2695 A	BV6	Valley	1	1	Job Reference (optional)	171166373

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:34 ID:1Hxn91NBDGdyrREyTJM4d1yp0iN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

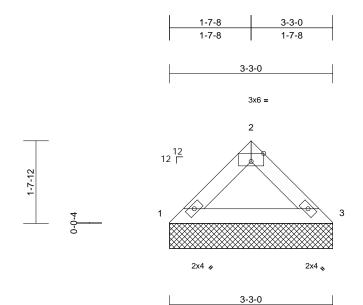
Page: 1

5-3-0

Scale = 1:19.7

Scale = 1.19.7												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.04	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 21 lb	FT = 20%
	5-3-0 oc purlins. Rigid ceiling direct bracing. (size) 1=5-3-0 Max Horiz 1=-60 (L Max Uplift 4=-60 (L	.C 12)	ied or bearing	uss has been design ottom chord in all ar tall by 2-00-00 wide ad any other membe ngs are assumed to mechanical connect plate capable of with E(S) Standard	eas where will fit betw ers. be SP No tion (by oth	a rectangle veen the botto 2. ers) of truss t	om to					
	(LC 1)	C 23), 3=65 (LC 24),										
FORCES	(ib) - Maximum Co Tension	mpression/Maximum	1									
TOP CHORD BOT CHORD WEBS	1-2=-53/102, 2-3=- 1-4=-97/82, 3-4=-9 2-4=-199/80											
NOTES												
	ed roof live loads hav	e been considered fo	or									
this design												
2) Wind: ASC	CE 7-10; Vult=130mp	h (3-second gust)										11
Vasd=103	mph; TCDL=6.0psf;	BCDL=6.0psf; h=30ft	t; Cat.								11111 01	1111
	Enclosed; MWFRS (N'TH UT	ROM
	Exterior (2) zone;C-C									S	A Street	Dell'
	for reactions shown	; Lumber DOL=1.60	plate						/	52		PN. Sin
grip DOL=									4	72		N'A
	igned for wind loads										:4	
	studs exposed to wir								=		SEA	1 i E
	ard Industry Gable E qualified building de								Ξ.		000	• –
	uires continuous bott		FT 1.						1		0363	22 : :
	ds spaced at 4-0-0 of									- B		1
	has been designed f									1		al. S
	load nonconcurrent		ads.							2.5		FERINA
0.10.0										1	20	E. F. S.
											A G	ILBUIN
											. A. C	in in it.
												1.0005

- 5)
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB A. GILL February 4,2025

Job	Truss	Truss Type		Ply	CC 2695 A	
CL 2695 A	BV7	Valley	1	1	Job Reference (optional)	171166374

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:34 ID:c0_jBNKySt1R82zNEr3U5Ryp1bF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

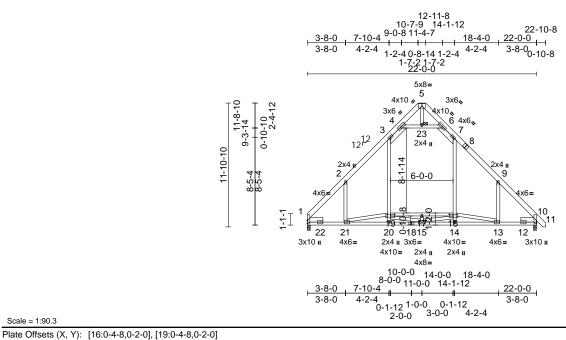
|--|

Plate Offsets (X, Y): [2:0-3-0,Edge]

	, 1). [2.0-5-0,∟uge]	-									-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-3-0 oc purlins. Rigid ceiling directly bracing. (size) 1=3-3-0, 3 Max Horiz 1=36 (LC Max Grav 1=130 (LC Max Grav 1=130 (LC	y applied or 10-0-0 or 3=3-3-0 9) C 12), 3=-12 (LC 13)	bearing pla 1 and 12 ll LOAD CASE(ed or c	echanical connectio ate capable of withs b uplift at joint 3. S) Standard								
FORCES TOP CHORD BOT CHORD	(Ib) - Maximum Com Tension 1-2=-158/34, 2-3=-1 1-3=-23/118											
 this design Wind: ASC Vasd=103 II; Exp B; E and C-C E MWFRS grip DOL= Truss desi only. For s see Standa or consult Gable requestion Gable stuce This truss chord live * This truss on the bott 3-06-00 ta chord and 	CE 7-10; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior (2) zone;C-C fo S for reactions shown;	a (3-second gust) CDL=6.0psf; h=30ft; nvelope) exterior zor or members and forc Lumber DOL=1.60 p a the plane of the true ((normal to the face d Details as applical gner as per ANSI/TF m chord bearing. r a 10.0 psf bottom ith any other live loa for a live load of 20.0 where a rectangle fit between the bottom	d Cat. ne pes plate ss), ble, PI 1. ds. Jpsf						William.		SEA 0363	EER ALU

