

RE: 28527 - Wellons Realty\Lot 4 Forrest Site Information: Project Customer: Wellons Realty Project Lot/Block: 4 Model: Farmhouse GOL	H Trenco 818 Soundside Rd Edenton, NC 27932
Address:	Choke
General Truss Engineering Criteria & Des Drawings Show Special Loading Condition	sign Loads (Individual Truss Design ons):
Design Code: IRC2018/TPI2014	Design Program: MiTek 20/20 8.4
Wind Code: ASCE 7-16 [All Heights]	Design Method: MWFRS (Directional) ASCE 7-16 [All Heights]
Wind Speed: 120 mph	Floor Load: N/A psf
Roof Load: 40.0 psf	I
Mean Roof Height (feet): 20	Exposure Category: B
No Sealt Truss Name Date	

INO.	Seal#	TTUSS Maine	Date
1	171670160	G1 GR1	2/27/25
3	171670162	PB1	2/27/25
5	171670163	PB3	2/27/25
6 7	171670165 171670166	PB4 PB5	2/27/25 2/27/25
8 9	171670167	PB6 PB7	2/27/25
10	171670169	PB8	2/27/25
12	171670171	T1	2/27/25
13 14	1/16/01/2	12 T3	2/27/25 2/27/25
16	I71670174 I71670175	T4 T5	2/27/25
17	171670176	T6 T7	2/27/25
19	171670178		2/27/25
20 21	171670179	TGE1	2/27/25
22 23	I71670181 I71670182	TGE2 TSGE1	2/27/25
25	I71670183	V1 V2	2/27/25
26	171670185	V3	2/27/25
28	171670186	V4 V5	2/27/25
29 30	I71670188 I71670189	V6 V7	2/27/25 2/27/25

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

Iruss Design Engineer's Name: Gilbert, Eric My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Dot the building designer should verify applicability of dest incorporate these designs. the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affilia 818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Wellons Realty\Lot 4 Forrest H	
						171670161
28527	GR1	PIGGYBACK BASE GIRDE	1	2		
				_	Job Reference (optional)	
C&R Truss, Autryville,	NC - 28318,		8.	530 s Aug	2 2023 MiTek Industries, Inc. Wed Feb 26 13:33:00 2025	Page 2
		ID:T4k54'	ehSUOYk	G10rpPX	uQzhKVS-xuku JqG01wHN9?liaFEN47oskAJHKI4wM0TX	6zhFYH

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-5=-40, 5-6=-40, 6-10=-40, 11-20=-13

Concentrated Loads (lb)

Vert: 16=-833(B) 12=-89(B) 21=-833(B) 22=-833(B) 23=-833(B) 24=-833(B) 25=-833(B) 26=-833(B) 28=-833(B) 29=-833(B) 32=-833(B) 33=-833(B) 34=-89(B) 35=-89(B) 36=-89(B) 37=-93(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6, 10, 8.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6, 10, 8.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

 See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 7, 2, 6, 10, 8.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP 2400F 2.0E BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

REACTIONS. All bearings 6-6-0. (lb) - Max Horz 1=33(LC

Max Horz 1=33(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4 Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MI lek A 818 Soundside Road Edenton, NC 27932

LUMBER-

 TOP CHORD
 2x4 SP 2400F 2.0E

 BOT CHORD
 2x4 SP No.2

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 6-6-0. (lb) - Max Horz 1=33(LC

Max Horz 1=33(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1. 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

plate grip DOL=1.60 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

- Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

a) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

I nis truss is designed in accordan referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Horz 1=25(LC 7) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

	7-0-4	13-9-0	18-11-0	23-6-4	32-8-0	
	7-0-4	6-8-12	5-2-0	4-7-4	9-1-12	
Plate Offsets (X,Y)	[2:0-2-14,0-2-0], [5:0-5-12,0-2-0],	[6:0-2-4,0-2-0], [9:0-1-8,0-0-12	2]			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.60 BC 0.26 WB 0.95 Matrix-AS	DEFL. ir Vert(LL) -0.10 Vert(CT) -0.21 Horz(CT) 0.01 Wind(LL) 0.01	n (loc) I/defl L/d 0 12-13 >999 360 1 12-13 >525 240 1 12 n/a n/a 1 16-18 >999 240	PLATES MT20 Weight: 311 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S OTHERS 2x4 S	P 2400F 2.0E P 2400F 2.0E P No.3 P No.3		BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathin 2-0-0 oc purlins (6-0-0 m Rigid ceiling directly app 1 Row at midpt	ng directly applied, except e nax.): 5-6. lied. 3-16, 5-15, 6-15	nd verticals, and

