

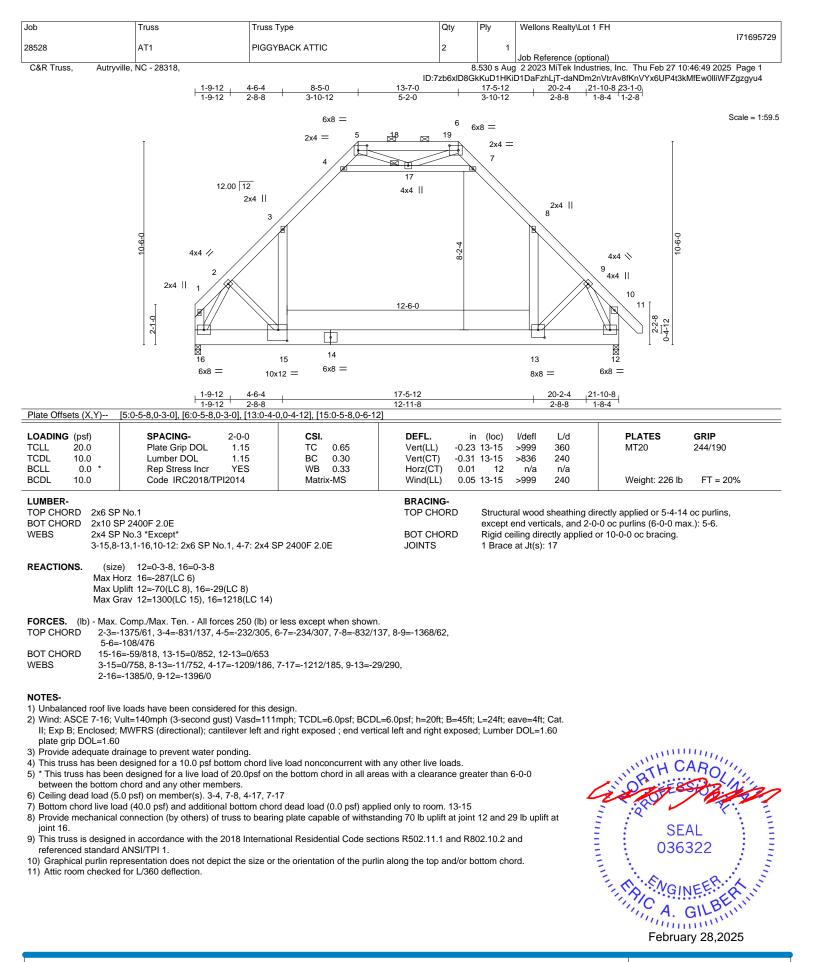
Trenco RE: 28528 - Wellons Realty\Lot 1 FH Site Information: Project Customer: Wellons Realty Project Name: Lot/Block: 1 Subdivision: Forest Hills Model: Erwin RH Address: City: State: General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2018/TPI2014 Design Program: MiTek 20/20 8.4 Wind Code: ASCE 7-16 [All Heights] Wind Speed: 140 mph Floor Load: N/A psf Roof Load: 40.0 psf

Mean Roof Height (feet): 20

No.	Seal#	Truss Name	e Date
1 2 3 4 5 6 7 8 9 10	171695729 171695730 171695731 171695732 171695733 171695734 171695735 171695735 171695737 171695738	AT1 AT2 PB1 PB3 PB4 PB5 PB5 PB7 PB7 PB8	2/28/25 2/28/25 2/28/25 2/28/25 2/28/25 2/28/25 2/28/25 2/28/25 2/28/25
11 12	171695739 171695740	PB9 T1	2/28/25 2/28/25
13 14	I71695741 I71695742 I71695743	T2 T3 T4	2/28/25 2/28/25 2/28/25
16 17	171695744 171695745	T5 T6	2/28/25 2/28/25
18 19 20	I71695746 I71695747 I71695748	TG1 TGE1 TGE2	2/28/25 2/28/25 2/28/25
21 22	171695749 171695750	TGE3 TSGE1	2/28/25 2/28/25 2/28/25

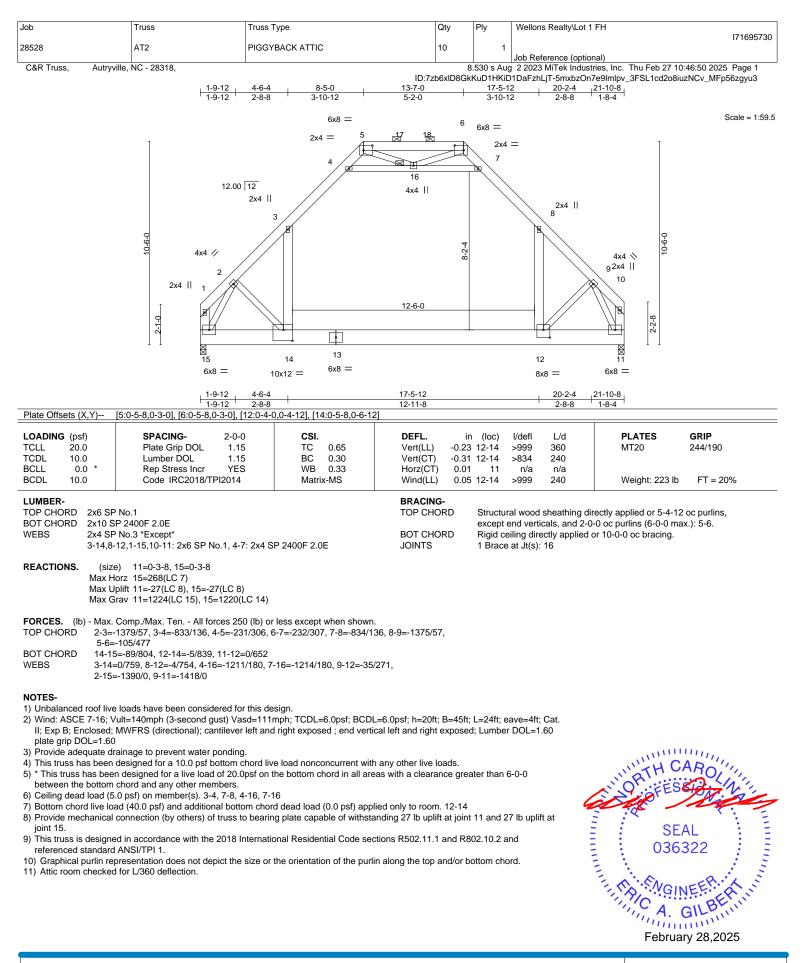
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a certification of the state of t shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