February 4,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	CC 2695 A	
CL 2695 A	C01	Attic	4	1	Job Reference (optional)	171166375

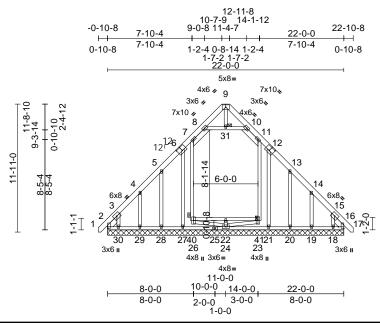
Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:34 ID:d6?41daoUbk8KayrH9GCaXyp0oZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:90.3

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.51	Vert(LL)	0.19	13-14	>999	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.21	20-21	>999	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.36	Horz(CT)	0.06	10	n/a	n/a			
BCDL	10.0	Code	IRC20	15/TPI2014	Matrix-MS	-	Attic	-0.06	16-19	>999	360	Weight: 201 lb	FT = 20%	
LUMBER			2	2) Wind: ASCE	7-10; Vult=130n	nph (3-seo	cond gust)							
TOP CHORD	2x6 SP No.2				oh; TCDL=6.0psf									
BOT CHORD	2x4 SP No.2 *Excep	ot* 19-16:2x4 SP No.3	3		closed; MWFRS									
WEBS		ot* 7-14,3-20:2x4 SP			erior (2) zone;C-									
SLIDER		1-6-0, Right 2x6 SP N	lo.2		or reactions show	vn; Lumbe	er DOL=1.60 p	olate						
	1-6-0			grip DOL=1.		14	0							
BRACING			3		is been designed ad nonconcurren			da						
TOP CHORD		athing directly applie	dor		as been designe									
	5-10-0 oc purlins.		-		n chord in all are			Jhai						
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			oy 2-00-00 wide			h						
	bracing, Except:	04 40 40			y other member			5111						
JOINTS	10-0-0 oc bracing: 1	-21,10-13.	5		load (10.0 psf) c		er(s), 3-4, 4-23	3.						
	1 Brace at Jt(s): 23	40.000			all dead load (5.									
REACTIONS	· · · · ·			3-19										
	Max Horiz 1=-280 (L Max Grav 1=1195 (L	,	21) 6		d live load (40.0									
	•	1.	21)		oad (5.0 psf) app	plied only	to room. 17-1	9,						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	_	16-17										
TOP CHORD	1-2=-1440/0, 2-3=-1	111/77 2 1 002/11			are assumed to I									
TOP CHORD		102/140, 6-7=-806/14	40	,	necked for L/360	deflection	1.							
		=-1443/0. 10-11=0/31		OAD CASE(S)	Standard									
BOT CHORD	1-21=-268/1007, 20-													
201 0110112	15-20=-361/899, 14	,										ORTH CA	1111	
	13-14=-156/729, 10-											WAH CA	Rolly	
	17-19=-619/602, 16-										- 5	R	Dell'	
WEBS	14-16=0/197, 7-16=	-97/718, 19-20=0/197	7,							1	23	A TAC	OZ.	20
	3-19=-88/706, 4-23=	-1229/359,									2 A			-/
	6-23=-1229/359, 5-2	23=0/108, 15-17=-393	3/0,							1		2	× •	-
	15-16=-311/954, 15-											SEA	n in	=
	2-21=-196/156, 19-2									=	:			=
	9-13=-196/157, 13-1	16=-644/834								1		0363	22 :	
NOTES										THE OWNER				WILLING THE
1) Unbalance	d roof live loads have	been considered for									-	1		-

this design.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

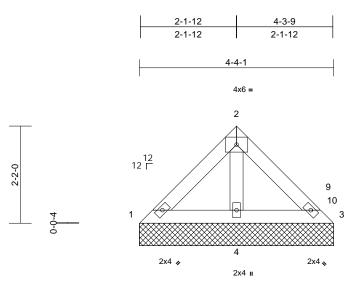
Job	Truss	Truss Type	Qty	Ply	CC 2695 A			
CL 2695 A	C01E	Attic Supported Gable	1	1	Job Reference (optional)	171166376		

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:35 ID:36R2nyTekWO02YuqPv3ovQyp0m7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:87.6

