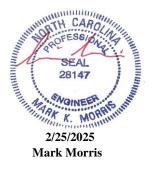
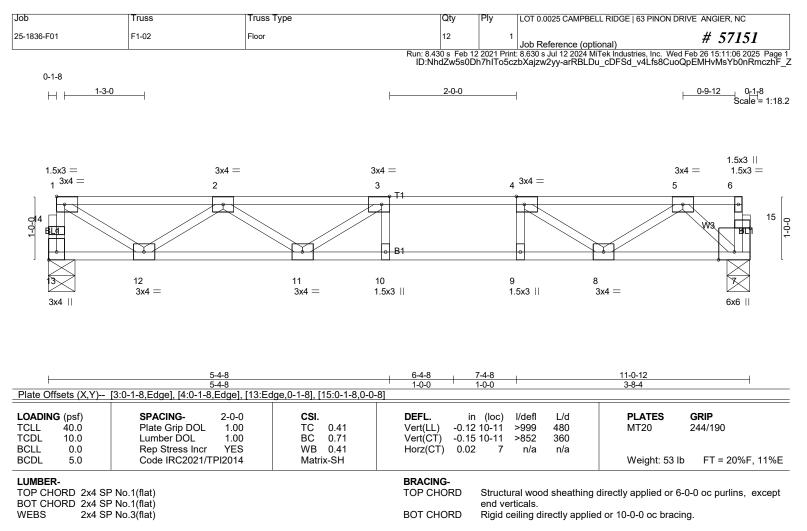
Mark Morris, P.E. #126, 1317-M, Summerville, SC 29483


843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.


AST #: 57151 JOB: 25-1836-F01 JOB NAME: LOT 0.0025 CAMPBELL RIDGE Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2015 as well as IRC 2018. *17 Truss Design(s)*

Trusses:

F1-02, F1-04, F1-05, F1-06, F1-09, F1-10, F1-13, F1-17, F1-19, F1-20, F1-21, F1-24, F1-25, F1-26, F1-33, F1-34, F1-35

Warning !--- Verify design parameters and read notes before use.

REACTIONS. (lb/size) 13=588/0-5-0 (min. 0-1-8), 7=588/0-4-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 13-14=-581/0, 1-14=-580/0, 1-2=-764/0, 2-3=-1648/0, 3-4=-1761/0, 4-5=-1144/0

BOT CHORD 11-12=0/1432, 10-11=0/1761, 9-10=0/1761, 8-9=0/1761, 7-8=0/603

WEBS 3-11=-313/22, 2-11=0/313, 2-12=-816/0, 1-12=0/868, 4-8=-742/0, 5-8=0/660, 5-7=-824/0

NOTES- (3-7)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) Trusses designed with 2018 IRC also comply with 2015 IRC.

4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	russ	Truss Type	Qty	Ply	LOT 0.0025 CAMPBELL RI	DGE 63 PINON DRIVE	E ANGIER, NC
25-1836-F01 F	1-04	Floor Supported Gable	1	1	Job Reference (optional		# 57151
		Run: 8 ID	.430 s Feb 1: :NhdZw5s0	2 2021 Print Dh7hITo5c	8.630 s Jul 12 2024 MiTek zbXaizw2vv-22?aZYucN	ndustries, Inc. Wed Fel XNJF8UHvMONk6L	b 26 15:11:07 2025 Page 1 gwetSeu2iqgW_l2zhF_Y
0-1-8					, ,,		0- <u>1</u> -8
							Scale = 1:42.2
1.5x3		1.5x3 1.5x3					1.5x3
3x4 = 1.5x3 1.5x3	1.5x3 1.5x3 1.5x3	1.5x3 1.5x3 3x8 FP= 4x4 =	1.5x3	1.5x3 1	.5x3 1.5x3 1.5x3	1.5x3 1.5x3	1.5x3 3x4 =
1 2 3	4 5 ₁ 6	7 8 9 10 11 12	13	14	15 16 17	18 19	20 21
		<u> </u>	ST1	ST1	ST1 ST1 ST1	ST1 ST1	ST1 BP1 44 0-0-
XXXXXXXXXX	*****	* * * * * * * * * * * * * * * * * * * *		XXXXX	*****	~~~~~~~~~~~	
42 41 40	39 38 37	36 35 34 33 32	31 30	29	28 27 26	25 24	23 22
3x4 1.5x3 1.5x3	1.5x3 1.5x3 1.5x3	1.5x3 1.5x3 1.5x3 4x4 = 3x	8 FP=	1.5x3 1	.5x3 1.5x3 1.5x3	1.5x3 1.5x3	1.5x3 3x4
		1.5x3	1.5x3				

L			25-5-12		
I			25-5-12		I
Plate Offsets (X,Y)	[12:0-1-8,Edge], [33:0-1-8,Edge], [42:	Edge,0-1-8], [43:0-1-8,0-	1-8], [44:0-1-8,0-1-8]		
<u>, , , , , , , , , , , , , , , , , </u>			*** · ·		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ir	n (loc) l/defl L/d	PLATES GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.07	Vert(LL) n/a	a - n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.01	Vert(CT) n/a	a - n/a 999	
BCLL 0.0	Rep Stress Incr YES	WB 0.03	Horz(CT) 0.00) 22 n/a n/a	
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH			Weight: 102 lb FT = 20%F, 11%E
LUMBER-	•		BRACING-		
TOP CHORD 2x4 SI	P No.1(flat)		TOP CHORD	Structural wood sheathing	directly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 SI	P No.1(flat)			end verticals.	
WEBS 2x4 SP No.3(flat)		BOT CHORD	Rigid ceiling directly applie	ed or 10-0-0 oc bracing.	
	P No.3(flat)			5 5 7 11	5

REACTIONS. All bearings 25-5-12.