REACTIONS. (size) 19=0-3-8, 13=0-3-8, 12=0-3-8 Max Horz 19=-207(LC 6) Max Uplift 19=-24(LC 8), 12=-39(LC 8) Max Grav 19=1067(LC 1), 13=1321(LC 14), 12=524(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1128/18, 3-5=-781/87, 5-6=-412/106, 6-8=-551/104, 2-19=-999/62, 10-12=-314/74

BOT CHORD 18-19=-118/299, 16-18=0/959, 15-16=0/655

WEBS 3-16=-404/62, 5-16=0/450, 5-15=-441/0, 8-15=0/655, 8-13=-985/17, 2-18=0/704

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 1.5x4 MT20 unless otherwise indicated

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-00 between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 19, 12.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

SEAL 036322 February 27,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

		7-0-4	13-9-0	18-11-0	23-6-4	32-8-0	
		7-0-4	6-8-12	5-2-0	4-7-4	9-1-12	
Plate Offsets	s (X,Y)	[2:0-2-14,0-2-0], [5:0-5-12,0-2-0], [6:0-2	-4,0-2-0]				
LOADING (r TCLL 2 TCDL 1 BCLL BCDL 1	psf) 20.0 0.0 0.0 * 0.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.60 BC 0.26 WB 0.94 Matrix-AS	DEFL. in Vert(LL) -0.10 Vert(CT) -0.21 Horz(CT) 0.01 Wind(LL) 0.01	(loc) l/defl 11-12 >999 11-12 >526 11 n/a 15-17 >999	L/d PLATES 360 MT20 240 n/a 240 Weight: 228 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORE BOT CHORE WEBS REACTIONS	D 2x4 SP D 2x4 SP 2x4 SP 3. (size Max H Max U Max G	2 2400F 2.0E 2 2400F 2.0E 2 No.3 e) 18=0-3-8, 12=0-3-8, 11=0-3-8 orz 18=200(LC 7) plift 18=-20(LC 8) rav 18=1069(LC 1), 12=1329(LC 14), 1	1=395(LC 20)	BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sh 2-0-0 oc purlins (6 Rigid ceiling direct 1 Row at midpt	neathing directly applied, except (-0-0 max.): 5-6. ly applied. 3-15, 5-14, 6-14	end verticals, and
FORCES. (TOP CHORE BOT CHORE WEBS	(lb) - Max. D 2-3=- D 17-18 3-15=	Comp./Max. Ten All forces 250 (lb) of 1131/12, 3-5=-785/80, 5-6=-414/98, 6-7 3=-111/287, 15-17=0/950, 14-15=0/646 403/63, 5-15=0/450, 5-14=-440/0, 7-14	less except when shown. '=-555/95, 2-18=-1001/58 4=0/649, 7-12=-974/29, 2-1	17=0/707			
NOTES-							

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=33ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18.