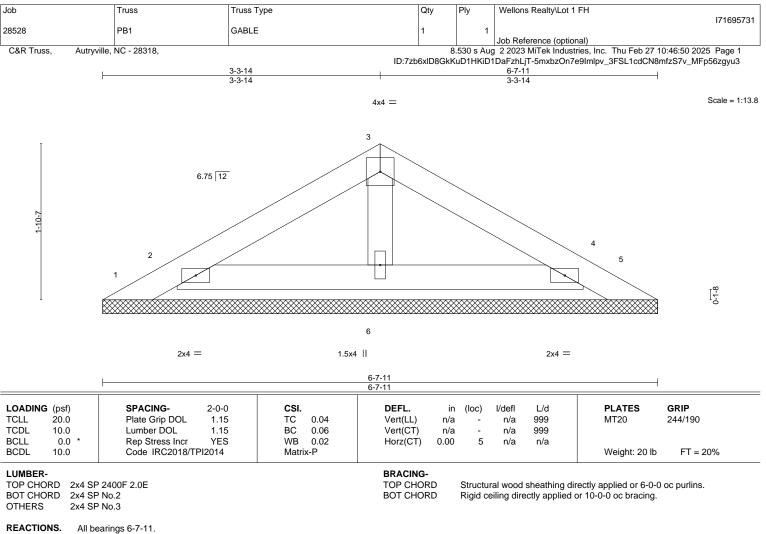

Gilbert, Eric

818 Soundside Rd Edenton, NC 27932

Design Method: MWFRS (Directional) ASCE 7-16 [All Heights]


Exposure Category: B

February 28,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) TRENCO A Mitek Atfiliate

(lb) - Max Horz 1=-36(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

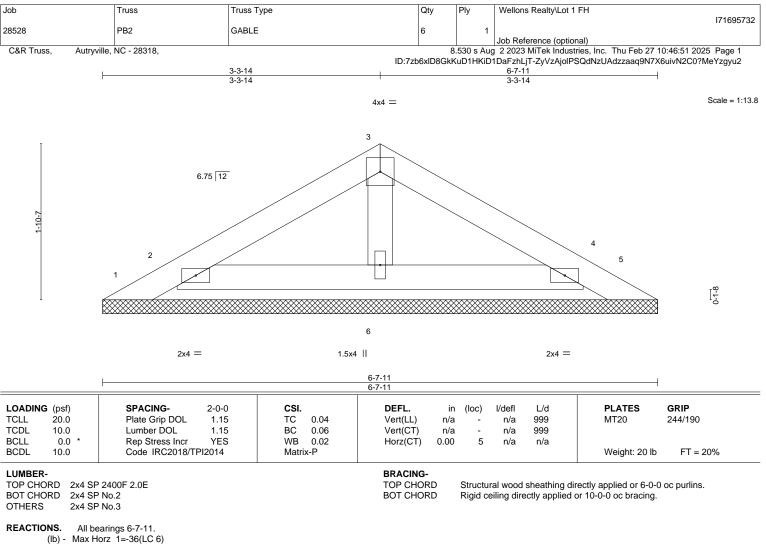
2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.
9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and

I his truss is designed in accordance referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5, 2, 4

Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

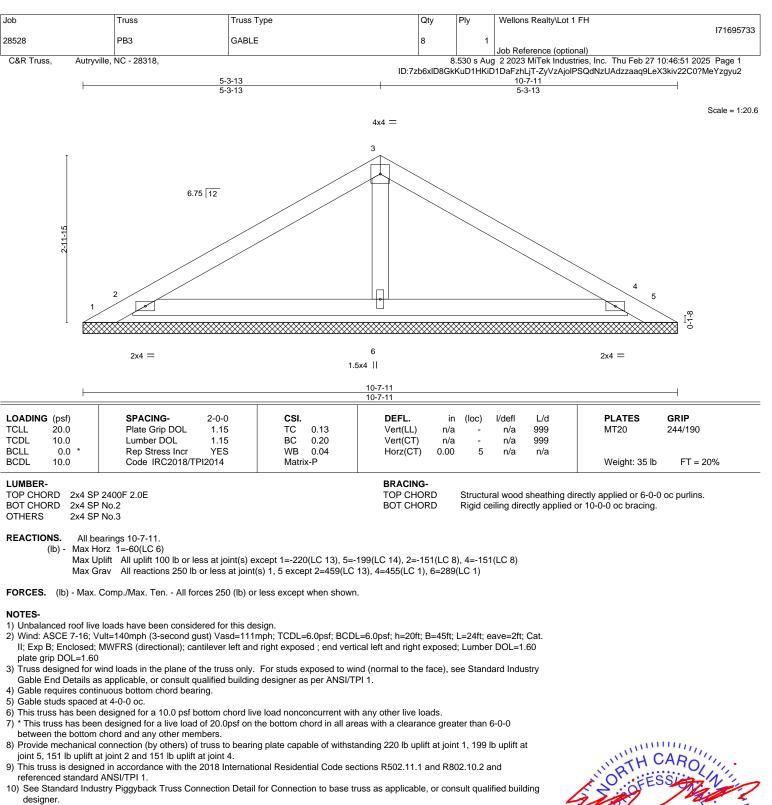
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 2, 4.

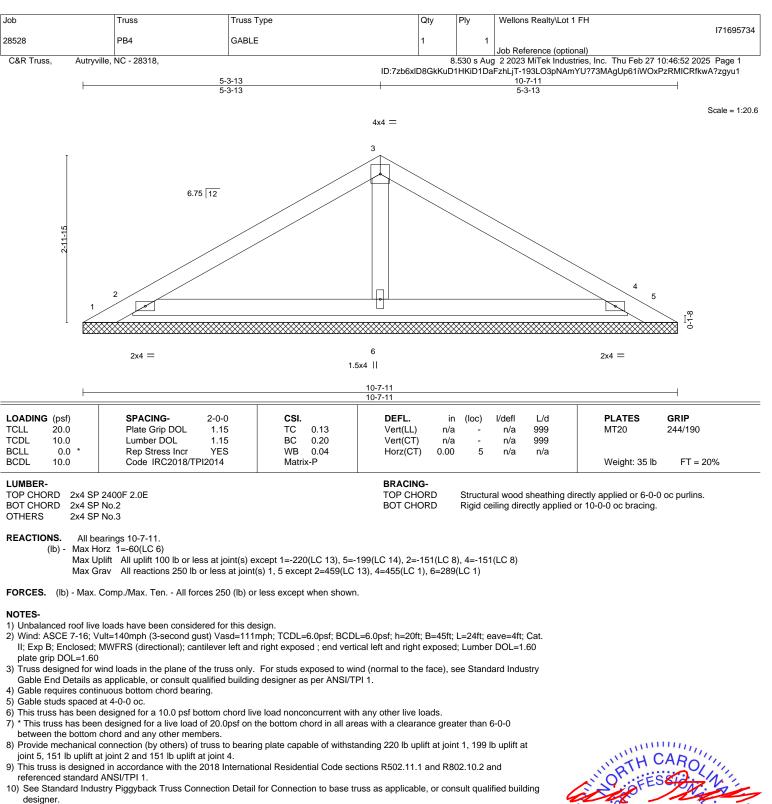
 This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Aff 818 Soundside Road

Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek A 818 Soundside Road

⁸¹⁸ Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek 818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC2018/TPI2014	CSI. TC 0.13 BC 0.17 WB 0.03 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER-			BRACING-	_	_				

TOP CHORD 2x4 SP 2400F 2.0E 2x4 SP No.2 BOT CHORD WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3

TOP CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=6-3-13, 2=6-3-13, 5=6-3-13, 6=6-3-13, 7=6-3-13 Max Horz 1=99(LC 7) Max Uplift 1=-217(LC 13), 2=-143(LC 8), 5=-72(LC 3)

Max Grav 1=106(LC 8), 2=447(LC 13), 6=265(LC 3)

