GENERAL NOTES

DESIGN NOTES

- 1. Floor: 40 lbs. Live load, 15 lbs. Dead load 2. Roof: 30 lbs. Live load, 20 lbs. Dead load
- 3. Soil bearing capacity-2000 PSF
- 4. Live loads, dead loads, wind loads, snow loads, lateral loads, seismic zoning and any specialty loading conditions will need to be confirmed before construction and adjustments to plans made accordingly. See your local building officials for verification of your specific load data, zoning restrictions and site conditions.

CONCRETE AND FOUNDATIONS

- 1. All slabs on grade shall be 4 inch 3000 PSI (28-day compressive strength concrete), unless noted otherwise.
- 2. All slabs on grade shall bear on four inch compacted granular fill with 6 by 6 10-10 welded wire mesh.
- Interior slabs shall have 6 mil, polyethylene vapor barrier underneath. 3
- Provide proper expansion joints and control joints as per local requirements. 4.
- Provide additional bearing points as required by floor "I" joist manufacturer, and loading transfers. 5. 6. Foundation details may vary with local codes and conditions, verify with contractor or engineer.
- 7. Provide foundation access and vents as required by local codes and conditions.
- 8. Foundation wall and footing sizes reinforcing must conform with your local building requirements.
- 9. Foundation walls are not to be backfilled until house is completely framed and roof is in place.
- 10. Verify depth of footings with your local codes.
- 11. Provide termite protection as required by HUD minimum property standards.

BASEMENT

- Basement stairs are calculated as 9 inch treads with 1 inch nosing (10 inch total) and 7.75 inch risers.
- Water heater and air conditioner may be located in basement when using basement option.
- Provide sump pumps as required.
- 4. Some soil conditions may require a 12 inch concrete retaining wall, verify with contractor or engineer.
- 5. Provide exterior windows and door as grade allows.
- 6. Provide venting as local codes and conditions dictate.

FRAMING

- 1. Contractor to confirm the size, spacing and species of all framing and structural members to meet your local code requirements.
- 2. Any structural or framing members not indicated on the plan are to be sized by the contractor.
- 3. Double floor joists under all partition walls, unless otherwise noted. 4. All angled walls are 45 degree angles unless noted otherwise.
- 5. Provide collar ties, cross-bridging and bracing as required.
- 6. Provide additional bearing points as required by loading transfers.
- 7. Framing lay-out and size may vary with local codes and conditions.
- 8. Roof framing plan is for general layout only, do no use for rafter count.

MISC. NOTES

- 1. Prefabricated fireplaces and flues are to be U.L. approved and installed per manu. specifications.
- 2. All materials, supplies and equipment to be installed per manu. specifications and local codes.
- 3. Provide type "x" firecode sheetock on garage walls and ceilings.
- 4. Confirm window openings for your local egress requirements and minimum light and venting. 5. The mechanical and electrical layouts are suggested only. Consult your mechanical and electrical contractors for exact specifications, locations and sizes.
- 6. Minor alterations to this plan can be made by the builder. Please contact our drafting department for information price quotes if major changes are required.

This plan was designed and drafted by W.L. Martin Home Designs to meet average conditions and codes in the state of Oklahoma at the time it was designed. Because codes and regulations can change and may vary from jurisdiction to jurisdiction, W.L. Martin Home Designs cannot warrant compliance with any special code or regulation. Consult your local building official to determine the suitability of these plans for your specific site and application.

This plan can be adapted to your local building codes and requirements, but also, it is the responsibility of the purchaser and/or builder of thes plan to see that the structure is built in strict compliance with all governing municipal codes [city,county,state, and federal].

The purchaser and/or builder of this plan releases W.L. Martin Home Designs, its owner and employees from any claims or lawsuits that may arise during the construction of this structure or any time thereafter.

REVISIONS	BY
# 24222 " Adrian "	
W.L. Martin Home Designs for Contact Information	W W W. W IIIIAI UIIIIOIIIIOS.COIII
Date Scale 1/4" = 1'	-0"
Job	
Sheet 1	
Of 7 Shee	ts

Notes:

Builders choice on plumbing wall locations.
 A/C may be relocated as required.
 Provide safety glass where required.

TYPICAL BUILDING SECTION

NOTE: ALL STRUCTURAL MEMBERS MUST
COMPLY W/ LOCAL BUILDING CODES.

SHINGLES OVER 15 LB. FELT (Optional Metal Roof System per Manufacturer's Requirements)

ROOF TRUSSES @ 24" C/C (Optional Common Frame System, Per Code) ROOF TRUSS DESIGN BY MANU. ENGINEER

BUILDING STRAPPING PER LOCAL CODE (TYPICAL)

1/2" PLYWOOD SHEATHING C/W H CLIPS

EAVE DRIP 8" FASCIA VENTED SOFFIT FRIEZE BOARD

CORNICE DETAILS MAY VARY SEE FRONT ELEVATION

TYPICAL 2X4 BRICK EXTERIOR WALL: 4" FACE BRICK (OROTHER MASONRY VENEER) TIES @ 16" HORIZONTAL & 32" VERTICAL (OPTIONAL LAP SIDING) 1" AIR SPACE 1/2" FOAMBOARD (OR BACKER BOARD) AIR BARRIER 2x4 STUDS @ 16" C/C (BRACE AS NEEDED) R13 INSULATION 1/2" GYPSUM BOARD

WEEP VENTS EVERY 3RD BRICK

W. L. MARTIN HOME DESIGNS DOES NOT WAR-RANT OR GUARANTEE THE ACCURACY OF THIS SET OF PLANS. BEFORE CONSTRUCTION THE CONTRACTOR, ENGINEER, OR ARCHITECT MUST CHECK DIMENSIONS AND LOADING, AND VERIFY THAT THESE PLANS COMPLY WITH ALL BUILDING CODES IN EFFECT AT CONTRUCTION LOCATION.

REVISIONS	BY
=	
222 an	
242 dri	
SU	
es	-
Je Je).0.
DIT ation	7111
FHC form	
D D uct Iny	
Conta	חומ
for C	
M	
	^
Date	
Scale	
Drawn	
Job	
Sheet 4	
Sheet 4	ite

Scale

Drawn

Job

Sheet

Of

Sheets

Details shown will not all apply to your build. Details will vary based on local codes, conditions, foundation and construction methods and materials used.

HOLDOWNS

ISOMETRIC HDI5 HOLDOWN

SINKERS INTO A DBL STUD, EDGE NAIL SHEAR TO BOTH STUDS. AT FOUNDATION USE

NAILS TO DBL OR 4x STUD ABOVE FLOOR, BELOW FLOOR USE 18-16d SINKERS TO DBL OR

EDGE NAIL SHEAR TO BOTH STUDS. AT FOUNDATION USE SIMPSON SSTB20 ANCHOR BOLT WITH 16" CONCRETE EMBEDMENT WITH SINGLE POUR FOUNDATION. IF REQUIRED, USE CONNECTOR NUT AND CONTINUOUS ALLTHREAD TO CONNECT ANCHOR BOLT TO

NAILS TO DBL OR 4x STUD ABOVE FLOOR, BELOW FLOOR USE 40-16d SINKERS TO DBL OR

SINKERS INTO A DBL STUD, EDGE NAIL SHEAR TO BOTH STUDS. AT FOUNDATION USE

STHD / SLTHD Edge Installation

STRAP DETAILS

BEAM CONNECTION STEEL POST AND FOOTING

Details shown will not all apply to your build. Details will vary based on local codes, conditions, foundation and construction methods and materials used.

POST BASE AND CAP CONNECTORS

POST AND BEAM DETAIL B

FOUNDATION DETAILS

SHEAR TRANSFER DETAIL "A"

n will not all apply to your bui

Details shown will not all apply to your build. Details will vary based on local codes, conditions, foundation and construction methods and materials used.

ISOMETRIC SHEAR-WALL LOCATION

SHEAR WALL KEY

NOTE FOR SHEAR WALLS 8d IS FOR GALVANIZED BOX NAIL OR COMMON NAIL

 $\langle \mathbf{1}$

AT ALL EXTERIOR WALLS AND WHERE NOTED

3/8" CDX OR OSB OR 5/8" T-1-11 WITH 80 AT 6" O.C. AT PANEL EDGES AND 12" O.C. FIELD. STUDS AT 16" O.C. MAX.

3/8" CDX OR OSB OR 5/8" T-1-11 WITH 80 AT 4" O.C. AT PANEL EDGES AND 12" O.C. FIELD. STUDS AT 16" O.C. MAX.

1/2" CDX OR OSB WITH 10d AT 3" O.C. AT PANEL EDGES AND 12" O.C. FIELD. USE 4×6'S AT ALL VERTICAL EDGES. STUDS AT 16" O.C. MAX.

SHEAR WALL DETAILS

SEE STRUCTURAL PLANS AND NOTES FOR REQUIRED CONNEC AND ANCHOR REQUIREMENTS

ISOMETRIC L-CONNECTION

BEAM CONNECTION WOOD POST

BEAM POCKET

Details shown will not all apply to your build. Details will vary based on local codes, conditions, foundation and construction methods and materials used.

WALL AND BEAM DETAILS

2" × 4" 8PF 4 16" O.C.

ISOMETRIC SIMPSON HUC412 CONNECTION B

DROPPED WOOD BEAM WOOD COLUMN DETAIL

1/2" CD PLY-BASE PLATE TO TOP PLATE W/ 8d 4" O.C. EDGES 4 12" O.C. NT.

SIMPSON STUD TO STUD W/ - IOd EA STUD 4 -IOd BAND JOIST

BAND JOIST

ENGINEERED FLOOR CONNECTION DETAIL A

ENGINEERED FLOOR CONNECTION DETAIL B

NON-BEARING INT, WALL ATTACHMENT TO TRUSSES

2x4/SIDING HEADER & SILL

BEAM CONNECTION SADDLE BRACKET

2x4/BRICK EAVE

ASPHALT SHINGLE RIDGE, VALLEY AND HIP FLASHING AS PER MANUFACTURER'S INSTRUCTIONS - PROVIDE S& INCH ROLL ROOPING, MINIMUM 55 LB., CENTERED ON ALL HIPS AND VALLEYS

METAL FLASHING AT ALL EAVES, SIDEWALLS, AND RAKES -- PROVIDE HEMMED EDGES SO AS TO FORM DRAINAGE CHANNELS AND PREVENT CAPILLARY ACTION CRICKET AT TOP-SIDE CHIMNEY OR DORMER WALLS AND 60 AS TO MAI EEP ROOFING NAILS O ROOFING LAPS BASE FLASHING 4 INCHES BASE FLASHING WRAPS CORNER EXTENDS UNDER SHINGLES AT SIDES 4 INCHES AND LAPS SHINGLES AT BASE MIN, 4 INCHE

FLASHING DETAILS / NOTES

2x4/SIDING EAVE

ROOF DETAILS

TRUSS ROOF WITH ACCESSIBLE STICK FRAME ROOF

SHEAR TRANSFER

ROOF VENTILATION SOFFITED EAVE SIDING

1"=1'-0"

1 OF 1

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Walk In Customer

Model: 24222 Adrian

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

End Indicator

		evision	ne			
<u> </u>	00/00/0		Name			
acto	00/00/0	00	Name			
ontra	00/00/0	00	Name			
r co	00/00/0	0/00/00 Na				
	00/00/0	00	Name			
plift connectors are the responsibility of the bldg designer an	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	is responsible for temporary and permanent bracing of the pullaing designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the	Madison, WI 53179 Madison, WI 53179			
INCH-SIXTEENTH. AN UPILIT COLLING			ramae.			
IS ARE READ AS: FOOT-						
D TOGETHER PRIOR TO ADDING ANY LOADS.	Walk In Customer	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	ROOF PLACEMENT PLAN			
Nected Together Prior to Adding any Loads. 7 Dimensions are read as: Foot-	Nalk In Customer	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	ROOF PLACEMENT PLAN			
CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Scale:	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	ROOF PLACEMENT PLAN			
-ULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. T DIMENSIONS ARE READ AS: FOOT-	Scale:	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	ROOF PLACEMENT PLAN			
T BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. T DIMENSIONS ARE READ AS: FOOT-	Scale: Date: 3, Gla	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	ROOF PLACEMENT PLAN			
MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. T DIMENSIONS ARE READ AS: FOOT-	Scale: Date: 3. Gla F250	2076 Old 421-Prime Estate Sore Cold 421-Prime Estate RenoRoof-24222 Adrian	LACEMENT PLAN ROOF PLACEMENT PLAN 25 25 25 25 25 25 25 25 25 25 25 25 25			
Ders must be fully connected together prior to adding any loads. The dimensions are read as: foot-	Scale: Date: 3, Gla F 250	2016 Old 421-Prime Estate Soft Old 421-Prime Estate RenoRoof-24222 Adrian Speet Num Speet Num	LACEMENT PLAN Solution Solutio			
GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. T DIMENSIONS ARE READ AS: FOOT-	Scale: Date: 3, Gla F 250	2016 Old 421-Prime Estate Soft Old 421-Prime Estate RenoRoof-24222 Adrian Speet Nun Speet Nun	Soft PLACEMENT PLAN			

Manuf	Product	Qty
Simpson	HTU26	10
Simpson	LGT2	5
Simpson	LUS26	11
Simpson	One H2.5A	79
Simpson	THJU26	3

Hatch Legend							
4.54 Int Pitch							
HVAC Platform							

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	A01	Hip Girder	1	2	Job Reference (optional)

 Run: 8.73 S
 Jul 11 2024 Print: 8.730 S
 Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:01:56
 Page: 1

