

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Lamco Custom Builders LLC

Model: Tenley A 3CG

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

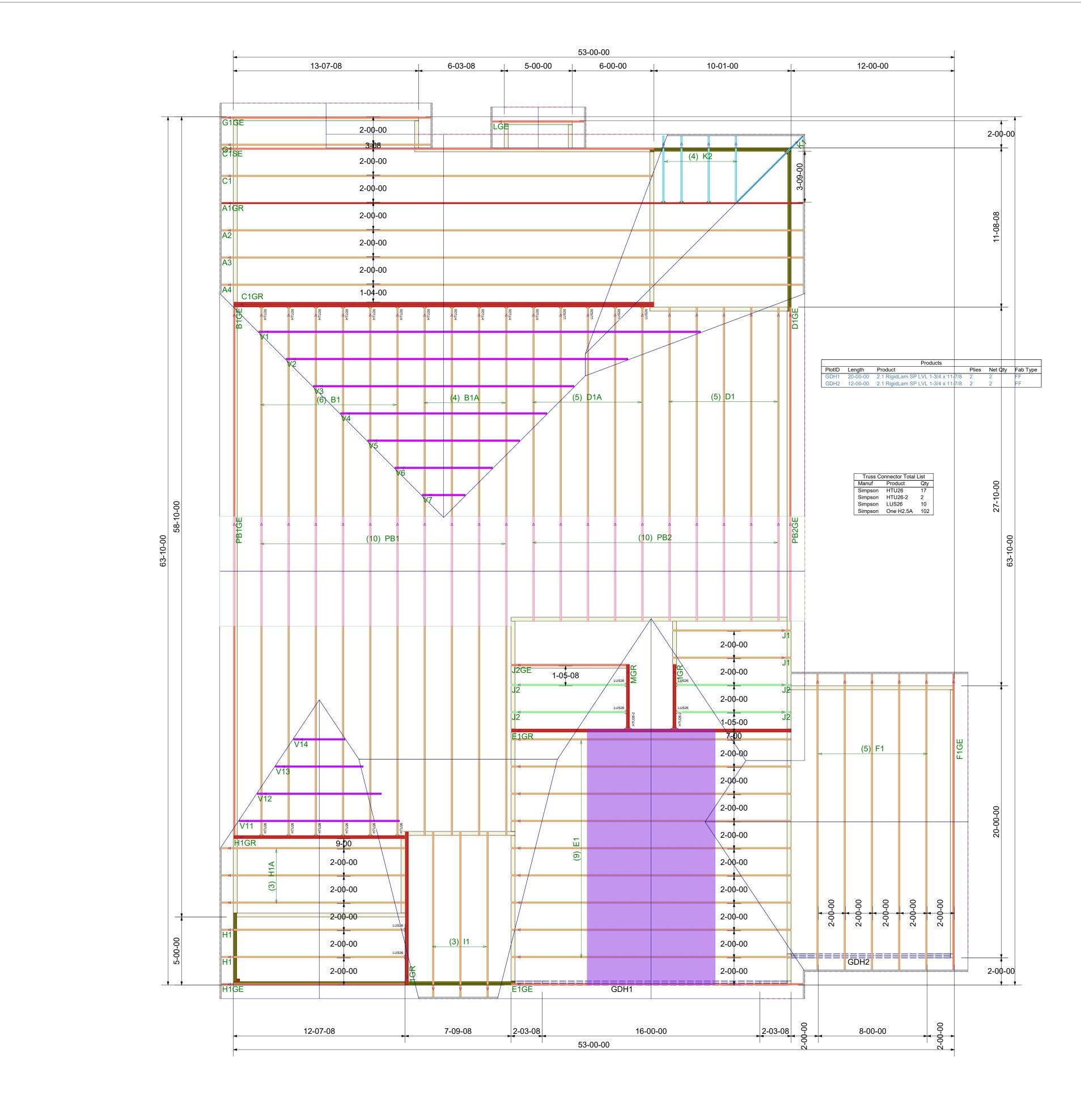
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

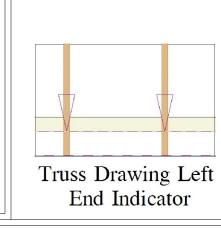
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

| ≻

Ē

UNL ESS

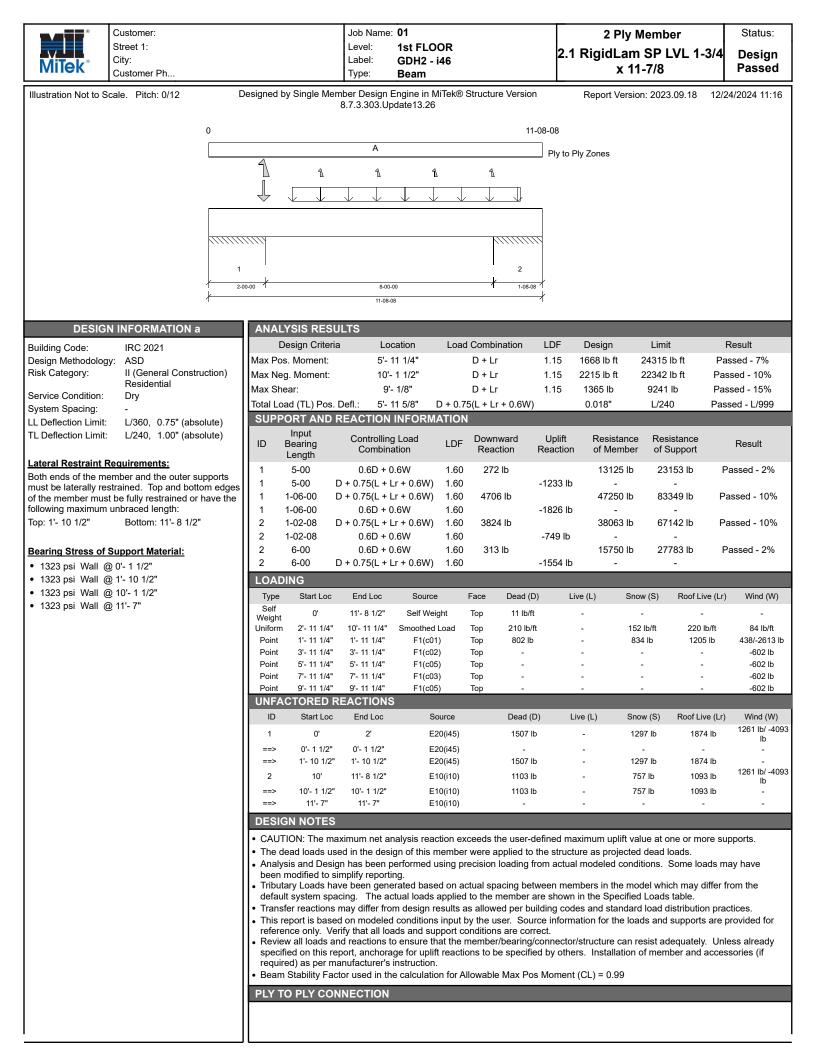
SHOULD NOT BE INST

** DAMAGED COMPONENTS

U Z

WHILE

TO PLANS

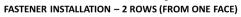

REFER

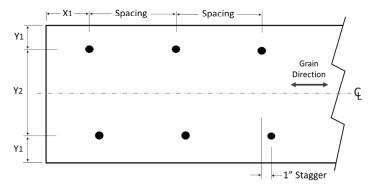
MUST

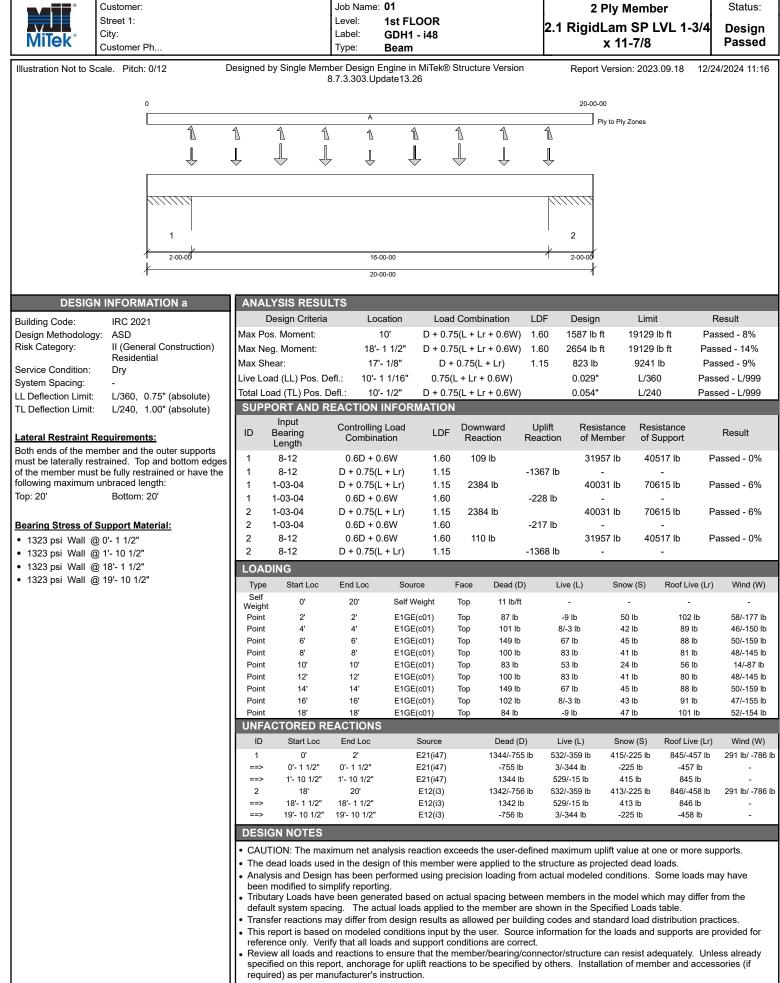
IER

*

Image: Control of the product of th	<u>.</u>	Revi 00/00/00	sions Name
Procession of the second and the sec	racto		
Procession of the second and the sec	cont		
Procession of the second and the sec	ud or		
F PLACEMENT PLAN	t connectors are the responsibility of the bldg designer	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor	Madison, WI 53179
	AS: FOUT-INCH-SIXTEENTH. ANSI/TPI 1, al		Lunde
Scale: NTS Date: 12/24/2024 Designer: Mike Finch Project Number: 24110166-01 Sheet Number: 1/1			
Date: 12/24/2024 Designer: Mike Finch Project Number: 24110166-01 Sheet Number: 1/1		Lamco Custom Builders LLC Tenley A 3CG-Roof-Tenley A	3CG ROOF PLACEMENT PLAN
Designer: Mike Finch Project Number: 24110166-01 Sheet Number: 1/1		Scale:	ROO
Project Number: 24110166-01 Sheet Number: 1/1		Scale: N Date:	7S OO2
Sheet Number:		Scale: N Date: 12/24 Des	77S /2024 signer:
· · · •		Scale: N Date: 12/24 Des Mike Projec	75 /2024 signer: Finch st Number:


Customer: Street 1: City: Customer Ph..

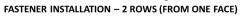

Job Name: 01 Level: 1st FLOOR Label: GDH2 - i46 Type: Beam



PLY TO PLY CONNECTION

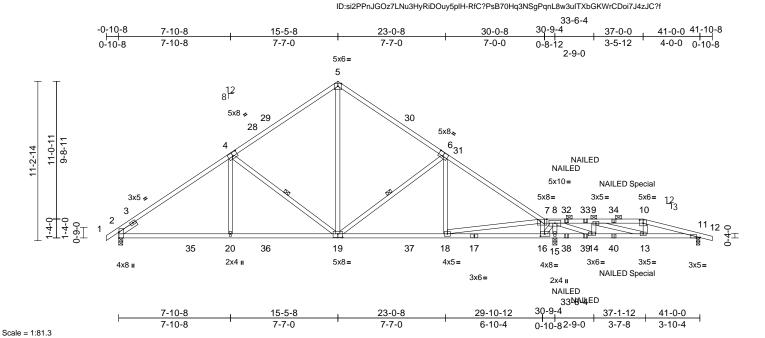
 Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 24. Row = 2, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face. X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.56


Customer: Street 1: City: Customer Ph..