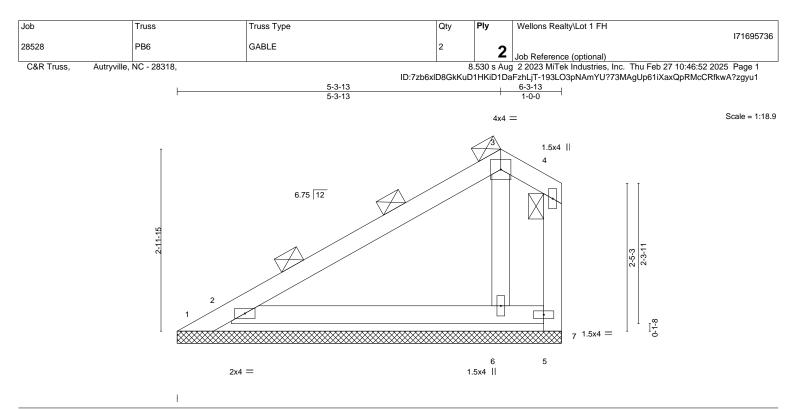
FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.


Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.

- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 7) between the bottom chord and any other members.
- 8) Bearing at joint(s) 1, 2, 5, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 217 lb uplift at joint 1, 143 lb uplift at joint 2 and 72 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

		24005 2 05									avaant and varticals	
BCDL 10	0.0	Code IRC2018/T	PI2014	Matri	x-P			-			Weight: 51 lb	FT = 20%
BCLL (0.0 *	Rep Stress Incr	NO	WB	0.02	Horz(CT)	-0.00	5	n/a	n/a		
TCDL 10	0.0	Lumber DOL	1.15	BC	0.14	Vert(CT)	n/a	-	n/a	999		
TCLL 20	0.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	n/a	-	n/a	999	MT20	244/190
LOADING (p	osf)	SPACING-	3-2-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP

 TOP CHORD
 2x4 SP 2400F 2.0E

 BOT CHORD
 2x4 SP No.2

 WEBS
 2x4 SP No.3

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

2-0-0 oc purlins (6-0-0 max.), except end verticals (Switched from sheeted: Spacing > 2-0-0). Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=6-3-13, 2=6-3-13, 5=6-3-13, 6=6-3-13, 7=6-3-13 Max Horz 1=157(LC 7) Max Uplift 1=-344(LC 13), 2=-226(LC 8), 5=-114(LC 3)

Max Grav 1=168(LC 8), 2=707(LC 13), 6=419(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

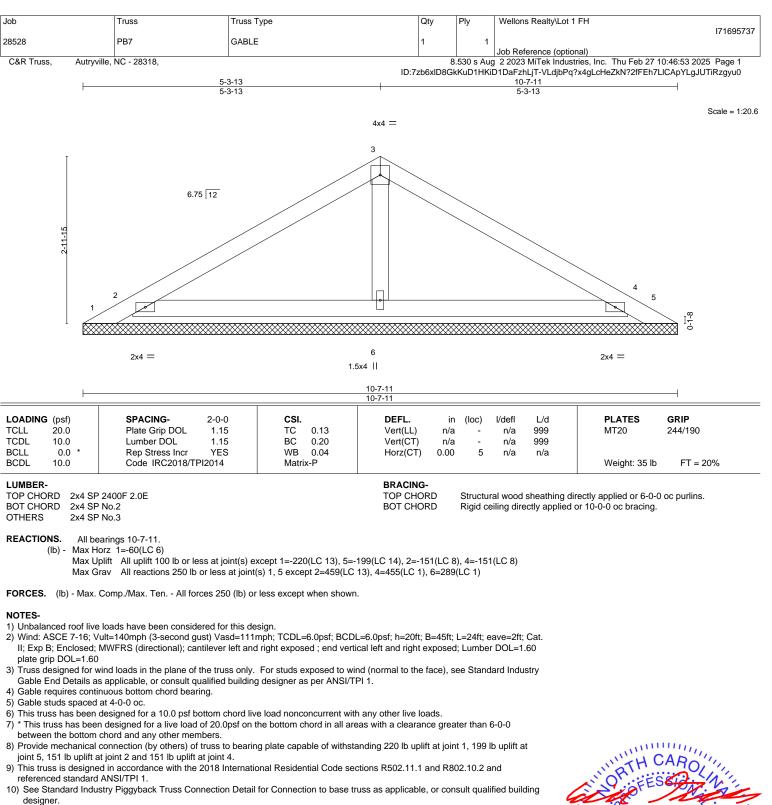
NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

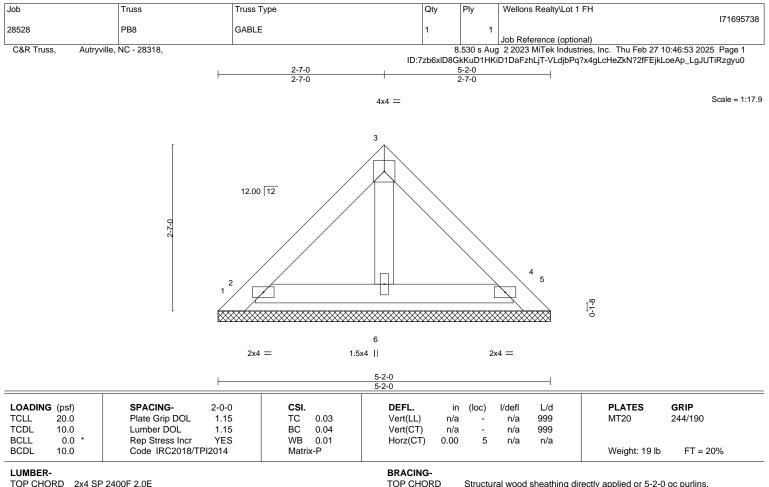
Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

Bottom chords connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.


3) Unbalanced roof live loads have been considered for this design.

- 4) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.
- 10) Bearing at joint(s) 1, 2, 5, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 344 lb uplift at joint 1, 226 lb uplift at joint 2 and 114 lb uplift at joint 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-2-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 5-2-0. Max Horz 1=-60(LC 6) (lb) -

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-102(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

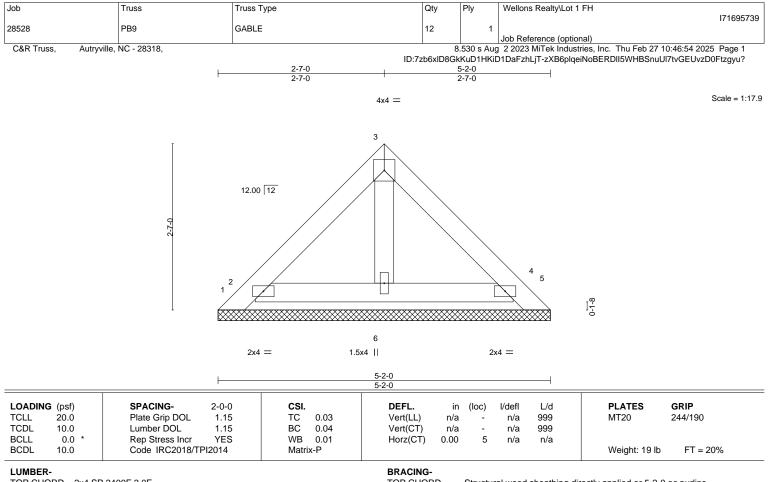
2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 7) between the bottom chord and any other members.