 ID:qP8ymAfV5Exhva4l4rYiAHzXfxh-K3zTsQx2nHppyrJh8FJ9qthn43L6wLCvgBPY7TzX250

Scale = 1:61.6

Plate Offsets (X, Y): [2:Edge,1-06],	[4:3-12,2-00], [6:4-00),3-00], [8:3-12,2-00], [1	0:Edge,1-06], [13:3-08,4-0	08], [19:3-08,	4-08]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.90 0.92 0.56	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.23 -0.36 0.10	(loc) 16 16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 462 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.	3			BRACIN TOP CH BOT CH	I G ORD ORD	Structur except 2-0-0 oc Rigid ce	al wood c purlins eiling dir	d sheath s (3-5-10 rectly ap	iing dir) max. plied o	rectly applied or 4): 4-8. or 10-0-0 oc braci	4-7-3 oc purlins, ing.
REACTIONS	REACTIONS (Ib/size) 2=3917/3-08, (min. 2-06), 10=3917/3-08, (min. 2-06) Max Horiz 2=124 (LC 11) Max Uplift 2=-647 (LC 12), 10=-647 (LC 13) Max Grav 2=4004 (I C 37) 10=4004 (I C 37)											
FORCES TOP CHORD BOT CHORD	FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-5967/982, 3-4=-6225/1066, 4-28=-7045/1156, 28-29=-7045/1156, 5-29=-7045/1156, 5-30=-7045/1156, 30-31=-7045/1156, 31-32=-7045/1156, 32-33=-7045/1156, 6-34=-7045/1156, 34-35=-7045/1156, 35-36=-7045/1156, 35-36=-7045/1156, 36-37=-7045/1156, 7-37=-7045/1156, 7-38=-7045/1156, 38-39=-7045/1156, 8-39=-7045/1156, 8-9=-6225/1067, 9-10=-5967/983 BOT CHORD 2-20=-819/4845, 19-20=-819/4845, 19-41=-833/5136, 41-42=-833/5136, 18-42=-833/5136, 18-43=-1174/7692, 17-43=-1174/7692, 16-45=-1174/7692, 15-											
WEBS	3-20=-537/115 6-14=-943/185	, 3-19=-178/541, 4-19 , 7-14=-1020/346, 8-	9=-200/1260, 4-18=-44 14=-448/2708, 8-13=-2	8/2708, 5-18=-1 01/1260, 9-13=-	1020/346, 6 -179/542, 9	-18=-943/18 -12=-537/11	6, 6-16=0 4	0/437,				
NOTES 1) 2-ply trus Top chor Bottom c Web con 2) All loads distribute 3) Unbalan 4) Wind: AS and right 5) TCLL: A Ct=1.10 6) Unbalan 7) This trus 8) Provide a 9) This trus	ss to be connected tog ds connected as follo hords connected as fi inected as follows: 2x- are considered equal e only loads noted as ced roof live loads hav SCE 7-16; Vult=130mg exposed ; end vertica SCE 7-16; Pr=20.0 ps ced snow loads have s has been designed adequate drainage to s has been designed	gether with 10d (0.13 ws: 2x4 - 1 row at 9- ollows: 2x6 - 2 rows e 4 - 1 row at 9-00 oc. Ily applied to all plies, (F) or (B), unless oth ve been considered f ph (3-second gust) V al left and right expos f (roof LL: Lum DOL= been considered for for greater of min roor prevent water pondir for a 10.0 psf bottom	1"x3") nails as follows: 00 oc. staggered at 9-00 oc. except if noted as from erwise indicated. or this design. asd=103mph; TCDL=6 ead; Lumber DOL=1.60 =1.15 Plate DOL=1.15) this design. of live load of 12.0 psf o 19. chord live load noncor	t (F) or back (B .0psf; BCDL=6. plate grip DOL= ; Pf=20.0 psf (L r 1.00 times flat) face in the 0psf; h=25 =1.60 um DOL=1 t roof load o v other live	e LOAD CAS it; Cat. II; Ex .15 Plate DC of 20.0 psf or loads.	SE(S) sec p B; Encl DL=1.15); n overhar	tion. Pl osed; M Is=1.0; ngs non	y to ply IWFRS Rough -concurr	connec (envel Cat B; rent wi	ctions have been ope) exterior zon Fully Exp.; Ce=0 th other live loads	provided to e; cantilever left 0.9; Cs=1.00; s.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	A01	Hip Girder	1	2	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:01:58 Page: 2

ID:qP8ymAfV5Exhva4I4rYiAHzXfxh-K3zTsQx2nHppyrJh8FJ9qthn43L6wLCvgBPY7TzX25O

- 11) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 10 and 2. This connection is for uplift only and does not consider lateral forces.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 13) Use Simpson Strong-Tie THJU26 (SGL & SGL LC 2-PLY) or equivalent at 7-0-6 from the left end to connect truss(es) E01A (1 ply 2x4 SP), CJ09 (1 ply 2x4 SP) to front face of bottom chord.
- 14) Use Simpson Strong-Tie THJU26 (SGL & SGL RC 2-PLY) or equivalent at 26-11-10 from the left end to connect truss(es) E01A (1 ply 2x4 SP), CJ09 (1 ply 2x4 SP) to front face of bottom chord.
- 15) Fill all nail holes where hanger is in contact with lumber.
- 16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 17) LGT2 Hurricane ties must have two studs in line below the truss.
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 273 lb down and 100 lb up at 9-0-12, 273 lb down and 100 lb up at 11-0-12, 273 lb down and 100 lb up at 13-0-12, 273 lb down and 100 lb up at 13-0-12, 273 lb down and 100 lb up at 13-0-12, 273 lb down and 100 lb up at 13-0-12, 273 lb down and 100 lb up at 12-0-12, 273 lb down and 100 lb up at 12-11-4, and 273 lb down and 100 lb up at 22-11-4, and 273 lb down and 100 lb up at 24-11-4 on top chord. The design/selection of such connection device (s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-8=-60, 8-11=-60, 21-24=-20

Concentrated Loads (lb)

Vert: 19=-1062, 6=-236, 16=-85, 13=-1062, 28=-236, 29=-236, 30=-236, 33=-236, 34=-236, 37=-236, 38=-236, 39=-236, 41=-85, 42=-85, 44=-85, 45=-85, 46=-85, 46=-85, 47=-85, 48=-85

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	A02	Hip	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:01:56 Page: 1 ID:qUEf2RT947W131HN37nexdzXfwd-oFWr4mxgYaxga?utizqON4D0PTg2fpO2ur85gvzX25N

Scale = 1:63

Plate Offsets ()	x, Y): [2:3-13,Eage],	[5:4-00,1-09], [7:4-00	,1-09], [10:3-13,Edge]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.94 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.34 0.11	(loc) 14-16 14-16 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 186 I	GRIP 244/190 b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 *Exc 2x4 SP No.2 *Exc 2x4 SP No.3 Left 2x4 SP No.3	ept* T2:2x4 SP 2400 ept* B2:2x4 SP No.1 1-06-00, Right 2x4	F 2.0E SP No.3 1-06-00		BRACIN TOP CH BOT CH WEBS	G ORD ORD	Structu except 2-0-0 o Rigid c 1 Row	ral wood c purlins eiling dii at midpt	d sheath s (5-4-0 rectly ap	ing dir max.): plied c	ectly applied of 5-7. or 2-2-0 oc brac 6-16 6-12	r 3-1-15 oc purlins, sing.
REACTIONS (lb/size) 2=1413/3-08, (min. 1-13), 10=1413/3-08, (min. 1-13) VVE Max Horiz 2=153 (LC 13) Max Uplift 2=-156 (LC 14), 10=-156 (LC 15) Max Gray 2=1500 (LC 5), 10=1560 (LC 6) VVE							MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.					
FORCES TOP CHORD BOT CHORD WEBS	FORCES (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-1373/0, 3-25=-2437/218, 25-26=-2428/228, 26-27=-2388/239, 4-27=-2387/241, 4-5=-2363/225, 5-28=-1971/231, 28-29=-1971/231, 29-30=-1973/230, 6-30=-1973/230, 31-32=-1973/230, 32-33=-1971/231, 7-33=-1971/231, 7-8=-2363/225, 8-34=-2387/242, 34-35=-2388/239, 35-36=-2428/228, 9-36=-2437/218, 9-10=-1122/0 BOT CHORD 2-16=-209/1960, 15-16=-172/2667, 14-15=-172/2667, 14-172/2667, 10-12=-107/1960 WEBS 4-16=-306/241, 5-16=-172/2667, 14-15=-172/2667, 14-172-249/194, 5-12=-049/194, 7-12=-049/198, 7-12=-306/141, 5-1078/0											
NOTES 1) Unbalance 2) Wind: AS Exterior(2 31-5-11, shown; L 3) TCLL: AS Ct=1 10	ced roof live loads ha iCE 7-16; Vult=130m 2E) -0-10-8 to 2-6-5, l Exterior(2E) 31-5-11 umber DOL=1.60 pla iCE 7-16; Pr=20.0 ps	ve been considered fo ph (3-second gust) Va nterior (1) 2-6-5 to 4- to 34-10-8 zone; can te grip DOL=1.60 if (roof LL: Lum DOL=	or this design. asd=103mph; TCDL=6 2-5, Exterior(2R) 4-2-5 tilever left and right exp -1.15 Plate DOL=1.15)	.0psf; BCDL=6. to 13-9-11, Inte posed ; end vert ; Pf=20.0 psf (Li	0psf; h=25f erior (1) 13- ical left and um DOL=1	it; Cat. II; Ex 9-11 to 20-2 I right expos .15 Plate DC	p B; Enc -5, Exter ed;C-C f DL=1.15)	losed; N for(2R) for mem ; Is=1.0;	IWFRS 20-2-5 to bers and Rough	(envelo o 29-9- d force: Cat B;	ope) exterior zo -11, Interior (1) s & MWFRS fo Fully Exp.; Ce	one and C-C , 29-9-11 to or reactions =0.9; Cs=1.00;
 4) Unbalance 5) This trusse 6) Provide a 7) This trusse 8) * This trusse any other 	ted snow loads have s has been designed adequate drainage to s has been designed ss has been designed members, with BCD	been considered for f for greater of min roo prevent water pondin for a 10.0 psf bottom d for a live load of 20. L = 10.0psf.	this design. f live load of 12.0 psf o g. chord live load noncor 0psf on the bottom cho	or 1.00 times flat ncurrent with any ord in all areas v	roof load o y other live vhere a rec	of 20.0 psf or loads. tangle 3-06-	n overha 00 tall b	ngs non y 2-00-0	-concuri 0 wide v	rent wir vill fit b	th other live loa	ads. ttom chord and

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	A03	Hip	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:01:59 Page: 1 ID:75hk4emCQVXdyj6 TACHvhzXfwF-oFWr4mxgYaxga?utizqON4D NThqfqy2ur85gvzX25N

Scale = 1:63.2

Plate Offsets (X, Y): [2:3-13,Edge], [5:4-00,1-09], [7:4-00,1-09], [10:3-13,Edge]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.80	Vert(LL)	-0.14	15-17	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.89	Vert(CT)	-0.25	15-17	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.10	10	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 207 lb	FT = 20%	

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 1-06-00, Right 2x4 SP No.3 1-06-00 REACTIONS (lb/size) 2=1412/3-08, (min. 1-14), 10=1420/3-08, (min. 1-14) Max Horiz 2=-185 (LC 12) Max Uplift 2=-152 (LC 14), 10=-155 (LC 15) Max Uplift 2=-152 (LC 14), 10=-155 (LC 15)	BRACING TOP CHORD BOT CHORD WEBS	Structural wood sheathing directly applied or 2-9-9 oc purlins, except 2-0-0 oc purlins (3-10-0 max.): 5-7. Rigid ceiling directly applied or 10-0-0 oc bracing. 1 Row at midpt 6-17, 6-13 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation quide.
Max Grav 2=1589 (LC 47), 10=1595 (LC 47)		
FORCES (ID) - Max. Comp./Max. I en All forces 250 (ID) or less except when TOP CHORD 2-3=-1324/0 3-27=-2510/195 27-28=-2438/197 4-28=-2376/216 4-	snown. 29=-2148/204 5-29=-209	4/236 5-30=-1758/239

30-31=-1760/239, 6-31=-1760/239, 6-32=-1760/238, 32-33=-1760/238, 7-33=-1758/239, 7-34=-2094/235, 8-34=-2148/203, 8-35=-2375/215, 35-36=-2471/197, 9-36=-2508/194, 9-10=-1050/0 BOT CHORD 2-18=-204/2007, 17-18=-199/2007, 16-17=-77/2050, 15-16=-77/2050, 14-15=-77/2050, 13-14=-77/2050, 12-13=-73/2005,

10-12=-73/2005 WEBS

4-17=-487/160, 5-17=-33/820, 6-17=-577/145, 6-15=0/349, 6-13=-577/145, 7-13=-33/820, 8-13=-486/159

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-6-5, Interior (1) 2-6-5 to 6-2-5, Exterior(2R) 6-2-5 to 15-9-11, Interior (1) 15-9-11 to 18-2-5, Exterior(2R) 18-2-5 to 27-9-11, Interior (1) 27-9-11 to 31-7-3 Exterior(2E) 31-7-3 to 35-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5)

6) Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7)

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 10. This connection is for uplift only and does not consider lateral forces.

Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 10)

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	A04	Hip	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:01:59 Page: 1 ID:om2ORox2alls4d1de2R0L8zXfuk-GR4DH6vIJu3XC9T3GgLdwImBht0kOBMC7VufCLzX25M

Scale = 1:61.9

Plate Offsets (X, Y):	[2:3-13,Edge],	[6:4-00,1-09], [8:4-00),1-09], [12:3-13,Edge],	[16:2-00,Edge],	[18:2-00,E	Edge], [21:3-	00,1-08]					
Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.15	Ì17	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.91	Vert(CT)	-0.40	17	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.71	Horz(CT)	0.10	12	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 219 lb	FT = 20%

LUMBER		BRACING	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 2-8-3 oc purlins,
BOT CHORD	2x4 SP No.2		except
WEBS	2x4 SP No.3		2-0-0 oc purlins (4-4-8 max.): 6-8.
SLIDER	Left 2x4 SP No.3 1-06-00, Right 2x4 SP No.3 1-06-00	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS (I	CTIONS (lb/size) 2=1513/3-08 (min 2-00) 12=1459/ Mechanical (min 1-08)		<u>1 Row at midpt</u> 7-14, 7-20
M M M	ax Horiz 2=211 (LC 11) ax Uplift 2=-47 (LC 14), 12=-30 (LC 15) ax Grav 2=1721 (LC 47), 12=1676 (LC 47)		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when show	vn.	