7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	L	6-1-12	13-9-0		20-0-0	22-6-0	26	-3-0		33-10-4	40-0-0	
		6-1-12	7-7-4	1	6-3-0	2-6-0	3-	9-0		7-7-4	6-1-12	
Plate Offset	ts (X,Y)	[6:0-5-4,0-2-12], [9:	0-5-4,0-2-12]									
LOADING TCLL TCDL BCLL BCDL	(psf) 20.0 10.0 0.0 * 10.0	SPACING- Plate Grip D0 Lumber DOL Rep Stress II Code IRC20	2-0-0 OL 1.15 . 1.15 ncr YES 118/TPI2014	CSI. TC BC WB Matr	0.21 0.23 0.45 rix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.07 0.02 0.01	n (loc) 14-15 14-15 14-15 13 14-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 366 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHOR BOT CHOR WEBS SLIDER	D 2x6 SF D 2x6 SF 18-20: 2x4 SF Left 2x	P No.1 P No.1 *Except* 2x4 SP No.2 P No.3 6 SP No.1 1-6-0, Rij	ght 2x6 SP No.1 1-6	-0		BRACING TOP CHO BOT CHO WEBS JOINTS	3- DRD DRD	Structu 2-0-0 c Rigid c 1 Row 1 Brac	ural wood oc purlins ceiling dire at midpt re at Jt(s):	sheathing di (6-0-0 max.) ectly applied. 22, 23	irectly applied, except : 6-9. 9-17, 11-15, 8-17, 7-17	,
REACTIONS. All bearings 0-3-8 except (jt=length) 13=Mechanical. (lb) - Max Horz 2=175(LC 7) Max Uplift All uplift 100 lb or less at joint(s) 2 Max Grav All reactions 250 lb or less at joint(s) except 2=306(LC 19), 21=1218(LC 13), 17=1198(LC 14), 13=847(LC 1)												
FORCES. TOP CHOR	(lb) - Max. D 4-6=-	Comp./Max. Ten 609/88, 6-7=-413/10	All forces 250 (lb) or 07, 7-8=-293/108, 8-	less excep 9=-293/108	t when shown 3, 9-11=-642/8	7,						
BOT CHOR WEBS	D 18-20 4-21= 11-15	D=0/475, 17-18=0/47 =-1035/42, 4-20=0/5 5=-447/70, 11-14=0/	72, 15-17=0/479, 14- 01, 18-23=0/267, 7-2 /254, 7-17=-546/0	15=0/791, 23=0/272, 9	13-14=0/791 9-17=-544/0, 9	-15=0/429,						
NOTES- 1) Unbaland 2) Wind: AS II; Exp B; plate grip 3) Provide a 4) All plates	ced roof live SCE 7-16; V ; Enclosed; o DOL=1.60 adequate di a are 4x4 M	e loads have been cr /ult=120mph (3-seco MWFRS (directiona) rainage to prevent w 720 unless otherwis	onsidered for this de ond gust) Vasd=95m II); cantilever left and rater ponding. e indicated.	sign. ph; TCDL= right expos	6.0psf; BCDL= sed ; end vertio	=6.0psf; h=20ft; cal left and right	B=45ft; L exposed	_=40ft; e d; Lumbe	ave=5ft; (er DOL=1	Cat. .60	TORTH C	ARO
5) This trus	s has been	designed for a 10.0	psf bottom chord live	e load nond	concurrent with	any other live l	oads.	tor thos	600	(States and the second second	That

This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 6) between the bottom chord and any other members, with BCDL = 10.0psf.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2. 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

referenced standard ANSI/TPI 1. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and properting and properting and properting the properties of the properties of the stability of the sign of the sign of the stability of the sign of the sign of the sign of the stability of the sign of the sign of the sign of the stability of the sign of the sign of the stability of the sign of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	-	6-1-12		13-9-0		20-0-0		26-3-	0	-1	33	-10-4		40-0-0	
Diata Offacta (V	()	6-1-12 [6:0 5 4 0 2 12]	10.0 E 4	7-7-4	200201	6-3-0		6-3-0)		7	-7-4		6-1-12	·
Plate Olisets (A	(, ř <i>)</i>	[6:0-5-4,0-2-12],	[8:0-5-4,	0-2-12], [18:0-	2-0,0-2-0]										
LOADING (psf)	SPACING	}-	2-0-0	CSI.		DEFL.		in (lo	c) l	l/defl	L/d	PI	LATES	GRIP
TCLL 20.0)	Plate Grip	DOL	1.15	TC	0.24	Vert(Ll) -C). 11 14- 1	16 >	>999	360	M	IT20	244/190
TCDL 10.0)	Lumber D	OL	1.15	BC	0.37	Vert(C	-C).17 14-1	16 >	>999	240			
BCLL 0.0) *	Rep Stres	s Incr	YES	WB	0.73	Horz(C	Ť) ().02 [·]	13	n/a	n/a			
BCDL 10.0)	Code IRC	C2018/TF	912014	Matrix	k-AS	Wind(L	L) (0.03 14-1	16 >	>999	240	W	/eight: 339 lb	FT = 20%
BCDL 10.0 Code IRC2018/TPI2014 Matrix-AS Wind(LL) 0.03 14-16 >999 240 Weight: 339 lb FT = 20% LUMBER- TOP CHORD 2x6 SP No.1 BRACING- 16-18: 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 6-8. BOT CHORD Rigid ceiling directly applied. WEBS 2x4 SP No.3 BOT CHORD Keactions. All bearings 0-3-8 except (jt=length) 12=Mechanical. WEBS 1 Row at midpt 8-14 JOINTS 1 Brace at Jt(s): 20, 21 JOINTS 1 Brace at Jt(s): 20, 21 Image: Structural wood sheathing directly applied.															
FORCES. (lb) TOP CHORD BOT CHORD WEBS	- Max. 2-4=- 2-19= 4-19= 10-14	Comp./Max. Ten 906/37, 4-6=-122 0/658, 18-19=0/0 -795/51, 4-18=0/0 =0/1076, 10-13=	n All for 22/79, 6-7 658, 16-1 /376, 16- 1667/30	ces 250 (lb) or 7=-962/98, 7-8 18=0/983, 14-1 21=-324/54, 7-)	less except =-943/98, 8- 6=0/725, 13 21=-338/54,	when shown 10=-959/87, -14=-260/22, 8-16=0/511,	0-12=-37/43 12-13=-260/2 8-14=-305/30	2							