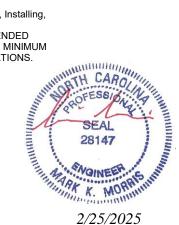
(Ib) - Max Grav All reactions 250 lb or less at joint(s) 42, 22, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 30, 29, 28, 27, 26, 25, 24, 23

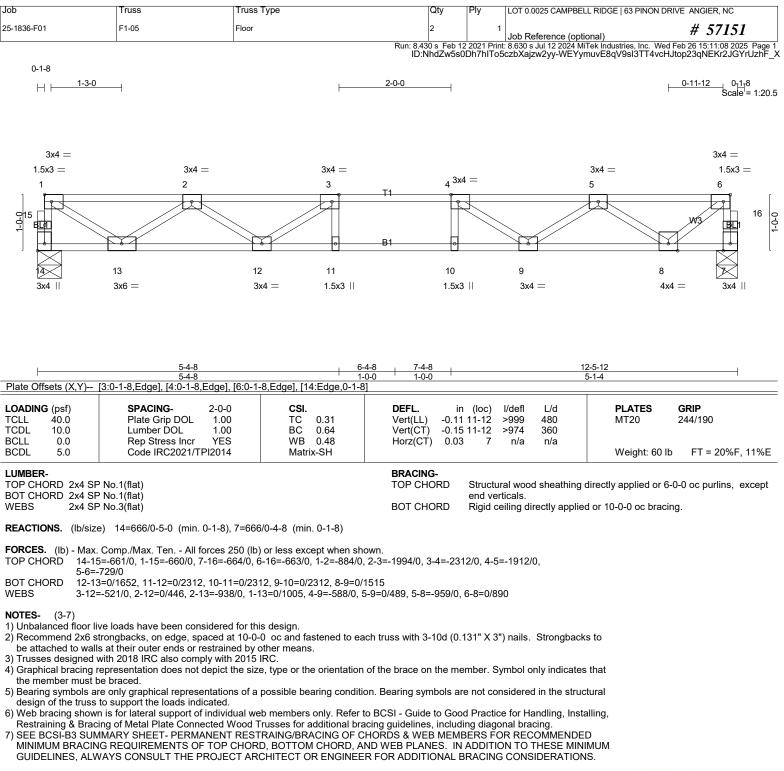
FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(5-9)

1) Gable requires continuous bottom chord bearing.

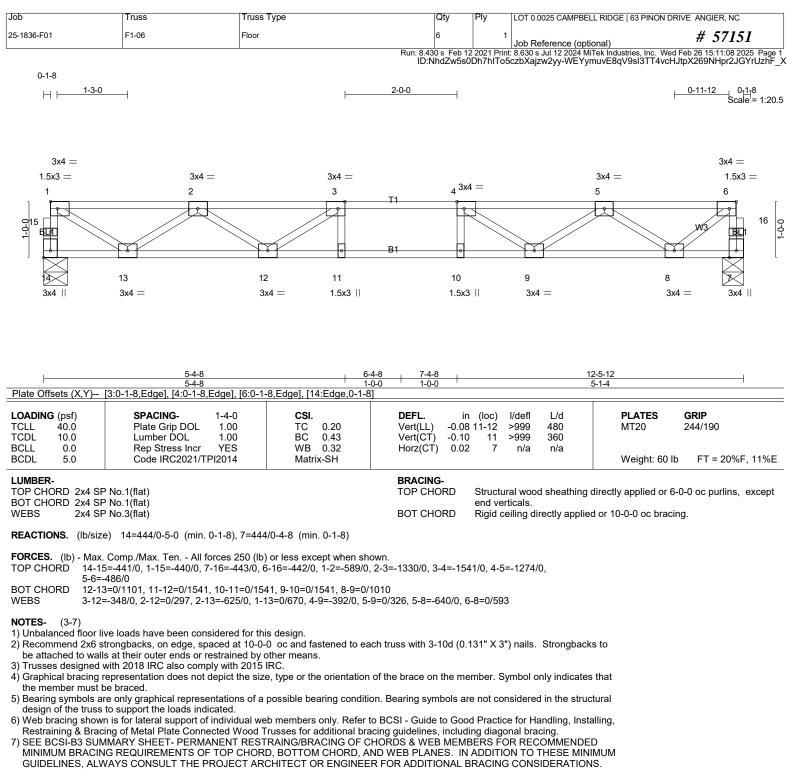
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) Trusses designed with 2018 IRC also comply with 2015 IRC.