Plate Offsets (X, Y): [2:Edge,0-0-0], [6:0-5-0,0-4-8], [12:0-5-0,0-4-8], [16:Edge,0-6-0]


Fiale Oliseis (∧, ⊺). [∠.⊏	uge,0-0-0],	[0.0-5-0,0-4-0], [12.0	-5-0,0-	+-oj, [10.∟uge,0-	-0-0]								
Loading TCLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.06		in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.19	``'	n/a	-	n/a	999		
BCLL BCDL		0.0* 10.0	Rep Stress Incr Code	YES)15/TPI2014	WB	0.18	Horz(CT)	0.01	16	n/a	n/a	Maisht 000 lb	FT 200/
BCDL		10.0	Code	IRC2	J15/1P12014	Matrix-MS							Weight: 228 lb	F1 = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD	No.2 2x4 SP N No.2 Left 2x6 S No.2 1- Structura 6-0-0 oc	lo.2 lo.3 *Excep lo.3 *Excep SP No.2 ^ 3-12 I wood she purlins.	t* 11-23,7-26:2x4 SF t* 27-6,21-12:2x4 SF 1-3-12, Right 2x6 SP athing directly applie applied or 10-0-0 oc	d or	WEBS	2-30=-88/251, 29-3 28-29=-89/251, 27- 22-27=-92/247, 21- 20-21=-89/249, 19- 18-19=-88/249, 16- 23-24=0/133 11-23=-8/44, 7-26= 10-31=-146/149, 9- 5-28=-157/131, 4-2 3-30=-152/131, 14-2 3-30=-152/153, 12- 13-20=-157/133, 11- 5-18=-154/205, 22- 22-26=-138/0, 22-2	28=-89, 222=-92, 20=-89, 18=-88, 31=-6/5 29=-168, 21=-17 4-19=-1 2-24=-2	/251, /247, /249, 24-26=(3-31=-146/14§ 5, 6-27=-189/§ /141, 1/73, 68/140, 27/0,	9,	bea 2, 5 upli join 111 upli	aring plat i9 lb upli ft at join t 30, 34 lb uplift ft at join c room c	te capa ft at joi t 28, 1 Ib uplif at join t 2 and checke	able of withstandii int 16, 50 lb uplift 11 lb uplift at joint it at joint 21, 116 it 19, 221 lb uplift I 59 lb uplift at join d for L/360 deflec	
BOTOHORD	bracing.	ing uncoury			NOTES									
JOINTS		1 Brace at Jt(s): 26, 1) 23, 31				roof live loads hav			r					
	Max Horiz Max Uplift	19=22-0-(22=22-0-(2=-264 (L 2=-264 (L 2=-104 (L 2=-104 (L 20=-116 (27=-50 (L 29=-111 (29=-111 (29=-111 (29=-112 (L 29=-124 (L 20=132 (L 20=-132 (L 20=-132 (L) (2))))))))))))))))))))))))))))))))	C 10), 16=-59 (LC 11 LC 13), 19=-111 (LC LC 13), 21=-34 (LC 1 C 12), 28=-109 (LC 1 LC 12), 30=-233 (LC C 22), 16=407 (LC 23 C 11), 19=193 (LC 2 C 21), 21=281 (LC 2 C 18), 27=298 (LC 2 LC 1), 29=193 (LC 20),), 13), 3), 2), 12)), (1), (0),),	Vasd=103m II; Exp B; Er and C-C Exp B; Er and C-C Exp B; Er and C-C Exp B; Er and C-C Exp B; Er & WVFRS f grip DOL=1. 3) Truss design only. For st see Standar or consult qu 4) All plates ard 5) Gable requil 6) Gable studs chord live lo 8) * This truss	ned for wind loads i uds exposed to win d Industry Gable E Jalified building des e 2x4 () MT20 uni res continuous botti spaced at 2-0-0 oc as been designed fi ad nonconcurrent v has been designed	CDL=6 envelope for mem ; Lumbe n the pla d (norm nd Deta signer as ess oth orm chor s. or a 10.0 vith any for a liv	i.Opsf; h=30ft; a) exterior zor bers and forc r DOL=1.60 p ane of the tru: al to the face ils as applical s per ANSI/TF erwise indicat d bearing. D psf bottom other live loa e load of 20.0	ne ces blate ss), ble, Pl 1. ced. ds.		4	1	SEA 0363	
FORCES	Tension 1-2=0/32 4-5=-295 8-9=-149 11-13=-2	, 2-3=-200/ /88, 5-7=-2 /37, 9-10=- 35/123, 13·	pression/Maximum 94, 3-4=-326/108, 69/125, 7-8=-196/12(156/46, 10-11=-196/ -14=-266/50, 6=-187/75, 16-17=0/), 120,	3-06-00 tall chord and a 9) Ceiling deac 7-8, 10-11; 7-26	m chord in all areas by 2-00-00 wide wil ny other members, I load (10.0 psf) on Wall dead load (5.0 are assumed to be	l fit betv with BC membe)psf) on	veen the botto CDL = 10.0psf r(s). 8-31, 10- member(s).1	-31,			and the second s	A. G Februar	L 22 L L BER L BER L I L BER L I L BER L I I L D I I I I I I I I I I I I I I I