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 12=103.
- 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	⊢	6-1-12	13-9-0		20-0-0	26-3	-0		33-	10-4	40-0-0	-
Plate Offsets (X	(Y)	[6:0-5-4 0-2-12] [8:0-5-4	<u>/-/-4</u> 4 0-2-12] [19 [.] 0-2	-0.0-2-01	6-3-0	6-3-	0		/-	7-4	6-1-12	· · · · · · · · · · · · · · · · · · ·
	, , , ,		1,0 2 12], [10.0 2	0,020]								
LOADING (psf))	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0)	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	-0.11	15-17	>999	360	MT20	244/190
TCDL 10.0)	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.17	15-17	>999	240		
BCLL 0.0) *	Rep Stress Incr	YES	WB	0.74	Horz(CT)	0.01	14	n/a	n/a		
BCDL 10.0)	Code IRC2018/1	PI2014	Matrix	-AS	Wind(LL)	0.03	15-17	>999	240	Weight: 344 lb	FT = 20%
LUMBER-			·		•	BRACING-						
TOP CHORD		TOP CHOR	D	Structu	ral wood	sheathing dire	ectly applied, except					
BOT CHORD	2x6 SF	No.1 *Except*						2-0-0 o	c purlins	(6-0-0 max.):	6-8.	
	17-19:	2x4 SP No.2				BOT CHORD Rigid ceiling directly applied.						
WEBS	2x4 SF	No.3				WEBS		1 Row	at midpt	8-	-15	
SLIDER	Left 2x	6 SP No.1 1-6-0, Right 2	2x6 SP No.1 1-6-0	0		JOINTS		1 Brace	e at Jt(s):	21, 22		
REACTIONS.	All be	earings 0-3-8.										
(lb) -	Max H	orz 2=-181(LC 6)										
	Max U	plift All uplift 100 lb or l	less at joint(s) 2,	12								
	Max G	Frav All reactions 250 l	o or less at joint(s	s) 12 except	2=815(LC 14), 20=876(LC 19)	, 14=18	372(LC	14)			

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

 TOP CHORD
 2-4=-892/43, 4-6=-1212/81, 6-7=-953/99, 7-8=-934/100, 8-10=-945/88, 10-12=-29/463

 BOT CHORD
 2-20=0/656, 19-20=0/656, 17-19=0/985, 15-17=0/725, 14-15=-290/45, 12-14=-290/45

 BOT CHORD
 2-20=0/050, 19-20=0/050, 17-19=0/950, 10-17=0/720, 14-13=-290/45, 12-14=-290/45

 WEBS
 4-20=-801/46, 4-19=0/380, 17-22=-324/54, 7-22=-338/55, 8-17=0/513, 8-15=-316/27, 10-15=0/1098, 10-14=-1684/29

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12.7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and
- referenced standard ANSI/TPI 1. 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