TOP CHORD 2-3=-1352/0. 3-36=-2673/11. 36-37=-2582/19. 37-38=-2545/31. 4-38=-2496/44. 4-5=-2238/33. 5-6=-2109/64 6-39=-1769/95, 7-39=-1770/94, 7-40=-1769/96, 8-40=-1768/96, 8-9=-2108/66, 9-10=-2237/35, 10-41=-2499/45, 41-42=-2548/32, 42-43=-2586/19, 11-43=-2676/17, 11-12=-1109/0 BOT CHORD 2-44=-269/2118, 22-44=-60/2118, 21-22=-60/2118, 20-21=0/1679, 19-20=0/1724, 18-19=0/1724, 17-18=0/1724,

16-17=0/1724, 15-16=0/1724, 14-15=0/1724, 13-14=0/2121, 13-45=0/2121, 12-45=0/2121

WEBS 6-21=0/870, 8-14=0/871, 10-14=-628/228, 10-13=0/252, 4-21=-623/229, 7-24=-285/160, 14-24=-334/105, 20-23=-349/108, 7-23=-290/161

NOTES

Unbalanced roof live loads have been considered for this design. 1)

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-6-5, Interior (1) 2-6-5 to 8-2-5, Exterior(2R) 8-2-5 to 25-9-11, Interior (1) 25-9-11 to 30-7-3, Exterior(2E) 30-7-3 to 34-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5)

200.0lb AC unit load placed on the bottom chord, 17-0-0 from left end, supported at two points, 5-0-0 apart. 6)

Provide adequate drainage to prevent water ponding. 7)

All plates are 2x4 MT20 unless otherwise indicated. 8)

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 10) any other members, with BCDL = 10.0psf.

11) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 12. 12)

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider 13) lateral forces

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	
25030187-01	A04	Нір	1	1	Job Reference (optional)	
Carter Components, Sanford, No	C, user	Run: 8.73 S J	ul 11 2024 P	rint: 8.730 S	Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:01:59 Page:	: 2

LOAD CASE(S) Standard

ID:om2ORox2alls4d1de2R0L8zXfuk-GR4DH6yIJu3XC9T3GgLdwImBht0kOBMC7VufCLzX25M

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	
25030187-01	A05	Hip	1	1	Job Reference (optional)	
Carter Components, Sanford, No	C, user	Run: 8.73 S J	ul 11 2024 P	rint: 8.730 S	Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:01:59 Page:	: 2

LOAD CASE(S) Standard ID:LHmHvb_3nE2usbS621zfhnzXfs5-GR4DH6ylJu3XC9T3GgLdwIm96t0QO9iC7VufCLzX25M

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	A06	Piggyback Base	3	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:00 Page: 1 ID:OOiz1rmeqIHpBc9Jx5I7sOzXg 7-keebURzx4CBNpI2GpOssSVJLVGMC7beLM9dCknzX25L

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian	
25030187-01	A06	Piggyback Base	3	1	Job Reference (optional)	
Carter Components, Sanford, No	C, user	Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:00				

LOAD CASE(S) Standard

ID:OOiz1rmeqIHpBc9Jx5I7sOzXg_7-keebURzx4CBNpI2GpOssSVJLVGMC7beLM9dCknzX25L

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	A07	Piggyback Base Girder	1	2	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:00 Page: 2

ID:?0vm9GRz61i8xTSXhuZVeUzX3EK-keebURzx4CBNpl2GpOssSVJIJGPK7fmLM9dCknzX25L

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss) or equivalent at 7-0-12 from the left end to connect truss(es) G01 (1 ply 2x6 SP) to back face of bottom chord.
- 16) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-12 oc max. starting at 9-0-12 from the left end to 22-0-0 to connect truss(es) G02 (1 ply 2x4 SP), G03 (1 ply 2x4 SP), G04 (1 ply 2x4 SP), D06 (1 ply 2x4 SP), D05 (1 ply 2x4 SP), D04 (1 ply 2x4 SP), D03 (1 ply 2x4 SP), D02 (1 ply 2x4 SP) to back face of bottom chord.
- 17) Fill all nail holes where hanger is in contact with lumber.
- 18) LGT2 Hurricane ties must have two studs in line below the truss.
- 19) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 637 lb down and 175 lb up at 24-0-0, and 637 lb down and 175 lb up at 26-0-0, and 638 lb down and 174 lb up at 28-0-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-5=-58, 5-7=-58, 7-10=-58, 11-28=-19

Concentrated Loads (lb)

Vert: 18=-100, 14=-100, 34=-591, 35=-591, 36=-595, 37=-2124, 38=-732, 39=-656, 40=-645, 41=-723, 42=-784, 43=-784, 44=-698, 45=-629

7) Unbalanced snow loads have been considered for this design.

8) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	B01GRD	Common Girder	1	2	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:01 Page: 2 ID:OqcFusGA9ug3NTaWUdEWGWzXfg6-DqCzin ZrVJERScSN5N5?jrbZqmHs6AUapNIGEzX25K

9) All plates are 2x4 MT20 unless otherwise indicated.

- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1 and 17. This connection is for uplift only and does not consider lateral forces.
- 14) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 29. This connection is for uplift only and does not consider lateral forces.
- 15) Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 1-10-12 from the left end to 9-10-12 to connect truss(es) A04 (1 ply 2x4 SP), A05 (1 ply 2x4 SP), A06 (1 ply 2x4 SP) to back face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 18) LGT2 Hurricane ties must have two studs in line below the truss.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-8=-58, 17-18=-58, 28-37=-19

Concentrated Loads (lb)

Vert: 21=-74, 30=-1614, 46=-1569, 47=-1624, 48=-1614, 49=-1614, 50=-74, 51=-74, 52=-74, 53=-74, 54=-74, 55=-74, 56=-108

Trapezoidal Loads (lb/ft)

Vert: 8=-58-to-9=-83 (F=-25), 9=-83 (F=-25)-to-10=-110 (F=-52), 10=-110 (F=-52)-to-11=-113 (F=-55), 11=-113 (F=-55)-to-12=-128 (F=-70), 12=-128 (F=-70)-to-13=-151 (F=-92), 13=-151 (F=-92)-to-14=-161 (F=-103), 14=-161 (F=-103)-to-15=-173 (F=-115), 15=-173 (F=-115)-to-16=-196 (F=-138), 16=-196 (F=-138)-to-44=-209 (F=-151), 44=-209 (F=-151), to-42=-212 (F=-154), to-17=-216 (F=-158), 28=-19 (F=-0)-to-51=-29 (F=-10), 51=-29 (F=-10)-to-27=-42 (F=-23), 27=-42 (F=-23), to-26=-45 (F=-25), 26=-45 (F=-25)-to-52=-52 (F=-32)-to-25=-66 (F=-47), 25=-66 (F=-47)-to-24=-71 (F=-52), 24=-71 (F=-52)-to-53=-74 (F=-55), 53=-74 (F=-55)-to-23=-89 (F=-70), 23=-89 (F=-70)-to-54=-97 (F=-78), 54=-97 (F=-78)-to-22=-112 (F=-92), 22=-112 (F=-92), 21=-1123 (F=-103)-to-20=-135 (F=-115), 20=-135 (F=-115)-to-55=-143 (F=-123), 55=-143 (F=-127)-to-56=-146 (F=-127)-to-19=-157 (F=-138), 19=-157 (F=-138)-to-45=-170 (F=-151), 45=-170 (F=-151)-to-43=-173 (F=-154), 43=-173 (F=-154)-to-41=-177 (F=-158)

			1									
Job	Truss		Truss Type		Qty	Ply	5076 C	0ld 421-Prim	e Esta	te RenoRoof-24	4222 Adrian	
25030187-01	1 C01G	i	Common Supporte	d Gable	1	1	Job Re	ference (opt	ional)			
Carter Componen	nts, Sanford, NC, user			Run: 8.7	3 S Jul 11 20)24 Print: 8.73	0 S Jul 11 20	24 MiTek Indu	stries, I	nc. Wed Mar 26 15	:02:02 Page: 1	
					ID	UdbLHKKpw	SmgsdZljBJ2	BbzXgEB-h0m	1Mv7_B	cpR53cBexpvKXw0	Orx4G2bjaep16JpgzX25J	
			-10-08							12-06-08		
				4-07-04	5-10	-00 7-00-12	7-00-12 11-08-00					
			10-08	4-07-04	1-02	-12 1-02-12	2]	4-07-04		10-08		
					Ι.							
					<u>}</u>	2-02-00	,					
					I	2						
						3x5= 7						
	<u> </u>											
				_12 8 ⊏	6		8					
				5	P		9					
	4	7	3x5 ≠	T1	3		िरि		3x5 💊			
	09-1	-90-		4	W1	2-05 A	V1	10)			
	4	4	3			3-02	312	<u> </u>	11			
			2 HWY	ST1				ST1	ZHWI	12		
		8-00	1							13		
		<u> </u>				×××××××××××××××××××××××××××××××××××××××			****	$\overrightarrow{\mathbf{M}}$		
				19 1	8 17		16 15	14	~~~~			
			3x5 II							3x5 II		
				4-07-04		7-00-12	ļ	11-08-00				
Scale = 1:38.5				4-07-04	1 :	2-05-08	1	4-07-04		1		
Plate Offsets ()	X, Y): [2:2-08,0-03],	[7:2-08,Edge], [12:2-	-13,0-03]							_		
Loading	(psf)	Spacing	1-11-04	CSI		DEFL	in (l	loc) l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a n/a	- n/a	999 000	MT20	244/190	
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	12 n/a	n/a			
BCLL	0.0* 10.0	Code	IRC2021/TPI2014	Matrix-MSH	-					Weight: 68 lb	FT = 20%	
	10.0	ļ					-			Troigin. 00 ib		
LUMBER					BRACING	G	_					
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2				TOP CHO BOT CHO	ORD ORD	Structural Rigid ceilir	wood sheath ng directlv ar	ning dir	ectly applied or or 10-0-0 oc brac	6-0-0 oc purlins. zina.	
WEBS	2x4 SP No.3				201 0110		i ugia com	.9 4. 66. 9 4.	-pilou (
SLIDER	2x4 SP No.3 Left 2x4 SP No.3	1-06-00, Right 2x	4 SP No.3 1-06-00									
REACTIONS	All bearings 11-08-0	0.										
(lb) -	Max Horiz 2=-102 (I	LC 12), 20=-102 (LC	C12)	20								
	Max Grav All reacti	ons 250 (lb) or less	at joint(s) 2, 14, 15, 16, 19, 2	.0 16, 17, 18,								
	19, 20, 2	4	areas 250 (lb) l	aantuuhen -t-	-							
FURCES	(ID) - Max. Cor	np./iviax. 1 en All fo	prces 250 (ID) or less ex	cept when show	n.							

NOTES

1)

Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 1-10-0, Exterior(2N) 1-10-0 to 2-10-0, Corner(3R) 2-10-0 to 8-10-0, Exterior(2N) 8-10-0 to 9-6-8, Corner(3E) 9-6-8 to 12-6-8 zone; cantilever left and right 2) exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult 3) qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

All plates are 2x4 MT20 unless otherwise indicated. 7)

Gable requires continuous bottom chord bearing. 8)

Gable studs spaced at 2-0-0 oc. 9)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 10)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 11) any other members.

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 18, 19, 15, 14.

13) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 12, 24.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	C02	Common	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:02 Page: 1 ID:CGgipxEQZlugXYXOpDhPP7zXgEI-h0mMv7_BcpR53cBexpvKXwOhj48ObidepT6JpgzX25J

Scale = 1:34				<u>5-10-00</u> 5-10-00					\rightarrow				
Plate Offsets (X, Y):	[2:3-13,Edge],	[6:3-08,Edge]		_							_		
Loading	(psf)	Spacing	2-00-00	CSI	0.05	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	

Loading	(pst)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.65	Vert(LL)	-0.07	7-10	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.09	7-10	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.02	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 51 lb	FT = 20%	

LUMBER

DEACTIONS	(lb/sizo)	2-521/2 0) (min	1 00)	6-465/2	۸o	(min	1 00)
SLIDER	Left 2x4	SP No.3	1-06-0	0, Rigł	nt 2x4 SP	No	.3 1	-06-00
WEBS	2x4 SP	No.3						
BOT CHORD	2x4 SP	No.2						
TOP CHORD	2x4 SP	No.2						

2=521/3-08, (min. 1-08), 6=465/3-08, (min. 1-08) (lb/size)

Max Horiz 2=100 (LC 11)

Max Uplift 2=-56 (LC 14), 6=-39 (LC 15)

Max Grav 2=619 (LC 21), 6=564 (LC 22)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- 2-3=-284/29, 3-16=-513/116, 4-16=-504/136, 4-17=-504/135, 5-17=-508/117, 5-6=-273/0 TOP CHORD
- BOT CHORD 2-7=-163/397, 6-7=-15/396 4-7=0/257

WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 2) Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-10-0, Exterior(2R) 2-10-0 to 8-8-0, Exterior(2E) 8-8-0 to 11-8-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; 3) Ct=1.10

Unbalanced snow loads have been considered for this design. 4)

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads 6)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 7) any other members.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 6 and 2. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-11-7 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	CJ04	Diagonal Hip Girder	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:02 Page: 1 ID:UxGcBYnWh?pIEVLkHq9bDCzXfpm-h0mMv7 BcpR53cBexpvKXwOok4GtbjBepT6JpgzX25J

Structural wood sheathing directly applied or 3-9-3 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

-1-02-14	3-09-03	
1-02-14	3-09-03	

NAILED

NAILED

NAILED

.

One H2.5A

BRACING TOP CHORD

BOT CHORD

Scale = 1:36.8

Plate Offsets (X, Y): [2:Edge,0-13]

		_											
Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.20	Vert(LL)	0.00	4-9	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	0.00	4-9	>999	180			
TCDL	10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 21 lb	FT = 20%	

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x6 SP No.2
WEBS	2x4 SP No.3
WEDGE	Left: 2x4 SP No.3

REACTIONS (lb/size) 2=267/4-04, (min. 1-08), 4=97/ Mechanical, (min. 1-08)

Max Horiz 2=82 (LC 11)

Max Uplift 2=-46 (LC 12), 4=-31 (LC 9)

Max Grav 2=395 (LC 19), 4=135 (LC 19)

FORCES

NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00;

Ct=1.10 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 4.