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	CV1	Valley	1	1	Job Reference (optional)	171166377

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:35 ID:Jg33j_EZ5j8Qpzw1KtRrJyyp1bM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-9

Scale = 1:17.9

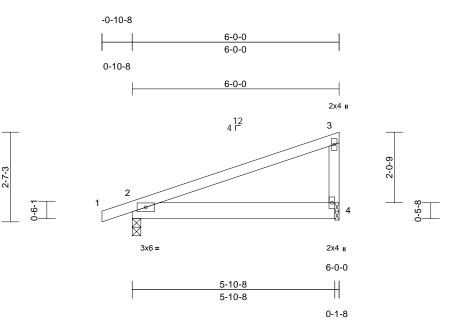
Ocale = 1.17.3												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.06	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI	2014 Matrix-MP							Weight: 16 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-3-9 oc purlins. Rigid ceiling directly bracing. (size) 1=4-4-1, 5 Max Horiz 1=48 (LC Max Uplift 4=-43 (LC Max Grav 1=59 (LC (LC 1)	9) 23=4-4-1, 4=4-4-1 9) 212)	ed or 10) Bev 10) Bev 10) Bev 10) Bev 10) Bev Sur LOAD (his truss has been designed the bottom chord in all are 6-00 tall by 2-00-00 wide ord and any other member bearings are assumed to vide mechanical connection ring plate capable of with reled plate or shim require face with truss chord at jo CASE(S) Standard	eas where will fit betw rs. be SP No on (by oth standing 4 ed to provi	a rectangle veen the bott 2. ers) of truss 13 lb uplift at j de full bearin	om to joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	1-2=-50/72, 2-3=-38	/64										
BOT CHORD	1-4=-62/51, 3-4=-62	/51										
WEBS	2-4=-142/53											
NOTES												
,	ed roof live loads have	been considered fo	r									
this design 2) Wind: ASC	n. CE 7-10; Vult=130mph	(2 cocond quet)										
	mph; TCDL=6.0psf; B		Cat								minin	Unin.
	Enclosed; MWFRS (er										NITH CA	Ro
	Exterior (2) zone;C-C fo									N'	OREESS	. Alle
	for reactions shown;									15	U:FESS	AND VIL
grip DOL=									4	ès	/	A: Y
 Truss desi 	igned for wind loads in	the plane of the tru	SS							-	:0	4

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Gable requires continuous bottom chord bearing. 4)

Gable studs spaced at 4-0-0 oc. 5)

This truss has been designed for a 10.0 psf bottom 6) chord live load nonconcurrent with any other live loads.


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty Ply		CC 2695 A				
CL 2695 A	M1	Monopitch	6	1	Job Reference (optional)	171166378			

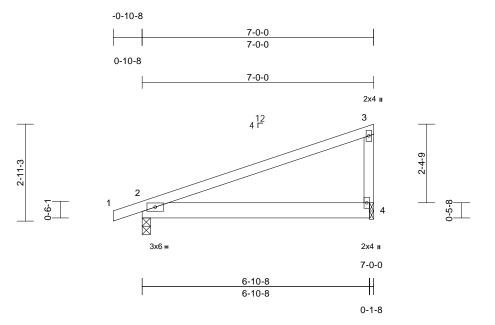
Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:35 ID:u9cB5ZbkSI7ZhOf2FcQzzryp1_A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.7