Job Name: 01 Level: 1st FLOOR Label: GDH1 - i48 Type: Beam

PLY TO PLY CONNECTION


 Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 42. Row = 2, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face. X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

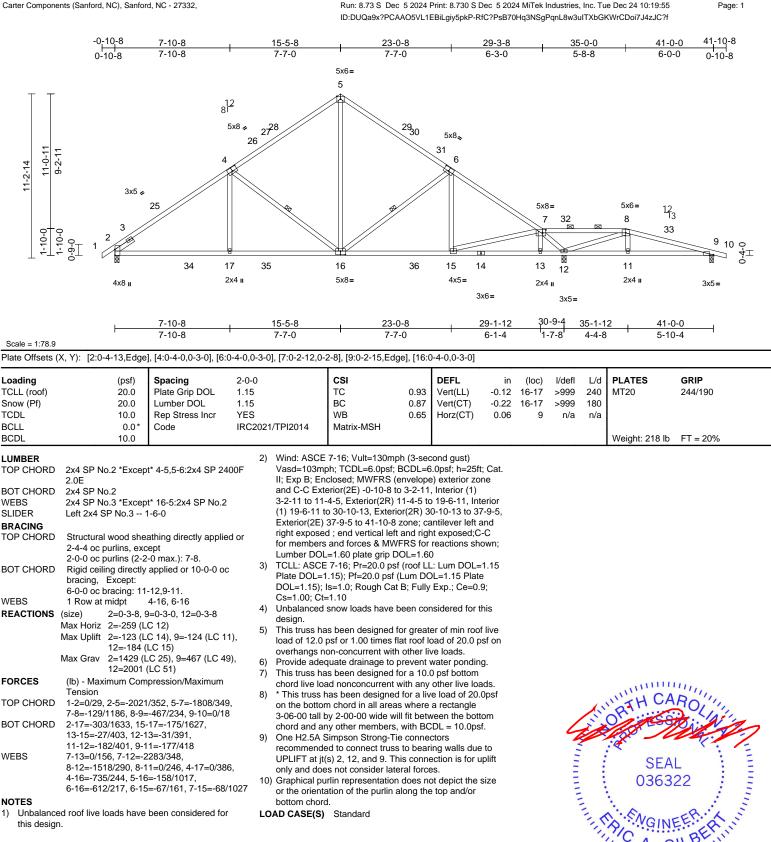
Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	A1GR	Roof Special Girder	1	1	Job Reference (optional)	170398851

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:54

Plate Offsets (X, Y): [2:0-4-13,Edge], [4:0-4-0,0-3-0], [6:0-4-0,0-3-4], [7:0-5-8,0-1-12], [10:0-3-0,0-2-12], [11:0-2-15,Edge], [16:0-3-8,0-2-0], [19:0-4-0,0-3-0]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.97	Vert(LL)	-0.13	19-20	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.97	Vert(CT)	-0.23	19-20	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.81	Horz(CT)	0.05	11	n/a	n/a		

TCDL	10.0	Rep Stress Incr N	NO		WB	0.81	Horz(CT)	0.05	11	n/a n/a	1		
BCLL	0.0*	Code I	RC2021/	TPI2014	Matrix-MSH								
BCDL	10.0						-				Weight: 221 lb	FT = 20%	
	2.0E, 6-7:2x4 SP No. 2x4 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 - 7 Structural wood she 2-9-7 oc purlins, exc 2-0-0 oc purlins (4-1 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-257 (L Max Uplift 2=-126 (L 15=-177 (t* 19-5:2x4 SP No.2 -6-0 athing directly applied o ept 1-7 max.): 7-10. applied or 5-9-4 oc 4-19, 6-19 1=0-3-0, 15=0-3-8 C 10) C 62), 11=-107 (LC 9), LC 13) .C 26), 11=594 (LC 45).	F 2) or 3) 4) 5) , 6) , 7)	this design. Wind: ASCE Vasd=103mp II; Exp B; Enc cantilever leff right exposed TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced s design. This truss ha load of 12.0 p overhangs no Provide adeq This truss ha	snow loads have s been designed osf or 1.00 times to ph-concurrent with uate drainage to s been designed	bh (3-sec BCDL=6 envelope d; end v. 60 plate f (roof LL (Lum DC c B; Fully been cor for great lat roof la o other lin prevent v for a 10.0	cond gust) .0psf; h=25ft;) exterior zor ertical left an grip DOL=1. .: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 usidered for th er of min roof pad of 20.0 ps ve loads. water ponding p sf bottom	(Cat. ne; d 160 1 1.15 L ; 1 nis live sf on g.	provi lb do dowr of su other (3) In the of the COAD C. () Dea Incr Uni V 2 Cor	ided sufficier wn and 86 ll n at 36-11-4 ich connections. e LOAD CAS e truss are n ASE(S) St form Loads /ert: 1-5=-60 21-25=-20 nocentrated L /ert: 10=-118	balanced): Lumbe (lb/ft)), 5-7=-60, 7-10=-6	entrated load(top chord, and The design/s responsibility ds applied to t or back (B). r Increase=1.1 60, 10-12=-60 32=-23 (B), 33	s) 184 d 66 lb selection of the face 15, Plate , 3=-23
FORCES TOP CHORD	(lb) - Maximum Com Tension	pression/Maximum /213, 5-7=-1747/220,	8)	* This truss h on the botton 3-06-00 tall b	Id nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members	d for a liv s where ill fit betv	e load of 20.0 a rectangle veen the botto)psf om			TH CA	RO	
BOT CHORD	9-10=-1204/201, 10- 11-12=0/18 2-20=-305/1657, 18- 16-18=-144/241, 15- 14-15=-909/104, 13- 11-13=-147/1201	20=-180/1651, 16=-909/104,	9) 10)	One H2.5A S recommende UPLIFT at jt(s only and doe Graphical put	impson Strong-T d to connect trus: s) 2, 15, and 11. s not consider lat rlin representation tion of the purlin	e conne s to bear This conr eral force n does no	ctors ing walls due nection is for u es. ot depict the s	to uplift			SEA	L	A. C. A. C. C. A. C.
WEBS	7-16=-1453/247, 10- 8-15=-1985/135, 8-1 8-14=-134/1439, 9-1 9-13=-61/834, 4-20=	6=-199/2064,	11)	bottom chord "NAILED" inc		48"x3") d	or 3-12d			111000 Martin	0363	22 EERER	annun an
NOTES											A. C	AILD	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

December 27,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	A2	Roof Special	1	1	Job Reference (optional)	170398852

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue Dec. 24 10:19:55

NOTES

1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

bottom chord.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

G (1111111) December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	A3	Roof Special	1	1	Job Reference (optional)	170398853

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:56 ID:2juYhEupmvVuzt?Gak1igJy5pjF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	0.40.0				12.2,011		.9-)		, rog. q					44 40 9
	-0-10-8 	7-10-8 7-10-8		<u>15-5-8</u> 7-7-0		<u>23-0-8</u> 7-7-0		<u>28-6-8</u> 5-6-0		<u>33-0-0</u> 4-5-8		<u>41-0</u> 8-0		41-10-8 0-10-8
					5x6= 5									
11-2-14 2-4-0 2-4-0 8-8-11	3x5 ≠	25	4	*		2930	32 6		5x8= 33		8	3	3 1435	9 10 -+-0
	4x6 u	36	17 2x4 II	37	16 5x8=	38	15 3x5=	14	13 2x4 I I	12 3x5=	1 2)	1 ×4 II		3x6=
								3x6=						-
	├ ───	7-10-8 7-10-8		<u>15-5-8</u> 7-7-0		<u>23-0-8</u> 7-7-0		<u>28-4-12</u> 5-4-4		9-4 <u>33-</u> 4-8 2-	1-12 4-8	<u>41-(</u> 7-1(—
Scale = 1:77 Plate Offsets ((X, Y): [4:0-4-0,0-3-0]], [7:0-2-12,0-2	-8], [9:0-2-15,	Edge], [16:0-4-0,	0-3-0]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip I Lumber DO Rep Stress Code	2-0-(DOL 1.15 L 1.15 Incr YES	2021/TPI2014	CSI TC BC WB Matrix-M		DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-24 11-24 12	l/defl >636 >381 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 217 I	GRIP 244/1 b FT = 2	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2.0E, 7-8,1-4:2x4 S 2x4 SP No.2 2x4 SP No.3 *Exce Left 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (10 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 1 2-2-0 oc bracing: 9- 1 Row at midpt (size) 2=0-3-8, Max Horiz 2=-260 (I) Max Uplift 2=-123 (I) 12=-185 Max Grav 2=1410 (12=-185 Max Grav 2=1410 (12=-195 (lb) - Maximum Cor Tension 1-2=0/29, 2-5=-198 6-7=-1697/304, 7-8 9-10=0/18	P No.2 pt* 16-5:2x4 S 1-6-0 eathing directly)-0-0 max.): 7-i y applied or 10 1-12 -11. 4-16, 6-16 9=0-3-0, 12=0 LC 12) LC 12) LC 14), 9=-134 (LC 25), 9=460 6 (LC 51) mpression/Max 5-17=-175/160 13=-45/475, 1=-367/248 -2316/328, -11=0/385, 4-1	P No.2 / applied, 3. -0-0 oc -3-8 4 (LC 11), 4 (LC 11), 0 (LC 49), cimum 373/347, 9=-275/452, 3,	 Vasd=103rr II; Exp B; En; and C-C Ex 3-2-11 to 11 (1) 19-6-11 Interior (1) 3 41-10-8 zor vertical left forces & MV DOL=1.60 p 3) TCLL: ASCC Plate DOL= DOL=1.15; Cs=1.00; Cf 4) Unbalancec design. 5) This truss h load of 12.0 overhangs r 6) Provide agin. 7) This truss h chord live lc 8) * This truss on the botto 3-06-00 tall chord and a 9) One H2.5A recommend UPLIFT at ji only and do 10) Graphical p 	aph; TCDL= nclosed; MV terior(2E) -(-4-5, Exteri to 28-10-13 37-1-3 to 37 te; cantileve and right ex VFRS for re plate grip DC E 7-16; Pr=: 1s=1.0; Roi t=1.10 I snow load: as been de: psf or 1.00 non-concurr equate drain as been de: so been de: simpson St led to conner ((s) 2, 12, ai	20.0 psf (roof LL 0.0 psf (Lum DC ugh Cat B; Fully s have been cor signed for great times flat roof la ent with other li lage to prevent signed for a 10. current with any esigned for a 10. current with any esigned for a liv all areas where wide will fit betw embers, with BC trong-Tie conne- ect truss to bear nd 9. This conne- ider lateral force	.0psf; h=25 e) exterior z Interior (1) 19-6-11, I 3-10-13 to 2) 37-9-5 to xposed ; e) nembers an Lumber \therefore Lum DOL DL=1.15 Pla Exp.; Ce=4 explicit cells are of min ro- pad of 20.0 ve loads. water pond o psf bottor other live live live e load of 22.0 ve loads. water pond 0 psf bottor other live live e load of 22.0 ve loads. water pond 0 psf bottor other live live E Lum DOL = 1.00 pctors ng walls di ection is for is.	<pre>cone) nterior 37-1-3, ond affiliate affiliate</pre>				ORTH C ORTES SE 036		
NOTES 1) Unbalance this design	6-16=-543/216, 6-1 ed roof live loads have n.			bottom chor LOAD CASE(S)	d.					ł		SE 036 NGII Decemb	VEER GILB er 27,2	024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

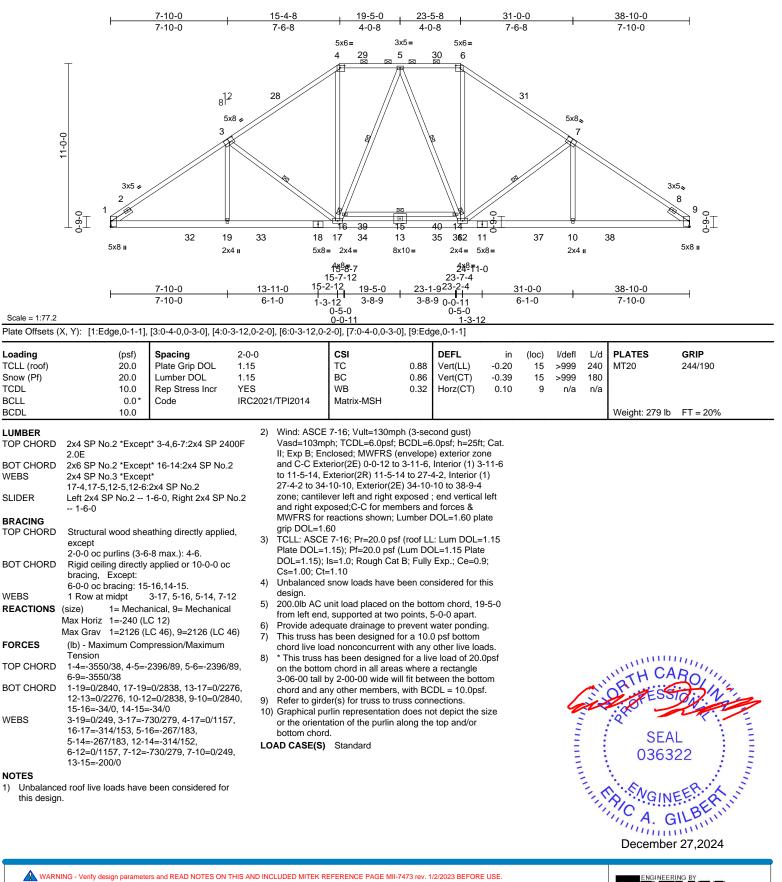
ENGINEERING BY TREENCO A Mi Tek Atfiliate 818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	A4	Roof Special	1	1	Job Reference (optional)	170398854