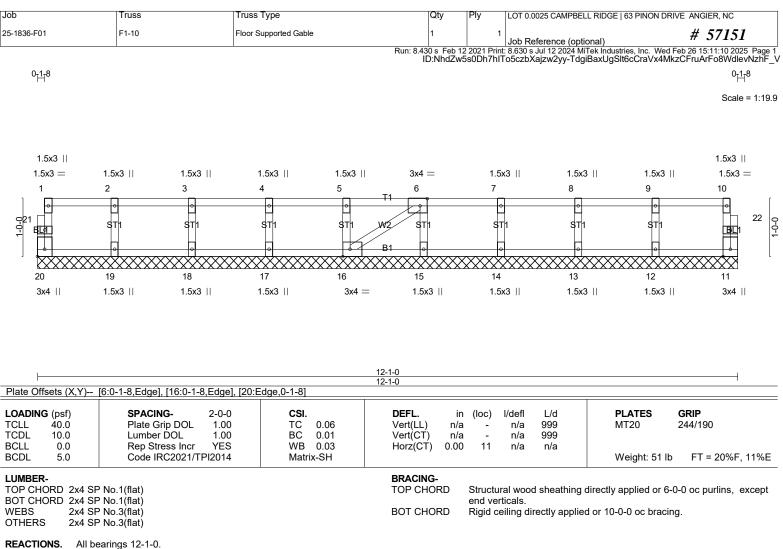

6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard

LOAD CASE(S) Standard



LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty Ply	LOT 0.0025 CAMPBELL RIDGE 63 PINON	DRIVE ANGIER, NC				
25-1836-F01	F1-09	Floor	7	1 Job Reference (optional)	# 57151				
			Run: 8.430 s Feb 12 2021 Pri ID:NhdZw5s0Dh7hITo5	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. W 5czbXajzw2yy-?Q6KzEwsv8d0USdf1nQrp	ed Feb 26 15:11:09 2025				
0-1-8			0.44.0						
⊢ 1-3-0		2-0-0	<u> 0-11-0 </u>		<u>1-2-8</u> 0- <u>1</u> -8 Scale = 1:33.6				
3x4 =					3x4 =				
1.5x3 =		4 = 3x4 =	3x4 = 3x8 FP= 3x10 =	3x4 = 1.5x3 3x4 =	1.5x3 =				
	2	4 11 12		8 9 10 <u>T2</u>	11				
0-25 _B				B2					
	<u>f t≜f</u>								
24 23		21 20 19		16 15 14					
3x4 3x4	= $3x4 = 1.$	5x3 1.5x3 $3x4 =$	4x4 = 3x4	3x4 = 3x8 FP= 3x8 =	3x4 = − 3x4				
	5-4-8 5-4-8	1-0-0 1-0-0 4	2-3-8 -11-0	<u>20-3-0</u> 7-11-8					
		e], [11:0-1-8,Edge], [24:Edge,0-1-8							
LOADING (psf) TCLL 40.0		0-0 CSI. 00 TC 0.42	DEFL. in (loc) Vert(LL) -0.12 21-22	I/defl L/d PLATES >999 480 MT20	GRIP 244/190				
TCDL 10.0 BCLL 0.0	1	00 BC 0.72 ES WB 0.47	Vert(CT) -0.16 21-22 Horz(CT) 0.02 17	>940 360 n/a n/a					
BCDL 5.0	Code IRC2021/TPI20			Weight: 99	lb FT = 20%F, 11%E				
LUMBER- TOP CHORD 2x4 SI	2 No 1/flat)		BRACING- TOP CHORD Structu	anal wood sheathing directly applied or	6-0-0 oc purlins except				
BOT CHORD 2x4 SI	P No.1(flat)		end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.						
	P No.3(flat)	0) 40, 004/0 5 0, (win, 0,4,0) 47	5	sening directly applied of 6-0-0 oc brac	ing.				
Max L	Jplift12=-2(LC 3)	8), 12=284/0-5-8 (min. 0-1-8), 17=	1331/0-4-8 (min. 0-1-8)						
Max (Grav 24=587(LC 3), 12=364(I	.C 4), 17=1331(LC 1)							
TOP CHORD 24-2	5=-580/0, 1-25=-578/0, 12-2	s 250 (lb) or less except when sho 6=-359/6, 11-26=-358/5, 1-2=-761/	0, 2-3=-1641/0,						
	-1749/0, 4-5=-1135/0, 5-6=0 =-687/253, 10-11=-396/38	/596, 6-7=0/596, 7-8=-65/712, 8-9=	-687/253,						
BOT CHORD 22-2	3=0/1428, 21-22=0/1749, 20	-21=0/1749, 19-20=0/1749, 18-19= 14-15=-467/545, 13-14=-106/731	-64/602, 17-18=-1245/0,						
WEBS 7-17	=-1304/0, 2-22=0/260, 2-23=	-814/0, 1-23=0/865, 4-19=-789/0, 5							
	1054/0, 7-18-0/978, 7-18- 3=-46/450	0/786, 8-16=-723/0, 8-14=0/336, 1	0-13409/62,						
NOTES- (5-9)									
	ive loads have been conside al connection (by others) of t	red for this design. uss to bearing plate capable of wit	hstanding 2 lb uplift at joint 12) 					
	strongbacks, on edge, space Is at their outer ends or restr	d at 10-0-0 oc and fastened to eac ained by other means.	ch truss with 3-10d (0.131" X 3	") nails. Strongbacks to					
4) CAUTION, Do not	erect truss backwards. with 2018 IRC also comply v	2							
6) Graphical bracing	representation does not dep	ct the size, type or the orientation of	of the brace on the member. S	symbol only indicates that					
the member must 7) Bearing symbols a	re only graphical representa	ions of a possible bearing conditio	n. Bearing symbols are not co	nsidered in the structural	Willing and a state of the stat				
8) Web bracing show	to support the loads indicate n is for lateral support of ind	ed. vidual web members only. Refer to	BCSI - Guide to Good Practio	ce for Handling, Installing	AHOLIN				
Restraining & Brad 9) SEE BCSI-B3 SUM	ing of Metal Plate Connecte MMARY SHEET- PERMANE	d Wood Trusses for additional brac NT RESTRAING/BRACING OF CH P CHORD BOTTOM CHORD AN	cing guidelines, including diago IORDS & WEB MEMBERS FO	nsidered in the structural ce for Handling, Installing onal bracing. OR RECOMMENDED	N.Q. S. III				
MINIMUM BRACIN	NG REQUIREMENTS OF TO	P CHORD, BOTTOM CHORD, AN JECT ARCHITECT OR ENGINEER	ID WEB PLANES. IN ADDITIO	ON TO THESE MINIMUM SE	AL				
LOAD CASE(S) Star				281	47) -				
LOAD CAGE(O) Star				281	VEER C IN				
				THARK K	MORPHUNIN				
				"Henry	AL 47 MORRIGHT 5/2025 Led and loaded				
				2/2.	5/2025				