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.37	Vert(LL)	0.03	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.28	Vert(CT)	-0.05	4-7	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP	-						Weight: 27 lb	FT = 20%
LUMBER			8) Provide me	chanical connectio	on (by oth	ers) of truss t	to					
TOP CHORE	D 2x4 SP No.2			te capable of withs	standing 6	6 lb uplift at j	joint					
BOT CHORE				uplift at joint 4.								
WEBS	2x4 SP No.3		LOAD CASE(S) Standard								
BRACING												
TOP CHORE			ed or									
BOT CHORE	6-0-0 oc purlins, ex D Rigid ceiling directly		C									
	bracing.	applied of 10-0-0 0	6									
REACTIONS	S (size) 2=0-3-0, 4	4=0-1-8										
	Max Horiz 2=90 (LC											
	Max Uplift 2=-66 (LC											
	Max Grav 2=291 (L0											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum										
TOP CHORE		32 3-4=-131/107										
BOT CHORE		02,01-101/101										
NOTES												
	ced roof live loads have	been considered fo	r									
this desig												
	SCE 7-10; Vult=130mph											
)3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er											
	Exterior (2) zone;C-C for										minin	unin.
	RS for reactions shown;									3	TH CA	Rollin
grip DOL										N	A STOR	in the
	s has been designed fo								/	5.	OFER	Prinzin
	e load nonconcurrent wi uss has been designed f								2	V		La V
	ottom chord in all areas		ры						-	1		
	tall by 2-00-00 wide will		om						=	:	SEA	L ; =
	nd any other members.								Ξ		0363	22 E
	s are assumed to be: Joi	int 2 SP No.2 , Joint	4						-			
SP No.3		arallal to grain value							11111111111	-	1. A.	- 1 E
	at joint(s) 4 considers pa NSI/TPI 1 angle to grain									2.0	NOIN	EER. A.S
	should verify capacity of									1	NO. GIN	E. E. F. S.
7) Provide I	mechanical connection		0								CA. C	ILBUIN
bearing p	plate at joint(s) 4.										111111	IIIII
											Echrug	n/ 4 2025

February 4,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	M2	Monopitch	3	1	Job Reference (optional)	171166379

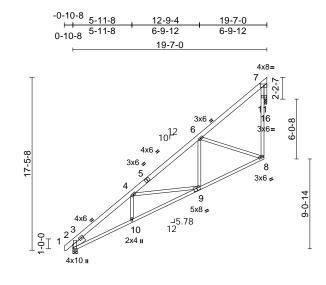
Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:36 ID:3kjVGiJJtEEqRsPdPHWaX_yp1_X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

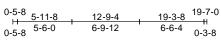
Page: 1

Scale = 1:25

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.54	Vert(LL)	0.05	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.38	Vert(CT)	-0.09	4-7	>927	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 32 lb	FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals.	bearing plat 2 and 65 lb LOAD CASE(S) ed or	chanical connectio e capable of withs uplift at joint 4.) Standard								
REACTIONS (S	0	4=0-1-8										
N N FORCES	Max Horiz 2=103 (LC Max Uplift 2=-71 (LC Max Grav 2=330 (LC (Ib) - Maximum Com Tension	C 8), 4=-65 (LC 12) C 1), 4=271 (LC 1)										
	1-2=0/17, 2-3=-133/	50, 3-4=-156/121										
BOT CHORD NOTES	2-4=0/63											
	roof live loads have	been considered fo	r									
this design.												
Vasd=103m II; Exp B; Er and C-C Ext	7-10; Vult=130mph ph; TCDL=6.0psf; B hclosed; MWFRS (er terior (2) zone;C-C fo or reactions shown; 60	CDL=6.0psf; h=30ft nvelope) exterior zor or members and for	ne ces								WTH CA	ROUT
	as been designed fo									~~	U. FESS	Oil Paris
	ad nonconcurrent wi has been designed f								4	2		1 hrs
on the botto 3-06-00 tall	m chord in all areas by 2-00-00 wide will	where a rectangle									SEA	• -
	ny other members. e assumed to be: Joi	int 2 SP No.2 , Joint	4								0363	22
Bearing at journal design of the second sec	pint(s) 4 considers pa TPI 1 angle to grain ould verify capacity o	formula. Building							ŝ		A RAGIN	EERA
7) Provide med	chanical connection e at joint(s) 4.		0								CA. G	ILBE.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

February 4,2025

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	M4	Monopitch	8	1	Job Reference (optional)	171166380

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:36 ID:ulnLvIDE0tBZQ9jjEMTszCyp156-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:106.9	
Plate Offsets (X, Y):	[2:0-4-13,Edge], [7:0-4-8,0-2-0], [9:0-4-0,0-3-0]

