
Job	Truss H4T	Truss Type	Qty	Ply	Blake Pond SF Lot 00.0113 Roof				
2504-5261-A		Hip	2	1	Job Reference (optional)	I73117748			

Structural, LLC, Thurmont, MD - 21788.

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Tue Apr 29 15:16;33 ID:0uwvvly5UV8da7ak3pdgfhzun74-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

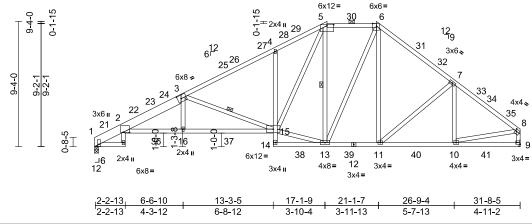


Plate Offsets (X, Y): [2:0-5-8,0-0-4], [3:0-3-4,0-3-0], [5:0-6-0,0-0-15], [6:0-3-6,Edge], [8:0-1-0,0-1-12], [9:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.23	15-16	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.84	Vert(CT)	-0.41	15-16	>930	240		
TCDL	10.0	Rep Stress Incr	YES	l wв	0.60	Horz(CT)	0.19	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.07	16-20	>999	240		
BCDL	10.0			1		' '					Weight: 222 lb	FT = 20%

LUMBER

Scale = 1:85.9

TOP CHORD 2x4 SP No.2 *Except* 1-3:2x8 SP DSS 2x4 SP No.3 *Except* 2-15:2x4 SP SS, **BOT CHORD**

14-12,12-9:2x4 SP No.2 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied,

except end verticals, and 2-0-0 oc purlins

(4-7-5 max.): 5-6

BOT CHORD Rigid ceiling directly applied. **WEBS** 1 Row at midpt 3-15, 5-13 REACTIONS 1=0-3-8. 9= Mechanical (size)

1=154 (LC 15) Max Horiz

Max Grav 1=1468 (LC 51), 9=1598 (LC 59)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-732/55, 2-4=-3734/118, 4-5=-2519/189,

5-6=-1525/152, 6-7=-1865/143,

7-8=-2058/81, 8-9=-1652/70

2-16=-69/3489, 15-16=-65/3505,

14-15=0/167, 4-15=-451/120,

13-14=-111/118, 11-13=0/1345,

10-11=-26/1586, 9-10=-30/163

3-15=-1403/65, 13-15=0/1440,

5-15=-75/1596, 5-13=-529/44, 6-13=-35/354,

6-11=0/408, 7-11=-324/88, 7-10=-195/195,

8-10=0/1467, 3-16=0/415

NOTES

WEBS

BOT CHORD

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-3-14, Interior (1) 3-3-14 to 17-4-0, Exterior(2E) 17-4-0 to 21-0-5, Exterior(2R) 21-0-5 to 25-6-3, Interior (1) 25-6-3 to 31-7-4 zone; cantilever left and right exposed; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding. The Fabrication Tolerance at joint 2 = 16%
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Refer to girder(s) for truss to truss connections.
- 11) Bearing at joint(s) 1 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building
- designer should verify capacity of bearing surface. 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932