8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=102.

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

 TOP CHORD
 2x4 SP 2400F 2.0E

 BOT CHORD
 2x4 SP No.2

 OTHERS
 2x4 SP No.3

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-2-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 5-2-0. (lb) - Max Horz 1=-60(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 5, 2, 4 except 1=-102(LC 13) Max Grav All reactions 250 lb or less at joint(s) 1, 5, 2, 4, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

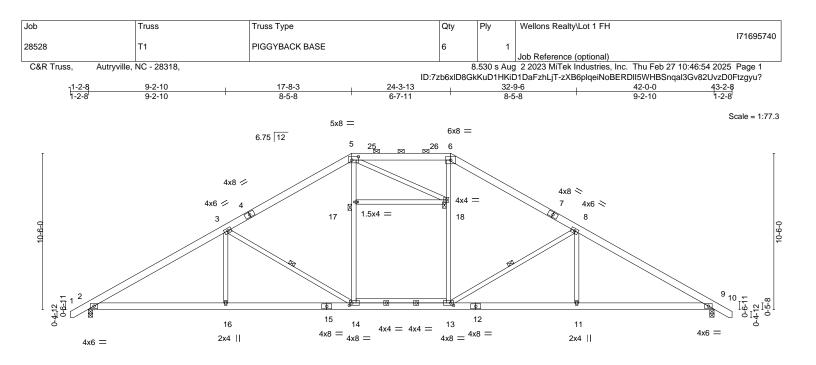
3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 4-0-0 oc.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2, 4 except (jt=lb) 1=102.

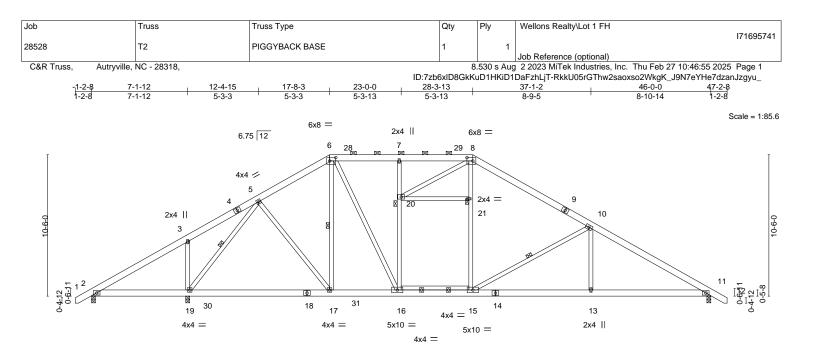

9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

10) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	9-2-10	17-8-3 8-5-8	24-3-13 6-7-11	32-9-6 8-5-8	<u>42-0-0</u> 9-2-10	
Plate Offsets (X,Y)	[5:0-5-4,0-2-12], [13:0-2-4,0-2-0], [14:0		0-7-11	0.0-0	3-2-10	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.28 BC 0.27 WB 0.54 Matrix-AS	Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.18 11-13 >999 360 -0.27 11-13 >999 240 0.06 9 n/a n/a -0.10 14-16 >999 240	PLATES MT20 Weight: 315 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x6 S 13-14	P No.1 P 2400F 2.0E *Except* : 2x4 SP No.2 P No.3		BRACING- TOP CHORE BOT CHORE WEBS JOINTS	2-0-0 oc purlins (5-10-0 max Rigid ceiling directly applied	<.): 5-6.	
Max I Max I Max (ze) 2=0-3-8, 9=0-3-8 Horz 2=-233(LC 6) Jplift 2=-167(LC 8), 9=-167(LC 8) Grav 2=1746(LC 1), 9=1746(LC 1) . Comp./Max. Ten All forces 250 (lb)	or less except when shown	1.			

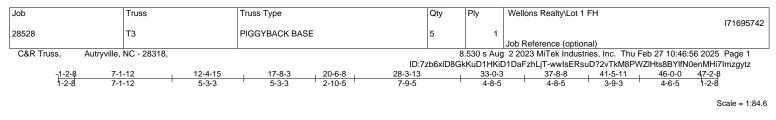
- 2-3=-2861/254, 3-5=-2127/273, 5-6=-1757/282, 6-8=-2127/273, 8-9=-2861/254 TOP CHORD
- BOT CHORD 2-16=-92/2502, 14-16=-92/2502, 13-14=0/1785, 11-13=-92/2402, 9-11=-92/2402
- WEBS 3-16=0/378, 3-14=-859/163, 14-17=0/605, 5-17=0/606, 13-18=0/604, 6-18=0/612, 8-13=-860/163, 8-11=0/378

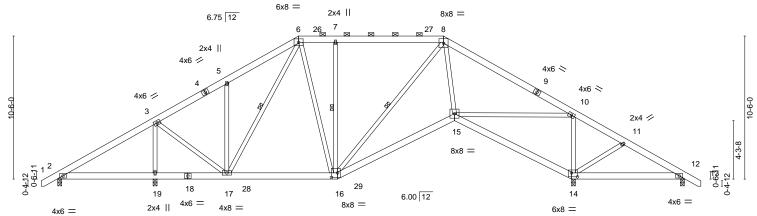

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=42ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=167, 9=167.
- 7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




⊢	7-1-12 17-8-3 7-1-12 10-6-7	23-0-0	<u>28-3-13</u> 5-3-13	<u> </u>	46-0-0	
Plate Offsets (X,Y)	[6:0-5-8,0-3-0], [8:0-5-4,0-3-0]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.28 BC 0.42 WB 0.73 Matrix-AS	Vert(LL) -0.15 Vert(CT) -0.23 Horz(CT) 0.05	(loc) I/defi L/d 17-19 >999 360 13-15 >999 240 11 n/a n/a 13-15 >999 240	PLATES MT20 Weight: 368 lb	GRIP 244/190 FT = 20%
15-16:	P No.1 P No.1 *Except* : 2x4 SP No.2 P No.3		BRACING- TOP CHORD BOT CHORD WEBS JOINTS	Structural wood sheathing 2-0-0 oc purlins (6-0-0 ma Rigid ceiling directly appli 1 Row at midpt 1 Brace at Jt(s): 20, 21	ix.): 6-8.	
Max H Max U	ze) 2=0-3-8, 19=0-3-8, 11=0-3-8 Horz 2=-238(LC 6) Jplift 2=-57(LC 8), 19=-144(LC 8), 11=- Grav 2=399(LC 1), 19=2351(LC 13), 11					
TOP CHORD 2-3=	. Comp./Max. Ten All forces 250 (lb) c -416/343, 3-5=-385/297, 5-6=-1684/234 =-2035/249, 10-11=-2752/235		/263,			
BOT CHORD 2-19)=-218/270, 17-19=0/1098, 16-17=0/141 3=-80/2322	1, 15-16=0/1608, 13-15=-80)/2322,			
WEBS 3-19)=-434/178, 5-19=-1866/90, 5-17=0/529)=-388/82, 15-21=0/606, 8-21=0/607, 10		,			
 Wind: ASCE 7-16; MI; Exp B; Enclosed; plate grip DOL=1.6(Provide adequate d All plates are 4x6 M This truss has been * This truss has been between the bottom Provide mechanical 19=144, 11=157. 	e loads have been considered for this d Vult=140mph (3-second gust) Vasd=11 ; MWFRS (directional); cantilever left ar 0 Irainage to prevent water ponding. IT20 unless otherwise indicated. In designed for a 10.0 psf bottom chord li en designed for a live load of 20.0psf on a chord and any other members, with BO I connection (by others) of truss to bear ed in accordance with the 2018 Internat	Imph; TCDL=6.0psf; BCDL= d right exposed ; end vertica ve load nonconcurrent with the bottom chord in all area CDL = 10.0psf. ng plate capable of withstan	al left and right exposed any other live loads. s with a clearance grea	t; Lumber DOL=1.60	OR FES	ant

referenced standard ANSI/TPI 1. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

sheetrock be applied directly to the bottom chord. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. SEAL 036322 February 28,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