(lb) - Max Grav All reactions 250 lb or less at joint(s) 20, 11, 19, 18, 17, 16, 15, 14, 13, 12

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (5-9)

1) Gable requires continuous bottom chord bearing.

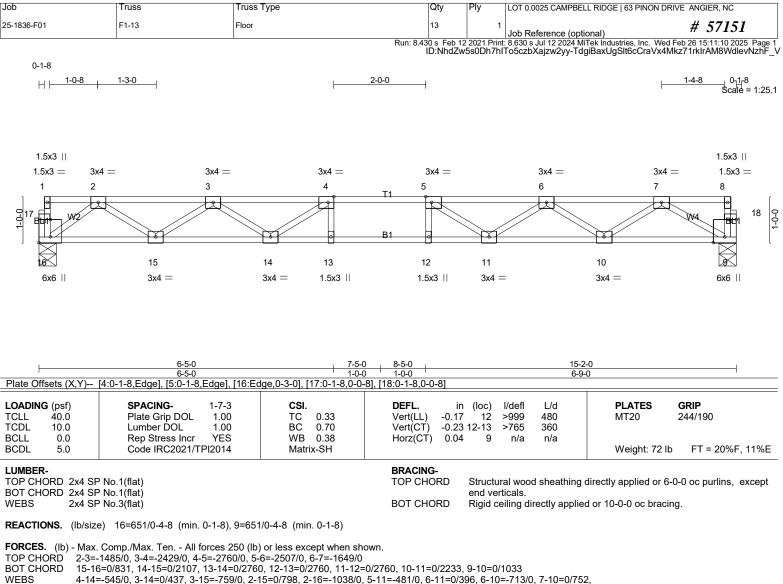
2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Trusses designed with 2018 IRC also comply with 2015 IRC.

6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

WEBS 4-14=-545/0, 3-14=0/437, 3-15=-759/0, 2-15=0/798, 2-16=-1038/0, 5-11=-481/0, 6-11=0/396, 6-10=-713/0, 7-10=0/752 7-9=-1193/0