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:56 ID:PUHjSOZxa6YyhTH0sV1qx7y5piN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0.40	0				12.11 01.13	30224019111105	idiri Johni i								44 40 0
-0-10 	-8 -8	7-10-8 7-10-8		<u>15-5-8</u> 7-7-0		<u>23-0-8</u> 7-7-0		<u>27-9-8</u> 4-9-0	31-0		<u>35-5</u> 4-5-			41-0-0 5-6-3	41-10-8 0-10-8
					5x6=										
т т					5 ∕₫										
11-2-14 + 2-10-0 -11-0-11 0-9-0 0 1 0 1	^{3x5} = 25 3	36	26 4 17	27 ⁸	16	29391 5 5 38	15	14	5x8= 7 13	5x8: 8 8 12	-		$\frac{12}{13}$ $2x4 =$ $33 9$	34	3x5= 5 10 11 9 4 0
2	4x6 II		2x4 II		5x8=		3x5=	3x6=	4x6=	3x5	=				3x5=
I		7-10-8 7-10-8		<u>15-5-8</u> 7-7-0		<u>23-0-8</u> 7-7-0	:	3x6= 27-7-12 4-7-4	<u>30-9</u> 3-1-	30-10- -4 8 0-1-0			<u>41-0-0</u> 0-1-12		
Scale = 1:77 Plate Offsets (X, Y): [4:0-4	4-0.0-3-0]. [7:0-5-4.0-1-12].	[8:0-6-0.0-2	2-8]. [10:0-0-3.E	dae]. [16:0-	4-0.0-3-0]									
			-	-1, [1	-, 0]	DECI		(10.0)	l/defl		PLAT		GRIP	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 YES	021/TPI2014	CSI TC BC WB Matrix-M	0.96 0.84 0.85 SH	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.34) 0.05	(loc) 12-24 12-24 12	l/defl >739 >356 n/a	L/d 240 180 n/a	MT20		244/1	90
2.0E, 5-7:2 BOT CHORD 2x4 SP No SLIDER Left 2x4 SP BRACING TOP CHORD Structural except 2-0-0 oc pi BOT CHORD Rigid ceilin bracing. WEBS 1 Row at n REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxin Tension TOP CHORD 1-2=0/29, 1 6-7=-1570, 8-9=-156/1 BOT CHORD 2-17=-303, 13-15=-22, 10-12=-352 WEBS 7-13=-1400 8-12=-1480 8-12=-1480	2x4 SP No. 2 2x4 SP No. 2 3.3 *Except* P No.3 1- wood shear urlins (6-0-(ng directly a nidpt 4 2=0-3-8, 1(2=-262 (LC 2=-122 (LC 2=-122 (LC 12=-204 (L 2=-262 (LC 12=-204 (L 2=-1400 (LC 12=-204 (L 2=-1400 (LC 12=-204 (L 2=-1962/, 12=-204 (L 2=-1962, 12=-1 12=-204 (L 2=-1962, 12=-1 12=-204 (L 2=-1962, 12=-1 12=-204 (L 2=-1962, 12=-1 12=-204 (L 2=-204 (16-5:2x4 SP N 6-0 thing directly ap 0 max.): 7-8. applied or 4-3-4. -16, 6-16 >>-0-3-0, 12=0-3. :12) :14), 10=-119 (I C 15) :25), 10=391 (L C 51) :25), 10=391 (L C 51) :25), 10=391 (L :26), 10=391 (L :27, 124, 54, 10=14 :27, 124, 5-16=-14 :27, 124, 5-16=-14 <li:28, 123,="" 1262<="" li=""> :28, 123, 1262 :29, 12</li:28,>	200F o.2 plied, oc -8 _C 11), _C 49), um 3339, l=0/18 45/943, =-55/803 for	 II; Exp B; Er and C-C Ext 3-2-11 to 11 (1) 19-6-11 1 (1	ph; TCDL= iclosed; MV errior(2E) -C/ 4-5, Exteri- to 27-9-8, E 5-1-3 to 37 e; cantileve and right ex MFRS for re- late grip DC E 7-16; Pr=/ 1.15); Pf=20 Is=1.0; Ro- =1.10 snow loads as been des psf or 1.00 ion-concurr quate drain as been des psf or 1.00 ion-concurr quate drain as been des ismpson St ed to conner (s) 2, 12, and is not cons (s) 2, 12, and is not cons ation of the d.	6.0psf; BCDL=6 VFRS (envelope VFRS (envelope 0-10-8 to 3-2-11 or(2R) 11-4-5 to 5-9-5, Exterior(2I) or left and right e posed;C-C for m actions shown; DL=1.60 20.0 psf (roof LL 0.0 psf (Lum DC ugh Cat B; Fully s have been cor signed for greate times flat roof le ent with other lin age to prevent to signed for a 10.0 current with any esigned for a liv all areas where wide will fit betw embers, with B2 rong-Tie conne- ect truss to bear nd 10. This com- ider lateral force entation does nd purlin along the	.0psf; h=2 .0psf; h=2 .) exterior : Interior (1 19-6-11, 19-6	zone) Interior -3, o end nd L=1.15 ate 0.9; or this pof live 0 psf on ding. m loads. 20.0psf e ottom psf. ue to or uplift ue size						AL 322 NEER GILB	ALIAN 024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

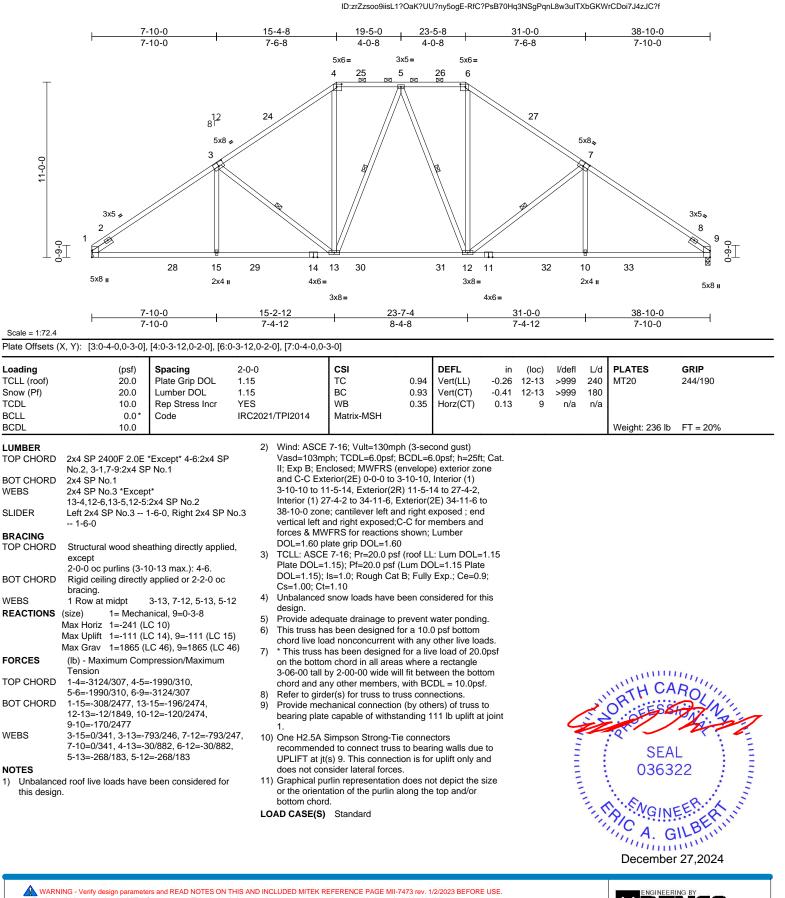
Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	B1	Piggyback Base	6	1	Job Reference (optional)	170398855

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:56 ID:7418BsUP8WGf4P8p?JY9d?y5ohw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

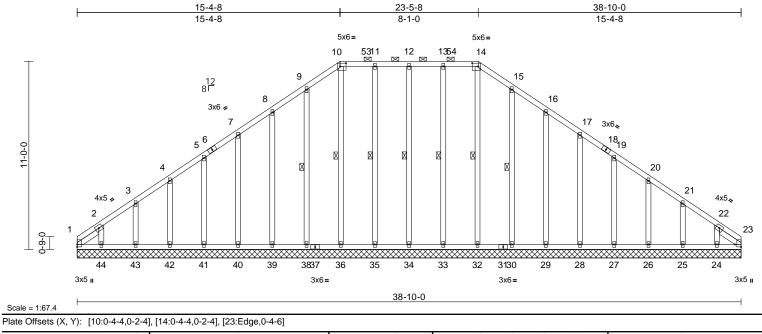

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	B1A	Piggyback Base	4	1	Job Reference (optional)	170398856

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:56

Page: 1

818 Soundside Road

Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	B1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170398857

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:57 ID:5aF0UVxp3ntGz3EC5hbcavy5oYI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	λ, Ι). [10.0	j, [14.0-4-4,0-2-4], [2	,0-4-0]															
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) Spacing 2-0 20.0 Plate Grip DOL 1.1 20.0 Lumber DOL 1.1 10.0 Rep Stress Incr YE 0.0* Code IRC 10.0 IRC 10.0				CSI TC BC WB Matr	ix-MSH	0.07 0.04 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - 23	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 315 lb	GRIP 244/190 FT = 20%			
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	ORD 2x4 SP No.2 ORD 2x4 SP No.2 S 2x4 SP No.3 *Except* 34-12,35-11,36-10,33-13,32-14:2x4 SP No.2 Left 2x4 SP No.2 1-7-1, Right 2x4 SP No.2 Left 2x4 SP No.2 1-7-1, Right 2x4 SP No.2 1-7-1 IG ORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins, (6-0-0 max.): 10-14. FORC ORD Rigid ceiling directly applied or 10-0-0 oc bracing. FORC 1 Row at midpt 12-34, 11-35, 10-36, 9-38, 13-33, 14-32, 15-30 TOP C ONS (size) 1=38-10-0, 24=38-10-0, 25=38-10-0, TOP					(lb) - M Tensic 1-2=-8	24=17 26=16 28=22 30=23 33=23 35=23 38=23 40=22 42=16 44=19 laximum C n 2/69, 2-3=	6 (LC 25) 8 (LC 25) 7 (LC 40) 4 (LC 40) 9 (LC 39) 9 (LC 39) 9 (LC 39) 4 (LC 40) 4 (LC 40) 8 (LC 24) 7 (LC 24) compressi -203/186,	on/Maximum 3-4=-170/16	52), 52), 52), 55), 39), 55), 40), 50), 50), 50),	 WEBS 12-34=-182/51, 11-35=-199/52, 10-36=-138/35, 9-38=-198/82, 8-39=-193/84 7-40=-193/82, 5-41=-157/82, 4-42=-142/82, 3-43=-147/82, 2-44=-148/132, 13-33=-199/54, 14-32=-123/9, 15-30=-198/80, 16-29=-193/85, 17-28=-193/81, 19-27=-157/82, 20-26=-142/82, 21-25=-147/83, 22-24=-141/116 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-10-10, Exterior (2N) 27-5-0 to 34-11-6, Corner(3E) 34-11-6 to 38-10-0 							
	Max Horiz	$\begin{array}{l} 1\!=\!38\!-\!10\!-\!0\\ 24\!=\!38\!-\!10\!-\!0\\ 28\!=\!38\!-\!10\!-\!0\\ 30\!=\!38\!-\!10\!-\!35\!=\!38\!-\!10\!-\!35\!=\!38\!-\!10\!-\!35\!=\!38\!-\!10\!-\!35\!=\!38\!-\!10\!-\!38\!=\!38\!-\!10\!-\!44\!=\!38\!-\!59\!-\!10\!-\!24\!=\!57\!-\!10\!-\!36\!=\!-5\!-\!10\!-\!24\!=\!-5\!-5\!-\!10\!-\!24\!=\!-5\!-6\!-\!0\!-\!10\!-\!44\!=\!-5\!-8\!-\!10\!-\!10\!-\!44\!=\!-5\!-8\!-\!10\!-\!10\!-\!44\!=\!-5\!-8\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!10\!-\!10\!-\!24\!=\!-5\!-8\!-\!10\!-\!10\!-\!10\!-\!10\!-\!10\!-\!10\!-\!10\!-$	$\begin{array}{l} 0,23=\!38\!\cdot\!10\!\cdot\!0,\\ -0,25=\!38\!\cdot\!10\!\cdot\!0,\\ -0,27=\!38\!\cdot\!10\!\cdot\!0,\\ -0,29=\!38\!\cdot\!10\!\cdot\!0,\\ -0,32=\!38\!\cdot\!10\!\cdot\!0,\\ -0,34=\!38\!\cdot\!10\!\cdot\!0,\\ -0,36=\!38\!\cdot\!10\!\cdot\!0,\\ -0,39=\!38\!\cdot\!10\!\cdot\!0,\\ -0,41=\!38\!\cdot\!10\!\cdot\!0,\\ -0,43=\!38\!\cdot\!10\!\cdot\!0,\\ -0,43=\!38\!\cdot\!10\!\cdot\!0,\\ -0\end{array}$	3), 5), 5), 1), 1), 4), 4),	BOT CHORD	8-9=-1 10-11= 12-13= 14-15= 19-20= 22-23= 1-44=- 42-43= 40-41= 38-39= 35-36= 33-34= 30-32= 28-29= 26-27=	39/213, 9- -136/223, -136/223, -167/246, -114/135, -66/46, 20	10=-167/2 11-12=-1 13-14=-1 15-16=-1 17-19=-8 -21=-84/6 -44=-82/1 1-42=-82 6-38=-82 6-38=-82 6-38=-82 (4-35=-81, 2-33=-81, 9-30=-81, 7-28=-81, 5-26=-81,	36/223, 36/223, 39/192, 4/80, 52, 21-22=-13 165, /165, /165, /165, /165, /165, /165, /165, /165,		and 3-1 (2N zor and MV grip	d C-C Co 0-10 to 1) 27-5-C he; cantil d right ex VFRS fo b DOL=1	orner(3 11-5-0,) to 34- lever le kposed r reacti 1.60	E) 0-0-0 to 3-10- Corner(3R) 11-5	10, Exterior -0 to 27-5-(34-11-6 to sed ; end ve s and forces per DOL=1.	(2N) D, Exterior 38-10-0 ertical left s & 60 plate		