L	7-1-12 12-4-15	20-6-8	29-1-8	37-8		0-4 46-0-0		
	7-1-12 5-3-3	8-1-9	8-7-0	8-7	-0 0-1''	12 8-1-12	1	
Plate Offsets (X,Y)	[14:0-5-4,0-3-8], [16:0-5-8,0-4-0]	I I						
OADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl	L/d	PLATES	GRIP	
CLL 20.0	Plate Grip DOL 1.15	TC 0.34	Vert(LL) -0.07	16-17 >999	360	MT20	244/190	
CDL 10.0	Lumber DOL 1.15	BC 0.28	Vert(CT) -0.12	2 16-17 >999	240			
CLL 0.0 *	Rep Stress Incr YES	WB 0.66	Horz(CT) 0.06	6 14 n/a	n/a			
CDL 10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) 0.02	2 15-16 >999	240	Weight: 361 lb	FT = 20%	
JMBER-		l	BRACING-					
OP CHORD 2x6 SF			TOP CHORD			ctly applied, except		
OT CHORD 2x6 SF				2-0-0 oc purlins (6-0-0 max.): 6-8.				
/EBS 2x4 SF	P No.3		BOT CHORD	Rigid ceiling dir	2 11			
			WEBS	1 Row at midpt	7-1	16, 8-16, 6-17		
	earings 0-3-8. lorz 2=-238(LC 6)							
()	Jplift All uplift 100 lb or less at joint(s) 2	14 except 12-118/LC 10	10 - 122(1 - 8)					
	Grav All reactions 250 lb or less at joint 37		<i>,, , , ,</i>	1643(I C 13)				
Max e		(0) 12 0x00pt 2=202(20 10	,, 11-2020(20 1), 10-	1010(2010)				
ORCES. (lb) - Max.	Comp./Max. Ten All forces 250 (lb) of	r less except when shown.						
OP CHORD 2-3=	-64/311, 3-5=-843/164, 5-6=-824/266, 6	-7=-787/234, 7-8=-782/232	<u>2</u> ,					
	=-1259/124, 10-11=0/756, 11-12=0/567							
	7=0/790, 15-16=0/1121, 14-15=-734/39							
	=-1491/174, 3-17=-1/997, 5-17=-296/14	, , ,	/90, 8-16=-333/0,					
8-15	5=0/387, 10-15=0/1591, 10-14=-1430/14	9						
IOTES-								
	e loads have been considered for this d	esian.						
	/ult=140mph (3-second gust) Vasd=111		=6.0psf: h=20ft: B=45ft	L=46ft: eave=6ft	Cat.			
, ,	MWFRS (directional); cantilever left an							
n, Exp D , Enclosed,				.,				

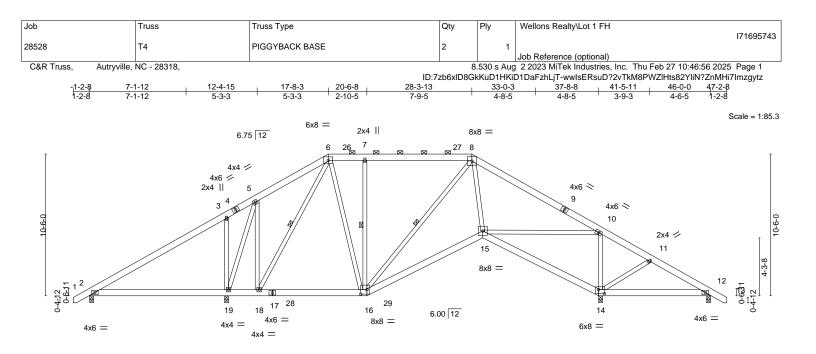
plate grip DOL=1.603) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0

between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14 except (jt=lb) 12=118, 19=122.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

1	7-1-12 10-0-0 12-4-15	20-6-8	29-1-8	37-8-8	37-10-4 46-0-0	
	7-1-12 2-10-4 2-4-15	8-1-9	8-7-0	8-7-0	0-1 ^{!!} 12 8-1-12	1
Plate Offsets (X,Y)	[14:0-5-4,0-3-8], [16:0-5-8,0-4-0]					
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in	(loc) I/defl L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.35	Vert(LL) -0.06 16	6-18 >999 360	MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.27	Vert(CT) -0.11 19	9-22 >999 240		
BCLL 0.0 *	Rep Stress Incr YES	WB 0.73	Horz(CT) 0.06	14 n/a n/a		
BCDL 10.0	Code IRC2018/TPI2014	Matrix-AS	Wind(LL) 0.04 19	9-22 >999 240	Weight: 364 lb	FT = 20%
LUMBER-			BRACING-		i.	
TOP CHORD 2x6 S	SP No.1		TOP CHORD S	Structural wood sheathir	ng directly applied, except	
BOT CHORD 2x6 S	SP No.1		2	-0-0 oc purlins (6-0-0 m	nax.): 6-8.	
WEBS 2x4 S	SP No.3		BOT CHORD R	Rigid ceiling directly app	lied.	
			WEBS 1	Row at midpt	7-16, 8-16, 6-18	
REACTIONS. All	bearings 0-3-8.				, , , - ,	

(lb) - Max Horz 2=-238(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 2, 14 except 12=-107(LC 8), 19=-140(LC 8)

Max Grav All reactions 250 lb or less at joint(s) 12 except 2=432(LC 19), 14=1873(LC 1), 19=1569(LC 13)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 5-6=-432/205, 6-7=-641/212, 7-8=-636/211, 8-10=-1113/107, 10-11=0/683, 11-12=0/493

BOT CHORD 18-19=0/373, 16-18=0/583, 15-16=0/975, 14-15=-658/24, 12-14=-355/0 WEBS 5-18=0/588. 6-16=-16/489, 7-16=-395/88. 8-16=-375/0. 8-15=0/370, 10-15=0/1393.