Plate Offsets ((X, Y): [2:0-4-13,Edge	9, [7:0-4-8,0-2-0], [9:0	0-4-0,0-3-0]									
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.78 0.64 0.68	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.09 -0.19 -0.10	(loc) 9-10 9-10 16	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 142 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she 4-11-9 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8, - Max Horiz 2=638 (LC Max Uplift 16=-415 (Max Grav 2=843 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-4=-1612 6-7=-198/58 2-10=-831/1563, 8-1 8-11=-300/745, 7-11 4-9=-533/329, 6-9=- 7-16=-887/420	t* 10-4,9-6:2x4 SP N 1-6-0 athing directly applie applied or 6-5-4 oc 16=0-3-0 C 12) LC 12) C 1), 16=832 (LC 19) npression/Maximum 2/1882, 4-6=-1040/13 10=-834/1590 1=-300/745, 4-10=0/1 52/443, 6-8=-875/41	5) Bearing at using ANS designer s lo.3 6) One H2.5, recommer UPLIFT at does not c doer LOAD CASE(39,	joint(s) 2, 16 conside bl/TPI 1 angle to grain hould verify capacity of A Simpson Strong-Tie ided to connect truss i jt(s) 16. This connect onsider lateral forces.	formula of bear conne to bear ion is fo	a. Building ing surface. ctors ing walls due	to			arti	Weight. 142 ID	P1 = 20%
Vasd=103 II; Exp B; I and C-C E & MWFRS grip DOL= 2) This truss chord live 3) * This trus on the bot 3-06-00 ta chord and	has been designed for load nonconcurrent wi is has been designed f tom chord in all areas all by 2-00-00 wide will any other members. are assumed to be: Joi	CDL=6.0psf; h=30ft; ivelope) exterior zon or members and force Lumber DOL=1.60 p r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle fit between the botto	e es late ds. psf m						A CHIMME		111111	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	M4E	Monopitch	1	1	Job Reference (optional)	171166381

Scale = 1:106.9

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:36 ID:ulnLvIDE0tBZQ9jjEMTszCyp156-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

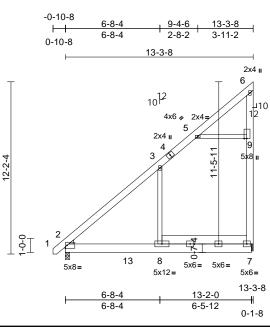
-0-10-8 5-11-8 12-9-4 19-7-0 0-10-8 5-11-8 6-9-12 6-9-12 19-7-0 4x8= 7 2-2-7 33 38 3x6 🧳 6-0-8 10¹² 6 3x6= 7x10 🍫 17-5-8 3x6 🍫 8 5 3x6 🞜 9-0-14 9 5x8 🛩 _⊐5.78 12 4x6 🦼 2³/ 10 . Ģ∏ 1 4x10 u

0-5-8	5-11-8	12-9-4	19-3-8	19-7-0
0-5-8	5-6-0	6-9-12	6-6-4	0-3-8

Plate Offsets (X, Y): [2:0-4-13,Edge], [5:0-5-0,0-4-8], [7:0-4-8,0-2-0], [9:0-4-0,0-3-0], [13:0-1-11,0-1-0], [16:0-1-11,0-1-0], [19:0-1-11,0-1-0], [22:	2:0-1-9,0-1-0], [25:0-1-9,0-1-0]
---	----------------------------------

								-	-				-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	· ·	тс	0.78	Vert(LL)	0.09	9-10	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.19	9-10	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.68	Horz(CT)	-0.10	38	n/a	n/a		
BCDL	10.0	Code	IRC2015/1	PI2014	Matrix-MS							Weight: 191 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Left 2x6 SP No.2 Structural wood she 4-11-9 oc purlins. Rigid ceiling directly bracing. (size) 2=0-5-8,3 Max Horiz 2=638 (L0 Max Uplift 38=-415 (Max Grav 2=843 (L0 (lb) - Maximum Com Tension	t* 10-4,9-6:2x4 SP N 1-6-0 athing directly applie applied or 6-5-4 oc 38=0-3-0 C 12) LC 12) C 1), 38=832 (LC 19) ppression/Maximum	5) E 6) E 7) (ed or LOA	Bearings are a SP No.3 . Bearing at join using ANSI/TP designer shoul Dne H2.5A Sir recommended JPLIFT at jt(s)	assumed to be: J t(s) 2, 38 consid Pl 1 angle to graii Id verify capacity mpson Strong-TT I to connect truss 38. This conner ider lateral forces	ers para n formula of beari e conne to beari ction is fo	llel to grain va a. Building ing surface. ctors ing walls due	alue e to					
TOP CHORD BOT CHORD WEBS	6-7=-198/58	0=-834/1590 3=-300/745, 4-10=0/	194,									WITH CA	11111
Vasd=103 II; Exp B; I and C-C B; & MWFRS grip DOL= 2) All plates a 3) This truss chord live 4) * This trus on the bot 3-06-00 ta	CE 7-10; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er sixterior (2) zone;C-C fc 5 for reactions shown; 1.60 are 2x4 () MT20 unle has been designed fo load nonconcurrent wi s has been designed fo tom chord in all areas Il by 2-00-00 wide will any other members.	CDL=6.0psf; h=30ft; velope) exterior zon or members and forc Lumber DOL=1.60 p ess otherwise indicat r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	ne bes blate ed. ds. 0psf							Within		SEA 0363	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