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-60, 4-5=-20

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	CJ09	Diagonal Hip Girder	3	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:02 Page: 1 ID:ureL3IKNEFRJ10I vzrpsJzXgFT-h0mMv7 BcpR53cBexpvKXwOci48DbdTepT6JpgzX25J

Structural wood sheathing directly applied or 4-8-11 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

	NAILED	NAILE
4-10-10	l	9-09-05
4-10-10	1	4-10-10

BRACING TOP CHORD

BOT CHORD

Scale = 1:40.3

Plate Offsets (X, Y): [2:2-10,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.04	6-7	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.54	Vert(CT)	-0.07	6-7	>999	180			
TCDL	10.0	Rep Stress Incr	NO	WB	0.43	Horz(CT)	0.01	6	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH									
BCDL	10.0										Weight: 53 lb	FT = 20%	

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.2

 REACTIONS
 (Ib/size)
 2=605/4-09, (min. 1-08), 6=673/ Mechanical, (min. 1-08)

 Max Horiz
 2=171 (LC 11)

 Max Uplift
 2=-92 (LC 12), 6=-137 (LC 9)

1-06-00

- Max Grav 2=605 (LC 1), 6=714 (LC 19)
- FORCES (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-404/38, 3-12=-772/131, 4-12=-700/101, 5-6=-251/84
- BOT CHORD 2-15=-178/686, 7-15=-178/686, 7-16=-178/686, 6-16=-178/686
- WEBS 4-6=-755/197

NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 137 lb uplift at joint 6.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

10) "NAILED" indicates 3-10d (0.148"x3") or 2-12d (0.148"x3.25") toe-nails per NDS guidlines.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 162 lb down and 87 lb up at 7-0-7, and 162 lb down and 87 lb up at 7-0-7 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-5=-60, 6-8=-20

Concentrated Loads (lb)

Vert: 12=-50, 13=-245, 15=-32, 16=-106

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	D01	Common	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:02 Page: 1 ID:XDYbx8q5sFBg119H8O?qPYzXg9g-h0mMv7_BcpR53cBexpvKXwOg?43YbZGepT6JpgzX25J

4-08

Scale = 1:53.9

Plate Offsets (X, Y): [5:Edge,2-08], [7:4-00,3-00]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.76	Vert(LL)	0.20	5-7	>982	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.84	Vert(CT)	-0.37	5-7	>532	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 118 lb	FT = 20%

9-00-00

7-01-00

L	JM	BI	ER
---	----	----	----

LUMBER		BRACING	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 5-5-3 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3 *Except* W3:2x4 SP No.2	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
SLIDER	Right 2x4 SP No.2 7-08	WEBS	1 Row at midpt 1-8, 2-8
REACTIONS (I M	lb/size) 5=709/3-00, (min. 1-08), 8=646/3-08, (min. 1-08) Aax Horiz 8=-323 (LC 12) Aax Uplift 5=-69 (LC 15), 8=-155 (LC 10)		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
N	/lax Grav 5=764 (LC 6), 8=739 (LC 6)		
FORCES	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shov	/n.	

- TOP CHORD 2-9=-672/187, 3-9=-681/166, 3-4=-784/145, 4-10=-830/111, 5-10=-887/78
- BOT CHORD 8-11=-100/272, 11-12=-100/272, 7-12=-100/272, 5-7=-25/673
- WEBS 2-7=-347/770, 4-7=-493/262, 2-8=-666/417

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 2) Exterior(2E) 11-6-4 to 13-11-0, Exterior(2R) 13-11-0 to 16-11-0, Interior (1) 16-11-0 to 25-8-8, Exterior(2E) 25-8-8 to 28-8-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00;

Ct=1.10 4)

Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads 6)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 7) any other members, with BCDL = 10.0psf.

8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8 and 5. This connection is for uplift only and does not consider lateral forces.

11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

·	Truss		Truss Type		Qty	Ply		5076 Ol	d 421-Pi	ime Esta	ate RenoRoof-24	4222 Adrian
25030187-01	D03		Half Hip		1	1		Job Ref	erence (optional))	
Carter Components,	Sanford, NC, user			Run: 8.73	S Jul 11 20	024 Print: 8.7	730 S	Jul 11 202	4 MiTek I	ndustries,	Inc. Wed Mar 26 15	:02:03 Page:
		- <u>1</u> 0	-08		טו		nia I C		1~7.4AV91		₩ aygnini v WQ∠40\	0 111.001127 SSL02A20
		+	8-02	2-12 2-12		<u>13-11-</u> 5-08-0	-04 08		<u>16-02-0</u> 2-03-04	8		
		10	-08		•							
	10-02-11	8-00 1	3x5 = 14 3 2 HWT 4x6 II	8 ¹² 15 11 11 14.54 12	5x8 = 1 4 9 5x6=	17 6 W2 (F)		5x 5 W3 X 8 3x8		xx8= 6 ₩5 7 3x5≈	9-11-08	
Scale = 1:54.7 Plate Offsets (X, Y	(): [2:2-04,0-07], ([4:4-00,3-00], [5:3-12	3-08 	<u>2-12</u> 1-04		<u>13-09-</u> 5-06-1	<u>08</u> 12	ł	16 <u>16-02-00</u> 2-04-08	6-02-08 0 1 0-08		
Loading	(psf)	Spacing	1-11-04	CSI		DEFL		in (lo	oc) I/de	efl L/d	PLATES	GRIP
TCLL (roof) Snow (Pf) TCDL	20.0 20.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB Matrix-MSH	1.00 0.58 0.50	Vert(LL) Vert(CT) Horz(CT)	0 -0 0).12 9-).24 9-).13	12 >99 12 >80 7 n	99 240 08 180 /a n/a	MT20	244/190
BCDL	10.0		1102021/1712014					_			Weight: 112 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER REACTIONS (Ib, Ma Ma Ma	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 /size) 2=675/3- ix Horiz 2=339 (L ix Uplift 2=-59 (L ix Grav 2=755 (L	1-06-00 -08, (min. 1-08), 7=62 .C 13) C 14), 7=-122 (LC 14 .C 38), 7=716 (LC 38	21/ Mechanical, (min. 1-i .))	08)	BRACIN TOP CHO BOT CHO WEBS	G ORD ORD	Str ex Riç 1 F	ructural w cept end gid ceiling Row at m	vood she verticals g directly idpt	athing d , and 2-(applied	irectly applied or 0-0 oc purlins (6-0 or 10-0-0 oc brac 6-7, 5-8, 4-8	4-1-3 oc purlins,)-0 max.): 5-6. sing.
FORCES TOP CHORD BOT CHORD	(lb) - Max. Cor 2-3=-864/0, 3- 6-7=-816/127 2-9=-339/1677	np./Max. Ten All fo 14=-1625/153, 14-15 7. 8-9=-313/1724	, rces 250 (lb) or less exc =-1535/166, 4-15=-1442	ept when shown. 2/191, 4-16=-392/	/114, 16-1	7=-279/12	8, 5- ⁻	17=-260/	148,			
WEBS NOTES 1) Unbalanced 2) Wind: ASCE Exterior(2E) left and right 3) TCLL: ASCE	5-8=-272/143, roof live loads ha 7-16; Vult=130m -0-10-8 to 2-1-8, t exposed;C-C for 7-16; Pr=20.0 ps snow loads have	6-8=-121/882, 4-9=- we been considered in ph (3-second gust) V Interior (1) 2-1-8 to 1 members and forces of (roof LL: Lum DOL been considered for for greater of min roo	148/1316, 4-8=-1700/35 for this design. (asd=103mph; TCDL=6. 0-11-4, Exterior(2R) 10- & MWFRS for reaction =1.15 Plate DOL=1.15); this design. of live load of 12.0 psf oi	1 0psf; BCDL=6.0p 11-4 to 13-11-4, l s shown; Lumber Pf=20.0 psf (Lun r 1.00 times flat ro	osf; h=25fi Exterior(2 ∙ DOL=1.6 n DOL=1. n DOL=1.	t; Cat. II; E: E) 13-11-4 0 plate grig 15 Plate D f 20.0 psf c	xp B; to 16 o DO OL=1 on ove	Enclosed 6-0-12 zo L=1.60 I.15); Is= erhangs i	d; MWFF ne; cant 1.0; Rou non-cone	RS (enve ilever lef gh Cat E current v	elope) exterior zor ft and right expose 3; Fully Exp.; Ce= vith other live loac	ne and C-C ed ; end vertical 0.9; Cs=1.00; ds.
Ct=1.10 4) Unbalanced 5) This truss ha 6) Provide ade	as been designed quate drainage to	prevent water pondi	ng.									

Refer to girder(s) for truss to truss connections.

8) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 174 lb uplift at joint 7.

10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	E01	Jack-Open	9	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:04 Page: 1 ID:TBrVA0TryRVO06MLFZ3AUKzXgGa-dPu6Kp0R8QipIwL12DxodLT Tul63dhxHnbQtZzX25H

Structural wood sheathing directly applied or 2-2-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

7-00-00

BRACING

TOP CHORD

BOT CHORD

Scale = 1:33.6

Plate Offsets (X, Y): [2:3-04,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	-0.17	5-8	>481	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.77	Vert(CT)	-0.31	5-8	>270	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.06	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 27 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.2 SLIDER Left 2x4 SP No.3 -- 1-06-00

REACTIONS (lb/size) 2=333/3-08, (min. 1-08), 4=185/ Mechanical, (min. 1-08), 5=89/ Mechanical, (min. 1-08) Max Horiz 2=181 (LC 14) Max Uplift 2=-1 (LC 14), 4=-104 (LC 14)

Max Grav 2=396 (LC 21), 4=296 (LC 21), 5=128 (LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

```
TOP CHORD
```

2-3=-521/306 BOT CHORD 2-5=-364/331

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-8-5, Exterior(2R) 2-8-5 to 6-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; 2) Ct=1.10

3) Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 104 lb uplift at joint 4. 8)

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider 9) lateral forces

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	E01A	Jack-Closed	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:04 Page: 1 ID:TBrVA0TryRVO06MLFZ3AUKzXgGa-dPu6Kp0R8QiplwL12DxodLT wumG3dhxHnbQtZzX25H

Structural wood sheathing directly applied or 2-2-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

3x6 🛛

Scale = 1:35.9

Plate Offsets (X, Y): [2:3-09,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.17	5-8	>495	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.29	5-8	>279	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.06	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 34 lb	FT = 20%

7-00-00

BRACING TOP CHORD

BOT CHORD

LUMBER

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-06-00

 REACTIONS
 (lb/size)
 2=330/3-08, (min. 1-08), 5=271/ Mechanical, (min. 1-08)

 Max Horiz
 2=181 (LC 13)

 Max Uplift
 2=-25 (LC 14), 5=-69 (LC 14)

- Max Grav 2=394 (LC 21), 5=396 (LC 21)
- FORCES (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- TOP CHORD 2-3=-452/299, 4-5=-293/100
- BOT CHORD 2-5=-239/369

NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-7-5, Exterior(2R) 2-7-5 to 6-10-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 5.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	F01	Jack-Partial	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:04 Page: 1 ID:rmpydbmzIJzCLZ2v0XUGKvzXgEv-dPu6Kp0R8QiplwL12DxodLT8SuwG3bVxHnbQtZzX25H

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

BRACING

TOP CHORD

BOT CHORD

Scale = 1:36.3

Plate Offsets (X, Y): [2:2-08,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	Vert(LL)	0.00	7-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.12	Vert(CT)	-0.01	7-8	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.14	Horz(CT)	0.00	7	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 37 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.2 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WFBS SLIDER Left 2x4 SP No.3 -- 1-06-00 **REACTIONS** (lb/size) 2=332/3-08, (min. 1-08), 5=83/ Mechanical, (min. 1-08), 7=194/ Mechanical, (min. 1-08) Max Horiz 2=181 (LC 14) Max Uplift 2=-1 (LC 14), 5=-42 (LC 14), 7=-51 (LC 14) Max Grav 2=395 (LC 21), 5=143 (LC 21), 7=261 (LC 21) FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-13=-348/0, 13-14=-309/0, 4-14=-281/0 BOT CHORD 2-8=-169/289, 7-8=-134/289

WEBS 4-7=-369/171

NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 2-8-5, Exterior(2R) 2-8-5 to 6-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 5 and 51 lb uplift at joint 7.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	F01A	Jack-Closed	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:04 Page: 1 $ID: rmpydbmzIJzCLZ2v0XUGKvzXgEv-dPu6Kp0R8QipIwL12DxodLT_wumP3dhxHnbQtZzX25Harrow Contract and Contract and$

3x6 I

except end verticals.

Structural wood sheathing directly applied or 2-3-13 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:35.9

Plate Offsets (X, Y): [2:3-09,0-03]

	-												
Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.86	Vert(LL)	-0.17	5-8	>498	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.75	Vert(CT)	-0.29	5-8	>281	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.06	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 34 lb	FT = 20%	

7-00-00

BRACING TOP CHORD

BOT CHORD

LUMBER

TOP CHORD	2x4 SP No.1
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-06-00

REACTIONS (lb/size) 2=339/3-08, (min. 1-08), 5=270/ Mechanical, (min. 1-08) Max Horiz 2=183 (LC 13) Max Uplift 2=-28 (LC 14), 5=-69 (LC 14)

- Max Grav 2=402 (LC 21), 5=395 (LC 21)
- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
- TOP CHORD 2-3=-460/307, 4-5=-292/99
- BOT CHORD 2-5=-232/364

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 2-7-5, Exterior(2R) 2-7-5 to 6-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design. 3)

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 6) any other members.

Refer to girder(s) for truss to truss connections. 7

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 69 lb uplift at joint 5. 8)

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider 9) lateral forces.