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	B1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170398857

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 23, 135 lb uplift at joint 1, 27 lb uplift at joint 34, 28 lb uplift at joint 35, 5 lb uplift at joint 36, 58 lb uplift at joint 38, 60 lb uplift at joint 39, 58 lb uplift at joint 40, 58 lb uplift at joint 41, 59 lb uplift at joint 42, 55 lb uplift at joint 43, 129 lb uplift at joint 44, 30 lb uplift at joint 33, 56 lb uplift at joint 30, 61 lb uplift at joint 29, 57 lb uplift at joint 28, 58 lb uplift at joint 27, 59 lb uplift at joint 26, 56 lb uplift at joint 27, 59 lb uplift at joint 26, 56 lb uplift at joint 23 and 135 lb uplift at joint 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:57 ID:5aF0UVxp3ntGz3EC5hbcavy5oYI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	C1	Common	1	1	Job Reference (optional)	170398858

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEBS

WEBS

FORCES

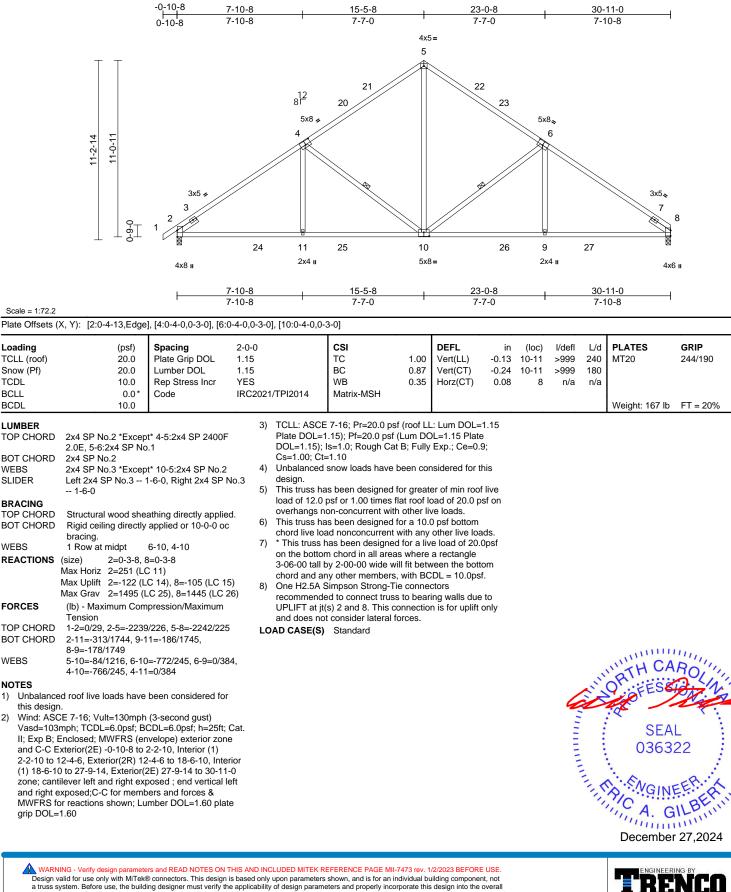
WEBS

NOTES

1)

2)

SLIDER


BRACING

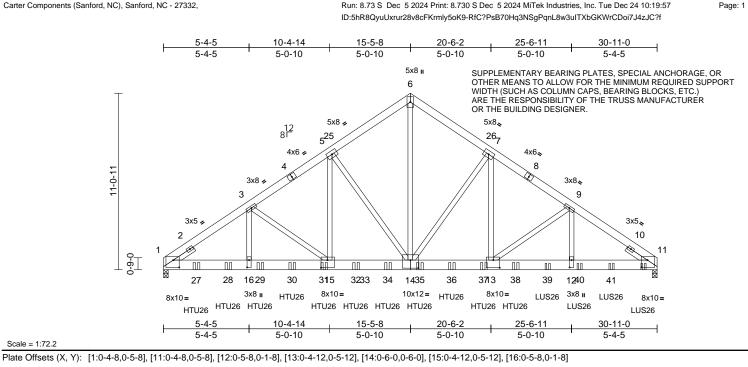
TCDL

BCLL

BCDL

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:57 ID:rMPGZjHyPrPPgq4xU4gHSzy5pmc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

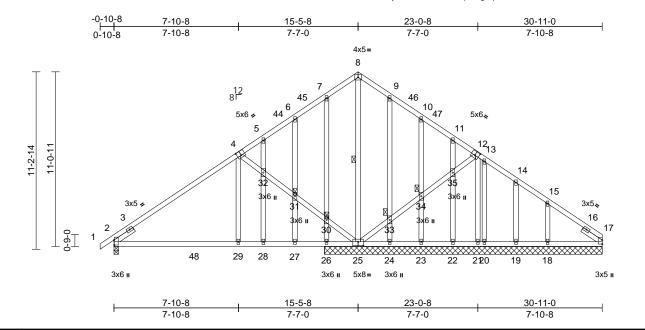

818 Soundside Road Edenton, NC 27932

VIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	C1GR	Common Girder	1	3	Job Reference (optional)	170398859

Scale = 1:72.2

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:57



				1.1			,	1/1	,.					
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.58	Vert(LL)		15-16	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.52	Vert(CT)	-0.38		>957	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.80	Horz(CT)	0.10	11	n/a	n/a			
BCLL	0.0*	Code		1/TPI2014	Matrix-MSH		- (-)							
BCDL	10.0											Weight: 820 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x8 SP 2400F 2.0E 2x4 SP No.3 *Excep 7-13,5-15:2x4 SP N Left 2x4 SP No.2 1-6-0 Structural wood she 5-2-13 oc purlins. Rigid ceiling directly bracing.	o.2 1-6-0, Right 2x4 SP athing directly applie applied or 10-0-0 or (req. 0-4-3), 11=0-3- 9) C 36)	, No.2 3, 4; ed or c 8, 5; LC	except if not CASE(S) see provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En cantilever lef right expose Plate DOL=1 DOL=1.15); Cs=1.00; Ct:		back (B) ponnection ds noted ve been of BCDL=6 (envelope ed ; end v 1.60 plate sf (roof LL (Lum DC t B; Fully	face in the LC s have been as (F) or (B), considered for cond gust) .0psf; h=25ft; e) exterior zom vertical left an grip DOL=1.0 L=1.15 Plate Exp.; Ce=0.9	r Cat. ne; d 60 I.15 ;	SD at 2 30- cho 13) Fill LOAD 1) Do In Ut	9212 Tri 2-0-0 oc 0-12 to o ord. all nail h CASE(S ead + Sr crease= niform Li Vert: 1- oncentra Vert: 23 29=-18: (F), 34=	uss, Sii max. s connec noles w) Sta now (ba 1.15 oads (ll 6=-60, ated Lo 3=-986 37 (F), =-1665 65 (F),	ngle Ply Girder) c tarting at 24-0-12 t truss(es) to fror here hanger is in ndard alanced): Lumber b/ft) 6-11=-60, 17-21: ads (Ib) (F), 27=-1837 (F), 31 (F), 35=-1655 (F	contact with lum Increase=1.15, I 20), 28=-1837 (F), 1837 (F), 32=-	ced d to bber. Plate 1837
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6)	design.	snow loads have			lis						
TOP CHORD			4/0, [°]	chord live loa	as been designed ad nonconcurrent has been designe	with any	other live load							
BOT CHORD		6=0/18333,	0,	on the bottor 3-06-00 tall b	n chord in all area by 2-00-00 wide w by other members	as where /ill fit betv	a rectangle veen the botto	, m			5	WHTH CA	ROLIN	
WEBS	6-14=0/14501, 7-14 7-13=-482/5197, 9-1 9-12=-240/2117, 5-1 3-15=-3901/0, 3-16=	13=-1842/394, 14=-6780/0, 5-15=0/7		WARNING: greater than) Use Simpsol	Required bearing input bearing size n Strong-Tie HTU	size at jo e. 26 (20-10	int(s) 1, 11 0d Girder,			4		AND DE		2
NOTES 1) 3-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 3 rows staggered at 0-5-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc.				 10) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 20-0-12 to connect truss(es) to front face of bottom chord. 11) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent at 22-0-12 from the left end to connect truss(es) to front face of bottom chord. December 27, 							EER. K	MULTURE .		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and proposed to component development description. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	C1SE	Common Structural Gable	1	1	Job Reference (optional)	170398860

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:57 ID:AUcDCzeZGBD42Mel_hFYdWy5o5_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-3-13,0-0-3], [4:0-3-0,0-3-4], [12:0-3-0,0-3-0], [25:0-4-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MSH	0.64 0.65 0.33	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc 29-38 29-38 29-38	8 >999	L/d 240 180 n/a	PLATES MT20 Weight: 252 lb	GRIP 244/190 ET = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Left 2x4 SP No.3 - 1 1-6-0 Structural wood shea 5-0-12 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 30, 31, 33, 34 (size) 2=0-3-8, 1 19=17-7-C 25=17-7-C 25=17-7-C Max Horiz 2=251 (LC Max Uplift 2=-126 (L 18=-118 (20=-10 (L 22=-38 (L 24=-47 (L Max Grav 2=812 (LC 18=336 (L 20=147 (L 22=173 (L	I-6-0, Right 2x4 SP N athing directly applie applied or 10-0-0 oc 8-25 7=17-7-0, 18=17-7-0, 2,0=17-7-0, 24=17- 0, 20=17-7-0, 24=17- 0, 26=17-7-0 2,11) C 14), 17=-9 (LC 14) LC 15), 19=-40 (LC 1 C 14), 21=-58 (LC 11 C 15), 23=-69 (LC 14) LC 15), 26=-75 (LC 14)	No.3 BO d or WE 0, 7-0, 7-0, 15), 10, NO 4) 1) 30, 2) 55, 22),	TES Unbalanced this design. Wind: ASC Vasd=103r II; Exp B; E	1-2=0/29, 2-5=-95 6-7=-245/199, 7-8 9-10=-267/230, 10 11-13=-211/163, 1 14-15=-197/83, 16 2-29=-338/777, 25 27-28=-186/770, 2 24-26=-186/770, 2 22-23=-24/129, 21 20-21=-23/127, 17 8-19=-23/127, 17 8-25=-228/189, 25 33-34=-108/135, 3 12-35=-111/140, 1 4-32=-810/236, 31 30-31=-781/223, 2 4-29=0/384, 7-30= 6-31=-143/89, 27- 28-32=-56/0, 9-33 10-34=-187/93, 25 11-35=-122/55, 22 13-20=-95/29, 14- 15-18=-219/128 d roof live loads have E 7-16; Vult=130mp nph; TCDL=6.0psf; nclosed; MWFRS (terior(2E) -0-10-8 t	-293/24 -11-23 3-14-29 -17=-14 -29=-18 6-27=-1 3-24=-22 -22=-24 -22=-24 -22=-24 -22=-24 -33=-10 4-35=-11 -32=-72 5-30=-7 -266/76 31=-58/6 -214/73 -34=-18 -35=-12 19=-121, re been of bh (3-sec BCDL=6 envelope	6, 8-9=-287/2 3/194, 09/117, 2/42 5/770, 36/770, 1/129, 1/29, 1/29, 1/27, 1/27, 1/27, 1/26, 08/136, 07/61, 5/206, 56/219, 26-30=-319/ 0, 5-32=-68/7, 24-33=-214 7/94, 2/61, 7/2, considered fo wond gust) .0psf; h=25ft; e) exterior zor	84, 103, /71, r Cat.	 oli se oli se	nly. For s ee Standa r consult c CLL: ASC (ALL: ASC (ALL	tuds ev rd Indu jualifieu E 7-16 E 7-16 1.15); ; Is=1.0 d snow has bee p psf or non-coo hom coo hom coo hom coo hom coo hom coo hom coo hom coo hom coo hom coo	r wind loads in th cposed to wind (n ustry Gable End E d building designed ; Pr=20.0 psf (Lur D; Rough Cat B; F loads have been en designed for gg 1.00 times flat rc incurrent with oth MT20 unless othe ed at 2-0-0 oc. en designed for a nconcurrent with been designed for a inconcurrent with een designed for a inconcurrent with inconcurrent with een designed for a inconcurrent with een designed for a een designed for a inconcurrent with een designed for a inc	e plane of the truss ormal to the face), betails as applicable, er as per ANSI/TPI 1. of LL: Lum DOL=1.15 DOL=1.15 Plate fully Exp.; Ce=0.9; considered for this reater of min roof live of load of 20.0 psf on er live loads. erwise indicated. 10.0 psf bottom any other live loads. a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf.
FORCES	26=450 (L (Ib) - Maximum Com Tension	.C 21)	,,	(1) 18-6-10 zone; canti and right ex	2-4-6, Exterior(2R) to 27-9-14, Exterio lever left and right e cposed;C-C for mer r reactions shown; .60	r(2E) 27 exposed nbers an	9-14 to 30-1 end vertical d forces &	I-0 left			A A A A A A A A A A A A A A A A A A A		L 22 ILBERTITION 27,2024