		7-0-4	1	13-9-0	1	20-3-0	1	26-11	1-12	1	34-0-0	
		7-0-4	1	6-8-12	1	6-6-0	1	6-8-	·12	1	7-0-4	
Plate Offsets ((X,Y)	[2:0-1-0,0-1-12], [5:0-5-	12,0-2-0], [6:0-3	8-12,0-2-0], [9	9:0-1-0,0-1-1	2], [11:Edge,0-3-8]	, [14:0-	1-8,0-2-	0], [15:0-1	-8,0-2-0]		
LOADING (ps	sf)	SPACING-	2-0-0	CSL		DEFL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCII 20	0	Plate Grip DOI	1 15	TC	0.48	Vert(LL)	-0.21	12-14	>999	360	MT20	244/190
TCDI 10	0		1 15	BC	0.30	Vert(CT)	-0.26	12-14	>999	240		210,000
BCII 0	0 *	Rep Stress Incr	YES	WB	0.62	Horz(CT)	0.03	11	n/a	n/a		
BCDL 10	0.0	Code IRC2018/	FPI2014	Matrix	x-AS	Wind(LL)	-0.12	15-17	>999	240	Weight: 243 lb	FT = 20%
LUMBER-						BRACING-						
TOP CHORD	2x4 SF	2400F 2.0E				TOP CHOR	D	Structu	ral wood s	sheathing di	rectly applied, except e	end verticals, and
BOT CHORD	2x4 SF	2400F 2.0E *Except*						2-0-0 o	c purlins (6-0-0 max.):	: 5-6.	,
	14-15:	2x6 SP No.1				BOT CHOR	D	Rigid ce	eilina dire	ctly applied.		
WEBS	2x4 SF	2 No.3				WEBS		1 Row a	at midpt	3	3-15, 8-14	
						JOINTS		1 Brace	at Jt(s):	19. 20	,	
REACTIONS.	(size	e) 18=0-3-8, 11=0-3-8	}							-, -		
	Max H	lorz 18=-208(LC 6)										
	Max U	blift 18=-13(I C 8) 11=-	13(I C 8)									
	Max G	arav 18=1470(IC1) 11:	=1470(I C 1)									
FORCES. (III	b) - Max	Comp /Max Ten - All fo	orces 250 (lb) or	less except	when shown	1						
TOP CHORD	2-3=-	1710/3 3-5=-1418/69 5	5-6=-1122/84 6	-8=-1418/69	8-9=-1710/3	. 2-18=-1399/51						
	Q_11-	1399/51	/ 0= 1122/04, 0	0= 1410/00,	0 0= 17 10/0	, 2 10- 1000/01,						
	17-19	302/315 15-17-0/143	2 14-15-0/115	3 12-14-0/1	328							
WEBS	3-15-	-382/65 15-19-0/417	5-10-0/417 14.	20-0/416 6	-20-0/417 8	1/383/65						
WLDO	2 17-	-0/1165 0 12-0/1166	5-13-0/417, 14-	20-0/410, 0	-20=0/417,0-	-14303/03,						
	2-17=	=0/1105, 9-12=0/1100										
NOTES												
1) Unbolance	d roof live	loade have heen consi	dorod for this de	sign								
		(ult 120mmb (2 accord				C On aft h DOffe D	154.1	244		~1		
2) Wind: ASC	E /-10; V	ult=120mph (3-second	gust) vasu=95m	ipn; ICDL=6	SUPSI; BODL	=0.0psi; n=20it; в=	4511, L	=3411; 62		al.		
II; EXP B; E	nciosea;	MWFRS (directional); c	antilever left and	a right expos	ea ; ena verti	ical left and right ex	cposed	; Lumbe	r DOL=1.0	50		
plate grip D	OL=1.60	, , , , , ,										
3) Provide ade	equate di	rainage to prevent water	ponding.								minin	
4) All plates a	re 4x4 M	120 unless otherwise in	dicated.								IN'TH C	ARO
This truss h	nas been	designed for a 10.0 psf	bottom chord liv	e load nonco	oncurrent with	h any other live loa	ds.				1 ' Q 1	
6) * This truss	has bee	n designed for a live loa	d of 20.0psf on t	the bottom cl	hord in all are	eas with a clearand	e areat	ter than	6-0-0		CO HO	1.7

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 11.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	7-0-4	13-9-0		20-3-0	1	26-11-	12	_	34-0-0	
	7-0-4	6-8-12	1	6-6-0	1	6-8-1	2		7-0-4	
Plate Offsets (X,Y)-	- [2:0-1-0,0-1-12], [5:0-5-12,0-2	2-0], [6:0-3-12,0-2-0],	[9:0-1-0,0-1-1]	2], [11:Edge,0-3-8]	, [14:0-	1-8,0-2-0], [15:0-1-8	8,0-2-0]		
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2- Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code IRC2018/TPI20	0-0 CS .15 TC .15 BC YES WE	I. 0.48 0.30 0.62 trix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.26 0.03 -0.12	(loc) 12-14 12-14 11 15-17	l/defl >999 3 >999 2 n/a >999 2	L/d 360 240 n/a 240	PLATES MT20 Weight: 243 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 BOT CHORD 2x4 14- WEBS 2x4 REACTIONS.	SP 2400F 2.0E SP 2400F 2.0E *Except* 15: 2x6 SP No.1 SP No.3 (size) 18=0-3-8, 11=0-3-8 ix Horz 18=-208(LC 6)			BRACING- TOP CHOR BOT CHOR WEBS JOINTS	D	Structura 2-0-0 oc Rigid cei 1 Row at 1 Brace	al wood sh purlins (6- lling directl t midpt at Jt(s): 19	eathing dir 0-0 max.): y applied. 3 , 20	ectly applied, except e 5-6. -15, 8-14	end verticals, and
Ma Ma FORCES. (Ib) - M TOP CHORD 2 9 BOT CHORD 1' WEBS 3 2	x Uplift 18=-13(LC 8), 11=-13(LC x Grav 18=1470(LC 1), 11=1470 ax. Comp./Max. Ten All forces -3=-1710/3, 3-5=-1418/69, 5-6=-1 -11=-1399/51 7-18=-92/315, 15-17=0/1432, 14- 15=-382/65, 15-19=0/417, 5-19= -17=0/1165, 9-12=0/1166	; 8) (LC 1) 250 (lb) or less exce 122/84, 6-8=-1418/6 15=0/1153, 12-14=0 0/417, 14-20=0/416,	pt when shown 9, 8-9=-1710/3 /1328 6-20=0/417, 8-	n. 3, 2-18=-1399/51, -14=-383/65,						
NOTES- 1) Unbalanced roof 2) Wind: ASCE 7-1 II; Exp B; Enclos plate grip DOL=' 3) Provide adequat 4) All plates are 4x- 5) This truss has be 6) * This truss has be	live loads have been considered 6; Vult=120mph (3-second gust) ' ed; MWFRS (directional); cantiler 1.60 e drainage to prevent water pond 4 MT20 unless otherwise indicate sen designed for a 10.0 psf bottor been designed for a live load of 2 om chord and any other member	for this design. Vasd=95mph; TCDL ver left and right expo ing. d. n chord live load nor 0.0psf on the bottom s with BCDL = 10.0	=6.0psf; BCDL: osed ; end verti concurrent with chord in all are	=6.0psf; h=20ft; B= ical left and right ex h any other live loa eas with a clearanc	45ft; L⊧ ¢posed; ds. e great	=34ft; eav ; Lumber ter than 6	/e=4ft; Cat DOL=1.60 -0-0		TH CARTES	AROLIN