			1									
Job	Truss		Truss Type		Qty	Ply	5076	5 Old 42	21-Prime	e Estat	e RenoRoof-24	4222 Adrian
25030187-01	F01B		Jack-Partial		2	1	Job	Referei	nce (opt	ional)		
Carter Components, S	Sanford, NC, user			Run: 8.7	3 S Jul 11 202	4 Print: 8.73	30 S Jul 11	2024 M	Tek Indu	, stries, li	nc. Wed Mar 26 15	:02:04 Page: 1
					ID:r	mpydbmzlJz	zCLZ2v0Xl	JGKvzX	gEv-dPu6	Kp0R8	QiplwL12DxodLT8	SuwG3bVxHnbQtZzX25H
				3-06-00		7-00-00						
				3-06-00	1	3-06-00		1				
			I		I							
							4	1	\rightarrow			
					_ 12	1	3	4				
					8 Г	/						
					3x5 🛩	//						
					3 11							
		00			3/X				0-			
		2-04		2×5 12		<			2-04			
				3,5 %	W1	w2						
			2									
			1 HWI	X			\searrow					
			8-00				\searrow	1				
					<u> </u>		~	<u>/</u>]				
			\boxtimes		1		(D				
			2x4 II		2x4 I		2x4	*				
			2/// 8									
			I		i.		7-00	-00				
			/	3-06-00		6-08-08		ł				
				3-06-00		3-02-08						
Scale = 1:35.3							3-0	00				
Plate Offsets (X, Y)): [1:1-08,0-07]	_										
Loading	(psf)	Spacing	2-00-00	CSI	1	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.25	/ert(LL)	0.01	7-10	>999	240	MT20	244/190
Show (Pt) TCDL	20.0	Rep Stress Incr	1.15 YES	WB	0.12	/ert(CT) Horz(CT)	-0.01	6-7 6	>999 n/a	180 n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP		()		-				
BCDL	10.0										Weight: 35 lb	FT = 20%
TOP CHORD 2	2x4 SP No.2				TOP CHO	RD	Structur	al wood	d sheath	ina dir	ectly applied or	6-0-0 oc purlins.
BOT CHORD 2	2x4 SP No.2				BOT CHO	RD	Rigid ce	iling di	ectly ap	plied c	or 10-0-0 oc brad	sing.
WEBS 2 SLIDER L	2x4 SP No.3 _eft 2x4 SP No.3	1-06-00										
REACTIONS (lb/s	size) 1=276/3-	08, (min. 1-08), 4=8	2/ Mechanical, (min. 1-0	8), 6=198/								
, ,	Mechani	cal, (min. 1-08)										
Max	(Horiz 1=163 (L (Uplift 4=-42 (L)	C 14) C 14), 6=-53 (LC 14))									
Max	k Grav 1=339 (L	C 20), 4=142 (LC 20), 6=265 (LC 20)									
FORCES	(lb) - Max. Cor	np./Max. Ten All fo	orces 250 (lb) or less exe	cept when show	n.							
BOT CHORD	2-12=-355/0, 3	-12=-286/0 6-7=-136/295										
WEBS	3-6=-376/173	0.00,200										
NOTES												
1) Wind: ASCE Exterior(2E)	7-16; Vult=130m	ph (3-second gust) heft and right exposed	/asd=103mph; TCDL=6 d · end vertical left and r	.0psf; BCDL=6.0	Upsf; h=25ft; C for membe	Cat. II; Ex	p B; Enclo ces & MV	osed; N VFRS fr	IWFRS	(envelo	ope) exterior zor own: Lumber סמ	ne and C-C DI =1 60 plate
grip DOL=1.6	50	and right oxpose									, _ambor D(
2) TCLL: ASCE Ct=1 10	7-16; Pr=20.0 ps	of (roof LL: Lum DOL	=1.15 Plate DOL=1.15)	; Pf=20.0 psf (Lu	um DOL=1.1	5 Plate DC	DL=1.15);	ls=1.0;	Rough	Cat B;	Fully Exp.; Ce=	0.9; Cs=1.00;
3) Unbalanced s	snow loads have	been considered for	this design.									
 This truss has This truss has 	s been designed	for a 10.0 psf bottor	n chord live load noncor	ncurrent with any	y other live lo	ads.	00 tall by	2 00 0	0 wide v	vill fit h	atween the hett	om abard and

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide w any other members.
6) Refer to girder(s) for truss to truss connections.
7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 42 lb uplift at joint 4 and 53 lb uplift at joint 6. designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	G01	Half Hip Girder	1	1	Job Reference (optional)

NAILED

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:05

NAILED

NAILED

NAILED

Page: 1

	3-07-12	6-10-04		11-05-08	l	16-02-08	3
Scale = 1:40.5	3-07-12	3-02-08	1	4-07-04	1	4-09-00	

Plate Offsets (X, Y): [2:Edge,1-06], [4:5-12,2-00], [7:Edge,3-08], [10:3-08,4-08]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.63	Vert(LL)	-0.06	9-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.10	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.92	Horz(CT)	0.02	7	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 115 lb	FT = 20%

LUMBER	BRACING	
TOP CHORD 2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 3-5-11 oc purlins,
BOT CHORD 2x6 SP No.2		except end verticals, and 2-0-0 oc purlins (4-1-7 max.): 4-6.
WEBS 2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEDGE Left: 2x4 SP No.3	WEBS	1 Row at midpt 6-7
REACTIONS (lb/size) 2=1628/3-08, (min. 2-02), 7=2071/ Mechanical, (min. 1-08) Max Horiz 2=184 (LC 11) Max Uplift 2=-315 (LC 12), 7=-449 (LC 9)		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
Max Grav 2=1776 (LC 34), 7=2143 (LC 33)		

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-2484/461, 3-4=-2364/509, 4-16=-1543/365, 16-17=-1543/365, 5-17=-1543/365, 5-18=-1543/365, 18-19=-1543/365,

19-20=-1543/365, 6-20=-1543/365, 6-7=-1866/403

BOT CHORD 2-11=-420/1980, 10-11=-420/1980, 10-21=-425/1847, 21-22=-425/1847, 9-22=-425/1847

4-10=-269/1406, 4-9=-542/119, 5-9=-614/178, 6-9=-467/2232 WFBS

NOTES

- Unbalanced roof live loads have been considered for this design. 1)
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4 Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5)

6) Provide adequate drainage to prevent water ponding.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 449 lb uplift at joint 7.

- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 12)
- Use Simpson Strong-Tie THJU26 (SGL & SGL LC 1-PLY) or equivalent at 7-0-6 from the left end to connect truss(es) F01A (1 ply 2x4 SP), CJ09 (1 ply 2x4 SP) to front face of 13) bottom chord.

Use Simpson Strong-Tie HTU26 (20-10d Girder, 11-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 9-0-12 from the left end to 15-0-12 to 14) connect truss(es) F01B (1 ply 2x4 SP), F01 (1 ply 2x4 SP) to front face of bottom chord.

15) Fill all nail holes where hanger is in contact with lumber.

"NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 16)

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	G01	Half Hip Girder	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:05 Page: 2 ID:mqN?tQuwB_zDoQhpBt04uvzXg37-5bRUY913vkqgw4wDcxS19Z0DGH6HosY4VRLzP?zX25G

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-4=-60, 4-6=-60, 7-12=-20

Concentrated Loads (lb)

Vert: 8=-241, 10=-1061, 16=-82, 17=-82, 18=-83, 20=-83, 21=-245, 22=-245, 23=-241