February 4,2025

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	
CL 2695 A	M6	Monopitch	4	1	Job Reference (optional)	171166382

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:36 ID:Q3COAqUvMsuezbFB8V2JOfyp1Hg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

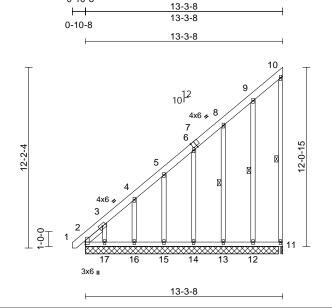
Page: 1

Scale = 1:73.9

Plate Offsets	(X, Y): [9:Edge,0-2-4]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	CSI TC BC WB Matrix-MP	0.67 0.62 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.24 -0.41 0.04 -0.21	(loc) 8-12 8-12 2 7-8	l/defl >645 >382 n/a >729	L/d 240 180 n/a 360	PLATES MT20	GRIP 244/190	
BCDL LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x8 SP DSS 2x4 SP No.3 2x6 SP No.2 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. This truss requires t chord be sheathed i (size) 2=0-3-8, 7 Max Horiz 2=441 (LC Max Uplift 7=-195 (L Max Grav 2=710 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-3=-691/	ooth edges of the both n the room area. 7=0-1-8 C 12) C 12) C 20), 7=1020 (LC 20) ppression/Maximum	dead load (1 6) Bottom cho chord dead 7) Bearings ar SP No.2. 8) Bearing at j using ANSL designer sh 9) Provide me bearing plat 10) One H2.5A recommenc UPLIFT at j does not co 11) ATTIC SPA UNINHABIT		s).3-8 () and a d only f int 2 SI arallel f formul of bear (by oth to bear on is for	dditional bott to room. 7-8 P DSS , Joint to grain value a. Building ing surface. ers) of truss ctors tors ing walls due r uplift only a	tom t 7 e to e to	7-8	>729	360	Weight: 142 lb	FT = 20%	
 this desig 2) Wind: AS Vasd=10² II; Exp B; and C-C I & MWFR grip DOL 3) This truss chord live 4) * This trus on the bo 3-06-00 ta 	2-8=-670/583, 7-8=- 3-8=-519/414, 5-9=- ed roof live loads have in. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior (2) zone;C-C fs S for reactions shown;	135/166 253/73 been considered for (3-second gust) CDL=6.0psf; h=30ft; C velope) exterior zone or members and force Lumber DOL=1.60 pt r a 10.0 psf bottom th any other live loads or a live load of 20.0p where a rectangle fit between the bottom	Cat. es ate s. ssf						Antititit		SEA 0363	EER A	7

February 4,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type Qty Ply		Ply	CC 2695 A	
CL 2695 A	M6E	Monopitch Supported Gable	1	1	Job Reference (optional)	171166383

-0-10-8

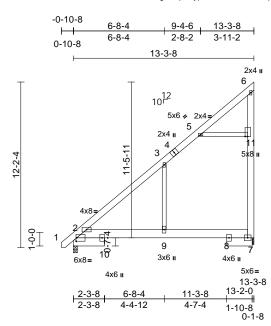
84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:37 ID:TvcfjG3qQi?_m?98XU0oMhyp1Pz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70

Plate Offsets (X, Y): [7:0-3-0,Edge]