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 11.
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

		7-0-4	1	13-9-0	20-3-0	1	26-11-12	1	34-0-0	
		7-0-4	I	6-8-12	6-6-0	1	6-8-12	1	7-0-4	
Plate Offsets	(X,Y)	[2:0-1-4,0-1-12], [5:0-5-1	12,0-2-0], [6:0-3	-12,0-2-0], [9:0-1-4,0-1	-12], [11:Edge,0-3-8]	, [14:0-1-	-8,0-2-0], [15	:0-1-8,0-2-0]		
LOADING (p	osf)	SPACING-	2-2-0	CSI.	DEFL.	in	(loc) I/def	l L/d	PLATES	GRIP
TCLL 20	0.0	Plate Grip DOL	1.15	TC 0.53	Vert(LL)	-0.24 12	2-14 >999	360	MT20	244/190
TCDL 10	0.0	Lumber DOL	1.15	BC 0.38	Vert(CT)	-0.30 12	2-14 >999	240		
BCLL (0.0 *	Rep Stress Incr	NO	WB 0.70	Horz(CT)	0.03	11 n/a	a n/a		
BCDL 10	0.0	Code IRC2018/T	PI2014	Matrix-MS	Wind(LL)	-0.14 1	5-17 >999	240	Weight: 243 lb	FT = 20%
LUMBER-					BRACING-					
TOP CHORD	2v4 SP	2400E 2.0E			TOP CHOR	D 2	-0-0 oc purli	ns (5-10-6 may	except and varticals	
BOT CHORD	2x4 01	2400F 2.0E *Except*				6 2	Switched fro	m sheeted: Sna	$r_{ind} > 2 \cdot 0 \cdot 0$	
	1/ 15.							directly applied of	10.000 proving	
WERS	214-10.7				WERS		Row at mid	nt applied t	15 9 1/	
WEBS	2x4 SP No.3 WEBS 1 Row at midpt 3-15, 8-14									
REACTIONS.	. (size	e) 18=0-3-8 11=0-3-8			001110	•	2.400 4.00	0). 0, 0, 2, 0, .0	, 20	
	Max H	$r_{2} = 10^{-10} = 1$								
	MaxII	$r_{1} = 10^{-12} (10^{-10} c)^{-11}$	15(I C 8)							
	Max G	rav $18=1592(I \cap 1)$ $11=$	=1592(I C 1)							
	max e	1002(201), 11-	1002(201)							
FORCES. (I	lb) - Max.	Comp./Max. Ten All fo	orces 250 (lb) or	less except when show	vn.					
TOP CHORD	2-3=-	1855/3. 3-5=-1536/75. 5	-6=-1213/90. 6-	8=-1536/75. 8-9=-1855	/3. 2-18=-1520/54.					
	9-11=	-1520/54	, -		, ,					
BOT CHORD) 17-18	8=-127/311, 15-17=0/155	54. 14-15=0/124	5. 12-14=0/1442						
WEBS	3-15=	-422/71, 15-19=0/454, 5	5-19=0/454, 14-	20=0/453, 6-20=0/454,	8-14=-423/71.					
	2-17=	=0/1301.9-12=0/1302		,						
NOTES-										
1) Unbalance	ed roof live	loads have been consid	dered for this de	sign.						
2) Wind: ASC	CE 7-16: V	ult=120mph (3-second of	ust) Vasd=95m	ph; TCDL=6.0psf: BCD	L=6.0psf: h=20ft: B=	45ft: L=3	34ft: eave=4f	t: Cat.		