Continued on page 2

Scale = 1:73

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

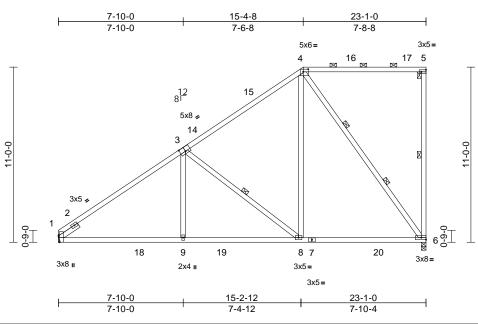
818 Soundside Road Edenton, NC 27932

December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	C1SE	Common Structural Gable	1	1	Job Reference (optional)	170398860
Carter Components (Sanford, NO	C), Sanford, NC - 27332,	Run: 8.73 S Dec 5 2	024 Print: 8.7	730 S Dec 5	2024 MiTek Industries, Inc. Tue Dec 24 10:19:57	Page: 2

ID:AUcDCzeZGBD42Mel_hFYdWy5o5_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	D1	Piggyback Base	5	1	Job Reference (optional)	170398861

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:58 ID:hWYJJvBEu8KdHCcltQ8cwxy5oku-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.4

Plate Offsets (X, Y): [1:0-4-13,Edge], [3:0-4-0,0-3-4], [4:0-3-12,0-2-0], [5:Edge,0-1-8]

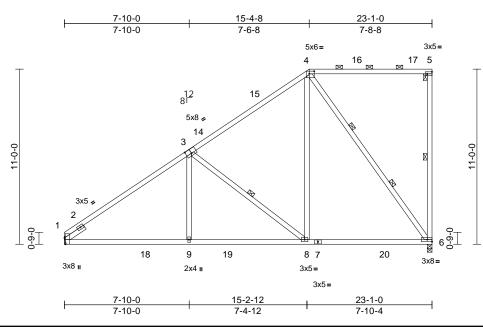
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.87 0.78 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.19 -0.29 0.04	(loc) 6-8 6-8 6	l/defl >999 >934 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 147 lb	GRIP 244/190 FT = 20%
2. BOT CHORD 2. WEBS 2. SLIDER Le BRACING TOP CHORD S TOP CHORD S BOT CHORD R WEBS 1 WEBS 1 WEBS 2 REACTIONS (siz REACTIONS (siz REACTIONS (siz NA BOT CHORD 1 BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- BOT CHORD 1- SA WEBS 3- WEBS 3- CHORD 1- BOT CHORD 1- BOT CHORD 1- SA WEBS 3- SA CON CHORD 1- BOT CHORD 1- BOT CHORD 1- SA WEBS 3- SA CON CHORD 1- BOT CHORD 1- SA SA SA SA SA SA SA SA SA SA SA SA SA	0E, 1-3:2x4 SP No. x4 SP No.2 x4 SP No.3 *Excep eft 2x4 SP No.3 - 1 tructural wood shea -2-0 oc purlins, exc -0-0 oc purlins (6-0 tigid ceiling directly racing. Row at midpt Rows at 1/3 pts ze) 1= Mecha ix Horiz 1=379 (LC ix Uplift 1=-79 (LC ix Uplift 1=-79 (LC ix Grav 1=1143 (L b) - Maximum Com ension -4=-1540/202, 4-5= -9=-360/1527, 8-9= -9=0/374, 3-8=-892 -6=-1214/128 oof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; Bd losed; MWFRS (en rior(2E) 0-0-0 to 3-0 or(2R) 12-4-8 to 18 derior(2E) 19-11-4 and right exposed	t* 5-6:2x4 SP No.2 -6-0 athing directly applied cept end verticals, and -0 max.): 4-5. applied or 10-0-0 oc 5-6, 3-8 4-6 nical, 6=0-3-8 C 13) 14), 6=-153 (LC 11) C 43), 6=-153 (LC 11) C 43), 6=-1104 (LC 34) pression/Maximum -140/188, 5-6=-341/1 -207/1523, 6-8=-153/ /248, 4-8=-61/882, been considered for (3-second gust) CDL=6.0psf; h=25ft; C velope) exterior zone 0-0, Interior (1) 3-0-0 i-4-8, Interior (1) 18-4	4) 5) or 6) 1 7) 8) 9) 3) 10 3) 10 3) 10 807 11 60 5at. 5at. 50 8	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Provide aded This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Refer to gird Provide mec bearing plate 1.) One H2.5A S recommende UPLIFT at jt(does not cor) Graphical pu	snow loads have b quate drainage to p is been designed for ad nonconcurrent w has been designed in chord in all areas by 2-00-00 wide will yo other members, er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie do to connect truss s) 6. This connecti sider lateral forces rlin representation at	Lum DC B; Fully een cor revent for a 10. vith any for a liv swhere I fit betw with BC iss conr (by oth unding 7 e conne to bear on is for does no	DL=1.15 Plate Exp.; Ce=0.9 isidered for the vater ponding 0 psf bottom other live load e load of 20.1 a rectangle veen the bott DL = 10.0psi lections. ers) of truss f 9 lb uplift at j ctors ing walls due to uplift only an ot depict the s	e 9; g. ads. 00psf om f. to joint to nd				SEA 0363	• -

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 12-4-8, Exterior(2R) 12-4-8 to 18-4-8, Interior (1) 18-4-8 to 19-11-4, Exterior(2E) 19-11-4 to 22-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

G

December 27,2024

mmm


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	D1A	Piggyback Base	5	1	Job Reference (optional)	170398862

Scale = 1:72.4

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:58 ID:hWYJJvBEu8KdHCcltQ8cwxy5oku-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

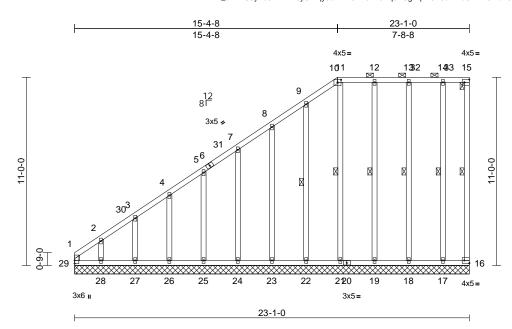
Plate Offsets (X, Y): [1:0-4-13,Edge], [3:0-4-0,0-3-4], [4:0-3-12,0-2-0], [5:Edge,0-1-8]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.87	Vert(LL)	-0.19	6-8	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.29	6-8	>934	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.78	Horz(CT)	0.04	6	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 147 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.1 *Excep 2.0E, 1-3:2x4 SP No		3	Plate DOL=	E 7-16; Pr=20.0 ps 1.15); Pf=20.0 psf Is=1.0; Rough Cat	(Lum DC	DL=1.15 Plate	е					
BOT CHORD).2		Cs=1.00; Ct		D, r any	Exp., 00-0.	0,					
WEBS	2x4 SP No.3 *Except	ot* 5-6·2x4 SP No 2	4	,	snow loads have I	been co	nsidered for t	his					
SLIDER	Left 2x4 SP No.3			design.									
BRACING			5) Provide ade	quate drainage to	prevent	water pondin	g.					
TOP CHORD	Structural wood she	athing directly applie	dor ⁶		as been designed f								
	2-2-0 oc purlins, ex	cept end verticals, ar	nd _		ad nonconcurrent								
	2-0-0 oc purlins (6-0				has been designed			Opst					
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		3-06-00 tall	m chord in all area by 2-00-00 wide wi	ill fit betv	veen the bott						
WEBS	1 Row at midpt	5-6, 3-8			ny other members,			if.					
WEBS	2 Rows at 1/3 pts	4-6	8		ler(s) for truss to tr chanical connectior			4.0					
REACTIONS	(size) 1= Mecha Max Horiz 1=379 (L0	anical, 6=0-3-8 C 13)	9		e capable of withst								
	Max Uplift 1=-79 (LC Max Grav 1=1143 (I				Simpson Strong-Ti								
FORCES	(lb) - Maximum Com		.0)	UPLIFT at jt	ed to connect truss (s) 6. This connect	ion is fo							
TOP CHORD	Tension 1-4=-1540/202, 4-5=	140/100 5 6 241/	100 4		nsider lateral force								
BOT CHORD	, -	=-140/188, 5-6=-341/ =-207/1523, 6-8=-153			urlin representation ation of the purlin a			size				minin	11111
WEBS	3-9=0/374, 3-8=-892		/00/	bottom chor		along in						WTH CA	Bally
WEBO	4-6=-1214/128	2/240, 4 0= 01/002,		OAD CASE(S)							- N	R	S. S. Later
NOTES			-		Standard						62	U. FESO	On in
	ed roof live loads have	been considered for								9	V	lt &	Sent 1
this design												·• / •	
2) Wind: AS	CE 7-16; Vult=130mph	(3-second gust)										SEA	
	8mph; TCDL=6.0psf; B												• -
	Enclosed; MWFRS (er									-		0363	~~ : :
	Exterior(2E) 0-0-0 to 3-										8	N	1 S - S
	12-4-8, Exterior(2R) 12-4-8 to 18-4-8, Interior (1) 18-4-8 to 19-11-4, Exterior(2E) 19-11-4 to 22-11-4 zone;										-	·	airs
	left and right exposed		I								15	S VGIN	EFICAN
	sed;C-C for members										11	10	RENT
farma and a			-									A G	ILBENN

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 12-4-8, Exterior(2R) 12-4-8 to 18-4-8, Interior (1) 18-4-8 to 19-11-4, Exterior(2E) 19-11-4 to 22-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone


GI

December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	D1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170398863

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:58 ID:_bxXDU3yE3314frNHJyGWqy5ol2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.4

Plate Offsets (X, Y): [10:0-2-8,0-1-13], [15:Edge,0-2-0], [16:Edge,0-2-0]