loh	Trues		Truss Type		Otv	Plv	5076 0	ld 121_Prim	o Estat	te Reno -Roof-2/	1222 Adrian
25030187-01	G02				1	1	3070 01	iu 42 1-F 1111			
	002		пан пір		<u> </u>	<u> </u>	Job Ref	erence (opt	ional)		
Carter Components, Sanford	NC, user			Run: 8.73 S	Jul 11 20: ID:6/	24 Print: 8.73 A0KWFj41Al_	0 S Jul 11 202 gWmA00nKS	24 Milek Indu SzXg4e-5bRl	stries, li JY913vl	nc. Wed Mar 26 15: kqgw4wDcxS19Z07	:02:05 Page: 1 7nH7uo0i4VRLzP?zX25G
		-10-08									
			4-07-12	9-	00-00			16-02	-08		7
		 10-08	4-07-12	4-	04-04			7-02-	80		
						128-	_				
8	~					5	-		17	3x8 18 6]=
	<u>-</u>				1-13	₩ T			T2		
Q				12	/	$/ \square$					
				81	//						
				2x4 🗙							
2 2 2				4 11		W2		/	ЖЗ	vv∠	4 8
-11-0			275 4							\boxtimes	-90-
			15 ¹⁶								Q
			14	WIT	\searrow						
		2	HWH		\sim						
							/				
					B	9			<u>+</u> 8 19	B2 Ц	7
			1			3x8=		;	3x5=	Зx	(5 II
		Зх	6 II								
Seele = 1:40 8				8-10-04				16-02-	08	,	7
Scale = 1:40.8	04 0 021	[5:4.00.1.00]		8-10-04				7-04-0	J4		
	01,0-03],	[5:4-00,1-09]									
					1					1	
Loading	(psf) 20.0	Spacing	2-00-00	CSI TC	0.08	DEFL	in (lo	oc) I/defl	L/d 240	PLATES	GRIP
Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	2-00-00 1.15 1.15	CSI TC BC	0.98 0.67	DEFL Vert(LL) Vert(CT)	in (la -0.09 9- -0.19 9-	oc) l/defl 12 >999 12 >999	L/d 240 180	PLATES MT20	GRIP 244/190
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.67 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in (lo -0.09 9- -0.19 9- 0.01	oc) l/defl 12 >999 12 >999 2 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.67 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in (lo -0.09 9- -0.19 9- 0.01	oc) l/defl 12 >999 12 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.67 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in (ld -0.09 9- -0.19 9- 0.01	oc) l/defl 12 >999 12 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20%
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ext	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.67 0.27 RACING	DEFL Vert(LL) Vert(CT) Horz(CT)	in (la -0.09 9- -0.19 9- 0.01	oc) I/defl 12 >999 12 >999 2 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 94 lb	GRIP 244/190 FT = 20% 5-9-8 oc purlins,
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ext No.2 No.2 No.3	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH B	0.98 0.67 0.27 RACING OP CHC	DEFL Vert(LL) Vert(CT) Horz(CT) 3 ORD	in (lt -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin	vood sheath verticals, a directly ag	L/d 240 180 n/a ning dir nd 2-0-	PLATES MT20 Weight: 94 lb rectly applied or 5 -0 oc purlins (2-2 or 10-0-0 oc brac	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. ing.
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Exc No.2 No.3 I SP No.3	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH Tr B W	0.98 0.67 0.27 RACING OP CHC OT CHC /EBS	DEFL Vert(LL) Vert(CT) Horz(CT) B DRD DRD	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling 1 Row at m	bc) I/defl 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt	L/d 240 180 n/a ning dir nd 2-0- oplied c	PLATES MT20 Weight: 94 lb rectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing.
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ex No.3 SP No.3 2=696/3 2=288(d)	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 (- 13)	2-00-00 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH TC Bi W -08)	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC /EBS	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD	in (le -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling 1 Row at m MiTek recc installed di	oc) I/defl 12 >999 12 >999 2 n/a vood sheatt verticals, a g directly ap idpt ommends th uring truss e	L/d 240 180 n/a ning dir nd 2-0- oplied c mat Stal	PLATES MT20 Weight: 94 lb ectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. irred cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif	(psf) 20.0 20.0 10.0 0.0* 10.0 10.0 10.0 No.2 *Exx No.2 No.3 \$SP No.3 2=696/3 2=228 (I 2=-722 (L	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11	2-00-00 1.15 1.15 YES IRC2021/TPI2014 1 1 41/ Mechanical, (min. 1-	CSI TC BC WB Matrix-MSH Matrix-MSH Tt Tt W -08)	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC /EBS	DEFL Vert(LL) Vert(CT) Horz(CT) G DRD DRD	in (lt -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin, 1 Row at m MiTek reco installed di Installation	vood sheath vood sheath verticals, a g directly ap idpt ommends th uring truss e guide.	L/d 240 180 n/a ning dir nd 2-0- oplied c nat Stal erection	PLATES MT20 Weight: 94 lb rectly applied or f -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. sing. ired cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ext No.2 No.3 \$ SP No.3 2=696/3 2=228 (I 2=-72 (L 2=838 (I Max Cool	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 .C 13) C 14), 7=-105 (LC 11 .C 44), 7=802 (LC 39 mp /Max Ten - All fo	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 1))) rces 250 (lb) or less ex	CSI TC BC WB Matrix-MSH TC Bi W -08)	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC /EBS	DEFL Vert(LL) Vert(CT) Horz(CT) DRD DRD	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin 1 Row at m MiTek reco installed du Installation	bc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss o g guide.	L/d 240 180 n/a n/a plied c nat Stal	PLATES MT20 Weight: 94 lb rectly applied or 9 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. ired cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF SLIDER Left 2x REACTIONS (Ib/Size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3:	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Exx No.2 No.3 \$ SP No.3 2=696/3 2=228 (I 2=228 (I 2=2838 (I Max. Con -838/0, 3- 5 5 5 6 4	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 .C 13) C 14), 7=-105 (LC 11 .C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15=	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 1))) rces 250 (lb) or less ex -960/132, 15-16=-960/- 2000/132, 15-16=-960/-	CSI TC BC WB Matrix-MSH B T(B V -08) cept when shown. 136, 4-16=-877/152,	0.98 0.67 0.27 RACING OP CHC OP CHC (EBS	DEFL Vert(LL) Vert(CT) Horz(CT) 3 ORD DRD 0RD	in (Id -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling 1 Row at m MiTek recc installed du Installation	oc) I/defl 12 >999 12 >999 2 n/a 2 n/a vood sheatt verticals, a g directly ap idpt ommends th uring truss o	L/d 240 180 n/a n/a piled c pat Stal erection	PLATES MT20 Weight: 94 lb -0 oc purlins (2-2 or 10-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. ired cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (lb/size) Max Horiz Max Uplif Max Grav FORCES (lb) TOP CHORD 2-9: BOT CHORD 2-9:	(psf) 20.0 20.0 10.0 0.0* 10.0 10.0 10.0 No.2 *Exi No.2 No.3 \$SP No.3 2=696/3 2=228 (I 2=-72 (L 2=838 (I Max. Con -838/0, 3- 88=-553/16 -214/971	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 .C 13) C 14), 7=-105 (LC 11 .C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6-	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 41/ Mechanical, (min. 1- 1))) rces 250 (lb) or less ex -960/132, 15-16=-960/- 7=-786/135	CSI TC BC WB Matrix-MSH Tr B TC 08) -08) cept when shown. 136, 4-16=-877/152,	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC /EBS	DEFL Vert(LL) Vert(CT) Horz(CT) G DRD DRD DRD	in (lt -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin 1 Row at m MiTek reco installed di Installation	vood sheath vood sheath verticals, a g directly ap idpt ommends th uring truss e g guide.	L/d 240 180 n/a n/a poplied c nat Stal	PLATES MT20 Weight: 94 lb rectly applied or 5 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. ting. ired cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17- BOT CHORD 2-9: WEBS 4-9:	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ext No.3 SP No.3 2=298 (I 2=-72 (L 2=838 (I) Max. Con -838/0, 3- 8=-553/16 -214/971 -386/161,	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 1))) rcces 250 (lb) or less exi -960/132, 15-16=-960/- 7=-786/135	CSI TC BC WB Matrix-MSH Tr B TC B V -08) cept when shown. 136, 4-16=-877/152,	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC (EBS	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD DRD	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling <u>1 Row at m</u> MiTek recc installed du Installation	bc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss o g guide.	L/d 240 180 n/a hing dir nd 2-0- opplied c	PLATES MT20 Weight: 94 lb rectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. ired cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17- BOT CHORD 2-9: WEBS 4-9: NOTES 1) Unbalanced roof liv	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Exx No.2 No.3 \$ SP No.3 2=696/3 2=228 (I 2=2838 (I 2=228 (I 2=838 (I Max. Con -838/0, 3- 8=-553/16- -214/971 -386/161, e loads ha	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered	2-00-00 1.15 1.15 YES IRC2021/TPI2014 1 41/ Mechanical, (min. 1- 1) 1) 1) 1) 1) 10 10 10 10 10 10 10 10 10 10	CSI TC BC WB Matrix-MSH B T(B V -08) -08) cept when shown. 136, 4-16=-877/152,	0.98 0.67 0.27 P CHC OP CHC OT CHC (EBS	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD 0RD	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin; 1 Row at m MiTek recc installed du Installation	vood sheatt vood sheatt verticals, a g directly ap idpt ommends th uring truss e	L/d 240 180 n/a n/a 2-0- pplied d	PLATES MT20 Weight: 94 lb rectly applied or f -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. sing. ired cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17- BOT CHORD 2-3: 17- 17- BOT CHORD 2-3: 17- 17- 10- 10- 10- 10- 10- 10- 10- 10	(psf) 20.0 20.0 10.0 0.0* 10.0 10.0 10.0 No.2 *Exi No.2 No.3 SP No.3 2=696/3 2=228 (I 2=-72 (L 2=838 (I Max. Cor e38/0, 3- 8=-553/16 -214/971 -386/161, e loads ha /ult=1300 to 2-1-8	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 .C 13) C 14), 7=-105 (LC 11 .C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered 1 unterior (1) 2-1-8 to 4	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 41/ Mechanical, (min. 1- 1))) rces 250 (lb) or less ex -960/132, 15-16=-960/- 7=-786/135 for this design. /asd=103mph; TCDL=6 -6-5 Exterior(2R) 4-6-5	CSI TC BC WB Matrix-MSH B TC -08) -08) -08) -095f; BCDL=6.0psf i to 13-0-12 Exterior	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC /EBS 4-5=-74	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD DRD 40/143, 5-17	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin 1 Row at m MiTek reco installed di Installation 7=-553/161,	c) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss e o guide.	L/d 240 180 n/a hing dir nd 2-0- opplied c nat Stal erection (envel	PLATES MT20 Weight: 94 lb rectly applied or 6 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. irred cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-33 100 CHORD 2-93 WEBS 4-93 NOTES 1) Unbalanced roof liv 2) Wind: ASCE 7-16; Exterior(2E) -0-10- and right exposed; 2) TOL 400CF 7.16;	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ex: No.2 No.3 SP No.3 2=696/3 2=228 (I 2=283 (I) 2=228 (I) 2=72 (L 2=338 (I) 2=338 (I) 38=-553/16 -214/971 -386/161, -386/161, -386/161, -214,971 -386/161, -386/161, -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -214,971 -215,971 -214,971 -	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All for 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered mph (3-second gust) V Interior (1) 2-1-8 to 4 mbers and forces & 1	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 1) 1) rcces 250 (lb) or less exi -960/132, 15-16=-960/- 7=-786/135 for this design. /asd=103mph; TCDL=6 -6-5, Exterior(2R) 4-6-5 MWFRS for reactions s -41.15 Dirthe DOL e14	CSI TC BC WB Matrix-MSH B TC Bi Vv -08) cept when shown. 136, 4-16=-877/152, copsf; BCDL=6.0psf i to 13-0-12, Exterior hown; Lumber DOL= 0.0psf (WDC)	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC (EBS 4-5=-74	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD DRD 40/143, 5-17 ; Cat. II; Exp -0-12 to 16- ate grip DOI	in (lt -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling 1 Row at m MiTek recc installed du Installation 7=-553/161,	cc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss of g guide.	L/d 240 180 n/a hing dir nd 2-0- opplied d rat Stal erection (envel- (envel- ft and r	PLATES MT20 Weight: 94 lb rectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. ired cross bracing be with Stabilizer he and C-C nd vertical left
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Uplif Max Uplif Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17- BOT CHORD 2-3: 17- BOT CHORD 2-9: WEBS 4-9: WEBS 4-9: NOTES 1) Unbalanced roof lin 2) Wind: ASCE 7-16; Exterior(2E) -0-10- and right exposed; 3) TCLL: ASCE 7-16; Ct=1.10	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Exx No.2 No.3 2=696/3 2=228 (I 2=728 (I 2=838 (I Max. Con -838/0, 3- 88=-553/16- 214/971 -386/161, e loads ha /ult=130m to 2-1-8, -C for me Pr=20.0 p	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered on the constant on the consthe constant on the constant on the constant on the const	2-00-00 1.15 1.15 YES IRC2021/TPI2014 1 1 1 1 1 1 1 1 1 1 1 1 1	CSI TC BC WB Matrix-MSH B TC B TC B 0 008) cept when shown. 136, 4-16=-877/152, copsf; BCDL=6.0psf is to 13-0-12, Exterior hown; Lumber DOL= i; pf=20.0 psf (Lum I	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC /EBS 4-5=-74	DEFL Vert(LL) Vert(CT) Horz(CT) G DRD DRD DRD 40/143, 5-17 ; Cat. II; Exp -0-12 to 16- ate grip DOI 15 Plate DO	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin; 1 Row at m MiTek recc installed di Installation 7=-553/161, 7=-553/161, 0 B; Enclose 0-12 zone; o L=1.60 L=1.15); Is=	c) I/defl 12 >999 12 >999 2 n/a vood sheatt verticals, a g directly ap idpt ommends th uring truss e guide. d; MWFRS cantilever le 1.0; Rough	L/d 240 180 n/a ning dir nd 2-0- pplied c nat Stal erection (envel ft and r Cat B;	PLATES MT20 Weight: 94 lb rectly applied or 6 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requin, in accordance	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. sing. ired cross bracing be with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17- BOT CHORD 2-3: 17- BOT CHORD 2-9: WEBS 4-9: NOTES 1) Unbalanced roof Iin 2) Wind: ASCE 7-16; Exterior(2E) -0-10- and right exposed; 3) TCLL: ASCE 7-16; Ct=1.10 4) Unbalanced snow I 5) This truss has been	(psf) 20.0 20.0 10.0 0.0* 10.0 10.0 10.0 No.2 *Exc No.3 SP No.3 2=696/3 2=228 (I 2=-72 (L 2=838 (I Max. Cor -838/0, 3- 88=-553/161, -214/971 -386/161, e loads ha /ult=130m Pr=20.0 p bads have designed	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 -C 13) C 14), 7=-105 (LC 11 -C 44), 7=-802 (LC 39 mp./Max. Ten All for 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered dor ph (3-second gust) V Interior (1) 2-1-8 to 4 orbits and forces & I sf (roof LL: Lum DOL been considered for for greater of min roo	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 1) 1) rces 250 (lb) or less ex -960/132, 15-16=-960/- -7=-786/135 for this design. /asd=103mph; TCDL=6 -6-5, Exterior(2R) 4-6-5 MWFRS for reactions s =1.15 Plate DOL=1.15) this design. of live load of 12.0 psf of	CSI TC BC WB Matrix-MSH B Tr B -08) -08) -08) -08) -08) -08) -08) -08)	0.98 0.67 0.27 RACING OP CHC OT CHC /EBS 4-5=-74 ; h=25ft; (2E) 13 =1.60 pla DOL=1.1	DEFL Vert(LL) Vert(CT) Horz(CT) G DRD DRD DRD 40/143, 5-17 ; Cat. II; Exp -0-12 to 16- ate grip DOI 15 Plate DO	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling 1 Row at m MiTek recc installed du Installation 2=-553/161, 2=-553/161, 0 B; Enclose 0-12 zone; c L=1.60 L=1.15); Is=	cc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss e g guide. d; MWFRS cantilever le 1.0; Rough	L/d 240 180 n/a hing dir nd 2-0- opplied c rection (envela ft and r Cat B; rent wi	PLATES MT20 Weight: 94 lb rectly applied or f -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requin, in accordance ope) exterior zon right exposed ; e Fully Exp.; Ce=(GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. irred cross bracing be with Stabilizer the and C-C nd vertical left 0.9; Cs=1.00;