10-14=-1314/133, 6-18=-544/0, 3-19=-621/228, 5-19=-751/0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

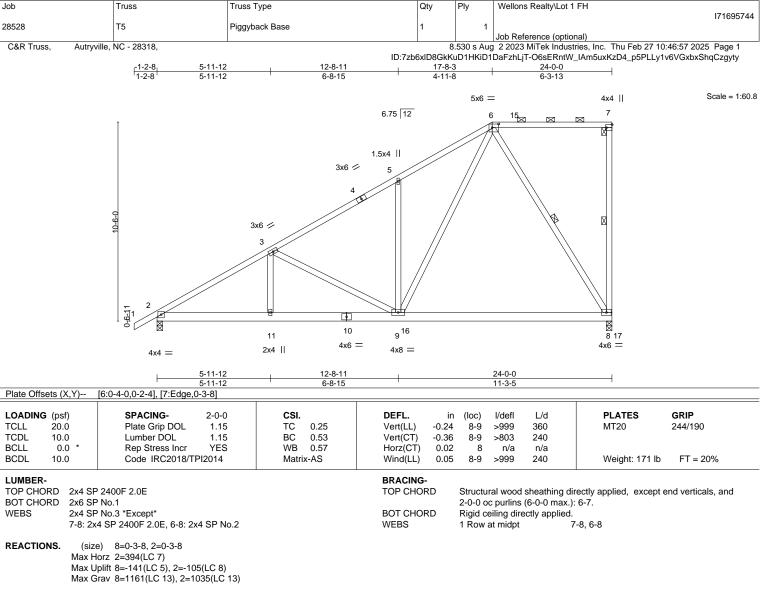
2) Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=46ft; eave=6ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14 except (jt=lb) 12=107, 19=140.


7) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1525/118, 3-5=-1140/125, 5-6=-1152/241
- BOT CHORD 2-11=-214/1404, 9-11=-214/1404, 8-9=-161/523
- WEBS 3-9=-495/118, 5-9=-361/176, 6-9=-136/1121, 6-8=-905/149

NOTES-

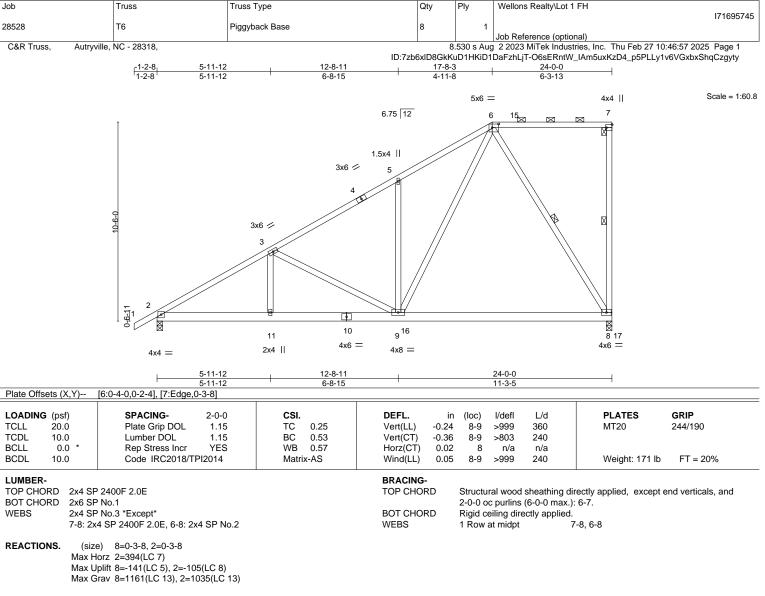
 Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=141, 2=105.


6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1525/118, 3-5=-1140/125, 5-6=-1152/241
- BOT CHORD 2-11=-214/1404, 9-11=-214/1404, 8-9=-161/523
- WEBS 3-9=-495/118, 5-9=-361/176, 6-9=-136/1121, 6-8=-905/149

NOTES-

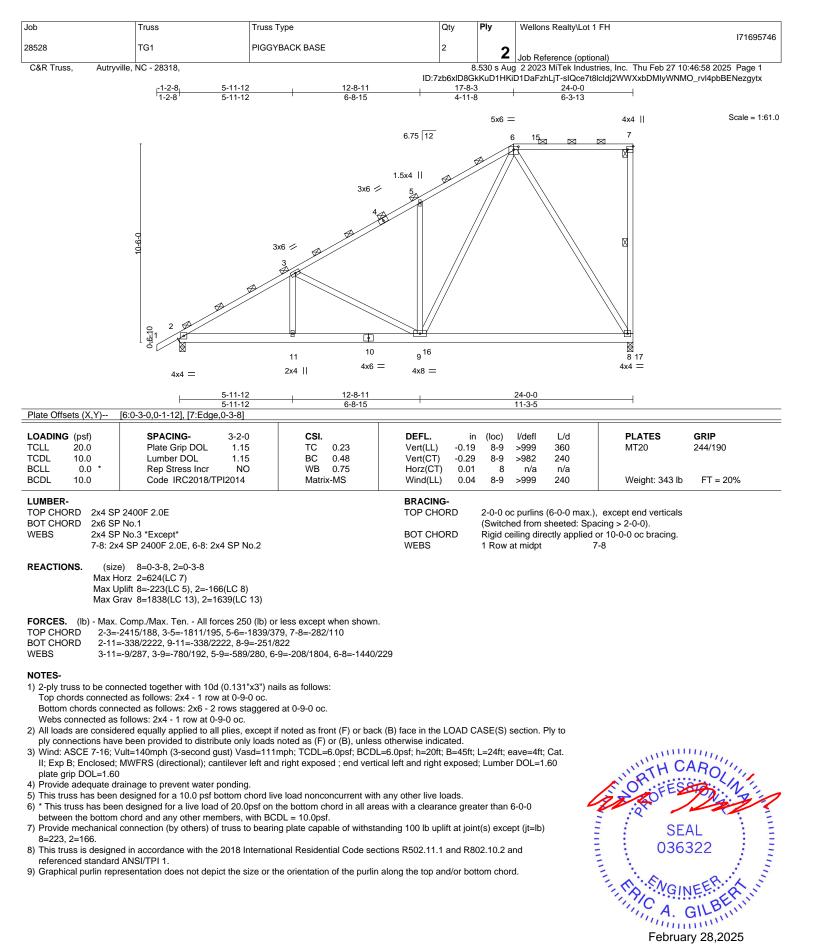
 Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

2) Provide adequate drainage to prevent water ponding.