	, , .			. 0										
Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.87	Vert(LL)	n/a	(- n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.40	Vert(TL)	n/a		- n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.24	Horiz(TL)	0.01	1	6 n/a	n/a		
BCLL		0.0*	Code		21/TPI2014	Matrix-MR	0.21	110112(112)	0.01		0 11/a	n/a		
BCDL		10.0	Code	11(020	21/11/2014	Widdinx-Witx							Weight: 206 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3	2 3 *Excep 3 *Excep				1-29=-247/293, 1- 3-4=-285/377, 4-5 7-8=-215/279, 8-9 10-11=-136/216, 1 12-13=-136/216, 1 14-15=-136/216, 1	=-250/34 =-200/25 1-12=-1: 3-14=-1:	3, 5-7=-231/3 0, 9-10=-179 36/216, 36/216,	312, /236,	6) F 7) A 8) C	design. Provide ade All plates ai Gable requi	equate re 2x4 l ires col	drainage to prevo MT20 unless other ntinuous bottom of	a considered for this ent water ponding. erwise indicated. chord bearing. e face or securely
	21-11,19-12	2,10-13,1	7-14:2x4 SP No.2	E		28-29=-137/216, 2								.e. diagonal web).
BRACING TOP CHORD	6-0-0 oc pu	rlins, exe	athing directly applie cept end verticals, a -0 max.): 10-15.	ed or		26-27=-137/216, 2 24-25=-137/216, 2 22-23=-137/216, 2	25-26=-13 23-24=-13 21-22=-13	37/216, 37/216, 37/216,		10) (11) T c	Gable studs This truss h chord live lo	s space las bee bad nor	ed at 2-0-0 oc. en designed for a nconcurrent with	10.0 psf bottom any other live loads.
BOT CHORD			applied or 10-0-0 or	0		19-21=-137/216, 1 17-18=-137/216, 1							een designed for rd in all areas wh	a live load of 20.0psf here a rectangle
WEBS	1 Row at mi		15-16, 9-22, 11-21, 12-19, 13-18, 14-17			8-23=-189/85, 7-2 4-26=-145/84, 3-2	7=-136/8	81, 2-28=-199	/141,	c	chord and a	any oth	er members.	between the bottom
	11 22 21 22 Max Horiz 22 Max Uplift 10	9=23-1-0 3=23-1-0 6=23-1-0 9=23-1-0 9=383 (L 6=-19 (L)	.C 11) C 11), 17=-46 (LC 1	-1-0, -1-0, -1-0, 1 0), 2	NOTES () Unbalanced this design. () Wind: ASCE	9-22=-205/79, 11- 12-19=-194/55, 13 14-17=-266/132 roof live loads hav 7-16; Vult=130mg ph; TCDL=6.0psf;	-18=-19 ve been o oh (3-sec	1/65, considered fo cond gust)	r	้ ไ 2 1 2 1	bearing plat 29, 19 lb up uplift at join 26, 35 lb up uplift at join	te capa olift at jo t 24, 5 olift at jo t 22, 7	able of withstandi pint 16, 60 lb upli 7 lb uplift at joint 2 pint 27, 199 lb up 1 lb uplift at joint 2	r others) of truss to ng 178 lb uplift at joint ft at joint 23, 58 lb 25, 64 lb uplift at joint Jlift at joint 28, 55 lb 21, 36 lb uplift at joint uplift at joint 17.
FORCES	2 22 22 22 22 22 21 11 12 22 22 22 22 22	1=-71 (L) 3=-60 (L) 5=-57 (L) 7=-35 (L) 9=-178 (6=61 (LC 8=231 (L) 3=225 (L) 3=225 (L) 5=185 (L) 7=163 (L) 9=327 (L)	C 36), 17=204 (LC 3 C 36), 19=233 (LC C 36), 22=231 (LC C 37), 24=227 (LC C 43), 26=171 (LC C 37), 28=233 (LC	4), 4), 4), 14), 6), 36), 37), 37), 24),	 II; Exp B; Er and C-C Co 3-1-12 to 12 (2N) 18-4-8 zone; cantilk and right ex MWFRS for grip DOL=1 Truss desig only. For st see Standa or consult q TCL: ASCI Plate DOL= 	closed; MWFRS (rner(3E) 0-1-12 to 2-4-8, Corner(3R) 1 to 19-11-4, Corner ever left and right e posed;C-C for mer reactions shown; I 60 ned for wind loads uds exposed to wir d Industry Gable E ualified building de E 7-16; Pr=20.0 ps 1.s5); Pf=20.0 ps 1.s=1.0; Rough Cal	envelope 3-1-12, I 2-4-8 to (3E) 19- exposed hbers an Lumber I in the pla d (norm ind Deta signer as f (roof LL (Lum DC	e) exterior zor Exterior(2N) 18-4-8, Exter 11-4 to 22-11 ; end vertical d forces & DOL=1.60 pla ane of the tru al to the face ils as applical s per ANSI/TF c: Lum DOL=:	ior -4 left ss), ble, PI 1. 1.15			i	SEA O363	L

"HILLING December 27,2024

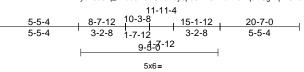
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse and truss contervers building Company the prevent on the prevent of the prevent for the Section of the prevent of the p and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	D1GE	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170398863
Carter Components (Sanford, NO	C), Sanford, NC - 27332,	Run: 8.73 S Dec 5 2	024 Print: 8.	730 S Dec 5	2024 MiTek Industries, Inc. Tue Dec 24 10:19:58	Page: 2

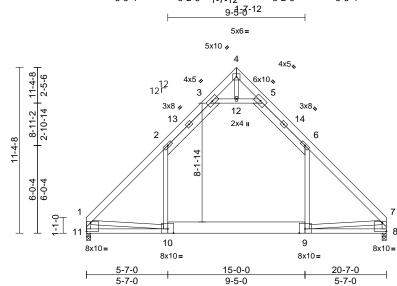
LOAD CASE(S) Standard

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

ID:_bxXDU3yE3314frNHJyGWqy5ol2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	E1	Attic	9	1	Job Reference (optional)	170398864

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:58 ID:y019a0fq_Ezde9D5KSA6Vay5p86-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:79.1

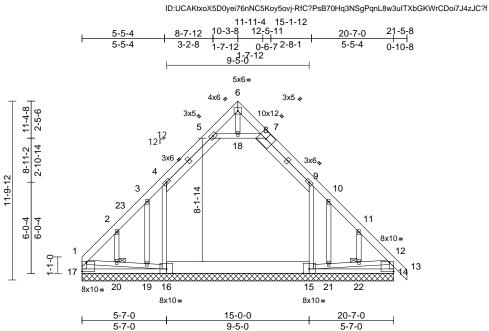
Plate Offsets (X, Y): [8:Edge,0-7-4], [9:0-4-12,Edge], [10:0-4-12,Edge], [11:Edge,0-7-4]

		1											
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.75	Vert(LL)	-0.14	9-1Ó	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.30	Vert(CT)	-0.23	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.28	Horz(CT)	0.01	8	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MSH		Attic	-0.08	9-10	>999	360		
BCDL	10.0											Weight: 188 lb	FT = 20%
LUMBER			3) TCLL: ASCE	E 7-16; Pr=20.0 ps	f (roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x6 SP 2400F 2.0E No.2	*Except* 2-3,5-6:2x	6 SP		1.15); Pf=20.0 psf Is=1.0; Rough Ca								
BOT CHORD	2x4 SP No.2 *Excep	ot* 10-9:2x10 SP 240		Cs=1.00; Ct									
WEBS	2.0E 2x4 SP No.3 *Excep	ot* 3-5:2x4 SP No.2	4	design.				ms					
BRACING			5		as been designed								
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex		ed or 6) * This truss I	ad nonconcurrent has been designe	d for a liv	e load of 20.						
BOT CHORD			С	3-06-00 tall I	m chord in all area by 2-00-00 wide w	ill fit betv		tom					
REACTIONS	(size) 8=0-3-8, Max Horiz 11=264 (I Max Grav 8=1180 (I	_C 13)	E)) Ceiling dead 5-12; Wall d	ny other members I load (5.0 psf) on lead load (5.0psf)	member on mem	ber(s).6-9, 2-	10					
FORCES	(lb) - Maximum Corr	<i>,,</i>	/ C	chord dead l	d live load (40.0 p load (5.0 psf) appl	ied only	o room. 9-10						
TOP CHORD	Tension 1-2=-1467/0, 2-3=-9 4-5=-84/474, 5-6=-9		5, L) Attic room cl OAD CASE(S)	hecked for L/360 o Standard	deflectior							
	1-11=-1311/0, 7-8=-	1312/0											
BOT CHORD													
WEBS	6-9=0/577, 2-10=0/5	,	,										111.
	5-12=-1786/236, 4-1 7-9=-85/658	2=-2/115, 1-10=-67	/644,									"TH CA	RO
NOTES											A	A	in the second
	ced roof live loads have	been considered fo	or							1	20	1000	'SN' sin
this desig											1	- XX /	M. M.
 Wind: AS Vasd=10 II; Exp B; and C-C to 7-3-8, to 17-5-4 left and ri exposed; 	SCE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Exterior(2E) 0-1-12 to 3 Exterior(2R) 7-3-8 to 13 L, Exterior(2R) 7-3-8 to 13 L, Exterior(2R) 17-5-4 to ight exposed ; end verti ;C-C for members and f s shown; Lumber DOL=	CDL=6.0psf; h=25ft ivelope) exterior zor 3-1-12, Interior (1) 3- 3-3-8, Interior (1) 13- 20-5-4 zone; cantilé 20-5-4 zone; cantilé cal left and right orces & MWFRS for	ne -1-12 -3-8 ever									SEA 0363	• -

Exterior(2E) = 17-5left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G "Innin December 27,2024


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	E1GE	Attic Supported Gable	1	1	Job Reference (optional)	170398865

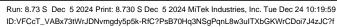
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:58

Page: 1

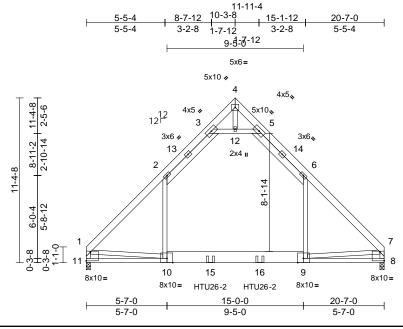
Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:76.1

Plate Offsets (X, Y): [12:Edge,0-7-4], [15:0-4-12,Edge], [16:0-4-12,Edge], [17:Edge,0-7-4]


Leading TCLL (roof) (pst) 200 Plate Grp DOL 1.15 Rep Stress Incr Spacing Plate Grp DOL 1.15 Rep Stress Incr CSI TC CC DEFL TC CC in CC (loc) Veri(L) in na set Plate Stress Plate PLATES CRP 2449190 CRP 2449190 UMBER BCL 0.00 10.0 Rep Stress Incr YES DEFL in CC in Plate in CC 0.00 14 in Plate in Plate <th></th> <th>., ., ., [.=.==ge,e .</th> <th>],[::::::],=::g:],[</th> <th></th> <th>-,=-:9-],[:::==</th> <th>g-,- · ·]</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		., ., ., [.=.==ge,e .],[::::::],=::g:],[-,=-:9-],[:::==	g-,- · ·]									
 TOP CHORD 2x6 SP No.2 2x6 SP No.2 "Except" 16-15:2x10 SP 2400F 2.0E WEBS 2x4 SP No.3 "Except" 5-7:2x4 SP No.2 2x4 SP No.3 "Except 5-7:2x4 SP No.2 "Except" 16-15:2x10 SP 2400F 3-12 to 31-12 to 73-8, Exterior(2N) 3-1-12 to 13-3, 8 Exterior(2N) 3-1-12 to 73-8, Exterior(2N) 3-1-12 to 13-10, Exterior(2N) 3-1-12 to 13-10, Exterior(2N) 3-1-12 to 13-10, Exterior(2N) 3-1-12 to 13-10, Exterior(2N) 3-1-12 to 10-0 to 10-1, 15, I=10, Exterior(2N) 3-1-12 to 10-10 to 10-1, 15, I=10, Exterior(2N) 3-1-10 to 10	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	21/TPI2014	TC BC WB	0.33	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190	
Top CHORD 1-17=-247/0, 1-2=-250/53, 2-3=-173/68, 3-4=-112/78, 4-5=-186/51, 5-6=-153/39, 6-7=-152/38, 7-9=-183/47, 9-10=-109/65, 10-11=-177/60, 11-12=-247/43, 12-13=0/43, 12-14=-316/8	TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 20, 22 (size) 14=20-7-(17=20-7-(Max Horiz 17=-211 (Max Uplift 15=-138 (Max Grav 14=361 (I 16=620 (I	ot* 5-7:2x4 SP No.2 athing directly applie cept end verticals. applied or 10-0-0 oc 0, 15=20-7-0, 16=20- 0 (LC 12) (LC 12) (LC 15), 16=-145 (LC 2 C 23), 15=608 (LC 2 LC 26), 17=292 (LC 2	d or 3; 7-0, 4; 14) 27), 5	Vasd=103m II; Exp B; En and C-C Cou 3-1-12 to 7-3 13-3-8 to 18 cantilever lef right expose for reactions DOL=1.60) Truss desigr only. For stu see Standar or consult qu) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct:) Unbalanced	ph; TCDL=6.0psf; closed; MWFRS mer(3E) 0-1-12 to 8-8, Corner(3R) 7- 3-11, Corner(3E) it and right exposed d;C-C for membe shown; Lumber I ned for wind loads ds exposed to wi d Industry Gable Jalified building de 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf Is=1.0; Rough Ca =1.10	BCDL=6 (envelope 3-1-12, l -3-8 to 13 18-3-11 ed; end v rs and fo DOL=1.60 s in the pl ind (norm End Deta esigner a: sf (roof LL (Lum DC at B; Fully	6.0psf; h=25ft; a) exterior zor Exterior(2N) 3-3-8, Exterior to 21-5-8 zon vertical left an rcces & MWFR 0 plate grip ane of the tru: all to the face ils as applical s per ANSI/TF :: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5	r(2N) he; hd RS ss), ble, PI 1. 1.15 9;	bea 16 a 15) Attic	ring plat and 138 c room c	te capa Ib upli checke	able of withstand ft at joint 15. d for L/360 defle	ing 145 lb uplift at jo	
NOTES 7-18; Wall dead load (5.0psf) on member(s).9-15, 4-16 1) Unbalanced roof live loads have been considered for this design. 7-18; Wall dead load (5.0psf) on member(s).9-15, 4-16	TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	Tension 1-17=-247/0, 1-2=-2 3-4=-112/78, 4-5=-1 6-7=-152/38, 7-9=-1 10-11=-171/60, 11-1 12-14=-316/8 14-17=-175/293 9-15=-252/163, 15-2 21-22=-151/305, 12-2 4-16=-256/186, 1-20 19-20=-162/257, 16 5-18=-26/43, 7-18=- 3-19=-19/32, 2-20=- 11-22=-27/13 ed roof live loads have	50/53, 2-3=-173/68, 86/51, 5-6=-153/39, 83/47, 9-10=-109/65 12=-247/43, 12-13=0/ 21=-156/315, -22=-150/304, 0=-160/255, -19=-167/265, 26/43, 6-18=-2/0, 31/23, 10-21=-20/46,	7; 43, 9; 10 1	 load of 12.0 overhangs n All plates are Gable requin Truss to be f braced again Gable studs Gable studs This truss ha chord live loc * This truss long * This truss long * On the bottoon 3-06-00 tall loc chord and an Ceiling dead 	psf or 1.00 times on-concurrent wit e 2x4 MT20 unless es continuous bo fully sheathed from st lateral movem spaced at 2-0-0 o as been designed ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all arec by 2-00-00 wide w ny other members load (5.0 psf) on	flat roof li th other li is otherwit ttom choir m one face ent (i.e. c cc. for a 10.1 with any d for a liv as where vill fit betw s, with BC member	oad of 20.0 ps ve loads. se indicated. d bearing. se or securely liagonal web) 0 psf bottom other live loa ve load of 20.0 a rectangle veen the botto DL = 10.0psf (s). 4-5, 7-9, 5	sf on ,		W THINK	23	SEA 0363	EER.RA	