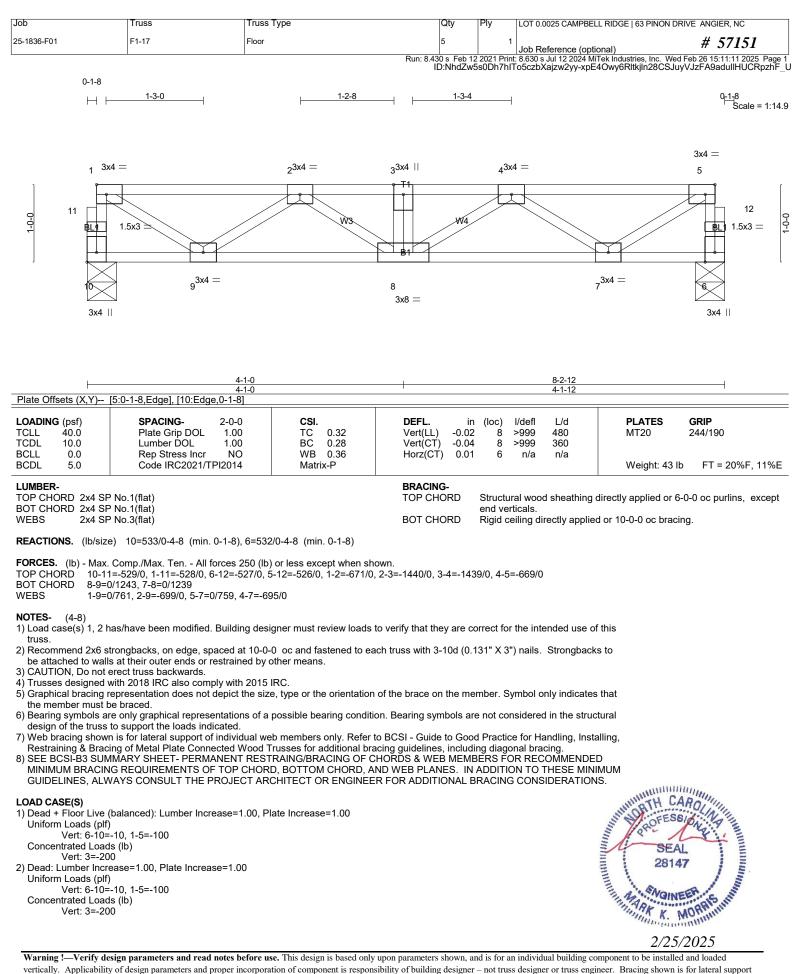
NOTES- (3-7)

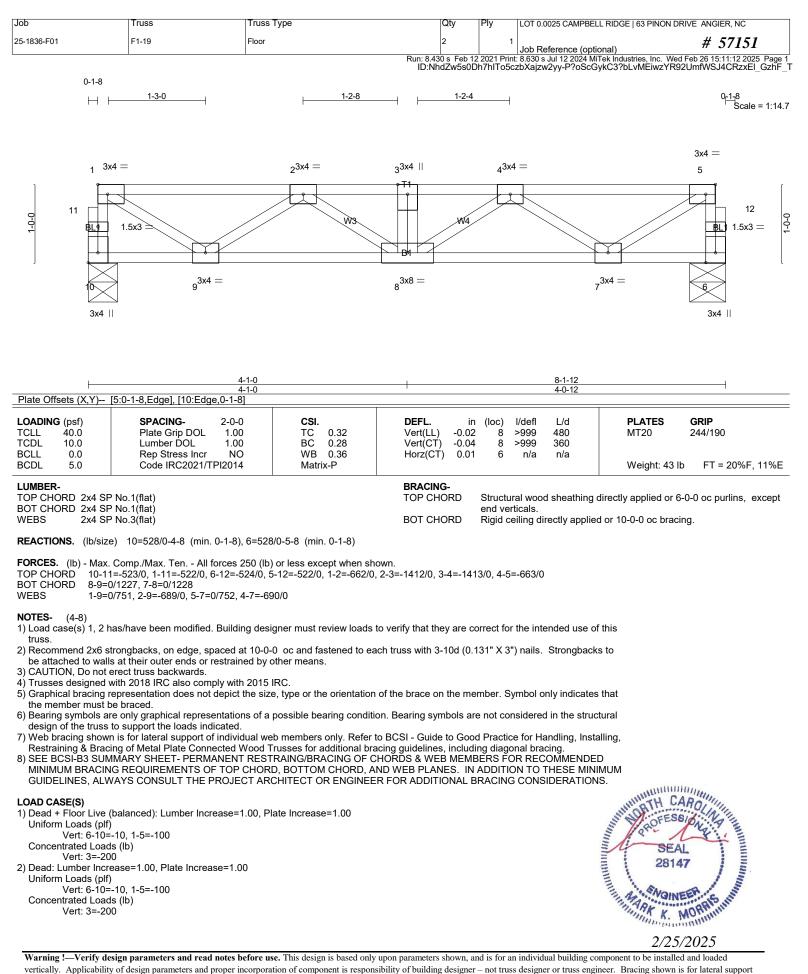
1) Unbalanced floor live loads have been considered for this design.