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 100 CHORD 2-3: 17- BOT CHORD 2-3: 17- BOT CHORD 2-3: 100 CH	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ex: No.2 No.3 SP No.3 2=696/3 2=228 (L 2=-72 (L 2=-72 (L 2=-73 (L 2=-73 (L) 2=-73 (L) 2=-	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered and forces & l stress and forces & l stress and forces & l stress and forces & l the of LL: Lum DOL been considered for for greater of min row prevent water pondi	2-00-00 1.15 1.15 YES IRC2021/TPI2014 1 1 1 1 1 1 1 1 1 1 1 1 1	CSI TC BC WB Matrix-MSH	0.98 0.67 0.27 RACING OP CHC OT CHC //EBS 4-5=-74 ; h=25ft; r(2E) 13- =1.60 pla DOL=1.1 f load of	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD 0RD 40/143, 5-17 ; Cat. II; Exp -0-12 to 16- ate grip DOI 15 Plate DO 5 20.0 psf on	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling 1 Row at m MiTek recc installed du Installed du Installation Z=-553/161, b B; Enclose 0-12 zone; c L=1.60 L=1.15); Is=	cc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss of g guide. d; MWFRS cantilever le 1.0; Rough	L/d 240 180 n/a hing dir nd 2-0- opplied c rat Stal erection (envel ft and r Cat B; rent wi	PLATES MT20 Weight: 94 lb rectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance ope) exterior zon right exposed ; e Fully Exp.; Ce=(GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. irred cross bracing be with Stabilizer he and C-C nd vertical left 0.9; Cs=1.00; ls.
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Uplif Max Uplif Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17 BOT CHORD 2-3: 10 1	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Exx No.2 No.3 2=696/3 2=228 (I 2=728 (I 2=728 (I 2=728 (I 2=738 (I Max. Con -838/0, 3- 8=-553/16 -214/971 -386/161, -214/971 -396/161, -214/971 -396/161, -	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered of the for the second gust) V Interior (1) 2-1-8 to 4 second gust) V Interi	2-00-00 1.15 1.15 YES IRC2021/TPI2014 I I I I I I I I I I I I I	CSI TC BC WB Matrix-MSH B TC B TC B TC B TC B TC B TC B TC B T	0.98 0.67 0.27 RACING OP CHC OP CHC OT CHC /EBS 4-5=-74 ; h=25ft; r(2E) 13- =1.60 pla DOL=1.1 f load of ner live k e a recta	DEFL Vert(LL) Vert(CT) Horz(CT) G DRD DRD DRD DRD (0,143, 5-17) (cat. II; Exp -0-12 to 16-1 ate grip DOI 15 Plate DO (const on the constant) f 20.0 psf on oads. angle 3-06-0	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin, 1 Row at m MiTek recc installed di Installation Z=-553/161, 0 B; Enclose 0-12 zone; o L=1.60 L=1.15); Is= n overhangs 00 tall by 2-0	cc) I/defi 12 >999 12 >999 2 n/a 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss of guide. d; MWFRS cantilever le 1.0; Rough non-concur	L/d 240 180 n/a ining dir nd 2-0- pplied c at Stal rection (envel ft and r Cat B; rent wi	PLATES MT20 Weight: 94 lb rectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance ope) exterior zon right exposed ; e Fully Exp.; Ce=(th other live load	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. sing. ired cross bracing be with Stabilizer me and C-C nd vertical left 0.9; Cs=1.00; ls.
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL COP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplin Max Uplin Max Corrite FORCES (Ib) TOP CHORD 2-3: 10 TOP CHORD 2-3: 17- BOT CHORD 2-3: 17- 17- 17- 17- 17- 17- 17- 17-	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Exc No.3 \$P No.3 2=696/3 2=228 (I 2=-72 (L 2=838 (I Max. Cor -838/0, 3- 88=-553/161, -214/971 -386/161, e loads ha/ viut=130m/ to 2-1-8, C-C for me Pr=20.0 p mads have designed rainage to designed rainage to designed rainage to to designed rainage to the truss to 1 to the trus to 1 to 1 to the trus to 1 to the trus to 1 to the trus to 1 to 1 to the trus to 1 to the trus to 1 to the trus to 1 to the trus to 1 to 1 to the trus to 1 to 1 to the trus to 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 LC 44), 7=-802 (LC 39 mp./Max. Ten All for 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered for ph (3-second gust) V Interior (1) 2-1-8 to 4 embers and forces & I sf (roof LL: Lum DOL been considered for for greater of min roo prevent water pondi for a 10.0 psf bottom ed for a live load of 20 DL = 10.0psf. Truss connections.	2-00-00 1.15 1.15 YES IRC2021/TPI2014 1 41/ Mechanical, (min. 1- 1) 1) rccs 250 (lb) or less ex -960/132, 15-16=-960/- 7=-786/135 for this design. /asd=103mph; TCDL=6 -6-5, Exterior(2R) 4-6-5 MWFRS for reactions s =1.15 Plate DOL=1.15) this design. of live load of 12.0 psf or ng. n chord live load noncor 0.0psf on the bottom chord	CSI TC BC WB Matrix-MSH -08) -08) cept when shown. 136, 4-16=-877/152, 5.0psf; BCDL=6.0psf to 13-0-12, Exterior hown; Lumber DOL= t; Pf=20.0 psf (Lum II) or 1.00 times flat roo neurrent with any oth ord in all areas wher	0.98 0.67 0.27 RACING OP CHC OT CHC /EBS 4-5=-74 ; h=25ft; (2E) 13- =1.60 pla DOL=1.1 f load of her live k e a recta	DEFL Vert(LL) Vert(CT) Horz(CT) G DRD DRD DRD A0/143, 5-17 (Cat. II; Exp -0-12 to 16- ate grip DOI 15 Plate DO 5 20.0 psf on oads. angle 3-06-0	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling <u>1 Row at m</u> MiTek recc installed du Installation 2=-553/161, 2=-553/161, 0 B; Enclose 0-12 zone; c L=1.60 L=1.15); Is= 0 overhangs 00 tall by 2-0	c) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss e g guide. d; MWFRS cantilever le 1.0; Rough non-concur	L/d 240 180 n/a and 2-0- opplied c reaction (envela ft and r Cat B; rent wi will fit b	PLATES MT20 Weight: 94 lb rectly applied or f -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requin, in accordance ope) exterior zon right exposed ; e Fully Exp.; Ce=(th other live load	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. irred cross bracing be with Stabilizer the and C-C nd vertical left 0.9; Cs=1.00; ls.
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Upli Max Grav FORCES (Ib) TOP CHORD 2-33 TOP CHORD 2-33 TOP CHORD 2-33 TOP CHORD 2-33 NOTES 1) Unbalanced roof liv 2) Wind: ASCE 7-16; Exterior(2E) -0-10- and right exposed; 3) TCLL: ASCE 7-16; Ct=1.10 4) Unbalanced snow I 5) This truss has been 6) Provide adequate of 7) This truss has been 8) * This truss has been 8) * This truss has been 9) Refer to girder(s) for 10) Provide mechanica	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ex: No.2 No.3 SP No.3 2=696/3 2=228 (I 2=-72 (L 2=-72 (L 2=-72 (L 2=-72 (L 2=-38) (I) -214/971 -386/161, *C for me Pr=20.0 p bads have designed rainage to designed rainage to designed raina	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All for 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 Ave been considered of the second gust) V Interior (1) 2-1-8 to 4 mbers and forces & I sf (roof LL: Lum DOL been considered for for greater of min roo- prevent water pondif for a 10.0 psf bottom of or a live load of 20 DL = 10.0psf. truss connections. on (by others) of truss	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 1) 1) rcces 250 (lb) or less exit -960/132, 15-16=-960/- 7=-786/135 for this design. /asd=103mph; TCDL=6 -6-5, Exterior(2R) 4-6-5 MWFRS for reactions s =1.15 Plate DOL=1.15) this design. of live load of 12.0 psf or ng. n chord live load noncor 0.0psf on the bottom cho- s to bearing plate capab	CSI TC BC WB Matrix-MSH B TC B0 TC B0 Copsf; BCDL=6.0psf it o 13-0-12, Exterior hown; Lumber DOL= i; Pf=20.0 psf (Lum I cor 1.00 times flat roo neurrent with any oth or d in all areas wher	0.98 0.67 0.27	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD 0RD 40/143, 5-17 ; Cat. II; Exp -0-12 to 16- ate grip DOI 15 Plate DO 5 20.0 psf on oads. angle 3-06-0	in (lt -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling <u>1 Row at m</u> MiTek recc installed du Installation Z=-553/161, D B; Enclose 0-12 zone; c L=1.00 L=1.15); Is= o overhangs 00 tall by 2-0	bc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss of g guide. d; MWFRS cantilever le 1.0; Rough non-concur 00-00 wide v	L/d 240 180 n/a and 2-0- opplied c at Stal erection (envel- ft and r Cat B; rent wi will fit b	PLATES MT20 Weight: 94 lb rectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance ope) exterior zon right exposed ; e Fully Exp.; Ce=(th other live load between the botto	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. ired cross bracing be with Stabilizer he and C-C nd vertical left 0.9; Cs=1.00; ls. om chord and
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL COP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17 BOT CHORD 2-3: 17 BOT CHORD 2-9: WEBS 4-9: WEBS 4-9: NOTES 1) Unbalanced roof liv 2) Wind: ASCE 7-16; Exterior(2E) -0-10- and right exposed; 3) TCLL: ASCE 7-16; Ct=1.10 4) Unbalanced snow I 5) This truss has beer 6) Provide adequate of 7) This truss has beer 8) * This truss has beer 8) * This truss has beer 8) * This truss has beer 1) One H2.5A Simpson 10 Provide mechanica 11) One H2.5A Simpson lateral forces.	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Ex. No.2 No.3 2=696/3 2=228 (I 2=732 (I 2=838 (I Max. Con -838/0, 3- 82=-553/16 -214/971 -386/161, alloads have designed rainage to designed rainage to designed rainage to connection n Strong-1	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 C 13) C 14), 7=-105 (LC 11 C 44), 7=802 (LC 39 mp./Max. Ten All fo 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered for for greater of min ro- p revent water pondi sf (roof LL: Lum DOL been considered for for greater of min ro- p revent water pondi for a live load of 20 DL = 10.0psf. truss connections. on (by others) of truss fie connectors recom	2-00-00 1.15 1.15 YES IRC2021/TPI2014 1 41/ Mechanical, (min. 1- 1) 1) rces 250 (lb) or less ex -960/132, 15-16=-960/- 7=-786/135 for this design. /asd=103mph; TCDL=6 -6-5, Exterior(2R) 4-6-5 MWFRS for reactions s =1.15 Plate DOL=1.15) this design. of live load of 12.0 psf or ng. this design. of live load of 12.0 psf or ng. this design. of live load of 12.0 psf or ng. this design.	CSI TC BC WB Matrix-MSH -08) -08) -08) -08) -08) -08) -08) -08) -08) -08) -08) -08) -08) -095f; BCDL=6.0psf -013-0-12, Exterior hown; Lumber DOL= 5; Pf=20.0 psf (Lum I por 1.00 times flat roo ncurrent with any oth ord in all areas wher -012 psf to bearing walls d	0.98 0.67 0.27 RACING OP CHC OT CHC (EBS 4-5=-74 ; h=25ft; r(2E) 13- =1.60 pla DOL=1.1 f load of her live lo the a recta 05 lb uplue to UF	DEFL Vert(LL) Vert(CT) Horz(CT) 3 DRD DRD 40/143, 5-17 40/143, 5-17 ; Cat. II; Exp -0-12 to 16- ate grip DOI 15 Plate DO 5 20.0 psf on oads. angle 3-06-(lift at joint 7. PLIFT at jt(s	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceiling 1 Row at m MiTek recc installed du Installation 7=-553/161, 0 B; Enclose 0-12 zone; c L=1.60 L=1.15); Is= 0 overhangs 00 tall by 2-0	bc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss e guide. d; MWFRS cantilever le 1.0; Rough non-concur	L/d 240 180 n/a ining dir nd 2-0-0- pplied c nat Stal erection (envel ft and r Cat B; rent wi will fit b	PLATES MT20 Weight: 94 lb ectly applied or 8 -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 bilizers and requi n, in accordance ope) exterior zon right exposed ; ei Fully Exp.; Ce=0 th other live load between the botto ft only and does n	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. ding. irred cross bracing be with Stabilizer with Stabilizer
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORD 2x4 SF BOT CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF SLIDER Left 2x REACTIONS (Ib/size) Max Horiz Max Uplif Max Grav FORCES (Ib) TOP CHORD 2-3: 17- BOT CHORD 2-3: 17- BOT CHORD 2-3: 17- BOT CHORD 2-9: WEBS 4-9: NOTES 1) Unbalanced roof Ii 2) Wind: ASCE 7-16; Exterior(2E) -0-10- and right exposed; 3) TCLL: ASCE 7-16; Ct=1.10 4) Unbalanced snow I 5) This truss has beer 6) Provide adequate of 7) This truss has beer 8) * This truss has beer 8) * This truss has beer 8) * This truss has beer 9) Refer to girder(s) ff 10) Provide mechanica 11) One H2:5A Simpson lateral forces. 12) Graphical purlin rej	(psf) 20.0 20.0 10.0 0.0* 10.0 No.2 *Exe No.3 2=696/3 2=72 (L 2=838 (I Max. Con 838/0, 3- 8=-553/16 -214/971 -386/161, a-386/161, a-386/161, b-21-8, -C for me Pr=20.0 p consection to 2-1-8, -C for me Pr=20.0 p -C for me -C for me -	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code Cept* T2:2x4 SP No.1 1-06-00 -08, (min. 1-08), 7=64 -C 13) C 14), 7=-105 (LC 11 -C 44), 7=-802 (LC 39 mp./Max. Ten All for 14=-980/129, 14-15= 51, 6-18=-553/160, 6- 6-9=-82/786 ave been considered for ph (3-second gust) V Interior (1) 2-1-8 to 4 ambers and forces & I sf (roof LL: Lum DOL been considered for for greater of min ro- prevent water pondi for a 10.0 psf bottom d for a live load of 20 OL = 10.0psf. Truss connections. on (by others) of truss Fie connectors recom	2-00-00 1.15 1.15 YES IRC2021/TPI2014 41/ Mechanical, (min. 1- 1) 1) rces 250 (lb) or less ex -960/132, 15-16=-960/- -7=-786/135 for this design. /asd=103mph; TCDL=6 -6-5, Exterior(2R) 4-6-5 MWFRS for reactions s =1.15 Plate DOL=1.15) this design. of live load of 12.0 psf of ng. n chord live load noncor 0.0psf on the bottom cho- s to bearing plate capabi mended to connect trus a size or the orientation	CSI TC BC WB Matrix-MSH B TG TG 5005f; BCDL=6.0psf 5 to 13-0-12, Exterior hown; Lumber DOL= 5; Pf=20.0 psf (Lum I pr 1.00 times flat roo neurrent with any oth or unit all areas wher ble of withstanding 10 ss to bearing walls d of the purlin along th	0.98 0.67 0.27 RACING OP CHC OT CHC /EBS 4-5=-74 ; h=25ft; r(2E) 13- =1.60 pla DOL=1.1 f load of ner live k re a recta 05 lb upl ue to UF	DEFL Vert(LL) Vert(CT) Horz(CT) G DRD DRD DRD 40/143, 5-17 40/143, 5-17 ; Cat. II; Exp -0-12 to 16- ate grip DOI 15 Plate DO 5 20.0 psf on oads. angle 3-06-(PLIFT at jt(s nd/or bottom	in (It -0.09 9- -0.19 9- 0.01 Structural v except end Rigid ceilin <u>1</u> 1 Row at m MiTek recc installed di Installation 7=-553/161, 0 B; Enclose 0-12 zone; c L=1.60 L=1.15); Is= 0 overhangs 00 tall by 2-C	bc) I/defi 12 >999 12 >999 2 n/a vood sheath verticals, a g directly ap idpt ommends th uring truss of g guide. d; MWFRS cantilever le 1.0; Rough non-concur	L/d 240 180 n/a and 2-0- opplied c at Stala rection (enveli ft and i Cat B; rent wi will fit b	PLATES MT20 Weight: 94 lb rectly applied or f -0 oc purlins (2-2 or 10-0-0 oc brac 6-7 billizers and requin, in accordance ope) exterior zon right exposed ; e Fully Exp.; Ce=(th other live load between the botto ft only and does n	GRIP 244/190 FT = 20% 5-9-8 oc purlins, 2-0 max.): 5-6. cing. irred cross bracing be with Stabilizer the and C-C nd vertical left 0.9; Cs=1.00; ls. om chord and not consider