II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

Provide adequate drainage to prevent water ponding. 4) All plates are 4x4 MT20 unless otherwise indicated.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 11. 8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and properting and properting and properting the properties of the properties of the stability of the sign of the sign of the stability of the sign of the sign of the sign of the stability of the sign of the sign of the sign of the stability of the sign of the sign of the stability of the sign of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

40-0-0												
	40-0-0											
Plate Offsets ()	X,Y)	[8:0-4-0,0-4-4], [11:0-4-0,0-2-13], [19:0	-4-0,0-2-13], [22:0-4-0,0-4	-4], [36:0-4-0,0-4-8], [40	0-4-0,0-	4-8]						
LOADING (psf	f)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc)	l/defl	L/d	PLATES	GRIP			
TCLL 20.0	0	Plate Grip DOL 1.15	TC 0.07	Vert(LL) -0.00	1	n/r	120	MT20	244/190			
TCDL 10.0	0	Lumber DOL 1.15	BC 0.02	Vert(CT) -0.00	1	n/r	120					
BCLL 0.0	0 *	Rep Stress Incr YES	WB 0.13	Horz(CT) 0.00	28	n/a	n/a					
BCDL 10.0	0	Code IRC2018/TPI2014	Matrix-S					Weight: 405 lb	FT = 20%			
LUMBER-				BRACING-								
TOP CHORD	2x6 SP	' No.1		TOP CHORD	Structu	iral wood	sheathing di	rectly applied or 6-0-0	oc purlins, except			
BOT CHORD	2x6 SP	' No.1			2-0-0 c	c purlins	(6-0-0 max.)	: 11-19.				
OTHERS	2x4 SP	' No.3	BOT CHORD	ORD Rigid ceiling directly applied or 10-0-0 oc bracing.								
SLIDER	Left 2x6	6 SP No.1 1-9-9, Right 2x6 SP No.1 1-9	9-9	WEBS	1 Row	at midpt	1	15-38, 14-39, 13-40, 12	2-41, 10-42, 16-37,			

SLIDER Left 2x6 SP No.1 1-9-9, Right 2x6 SP No.1 1-9-9

REACTIONS.

All bearings 40-0-0. Max Horz 2=179(LC 7) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 2, 28, 43, 44, 45, 46, 47, 33, 32, 31, 30, 29 Max Grav All reactions 250 lb or less at joint(s) 28, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 37, 36, 35, 34, 33, 32, 31, 30, 29 except 2=275(LC 14)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=40ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Provide adequate drainage to prevent water ponding.
- 5) All plates are 2x4 MT20 unless otherwise indicated.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 28, 43, 44, 45, 46, 47, 33, 32, 31, 30, 29.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

17-36, 18-35, 20-34

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=34ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) All plates are 1.5x4 MT20 unless otherwise indicated.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 46, 25, 41, 42, 43, 44, 31, 30, 29, 28, 27 except (jt=lb) 40=104, 45=190, 33=316, 26=170.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

