DEPARTMENT OF HEALTH AND HUMAN SERVICES DIVISION OF PUBLIC HEALTH, ENVIRONMENTAL HEALTH SECTION ON-SITE WATER PROTECTION BRANCH

	Page 1 of
PROPERTY ID #:	
COUNTY:	

			SOIL/SITE EV	ALUATION for ON-	SITE WASTE	WATER SY	STEM			
WNE	R: Dream	Finders		(Complete all f	ields in full)		DAT	E EVALU	ATED:	
DDRI		77 Blos	IOM Trail	OPOSED DESIGN F	FLOW (.0400):	3606	PROPI	ERTY SIZI	3:	
	TION OF SITE:						PROPE	RTY REC	ORDED:	
	R SUPPLY: Q		gle Family Well		1 0	er			SETBACK:_	PWW
VALU	JATION METH	OD: Auge	er Boring) Pit	Cut TY	PE OF WASTE	WATER:	Domesti	ic High	Strength I	rww
P R O F			SOIL MORPHOLOGY		OTHER PROFILE FACTORS					
I L E	.0502 LANDSCAPE POSITION/ SLOPE %	HORIZON DEPTH (IN.)	.0503 STRUCTURE/ TEXTURE	.0503 CONSISTENCE/ MINERALOGY	.0504 SOIL WETNESS/ COLOR	.0505 SOIL DEPTH	.0506 SAPRO CLASS	.0507 RESTR HORIZ	.0509 PROFILE CLASS & LTAR*	.0503 SLOPE CORRE CTION
	LSS	0-34	Win SBK/Scl	FS, SS, SP, SOFF					\$	
	201	34-46		VII, NS, NY, SOCO		48"				
1	8%	46-48	W,m,SBK/SCL	WFZ SS, SP, Sap		98			0.6	34
			, ,							
	LSS	0-33	W, F, GILS	VFr, NS, NY, SOM	No.				(
		37-35	Mm, SBK/SC	VF, NS, NP, SOA VF; NS, NP, CXP	1000	2 -11			3	34
2	8%			,	@33"72	35"			0.35	
					درس ا					
	LSS	0-27	W.F. SBKSCL	FI, SS, SP, Sep		-			5	
		27-36	W. F. Gr/LS	VITY, NS, NP, SEXE	1 6	1142				44
3	10%	16-44	W.F. GHLS	VET, NS, NY SEXP	109x8/,	484				1 , !
		44-48	100 6	VFH, NS, NP, SOCE	(9)4411				0.8	
			, , , , , , , , , , , , , , , , , , , ,	, , , ,	Clas messes			17.2		MI Elec
	LSS	0-30	Mr. SISKIS	F:, SS, SP, SOM						
		30-43	M.M. S.BK/SC			11				4"
4	10%	43-48		VFH NS, NO, SER		48"			0.4	
				,						

DESCRIPTION	INITIAL SYSTEM	REPAIR SYSTEM	
Available Space (.0508)			SITE CLASSIFICATION (.0509):
System Type(s)			EVALUATED BY: M. Osbacon AT
Site LTAR	0.6	0.4	OTHER(S) PRESENT:
Maximum Trench Depth	284	38"	to the case of the
Comments:			
			1

LEGEND

LANDSCAPE POSITION	SOIL GROUP	SOIL TEXTURE	CONVENTIONAL LTAR (gpd/ft²)	SAPROLITE LTAR (gpd/ft²)	LPP LTAR (gpd/ft²)	MINERALOGY/ CONSISTENCE		STRUCTURE
CC (Concave slope)		S (Sand)		0.6 - 0.8		MOIST	WET	SG (Single grain)
CV (Convex Slope)	ı	LS (Loamy sand)	0.8 - 1.2	0.5 -0.7	0.4 -0.6	Lo (Loose)	NS (Non-sticky)	(Massive)
D (Drainage way)	11	SL (Sandy loam)	0.6 - 0.8	0.4 -0.6	0.3 - 0.4	VFR (Very friable)	SS (Slightly sticky)	GR (Granular)
FP (Flood plain)		L (Loam)	0.0 - 0.8	0.2 - 0.4		FR (Friable)	S (Sticky)	SBK (Subangular blocky)
FS (Foot slope)	- 111	SiL (Silt loam)		0.1 - 0.3	0.15 - 0.3	FI (Firm)	VS (Very sticky)	ABK (Angular blocky)
H (Head slope)		SCL (Sandy clay loam)		0.05 - 0.15**		VFI (Very firm)	NP (Non-plastic)	PR (Prismatic)
L (Linear Slope)		CL (Clay loam)	0.3 - 0.6			EFI (Extremely firm)	SP (Slightly plastic)	PL (Platy)
N (Nose slope)		SiCL (Silty clay loam)					P (Plastic)	
R (Ridge/summit)		Si (Silt)		None			VP (Very plastic)	
S (Shoulder slope)		SC (Sandy clay)		* .	4.	SEXP (Slightly expansive)		
T (Terrace)	IV	SiC (Silty clay)	0.1 - 0.4		0.05 - 0.2	EXP (Expansive)		
TS (Toe Slope)	1	C (Clay)						
		O (Organic)	None					

* Adjust LTAR due to depth, consistence, structure, soil wetness, landscape, position, wastewater flow and quality.

**Sandy clay loam saprolite can only be used with advanced pretreatment in accordance with 15A NCAC 18E .1200. In inches below natural soil surface

HORIZON DEPTH DEPTH OF FILL RESTRICTIVE HORIZON SAPROLITE

SOIL WETNESS

In inches from land surface

Thickness and depth from land surface
S(suitable) or U(unsuitable), Evaluation of saprolite shall be by pits.
Inches from land surface to free water or inches from land surface to soil colors with chroma 2 or less - record Munsell color chip designation