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

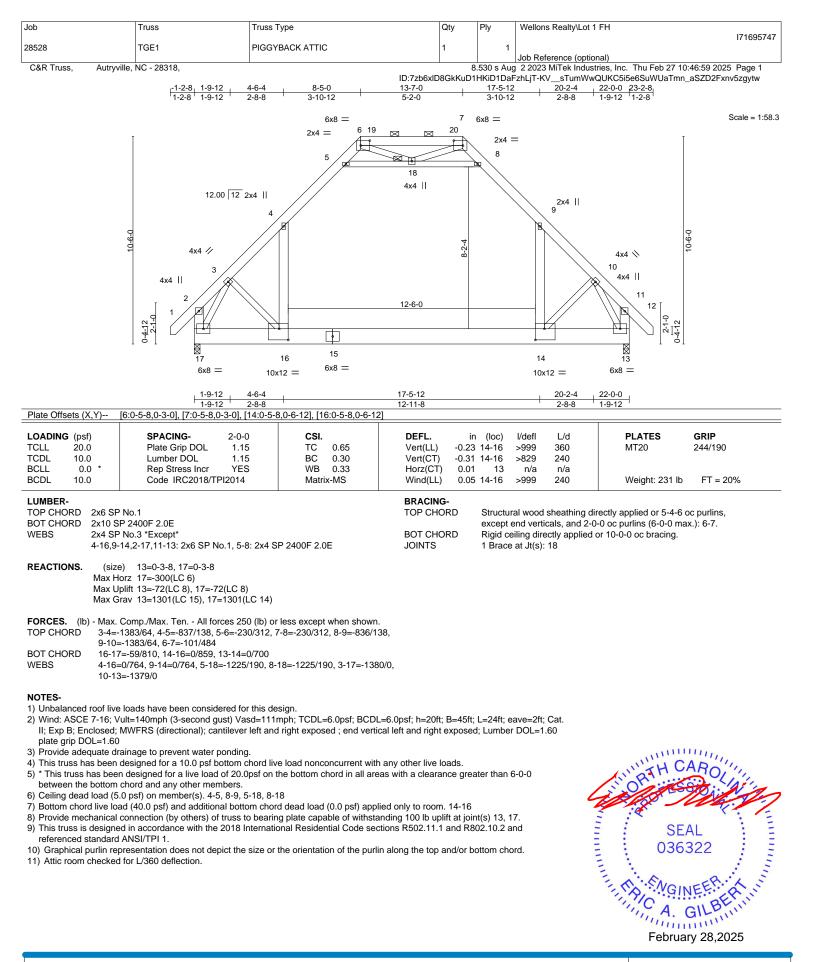
4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 8=141, 2=105.

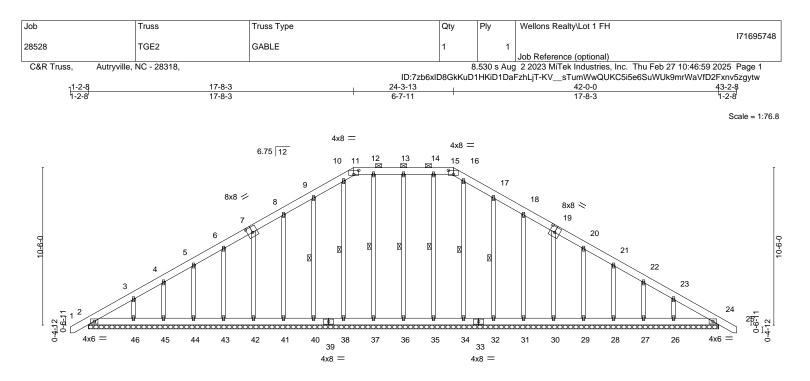

6) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Affi 818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

L			42-0-0		1
			42-0-0		
Plate Offsets (X,Y)	[7:0-4-0,0-4-8], [11:0-4-0,0-3-4], [15:0-4-	0,0-3-4], [19:0-4-0,0-4-8]			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. i	n (loc) l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.03	Vert(LL) 0.00) 24 n/r 120	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.01	Vert(CT) 0.00) 24 n/r 120	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.13	Horz(CT) 0.00) 24 n/a n/a	
BCDL 10.0	Code IRC2018/TPI2014	Matrix-S			Weight: 384 lb FT = 20%
LUMBER-		·	BRACING-		
TOP CHORD 2x6 SP	No.1		TOP CHORD	Structural wood sheathing di	rectly applied or 6-0-0 oc purlins, except
BOT CHORD 2x6 SP	2400F 2.0E			2-0-0 oc purlins (6-0-0 max.)	: 11-15.
OTHERS 2x4 SP	No.3		BOT CHORD	Rigid ceiling directly applied	or 10-0-0 oc bracing.
			WEBS		13-36, 12-37, 10-38, 9-40, 14-35, 16-34, 17-32

REACTIONS. All bearings 42-0-0.

(lb) - Max Horz 2=-233(LC 6)

Max Uplift All uplift 100 lb or less at joint(s) 2, 24, 36, 40, 41, 42, 43, 44, 45, 46, 32, 31, 30, 29, 28, 27, 26

Max Grav All reactions 250 lb or less at joint(s) 2, 24, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 35, 34, 32, 31, 30, 29, 28, 27, 26

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=140mph (3-second gust) Vasd=111mph; TCDL=6.0psf; BCDL=6.0psf; h=20ft; B=45ft; L=42ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Provide adequate drainage to prevent water ponding.

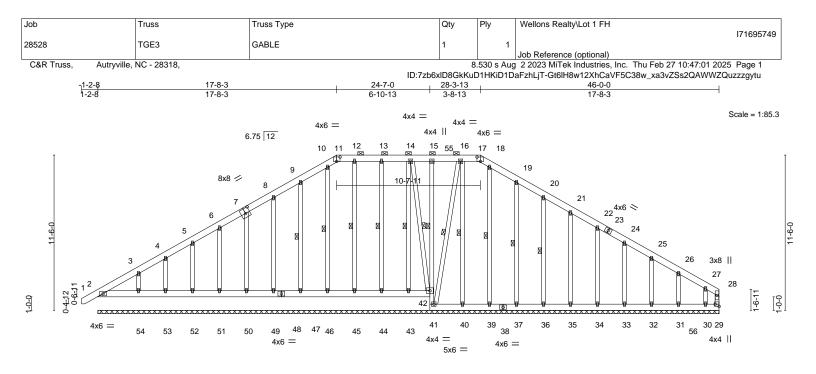
5) All plates are 2x4 MT20 unless otherwise indicated.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members, with BCDL = 10.0psf.