F	6-1-12	13-9-0	20-0-0	26-3-	0	33	-10-4	40-0-0	4		
Plate Offsets (X,Y)	[6:0-5-4.0-2-12]. [8:0-5-4	.0-2-12]. [19:0-2	2-0.0-2-0]	0-3-	J		-7-4	0-1-12			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2018/T	2-0-0 1.15 1.15 YES PI2014	CSI. TC 0.24 BC 0.36 WB 0.74 Matrix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.11 1 -0.17 1 0.01 0.03 1	(loc) l/defl 15-17 >999 15-17 >999 14 n/a 15-17 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 434 lb	GRIP 244/190 FT = 20%		
LUMBER- TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 *Except* 17-19: 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 SLIDER Left 2x6 SP No.1 1-6-0, Right 2x6 SP No.1 1-6-0				BRACING- TOP CHOR BOT CHOR WEBS JOINTS	D S D I	Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 6-8. Rigid ceiling directly applied. 1 Row at midpt 8-15 1 Brace at Jt(s): 21, 22					
REACTIONS. All be (lb) - Max H Max U Max G	earings 0-3-8. lorz 2=-181(LC 6) plift All uplift 100 lb or le irav All reactions 250 lb 20=876(LC 19), 14=	ess at joint(s) 2, or less at joint(1872(LC 14)	12 s) 12 except 2=815(LC 1	4),							
FORCES. (lb) - Max. TOP CHORD 2-4=- BOT CHORD 2-20= WEBS 4-20= 10-15	Comp./Max. Ten All fo 892/43, 4-6=-1212/81, 6 =0/656, 19-20=0/656, 17- =-801/46, 4-19=0/380, 17 5=0/1098, 10-14=-1684/2	rces 250 (lb) or 7=-953/99, 7-8 19=0/985, 15-1 -22=-324/54, 7 9	less except when shown =-934/100, 8-10=-945/88 7=0/725, 14-15=-290/45, ·22=-338/55, 8-17=0/513,	, 10-12=-29/463 12-14=-290/45 8-15=-316/27,							
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-16; V II; Exp B; Enclosed; plate grip DDL=1.60 3) Truss designed for V Gable End Details a 4) Provide adequate dr 5) All plates are 2x4 M 6) Gable studs spaced 7) This truss has been 8) * This truss has been 9) Provide mechanical 10) This truss id esign referenced standar 11) This truss design r sheetrock be applia	e loads have been consid /ult=120mph (3-second g MWFRS (directional); ca) wind loads in the plane of s applicable, or consult q rainage to prevent water T20 unless otherwise ind at 2-0-0 oc. designed for a 10.0 psf b n designed for a live load chord and any other mer connection (by others) o red in accordance with th rd ANSI/TPI 1. equires that a minimum of equires that a minimum of	ered for this de ust) Vasd=95m ntilever left and the truss only. ualified building bonding. icated. ottom chord liv of 20.0psf on t nbers, with BCI i truss to bearin e 2018 Internat f 7/16" structur.	sign. ph; TCDL=6.0psf; BCDL= right exposed ; end verti For studs exposed to wir designer as per ANSI/Tf e load nonconcurrent with he bottom chord in all are DL = 10.0psf. g plate capable of withsta ional Residential Code se al wood sheathing be app	=6.0psf; h=20ft; B= cal left and right ex nd (normal to the fa Pl 1. n any other live loa as with a clearanc anding 100 lb uplift actions R502.11.1	45ft; L= posed; ds. e greate at joint(and R80 top choi	40ft; eave=5ft; Lumber DOL= e Standard Ind er than 6-0-0 (s) 2, 12. D2.10.2 and rd and 1/2" gyp	Cat. 1.60 ustry	SEA 0363	AROUND AL		

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advance interpretation and properting and properting and properting the properties of the properties of the stability of the sign of the sign of the stability of the sign of the sign of the sign of the stability of the sign of the sign of the sign of the stability of the sign of the sign of the stability of the sign of th and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G

mmm February 27,2025

REACTIONS. All bearings 29-5-0.

(lb) - Max Horz 1=160(LC 7)

Max Uplift All uplift 100 lb or less at joint(s) 1, 24, 25, 26, 27, 28, 29, 21, 20, 19, 18, 17, 16

Max Grav All reactions 250 lb or less at joint(s) 1, 22, 24, 25, 26, 27, 28, 29, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=29ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 1.5x4 MT20 unless otherwise indicated.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0
- between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 24, 25, 26, 27, 28, 29, 21, 20, 19, 18, 17, 16.

8) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Aff 818 Soundside Road Edenton, NC 27932

¹⁾ Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek At 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) TRENGINEERING BY AMITEK Affiliate

REACTIONS. All bearings 13-4-4. (lb) - Max Horz 1=-68(LC

 Max Horz 1=-68(LC 6) Max Uplift All uplift 100 lb or less at joint(s) 8, 6

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=265(LC 1), 8=304(LC 19), 6=304(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Horz 1=46(LC 7)

Max Uplift 1=-6(LC 8), 3=-6(LC 8) Max Grav 1=166(LC 1), 3=166(LC 1), 4=343(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

RENCO A MITEK Affiliate

818 Soundside Road

LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.09	Vert(LL)	n/a -	n/a	999	MT20	244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.02 Matrix-P	Horz(CT)	0.00 3	n/a	999 n/a	Weight: 18 lb	FT = 20%

BRACING-TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

OTHERS 2x4 SP No.3

REACTIONS. 1=5-4-4, 3=5-4-4, 4=5-4-4 (size) Max Horz 1=-24(LC 6) Max Uplift 1=-7(LC 8), 3=-7(LC 8)

Max Grav 1=96(LC 1), 3=96(LC 1), 4=164(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 5) between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Structural wood sheathing directly applied or 5-5-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