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 106 lb uplift at joint 7.

11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	H01	Jack-Open	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:06 Page: 1 ID:jpau1n08pmdDMn9xIRMBgKzXgEa-Zn?sIV1hg2yXXDVPAezGimYWchd8XXADk54WyRzX25F

3x5 II

1-10-15

Scale = 1:26

Plate Offsets (X, Y): [2:2-04,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.08	Vert(LL)	0.00	8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	0.00	8	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 10 lb	FT = 20%	

LUMBER

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 SLIDER
 Left 2x4 SP No.3 -- 1-06-00

REACTIONS (lb/size) 2=141/3-08, (min. 1-08), 4=43/ Mechanical, (min. 1-08), 5=21/ Mechanical, (min. 1-08)

Max Horiz 2=65 (LC 14)

Max Uplift 2=-8 (LC 14), 4=-32 (LC 14), 5=-1 (LC 14)

Max Grav 2=203 (LC 21), 4=62 (LC 21), 5=31 (LC 7)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 5 and 32 lb uplift at joint 4.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 1-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	H02	Jack-Open	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:06 Page: 1 ID:Nm? 3y? E xG0G yun0zGzXgEf-Zn?slV1hg2yXXDVPAezGimYTshahXXADk54WyRzX25F

Structural wood sheathing directly applied or 3-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x5 II

3-10-15

BRACING

TOP CHORD

BOT CHORD

Scale = 1:27.2

Plate Offsets (X, Y): [2:2-08,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	-0.02	5-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.03	5-8	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 17 lb	FT = 20%	

LUMBER

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 SLIDER
 Left 2x4 SP No.3 -- 1-06-00

REACTIONS (Ib/size) 2=212/3-08, (min. 1-08), 4=98/ Mechanical, (min. 1-08), 5=50/ Mechanical, (min. 1-08) Max Horiz 2=112 (LC 14) Max Uplift 2=-3 (LC 14), 4=-64 (LC 14)

Max Grav 2=329 (LC 21), 4=159 (LC 21), 5=70 (LC 7)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 4.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	H03	Jack-Open	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:06 Page: 1 ID:yYdlws7nhXlyxALgnq1IYDzXgER-Zn?slV1hg2yXXDVPAezGimYKkhUmXXADk54WyRzX25F

3x5 II

Scale = 1:29.1

Plate Offsets (X, Y): [2:2-08,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.84	Vert(LL)	-0.11	5-8	>662	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	-0.18	5-8	>397	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.04	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 23 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 SLIDER Left 2x4 SP No.3 -- 1-06-00

REACTIONS (lb/size) 2=290/3-08, (min. 1-08), 4=153/ Mechanical, (min. 1-08), 5=78/

Mechanical, (min. 1-08)

Max Horiz 2=161 (LC 14)

Max Uplift 4=-98 (LC 14)

Max Grav 2=372 (LC 21), 4=250 (LC 21), 5=109 (LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD

2-3=-410/257 BOT CHORD 2-5=-295/289

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; 2) Ct=1.10

3) Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 98 lb uplift at joint 4. 8)

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

5-10-15

Structural wood sheathing directly applied or 5-10-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	H04	Jack-Open	4	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:06 Page: 1 ID:yB 94o5TiQ20F6LKIU?MblzXgFm-Zn?sIV1hq2yXXDVPAezGimYVVhcuXXADk54WyRzX25F

Structural wood sheathing directly applied or 2-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x5 🛛

2-10-15

BRACING

TOP CHORD

BOT CHORD

Scale = 1:26.1

Plate Offsets (X, Y): [2:2-04,0-07]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.15	Vert(LL)	0.00	5-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	-0.01	5-8	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 14 lb	FT = 20%	

LUMBER

 TOP CHORD
 2x4 SP No.2

 BOT CHORD
 2x4 SP No.2

 SLIDER
 Left 2x4 SP No.3 -- 1-06-00

REACTIONS (lb/size) 2=175/3-08, (min. 1-08), 4=70/ Mechanical, (min. 1-08), 5=36/

Mechanical, (min. 1-08) Max Horiz 2=88 (LC 14)

Max Uplift 2=-6 (LC 14), 4=-48 (LC 14)

Max Grav 2=261 (LC 21), 4=109 (LC 21), 5=51 (LC 7)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FORCES

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 4.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	H05	Jack-Open	4	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:06 Page: 1 ID:Bw1ZztC6bBAkqUX3KsfTTCzXgFd-Zn?slV1hg2yXXDVPAezGimYP5hXkXXADk54WyRzX25F

Structural wood sheathing directly applied or 4-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

4-10-15

BRACING

TOP CHORD

BOT CHORD

Scale = 1:29.1

Plate Offsets (X, Y): [2:2-08,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.56	Vert(LL)	-0.05	5-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.44	Vert(CT)	-0.09	5-8	>677	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 20 lb	FT = 20%	

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 SLIDER Left 2x4 SP No.3 -- 1-06-00

REACTIONS (lb/size) 2=251/3-08, (min. 1-08), 4=125/ Mechanical, (min. 1-08), 5=64/ Mechanical, (min. 1-08)

Max Horiz 2=137 (LC 14) Max Uplift 2=-1 (LC 14), 4=-81 (LC 14)

Max Grav 2=351 (LC 21), 4=207 (LC 21), 5=90 (LC 7)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-3=-285/134

TOP CHORD

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; 2) Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 6) any other members.

7) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 81 lb uplift at joint 4. 8)

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider 9) lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	J01	Jack-Open	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:06 Page: 1 ID:?UBpPOZEwUYI4kyHD2qNVPzXfq2-Zn?sIV1hg2yXXDVPAezGimYWRhcVXXADk54WyRzX25F

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

3x5 =

One H2.5A

BRACING

TOP CHORD

BOT CHORD

Scale = 1:27.7

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 10 lb	FT = 20%

LUMBER

TOP CHORD2x4 SP No.2BOT CHORD2x6 SP No.2

REACTIONS (lb/size) 3=34/ Mechanical, (min. 1-08), 4=-21/ Mechanical, (min. 1-08), 5=191/3-00, (min. 1-08)

Max Horiz 5=65 (LC 14)

Max Uplift 3=-28 (LC 14), 4=-38 (LC 21), 5=-15 (LC 14)

Max Grav 3=52 (LC 21), 4=13 (LC 7), 5=275 (LC 21)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 4 and 28 lb uplift at joint 3.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	K01	Jack-Closed	7	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:0€ Page: 1 ID:oJ97anRXFjMdvmbQ6Wzdw?zXgCI-Zn?sIV1hg2yXXDVPAezGimYWRhd_XXADk54WyRzX25F

3x10 II

One H2.5A

4-08		
	2-09-00	
11	2-04-08	
 4-08		

DDACING

Scale = 1:29.8

Plate Offsets (X, Y): [2:5-08,Edge]

- (),1	, 31												
Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-9	>999	180			
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP									
BCDL	10.0										Weight: 16 lb	FT = 20%	

LUMBER

LOWIDER		DRACING	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 2-9-0 oc purlins,
BOT CHORD	2x6 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
WEDGE	Left: 2x4 SP 2400F 2.0E		MiTek recommends that Stabilizers and required cross bracing be
REACTIONS ((lb/size) 2=193/3-00. (min. 1-08). 4=68/ Mechanical. (min. 1-08)		installed during truss erection, in accordance with Stabilizer
1	Max Horiz 2=78 (LC 13)		Installation guide.
n	Max Uplift 2=-26 (LC 14), 4=-46 (LC 11)		
1	Max Grav 2=287 (LC 21), 4=94 (LC 21)		

FORCES

CES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 46 lb uplift at joint 4.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	L01	Jack-Open	2	1	Job Reference (optional)

-10-08

10-08

2-00-00

2-00-00

Carter Components, Sanford, NC, user

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:07 Page: 1 ID:Dn28MOjW4APmcCejJXLY9izX2VU-1_ZFzr2KQL4O9N4ckMUVE_5hu5zDG_QNzlq4UtzX25E

One H2.5A	
-----------	--

2-00-00

Scale = 1:25.1

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	0.00	4-5	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 9 lb	FT = 20%

LUMBER	2
LOWIDE	•

LUMBER		BRACING	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 2-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS (lb/size) 3=41/ Mechanical, (min. 1-08), 4=16/ Mechanical, (min. 1-08), 5=152/3-08, (min. 1-08) Aax Horiz 5=61 (LC 14)		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
Ν	Aax Uplift 3=-35 (LC 14), 5=-11 (LC 14)		

Max Grav 3=62 (LC 21), 4=33 (LC 7), 5=221 (LC 21)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES

1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this design. 3)

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 6) any other members.

7) Refer to girder(s) for truss to truss connections.

8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 3.

9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	M01	Diagonal Hip Girder	2	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:07 Page: 1 ID:Is0BisvYI4QUXfsoFuelo4zX2VE-1 ZFzr2KQL4O9N4ckMUVE 5gn5zvG QNzIg4UtzX25E

Structural wood sheathing directly applied or 2-8-7 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

3x5 I

One H2.5A 2-08-07

> BRACING TOP CHORD

> BOT CHORD

Scale = 1:25.5

Plate Offsets (X, Y): [2:2-10,0-03]

		_										
Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	0.00	5-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	5-8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3

-- 1-06-00 REACTIONS (lb/size) 2=195/4-09, (min. 1-08), 5=84/ Mechanical, (min. 1-08) Max Horiz 2=65 (LC 11)

Max Uplift 2=-37 (LC 12), 5=-19 (LC 12)

Max Grav 2=280 (LC 19), 5=114 (LC 19)

FORCES

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left 1)

and right exposed; and vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; 2) Ct=1.10

3) Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 4)

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Refer to girder(s) for truss to truss connections.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 5. 8)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider 9) lateral forces.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	N01	Hip Girder	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:07 Page: 1 ID:LpOvESH??cK5lQklZuhZZczX2UI-1 ZFzr2KQL4O9N4ckMUVE 5hk5yGGzKNzlq4UtzX25E

-1-00-00)	2-06-0	00	5-06-00
,	2-00-00		, 4-06-00	
1 1	2-00-00	1 1	2-00-00	1 1
1-00-00)	6-00)	1-00-00

One H2 5A

One H2 5A

Special 2-03-00 4-06-00 2-03-00 2-03-00

Special

Scale = 1:34.2

Plate Offsets (X, Y): [2:2-00,0-03], [6:2-05,0-03]

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.12	Vert(LL)	0.00	8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(CT)	0.00	8	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.07	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 25 lb	FT = 20%

LUMBER

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
SLIDER	Left 2x4 SP No.3 1-06-00, Right 2x4 SP No.3 1-06-00

REACTIONS (lb/size) 2=333/3-00, (min. 1-08), 6=333/3-00, (min. 1-08)

Max Horiz 2=-49 (LC 10)

Max Uplift 2=-86 (LC 12), 6=-86 (LC 13)

Max Grav 2=411 (LC 19), 6=411 (LC 20)

- FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.
- TOP CHORD

NOTES

3-4=-272/100, 4-5=-272/100 1) Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left 2) and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 7) any other members.

One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not 8) consider lateral forces

"NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines. 9)

Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 85 lb down and 36 lb up at 2-0-0, and 85 lb down and 36 lb up at 2-5-4 on 10) bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 1) Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-7=-60, 9-13=-20

Concentrated Loads (lb)

Vert: 8=-171, 4=-14

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing MiTek recommends that Stabilizers and required cross bracing be

installed during truss erection, in accordance with Stabilizer Installation guide.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	PB04	Piggyback	3	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:07 Page: 1 ID:yNH?IVtoZNdyUdDKoKyXXUzXg0Z-1 ZFzr2KQL4O9N4ckMUVE 5ip5z2G QNzlq4UtzX25E

3

B1

2x4 =

5

Scale = 1:23

Plate Offsets (X, Y): [3:2-08,Edge]

			-									
Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.05	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.05	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	n/a	-	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 12 lb	FT = 20%

LUMBER

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS All bearings 2-11-12.

(lb) - Max Horiz 2=31 (LC 13), 6=31 (LC 13)

Max Uplift All uplift 100 (lb) or less at joint(s) 2, 4, 6, 10

Max Grav All reactions 250 (lb) or less at joint(s) 2, 4, 6, 10

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FORCES NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

7) Gable requires continuous bottom chord bearing.

8) Gable studs spaced at 4-0-0 oc.

9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 4. This connection is for uplift only and does not consider lateral forces.

12) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-6-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	PB04A	Piggyback	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:07 Page: 1 ID:uJU9VeMFHdIVztVrzrCdCuzXfUN-1 ZFzr2KQL4O9N4ckMUVE 5ga5yGG QNzlq4UtzX25E

. .

3x5 =

16

3x5 =

Structural wood sheathing directly applied or 4-0-6 oc purlins,

Rigid ceiling directly applied or 6-0-0 oc bracing.

except

2-0-0 oc purlins: 3-4.

Scale = 1:25.9

Plate Offsets (X, Y): [3:2-08,1-13], [4:2-08,1-13]

Loading	(psf)	Spacing	1-11-04	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 12 lb	FT = 20%

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2

REACTIONS All bearings 4-06-00.

(lb) - Max Horiz 1=-17 (LC 12)

Max Uplift All uplift 100 (lb) or less at joint(s) 1, 2, 6, 7

Max Grav All reactions 250 (lb) or less at joint(s) 1, 2, 0, 7 Max Grav All reactions 250 (lb) or less at joint(s) 1, 5, 6, 13 except 2=281

(LC 21), 7=281 (LC 21)

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FORCES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C

Exterior(2E) 0-3-2 to 1-4-0, Exterior(2R) 1-4-0 to 3-2-0, Exterior(2E) 3-2-0 to 4-2-14 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

5) Provide adequate drainage to prevent water ponding.

6) Gable requires continuous bottom chord bearing.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 6.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.

11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type	Qty	Ply	5076 Old 421-Prime Estate RenoRoof-24222 Adrian
25030187-01	VL01	Valley	1	1	Job Reference (optional)

Run: 8.73 S Jul 11 2024 Print: 8.730 S Jul 11 2024 MiTek Industries, Inc. Wed Mar 26 15:02:08 Page: 1 ID:Naw0N1F1ftvx36p5KuO9YUzX4Vv-VA7dAA3yBfCFnXfoH30knBerXVGe?RgWBPZd0KzX25D

2-03-00

2x4 II

Scale = 1:20.8

Loading	(psf)	Spacing	2-00-00	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 13 lb	FT = 20%

2x4 🖌

		8.4	D	-	•
-	u	IVI	р	-	~
_			_	_	••

LUMBER		BRACING	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 3-4-8 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS (lb/size) 1=129/3-04-08, (min. 1-08), 3=129/3-04-08, (min. 1-08) Max Horiz 1=69 (LC 11) Max Uplift 1=-9 (LC 14), 3=-32 (LC 14)		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Max Grav 1=183 (LC 20), 3=183 (LC 20)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

Gable requires continuous bottom chord bearing. 4)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 6) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 1 and 32 lb uplift at joint 3. 7)

8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.

Standard LOAD CASE(S)

 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 53 lb uplift at joint 3 and 13 lb uplift at joint 1.

8) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.

Max Horiz 1=164 (LC 11)

Max Uplift 1=-4 (LC 10), 4=-33 (LC 11), 5=-115 (LC 14)

Max Grav 1=121 (LC 25), 4=188 (LC 20), 5=492 (LC 20)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. 2-5=-400/220

WEBS

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; 2) Ct=1.10

Unbalanced snow loads have been considered for this design. 3)

Gable requires continuous bottom chord bearing. 4)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 6) any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 4, 4 lb uplift at joint 1 and 115 lb uplift at joint 5.

- BOT CHORD
- 1-5=-72/302 2-5=-427/202 WEBS

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-11-1, Exterior(2R) 4-11-1 to 9-2-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; 2) Ct=1.10

3) Unbalanced snow loads have been considered for this design.

Gable requires continuous bottom chord bearing. 4)

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5)

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 4 and 130 lb uplift at joint 5.