10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 24, 36, 40, 41, 42, 43, 44, 45, 46, 32, 31, 30, 29, 28, 27, 26.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	<u>24-7-0</u> 24-7-0			<u>46-0-0</u> 21-5-0	
Plate Offsets (X,Y)	[7:0-4-0,0-4-8], [11:0-3-0,0-3-13], [17:0-	3-0.0-3-13]. [29:Edae.0-3	-8]	21-5-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.08 BC 0.28 WB 0.13 Matrix-S		0 1 n/r 120	PLATES GRIP MT20 244/190 Weight: 476 lb FT = 20%
15-41: WEBS 2x4 SP OTHERS 2x4 SP REACTIONS. All be (lb) - Max H Max U	P No.1 *Except* 2x4 SP 2400F 2.0E P No.3	cept 32=-100(LC 34), 30	=-159(LC 8)	except end verticals, and 2- Rigid ceiling directly applied 1 Row at midpt 1 Row at midpt	lirectly applied or 6-0-0 oc purlins, 0-0 oc purlins (6-0-0 max.): 11-17. I or 10-0-0 oc bracing. Except: 15-42 14-43, 13-44, 12-45, 10-46, 9-47, 16-40, 18-39, 19-37, 20-36, 14-42, 16-41
TOP CHORD 9-10= 14-15 NOTES-	50, 51, 52, 53, 54, 40, 39, 37, 36, 31=851(LC 2), 30=971(LC 22) Comp./Max. Ten All forces 250 (lb) or -140/279, 10-11=-112/258, 11-12=-104 5=-104/266, 15-16=-104/266, 16-17=-10 e loads have been considered for this de	less except when shown /266, 12-13=-104/266, 13 9/266, 17-18=-112/259, 1	-14=-104/266,		
 II; Exp B; Enclosed; plate grip DOL=1.60 3) Truss designed for v Gable End Details a 4) Provide adequate dr 5) All plates are 2x4 Mi 6) Gable requires conti 7) Gable studs spaced 	vind loads in the plane of the truss only. s applicable, or consult qualified building rainage to prevent water ponding. T20 unless otherwise indicated. nuous bottom chord bearing.	I right exposed ; end verti For studs exposed to wir g designer as per ANSI/TI	cal left and right expose nd (normal to the face), Pl 1.	d; Lumber DOL=1.60 see Standard Industry	CHINE CARO
 9) * This truss has been between the bottom 10) Bearing at joint(s) 2 capacity of bearing 11) Provide mechanica 49, 50, 51, 52, 53, 12) Beveled plate or sh 13) This truss is design referenced standard 	n designed for a live load of 20.0psf on chord and any other members, with BC 28, 42 considers parallel to grain value of surface. al connection (by others) of truss to bear 54, 37, 36, 35, 34, 33, 31, 42 except (jt- im required to provide full bearing surfa- ned in accordance with the 2018 Interna	he bottom chord in all are DL = 10.0psf. Ising ANSI/TPI 1 angle to ing plate capable of withs (b) 32=100, 30=159. ce with truss chord at join tional Residential Code se	eas with a clearance gre grain formula. Building tanding 100 lb uplift at jo t(s) 2, 43, 44, 45, 46, 47 sections R502.11.1 and F	(002.10.2 and	SEAL 036322 A. GILBER
Continued on page 2 WARNING - Verify Design valid for use of a truss system. Befor building design. Braa is always required for fabrication, storage, of	design parameters and READ NOTES ON THIS AN only with MITek® connectors. This design is based re use, the building designer must verify the applica- ing indicated is to prevent buckling of individual tr stability and to prevent collapse with possible per- felivery, erection and bracing of trusses and truss is Component Safety Information available from th	D INCLUDED MITEK REFERENCE only upon parameters shown, ar bility of design parameters and iss web and/or chord members c ional injury and property damage systems, see ANS/ITPI1 Qualit	E PAGE MII-7473 rev. 1/2/2022 oroperly incorporate this designly. Additional temporary and b. For general guidance regar y Criteria and DSB-22 availa	3 BEFORE USE. n into the overall permanent bracing ding the ble from Truss Plate Institute (www.tpi	TRENGINEERING BY RENCO A MITRA Affiliate

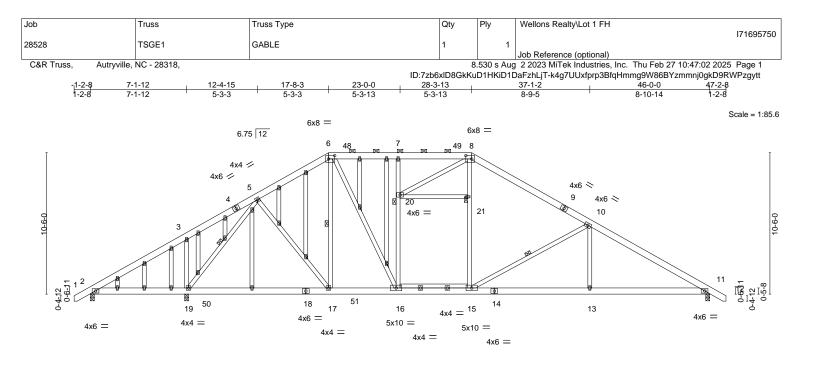
ſ	Job	Truss	Truss Type	Qty	Ply	Wellons Realty\Lot 1 FH
	28528	TGE3	GABLE	4	1	171695749
	28528	IGE3	GABLE	1	1	Job Reference (optional)
_ L						
	C&R Truss, Autryville,	NC - 28318,		8	.530 s Aug	2 2023 MiTek Industries, Inc. Thu Feb 27 10:47:01 2025 Page 2
			ID:7zb6x	dD8GkKu[01HKiD1D	aFzhLjT-Gt6lH8w12XhCaVF5C38w_xa3vZSs2QAWWZQuzzzgytu

NOTES-

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1178 lb down and 88 lb up at 43-11-4, and 1189 lb down and 77 lb up at 45-10-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf) Vert: 1-11=-60, 11-17=-60, 17-28=-60, 2-42=-20, 29-41=-20

Concentrated Loads (lb)

Vert: 29=-910 56=-899

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	7-1-12	17-8-3	23-0-0	28-3-13		7-1-2	46-0-0	
Plate Offsets (X,Y)	7-1-12 [6:0-5-8,0-3-0], [8:0-5-4,0-3-	10-6-7 0]	5-3-13	5-3-13		3-9-5	8-10-14	
LOADING (psf) ICLL 20.0 ICDL 10.0 3CLL 0.0 3CDL 10.0	Plate Grip DOL Lumber DOL	2-0-0 CSI. 1.15 TC 1.15 BC YES WB 014 Matrix	0.28 0.42 0.73 :-AS	Vert(LL) -0.15 Vert(CT) -0.23 Horz(CT) 0.05	5 17-19 > 3 13-15 > 5 11	defl L/d 999 360 999 240 n/a n/a 999 240	PLATES MT20 Weight: 425 lb	GRIP 244/190 FT = 20%
	P No.1 *Except* : 2x4 SP No.2 P No.3			BRACING- TOP CHORD BOT CHORD WEBS JOINTS	2-0-0 oc p Rigid ceilir 1 Row at r	urlins (6-0-0 max. ng directly applied		
Max H Max U	ze) 2=0-3-8, 19=0-3-8, 11=(Horz 2=-238(LC 6) Jplift 2=-57(LC 8), 19=-144(L Grav 2=399(LC 1), 19=2351(L	C 8), 11=-157(LC 8)						
TOP CHORD 2-3=- 8-10= BOT CHORD 2-19= 11-1(WEBS 3-19=	. Comp./Max. Ten All forces -416/343, 3-5=-385/297, 5-6= =-2035/249, 10-11=-2752/233 =-218/270, 17-19=0/1098, 16 3=-80/2322 =-434/178, 5-19=-1866/90, 5- =-388/82, 15-21=0/606, 8-21	=-1684/234, 6-7=-1678/2 5 3-17=0/1411, 15-16=0/16 -17=0/529, 6-16=-65/675	63, 7-8=-1670/263 508, 13-15=-80/232 5, 16-20=-424/82,					
 Wind: ASCE 7-16; V II; Exp B; Enclosed; plate grip DOL=1.60 Truss designed for v Gable End Details a Provide adequate dr All plates are 2x4 M Gable studs spaced This truss has been * This truss has beee 	wind loads in the plane of the as applicable, or consult quali Irainage to prevent water pon IT20 unless otherwise indicate) Vasd=111mph; TCDL=lever left and right expose truss only. For studs exified building designer as ding. ed. om chord live load nonco 20.0psf on the bottom ch ers, with BCDL = 10.0psf	ed ; end vertical left oposed to wind (no per ANSI/TPI 1. ncurrent with any o oord in all areas wit	t and right expose rmal to the face), s other live loads. th a clearance gre	d; Lumber D see Standard ater than 6-0	OL=1.60 d Industry	SE 036	AL

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com) A MiTek Affiliate