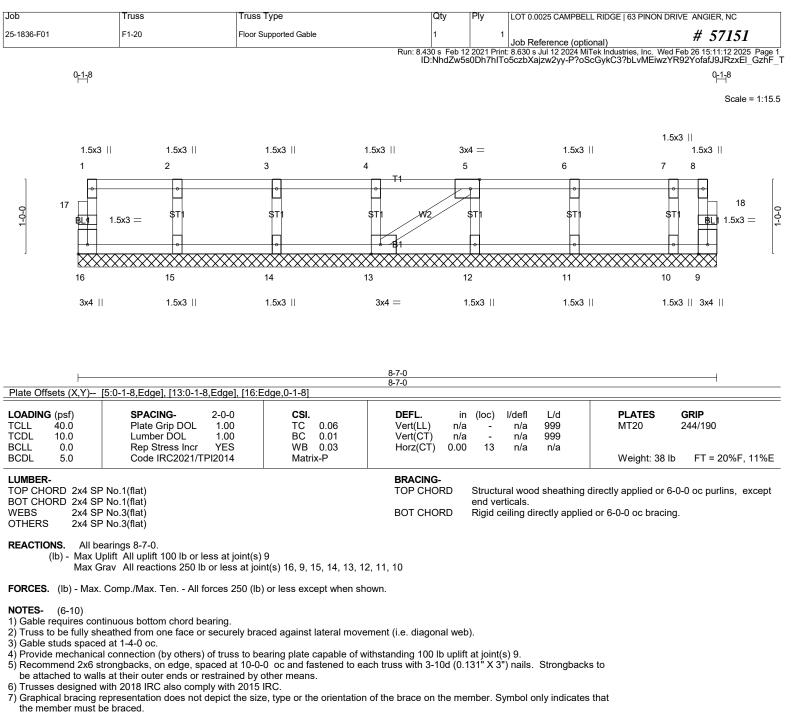
2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) Trusses designed with 2018 IRC also comply with 2015 IRC.

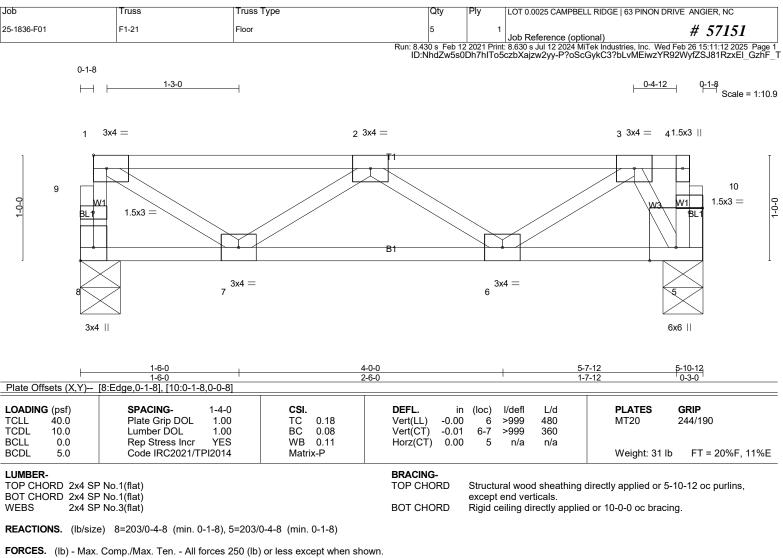
4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


 6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED


7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard



- 8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 9) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 10) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

TOP CHORD 2-3=-269/0 BOT CHORD 6-7=0/380

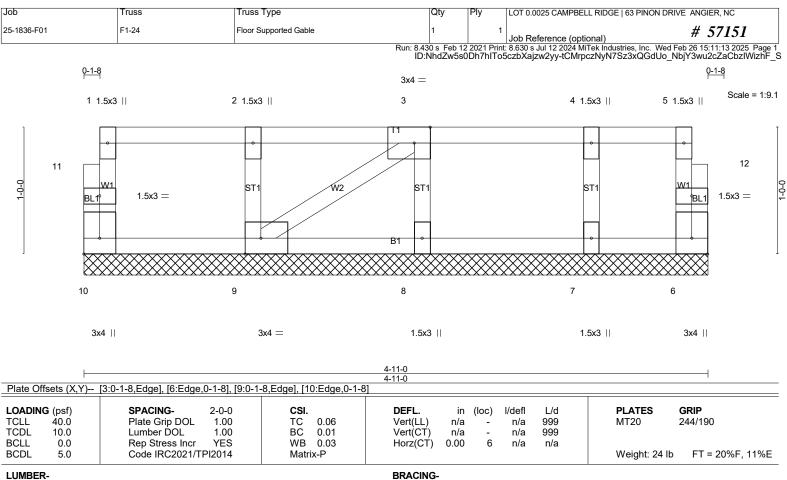
WEBS 3-5=-272/0

NOTES- (2-6)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

2) Trusses designed with 2018 IRC also comply with 2015 IRC.

3) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


4) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

5) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

TOP CHORD

BOT CHORD

end verticals.

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WFBS 2x4 SP No.3(flat) OTHERS

REACTIONS. All bearings 4-11-0.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 10, 6, 9, 8, 7

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(5-9)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

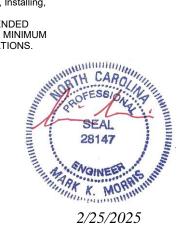
Gable studs spaced at 1-4-0 oc.

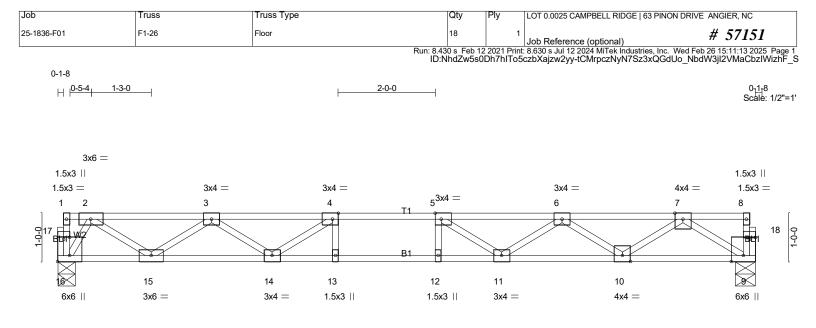
4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Trusses designed with 2018 IRC also comply with 2015 IRC.