	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_										
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.06	Vert(LL)		17-20	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.00	Vert(CT)		17-20	>999	180	101120	244/100
BCLL	0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TF	PI2014	Matrix-MP	0.11	11012(01)	0.00	2	Π/a	Π/a	Weight: 131 lb	FT - 20%
	10.0	Code	11(02013/11	12014	Wath A-Wi							Weight. 131 lb	11 - 2070
LUMBER 2 Wind: ASCE 7-10; Vull=130mph (3-second gust) TOP CHORD 2x4 SP No.2 Wind: ASCE 7-10; Vull=130mph (3-second gust) WEBS 2x4 SP No.2 II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; C-C for members and forces WEBS 2x4 SP No.2 Wind: ASCE 7-10; Vull=130mph; TCDL=6.0ps; h=30ft; Cat. UNDER Left 2x4 SP No.2 Wind: ASCE 7-10; Vull=130mph; TCDL=6.0ps; h=30ft; Cat. SUIDER Left 2x4 SP No.3 - 1-6-12 Min WFRS for reactions shown; Lumber DOL=1.60 BRACING Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. BOT CHORD Rigid celling directly applied or 10-0-0 oc bracing. See Standard Industry Gable End Details as applicable. WEBS 1 Row at midpt 10-11, 9-12, 8-13 Gable studies spaced at 2-0-0 oc. WEBS 1 Row at midpt 10-11, 9-13, 12-13-0-0, 11=-13-0-0, 12=130-0, 17=13-0-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=130-0, 12=13-0-0, 12=													
TOP CHORD		236, 3-4=-463/379, 295/244, 6-8=-211/1 =-52/35, 10-11=-58/43	76, LOAD	etail for Cor	nnection to base tr ied building design	russ as a						SEA	
BOT CHORD), 15-16=0/0, 14-15=0										0363	22
WEBS	1-2=0/29, 2-3=-281/236, 3-4=-463/379, 4-5=-378/310, 5-6=-295/244, 6-8=-211/176, 8-9=-126/107, 9-10=-52/35, 10-11=-58/43 0 2-17=0/0, 16-17=0/0, 15-16=0/0, 14-15=0/0, 13-14=0/0, 12-13=0/0, 11-12=0/0 9-12=-146/108, 8-13=-149/110, 6-14=-148/108, 3-17=-259/257 ced roof live loads have been considered for										ERA		
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for											1LBF Ty 4,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2695 A	174400004
CL 2695 A	M7	Monopitch	6	1	Job Reference (optional)	171166384

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Feb 03 11:19:37 ID:L3hc9ltMVbeu?xglovFpO0yp1RV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:74.9

	X, Y): [2:0-0-10,0-3-0], [11.⊑uge,0 2 +] I				· · · · ·					1		
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI201	CSI TC BC WB 4 Matrix-MP	0.80 0.49 0.10	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in 0.32 -0.52 0.15 -0.27	(loc) 9-15 9 7 7-9	l/defl >484 >297 n/a >569	L/d 240 180 n/a 360	PLATES MT20 Weight: 133 lb	GRIP 244/190 FT = 20%	
	2x6 SP No.2 2x8 SP DSS 2x4 SP No.3 2x6 SP No.2 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. This truss requires b chord be sheathed in (size) 2=0-3-8, 7 Max Horiz 2=441 (LC Max Uplift 7=-199 (L) Max Grav 2=673 (LC	applied or 6-0-0 oc both edges of the bot n the room area. 7=0-1-8 C 12) C 12)	Wall de 6) Bottom chord c 7) Bearing SP No. 4d or 8) Bearing using A designe 9) Provide bearing 10) One H2 recomr UPLIFT does ni 11) ATTIC	dead load (5.0 psf) or ad load (5.0 psf) on m chord live load (40.0 p ead load (5.0 psf) app s are assumed to be: 2. at joint(s) 7 consider: NSI/TPI 1 angle to gra r should verify capaci mechanical connection plate at joint(s) 7. .5A Simpson Strong- nended to connect trus at jt(s) 7. This connect to consider lateral forc SPACE SHOWN IS D ABITABLE.	ember(s). osf) and a lied only Joint 2 S s parallel ain formul ty of bear on (by oth Fie conne ss to bear ction is fo es.	3-9 dditional botti to room. 7-9 P DSS , Joint to grain value a. Building ing surface. iers) of truss t ctors ing walls due r uplift only ar	om 7 o to						
FORCES	(lb) - Maximum Com Tension	•		E(S) Standard									
TOP CHORD	1-2=0/34, 2-3=-722/5 5-6=-291/457, 7-11=	-465/262, 6-11=-444	1/274										
BOT CHORD WEBS	2-9=-225/334, 7-9=- 3-9=-373/349, 5-11=										ann	0.0	
NOTES											WHY CA	ROUL	
,	d roof live loads have	been considered for								15	R	J. Links	
Vasd=103/ II; Exp B; E and C-C E & MWFRS grip DOL= 3) This truss chord live I 4) * This truss on the bott 3-06-00 tal	E 7-10; Vult=130mph mph; TCDL=6.0psf; B0 Enclosed; MWFRS (en xterior (2) zone;C-C fc for reactions shown; I	CDL=6.0psf; h=30ft; ivelope) exterior zon or members and forc Lumber DOL=1.60 p r a 10.0 psf bottom th any other live load or a live load of 20.0 where a rectangle	e es late Is. psf								SEA 0363	22 EER. A.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A Mi Tek Affiliate

818 Soundside Road Edenton, NC 27932

February 4,2025