- 6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
- 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard


Structural wood sheathing directly applied or 4-11-0 oc purlins, except


Rigid ceiling directly applied or 10-0-0 oc bracing.

Job	Truss Truss Type		Qty	Ply	Ply LOT 0.0025 CAMPBE		DGE 63 PINON DR	IVE ANGIER, NC		
5-1836-F01	F1-25	Floor Sup	ported Gable		1	1				# 57151
0 ₁ 18				Run: i	8.430 s Feb 1 ID:NhdZw5s	2 2021 Print 0Dh7hITo5	3.630 s 5czbXajz	iference (optional Jul 12 2024 MiTek I zw2yy-tCMrpczNy	/ ndustries, Inc. Wed /N7Sz3xQGdUo_I	Feb 26 15:11:13 2025 Page NbjY3wu2cZaCbzIWizhF 0 ₁ 18 Scale = 1:23
		1.5x3 4 ST1 21 1.5x3	5 ST1	1.5x3 6 T1 B1 19 3x4 =	3x4 = 7 ST1 18 1.5x3	1.5x3 8 ST1 9 XXXX 17 1.5x3		1.5x3 9 ST1 6 1.5x3	1.5x3 10 511 5 1.5x3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
L				14-3-12						
Plate Offsets (X,Y) [7	7:0-1-8,Edge], [19:0-1-	8,Edge], [24:Ed	ge,0-1-8]	14-3-12						
OADING (psf) CLL 40.0 CDL 10.0 GCLL 0.0 GCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/T	2-0-0 1.00 1.00 YES Pl2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL Vert(Vert(Horz	LL) n/a CT) n/a	a - a -	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/190 FT = 20%F, 11%F
				TOP	CING- CHORD CHORD	end vert	icals.	Ū	ctly applied or 6- 10-0-0 oc bracir	0-0 oc purlins, except ng.
	arings 14-3-12. av All reactions 250 lb	o or less at joint	(s) 24, 13, 23, 22, 2	1, 20, 19, 18, 1	7, 16, 15, ²	14				
ORCES. (Ib) - Max. C	Comp./Max. Ten All f	orces 250 (lb) c	or less except when	shown.						
OTES- (5-9)) Gable requires conti	nuous bottom chord be	earing.								

- Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing,
- 9) SEE BCSI-B3 SUMMARY SHEET PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

	<u>5-9-12</u> <u>6-9-12</u> 5-9-12 <u>1-0-0</u>			<u>14-5-4</u> 6-7-8	I
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [16:Ed	dge,0-3-0], [17:0-1-8,0-0-	8], [18:0-1-8,0-0-8]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.44 BC 0.88 WB 0.49 Matrix-SH	DEFL. i Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	6 12 >665 360	PLATES MT20 GRIP 244/190 Weight: 70 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except

REACTIONS. (lb/size) 16=774/0-4-8 (min. 0-1-8), 9=774/0-5-0 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1373/0, 3-4=-2629/0, 4-5=-3112/0, 5-6=-2865/0, 6-7=-1868/0

BOT CHORD 15-16=0/526, 14-15=0/2180, 13-14=0/3112, 12-13=0/3112, 11-12=0/3112, 10-11=0/2566, 9-10=0/1134

4-14=-719/0, 3-14=0/571, 3-15=-986/0, 2-15=0/1033, 2-16=-981/0, 5-11=-522/1, 6-11=0/445, 6-10=-852/0, 7-10=0/896, WEBS 7-9=-1341/0

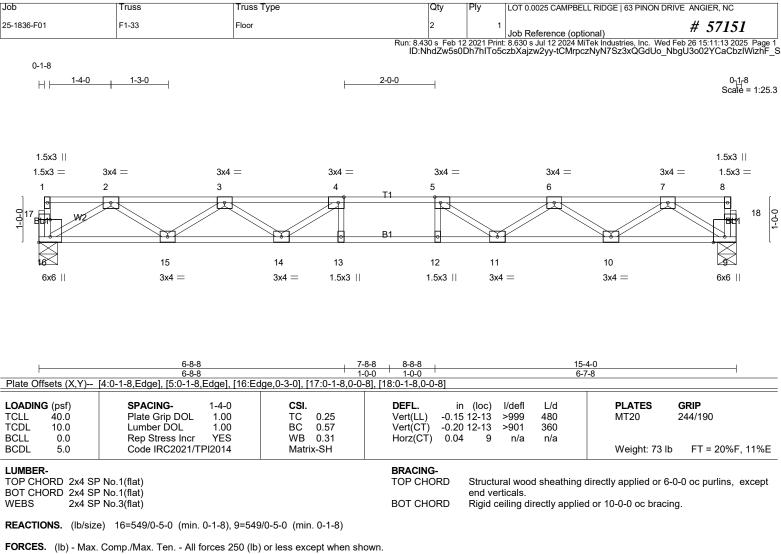
NOTES-(3-7)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Trusses designed with 2018 IRC also comply with 2015 IRC.

4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing,

 Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

TOP CHORD 2-3=-1377/0, 3-4=-2119/0, 4-5=-2354/0, 5-6=-2103/0, 6-7=-1343/0

BOT CHORD 15-16=0/851, 14-15=0/1875, 13-14=0/2354, 12-13=0/2354, 11-12=0/2354, 10-11=0/1849, 9-10=0/809

WEBS 4-14=-42500, 3-14=0/345, 3-15=-609/0, 2-15=0/642, 2-16=-990/0, 5-11=-438/0, 6-11=0/353, 6-10=-618/0, 7-10=0/651, 7-9=-957/0

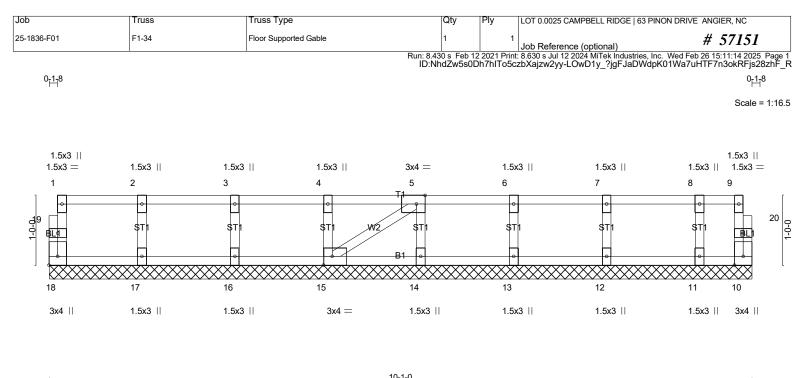
NOTES- (3-7)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

3) Trusses designed with 2018 IRC also comply with 2015 IRC.

4) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 6) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

7) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

			10-1-0				
I			10-1-0				1
Plate Offsets (X,Y)	[5:0-1-8,Edge], [15:0-1-8,Edge], [18:E	Edge,0-1-8]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.06 BC 0.01 WB 0.03	DEFL. ir Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH				Weight: 43 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	end verticals.	0	lirectly applied or 6- d or 10-0-0 oc bracir	0-0 oc purlins, except ng.

All bearings 10-1-0. REACTIONS.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 18, 10, 17, 16, 15, 14, 13, 12, 11

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(5-9)

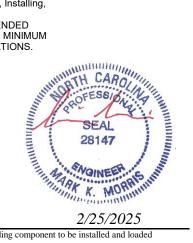
1) Gable requires continuous bottom chord bearing.

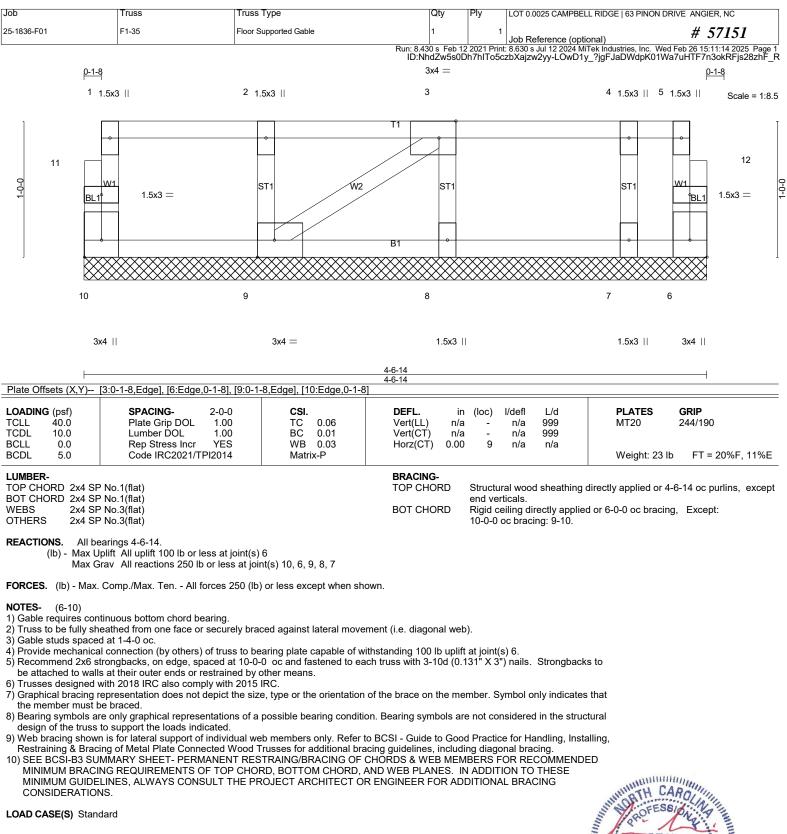
2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Trusses designed with 2018 IRC also comply with 2015 IRC.


6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing,

 9) SEE BCSI-B3 SUMMARY SHEET - PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