NOTES


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	E1GR	Attic Girder	1	2	Job Reference (optional)	170398866

Page: 1

Scale = 1:79.6

Plate Offsets (X, Y): [8:Edge,0-7-4], [9:0-4-12,Edge], [10:0-4-12,Edge], [11:Edge,0-7-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.62	Vert(LL)	0.18	9-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.26	Vert(CT)	-0.23	9-10	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.22	Horz(CT)	0.01	8	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		Attic	-0.07	9-10	>999	360		
BCDL	10.0		_									Weight: 376 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x6 SP 2400F 2.0E No.2 2x4 SP No.2 *Excep	•		except if note CASE(S) sec provided to c	considered equally ed as front (F) or baction. Ply to ply con- listribute only loads	ack (B) nection	face in the LC s have been		LOAD 1) De In	CASE(S ead + Si crease=	5) Sta now (ba 1.15	alanced): Lumber	tion.
	2.0E	4 0 5 0 4 0 D N - 0	3		wise indicated. roof live loads have	o hoon	oppidered fo		Ui	niform L		,	
WEBS	2x4 SP No.3 *Excep	ot* 3-5:2x4 SP No.2	3	this design.	roor live loads have	e been	considered to)r					, 4-5=-60, 5-6=-70,
BRACING	0.	- the international states are as the	4		7-16; Vult=130mp	h (3-sec	cond aust)			6-7=-60 5-12=-1		1=-20, 9-10=-30,	8-9=-20, 3-12=-10,
TOP CHORD	6-0-0 oc purlins, ex	athing directly applie	a or •,		oh; TCDL=6.0psf; E			; Cat.				, 2-10=-10	
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc		cantilever lef	closed; MWFRS (e t and right exposed d; Lumber DOL=1.	d;endv	, ertical left an	nd	C	oncentra	ated Lo	,	
REACTIONS	(size) 8=0-3-8, Max Horiz 11=-264 (ngin onpoool	3, 2011001 202 11	oo plate	9.1p 202 11						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss	Max Uplift 8=-490 (L Max Grav 8=2077 (I (Ib) - Maximum Com Tension 1-2=-2425/652, 2-3= 3-4=-389/935, 4-5=- 6-7=-2424/652, 1-11 7-8=-2066/544 8-11=-408/1562 6-9=-433/1343, 2-10 3-12=-2807/1053, 5 4-12=-40/168, 1-10= 7-9=-388/1155 to be connected toge) nails as follows:	LC 22), 11=2077 (LC hpression/Maximum =-1309/434, 388/934, 5-6=-1309/- =-2065/544, 	23) 6, 434, 7; 8, 9, 1,	 Cs=1.00; Ct=1.10 Characterization (Construction) Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. 								• -	
Top chord staggered Bottom ch 0-9-0 oc, 2	s connected as follows: at 0-9-0 oc, 2x4 - 1 ro ords connected as foll 2x10 - 2 rows staggere ected as follows: 2x4 -	w at 0-9-0 oc. ows: 2x4 - 1 row at ed at 0-9-0 oc.	1:	recommende UPLIFT at jt(and does not 2) Use Simpsor 14-10d Truss starting at 8- truss(es) to b	ed to connect truss s) 11 and 8. This of t consider lateral for the Strong-Tie HTU2 s) or equivalent spy 7-0 from the left er pack face of bottom eles where hanger	to bear connection forces. 6-2 (20- aced at ad to 12- n chord.	ing walls due on is for uplift 10d Girder, 3-5-0 oc max 0-0 to conne	t only ct			ALL	0363	EER. Kunn

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	F1	Common	5	1	Job Reference (optional)	170398867

Loading

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

FORCES


WEBS

NOTES 1)

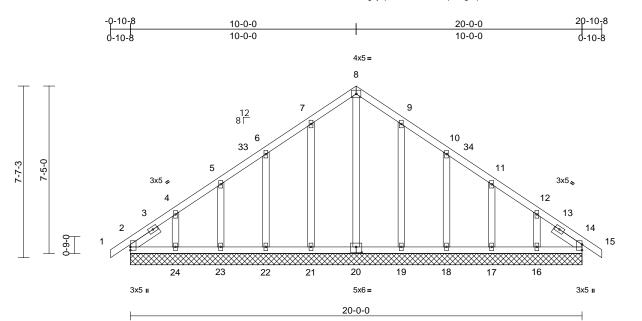
2)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:59 ID:k1NJ2dp_er1c6SUAFN_n9jy5pD3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

December 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	F1GE	Common Supported Gable	1	1	Job Reference (optional)	170398868

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:59 ID:ImmtPJ5nACEJ96x_ChTYgny5pHt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51

Plate Offsets (X, Y): [20:0-3-0,0-3-0]

	(,,, ,). [2010 0 0]0 0 0	.1															
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.08 0.05 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 126 lb	GRIP 244/190 FT = 20%				
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	athing directly applie applied or 10-0-0 oc	No.3 Wed or ; N 1) 0-0,	/EBS OTES) Unbalanced this design.		22=-55. 19=-55. 17=-55 =-219/8 =-148/1 17=-14	(122, (122, (122, 13, 6-22=-182, 08, 9-19=-21 2/84, considered fo	9/83,	cho 11) * Th on t 3-0 cho 12) Pro bea 2, 6 at jo 56 l join	rd live lo his truss the botto 6-00 tall ord and a vide me tring plat b uplift bint 22, 4 b uplift t 17, 94	bad nor has be om cho by 2-0 any oth chanic te capa at join 47 lb up at joint lb uplif	een designed for rd in all areas with 0-00 wide will fait er members. al connection (by able of withstandi t 14, 57 lb uplift at plift at joint 23, 10 19, 62 lb uplift at t at joint 16, 46 lb	any other live loads. a live load of 20.0psf ere a rectangle between the bottom others) of truss to ng 46 lb uplift at joint t joint 21, 62 lb uplift 4 lb uplift at joint 24, joint 18, 49 lb uplift at				
	CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. CTIONS (size) 2=20-0-0, 14=20-0-0, 16=20-0-0, 17=20-0-0, 18=20-0-0, 19=20-0-0 20=20-0-0, 21=20-0-0, 22=20-0-0 3=20-0-0, 24=20-0-0 Max Horiz 2=-170 (LC 12) Max Uplift 2=-46 (LC 10), 14=-6 (LC 11), 16=-94 (LC 15), 17=-49 (LC 15), 18=-62 (LC 15), 19=-56 (LC 14), 23=-47 (LC 14), 24=-104 (LC 14) Max Grav 2=174 (LC 26), 14=149 (LC 22), 16=183 (LC 26), 14=149 (LC 22), 20=168 (LC 33), 21=259 (LC 21), 22=222 (LC 21), 23=163 (LC 25), 24=194 (LC 25)			 Unbalanced roof live loads have been considered for this design. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat Usad=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-0-0, Exterior(2N) 13-0-0 to 7-0-0, Corner(3R) 7-0-0 to 13-0-0, Exterior(2N) 13-0-0 to 7-0-0, Corner(3E) 17-10-8 to 20-10-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 							OPTIEFS						
FORCES TOP CHORD	(lb) - Maximum Com Tension	npression/Maximum 127, 4-5=-116/94, 13/132, 7-8=-119/192 92/132, 10-11=-68/	68, 61	DOL=1.15); Cs=1.00; Ct=) Unbalanced design.) This truss ha load of 12.0 overhangs n) All plates are) Gable requir	1.15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have b as been designed fr psf or 1.00 times fli ion-concurrent with a 2x4 MT20 unless res continuous botto spaced at 2-0-0 oc	B; Fully been cor or great at roof li other li otherwi om chor	Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 ps ve loads. se indicated.); nis live				SEA 0363	EER. KIN				

- Gable requires continuous bottom chord bearing. 8)
- 9) Gable studs spaced at 2-0-0 oc.

818 Soundside Road Edenton, NC 27932

December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	G1	Common	1	1	Job Reference (optional)	170398869

Scale = 1:43.6

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD BOT CHORD

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

NOTES

1)

2)

bracing.

Tension

6-7=0/29

4-8=0/300

(size)

Rigid ceiling directly applied or 10-0-0 oc

2=0-3-8. 6=0-3-8

Max Uplift 2=-62 (LC 14), 6=-62 (LC 15)

Max Grav 2=677 (LC 21), 6=677 (LC 22)

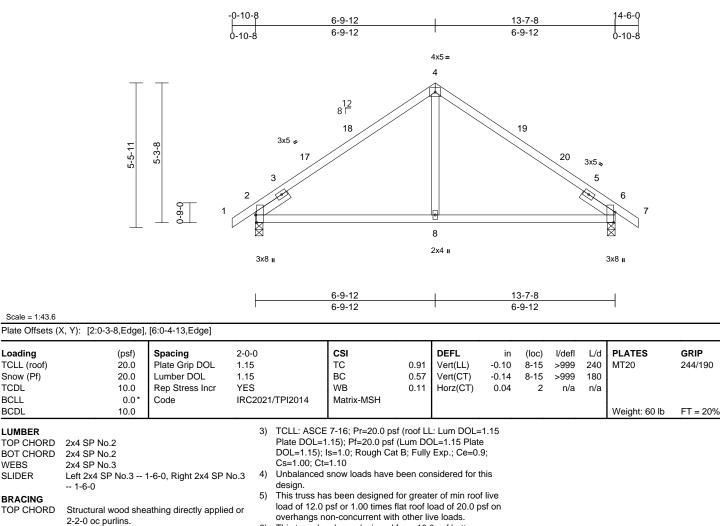
(Ib) - Maximum Compression/Maximum

1-2=0/29, 2-4=-672/245, 4-6=-672/245,

Max Horiz 2=-120 (LC 12)

2-8=-207/447, 6-8=-140/447

Unbalanced roof live loads have been considered for


II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8

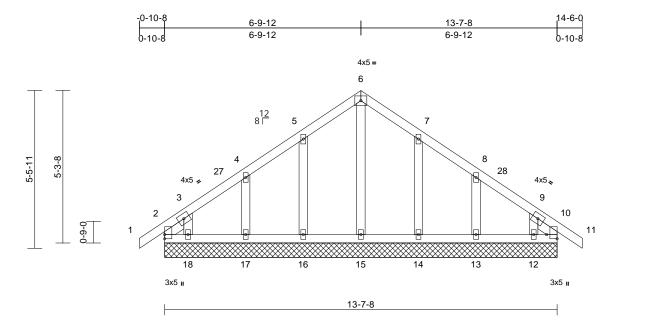
to 3-9-12, Exterior(2R) 3-9-12 to 9-9-12, Interior (1)

9-9-12 to 11-6-0, Exterior(2E) 11-6-0 to 14-6-0 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:59 ID:cMqR6qzeXs85Zq4xydCBPUy5pn0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 6)
- chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces.


LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	G1GE	Common Supported Gable	1	1	Job Reference (optional)	170398870

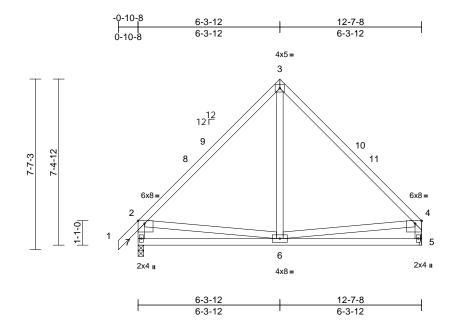
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:59 ID:u9iESbeiuZkwqhWltSDsooy5pnR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:40
---------	------

Plate Offsets (X, Y): [10:Edge,0-4-6]

		1										-	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	(.00)	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 76 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 (No.3 0-10-5 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=13-7-8, 13=13-7-8 16=13-7-8	athing directly applied applied or 10-0-0 oc 10=13-7-8, 12=13-7- 3, 14=13-7-8, 15=13-7 3, 17=13-7-8, 18=13-7	1) 2) or 8, -8, 2)	this design. Wind: ASCE Vasd=103my II; Exp B; En and C-C Cor to 3-9-12, Cc 9-9-12 to 11- cantilever lef right expose for reactions DOL=1.60 Truss design	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e ner(3E) -0-10-8 to orner(3R) 3-9-12 to 6-0, Corner(3E) 11 t and right exposed d;C-C for members shown; Lumber D ed for wind loads i	h (3-sec BCDL=6 envelope 2-1-8, E 9-9-12 I-6-0 to d; end c; end c; and fo DL=1.60 n the pl	cond gust) 0.0psf; h=25ft; e) exterior zor :xterior(2N) 2: Exterior(2N) 14-6-0 zone; vertical left an rcces & MWFR 0 plate grip ane of the tru:	r Cat. ne -1-8 d RS	bea 2, 2 at jo 59 l join	ring plat 0 lb upli bint 17, 9 b uplift a	e capa ft at joi 3 lb uj at joint 20 lb uj	able of withstandi nt 10, 61 lb uplift plift at joint 18, 60 13, 80 lb uplift at plift at joint 10.	r others) of truss to ng 58 lb uplift at joint at joint 16, 59 lb uplift D lb uplift at joint 14, joint 12, 58 lb uplift at
	Max Horiz 2=120 (LC Max Uplift 2=-58 (LC 12=-80 (L 14=-60 (L 17=-59 (L Max Grav 2=135 (LC 12=124 (L 14=259 (L	C 13) C 13) C 15), 13=-59 (LC 15), C 15), 16=-61 (LC 14) C 14), 18=-93 (LC 14) C 26), 10=109 (LC 22) C 26), 13=227 (LC 22), C 22), 15=146 (LC 33), C 21), 17=227 (LC 22)	$^{),}_{),}$ 4) $^{),}_{,}$ $^{2}_{3),}$ 5)	see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha	Ids exposed to win d Industry Gable E italified building des is7-16; Pr=20.0 psf (15); Pf=20.0 psf (15); Pf=20.0 psf (15=1.0; Rough Cat =1.10 snow loads have b is been designed for psf or 1.00 times fit	nd Deta signer a (roof Ll Lum DC B; Fully been cou	ils as applicat s per ANSI/TF .: Lum DOL=' DL=1.15 Plate Exp.; Ce=0.9 nsidered for th er of min roof	ble, PI 1. 1.15); his live				NITH CA	ROL
FORCES	(lb) - Maximum Com	pression/Maximum		overhangs n	on-concurrent with	other li	ve loads.			1	22	OFES	Prins 1
TOP CHORD		/152, 6-7=-91/152, /35, 9-10=-71/62, 3=-39/114, 16-17=-39/		Gable requir Gable studs)) This truss ha chord live loa	2 2x4 MT20 unless es continuous botto spaced at 2-0-0 oc is been designed fo ad nonconcurrent v nas been designed	om choi :. or a 10. vith any	d bearing. 0 psf bottom other live loa					SEA 0363	• –
WEBS	15-16=-39/114, 14-1 13-14=-39/114, 12-1 10-12=-39/114 6-15=-105/0, 5-16=- 3-18=-109/122, 7-14 8-13=-186/120, 9-12	3=-39/114, 219/108, 4-17=-186/1 =-219/108,		on the bottor 3-06-00 tall b	n chord in all areas by 2-00-00 wide wil by other members.	s where	a rectangle	•				SEA 0363	

December 27,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	H1	Common	2	1	Job Reference (optional)	170398871

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:59 ID:zLasltY74BEKQbkaGWhm1_y5pJs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

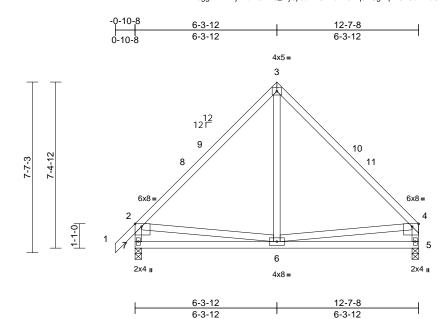
Page: 1

Plate Offsets (X, Y): [2:0-3-8,Edge], [4:0-3-8,Edge]

	(X, T): [2:0-3-0,Euge],	, [4.0-5-0,Luge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.34 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 2-2-0 oc purlins, exx Rigid ceiling directly bracing. (size) 5= Mecha Max Horiz 7=191 (LC Max Uplift 5=-35 (LC Max Grav 5=572 (LC (Ib) - Maximum Com Tension 1-2=0/43, 2-3=-563/ 2-7=-583/273, 4-5=-	athing directly applie cept end verticals. applied or 10-0-0 or anical, 7=0-3-0 C 11) C 14), 7=-43 (LC 14) C 22), 7=638 (LC 21 ppression/Maximum 267, 3-4=-552/256, 518/225 156/249	ed or 6) c 7) 8) 9) 10	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss ha on the bottoo 3-06-00 tall h chord and au Refer to gird Provide mee bearing plate 5. 0) One H2.5A S recommende UPLIFT at jt	snow loads have I as been designed f psf or 1.00 times f ion-concurrent with as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide win y other members. ler(s) for truss to tr shanical connection e capable of withst Simpson Strong-Ti ed to connect truss (s) 7. This connect sider lateral force: Standard	for great lat roof I o other Ii for a 10. with any I for a liv s where III fit betv uss conn (by oth anding 3 e conne s to bear ion is fo	er of min roo bad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle veen the bott nections. ers) of truss 35 lb uplift at ctors ing walls due	f live isf on ads. Opsf to joint to					
this desig 2) Wind: ASI Vasd=100 II; Exp B; and C-C E to 3-3-12, 9-5-12 to exposed ; and right t MWFRS f grip DOL= 3) TCLL: AS Plate DOI	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-10-8 to 2 Exterior(2R) 3-3-12 to 12-5-12 zone; cantileve ; end vertical left and rig exposed;C-C for memb for reactions shown; Lu =1.60 CCE 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	(3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zor 2-1-8, Interior (1) 2- 9-5-12, Exterior(2E) er left and right ght exposed; porch I bers and forces & imber DOL=1.60 pla froof LL: Lum DOL=1.15 Plate	Cat. ne 1-8) left tte 1.15							A contraction of the second se		SEA 0363	• –

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


GI

A. GIL December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	H1A	Common	3	1	Job Reference (optional)	170398872

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:59 ID:RoggW1mPrjVnaM61KI0_Iny5pJa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

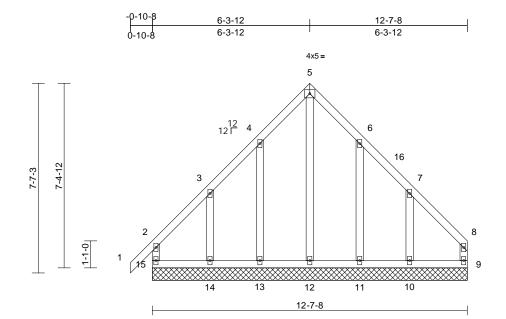
Page: 1

Scale = 1:51.3

Plate Offsets (X, Y): [2:0-3-8.Edge], [4:0-3-8.Edge]

Plate Offsets (X, Y): [2:0-3	3-8,Eagej,	[4:0-3-8,Edge]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.34 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 78 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD Structural 2-2-0 oc pi biolitic BOT CHORD Rigid ceilin bracing. REACTIONS (size) Max Horiz Max Uplift Max Grav FORCES (lb) - Maxi Tension TOP CHORD 1-2e0/43, 2-7=-583/ BOT CHORD 6-7=-291/3	2.2 wood sheat wood sheat ourlins, exc ng directly : 5=0-3-8, 7 7=191 (LC 5=-35 (LC mum Comp 2-3=-563/1 183, 4-5=-5 396, 5-6=-1 y, 2-6=-167/ bads have 1 t=130mph =6.0psf; BC WFRS (env 0-10-8 to 2 3-3-12 to 9 c; cantileve left and rig MWFRS f te grip DOI =20.0 psf (LC 20.0	: 11) 14), 7=-43 (LC 14) : 22), 7=638 (LC 21) pression/Maximum 148, 3-4=-552/138, 518/134 127/249 /320, 4-6=-105/225 been considered for (3-second gust) DL=6.0psf; h=25ft; velope) exterior zon 2-1-8, Interior (1) 2-1 9-5-12, Exterior(2E) or left and right ht exposed;C-C for for reactions shown; L=1.60 roof LL: Lum DOL=1 Jm DOL=1.15 Plate ; Fully Exp.; Ce=0.9	ed or 7)	load of 12.0 j overhangs no This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(s been designed f port 1.00 times fl port 1.00 time	at roof lo other liv or a 10.0 with any for a liv s where Il fit betv e conne- to bear onnectio	bad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott ctors ng walls due	ads. Opsf com				SEA 0363	EER A LUN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	H1GE	Common Supported Gable	1	1	Job Reference (optional)	170398873

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:19:59 ID:nhMsIV0ugMZjXhow7ZNDiVy5pKZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

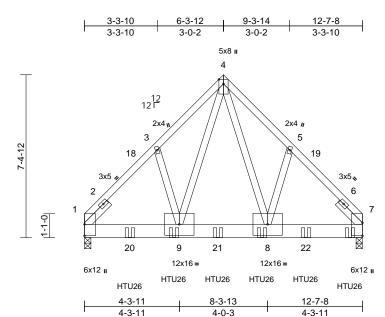
Scale = 1:46.2

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.09	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.39	Horz(CT)	0.00	9	n/a	n/a			
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MR									
BCDL	10.0											Weight: 83 lb	FT = 20%	
LUMBER			2	Wind: ASCE	7-16; Vult=130r	mph (3-sec	ond gust)							
TOP CHORD	2x4 SP No.2			Vasd=103m	oh; TCDL=6.0ps	sf; BCDL=6	.0psf; h=25ft	; Cat.						
BOT CHORD				II; Exp B; En	closed; MWFRS	6 (envelope	e) exterior zoi	ne						
WEBS	2x4 SP No.3			and C-C Co	ner(3E) -0-10-8	to 2-3-12,	Exterior(2N)							
OTHERS	2x4 SP No.3			2-3-12 to 3-3	8-12, Corner(3R)) 3-3-12 to	9-5-12, Corn	er						
BRACING					o 12-5-12 zone;									
TOP CHORD	Structural wood she	athing directly applie	d or		nd vertical left ar									
	6-0-0 oc purlins, ex				d forces & MWF			n;						
BOT CHORD	Rigid ceiling directly		;		.=1.60 plate grip									
	bracing.		3		ned for wind load									
REACTIONS	0	10=12-7-8, 11=12-7	-8		ids exposed to v									
	· · · · ·	3, 13=12-7-8, 14=12-	,		d Industry Gable									
	15=12-7-8	, ,	,		alified building									
	Max Horiz 15=191 (L		4		7-16; Pr=20.0 p									
	Max Uplift 9=-62 (LC		5).		1.15); Pf=20.0 ps									
		C 15), 13=-80 (LC 1			Is=1.0; Rough C	at B; Fully	Exp.; Ce=0.9	9;						
		LC 14), 15=-86 (LC	10)	Cs=1.00; Ct				L						
	Max Grav 9=138 (LC				snow loads hav	e been cor	isidered for th	his						
		C 22), 12=253 (LC	15)	design.	as been designe	d for areat		. Iliun						
		.C 21), 14=230 (LC 2			psf or 1.00 times									
	15=212 (L	C 26)			on-concurrent w			51 011						
FORCES	(lb) - Maximum Com	pression/Maximum	7		e 2x4 MT20 unle									
	Tension		8		es continuous b							IIIIII	11111	
TOP CHORD	2-15=-173/152, 1-2=	0/43, 2-3=-146/128,	a		ully sheathed from			,				N'LH CA	ROUL	
	3-4=-114/235, 4-5=-	167/357, 5-6=-168/3	57, [°]		ist lateral mover						1	allin	01/1	
	6-7=-114/236, 7-8=-				spaced at 2-0-0			•			1	O' .: ESS	ani.	
BOT CHORD	14-15=-78/87, 13-14	=-78/87, 12-13=-78/			is been designe) psf bottom				1A		1 al	1
	11-12=-78/87, 10-11		7 '		ad nonconcurrer			ıds.				:0	K	-
WEBS	5-12=-415/130, 4-13	,	1:		nas been design					-	() }		1. I I I I I I I I I I I I I I I I I I I	-
	3-14=-190/211, 6-11	=-239/146,			n chord in all are							SEA	L :	1
	7-10=-195/248				y 2-00-00 wide			om		=	:	0363	•	-
NOTES					ny other membe					1		0303	~~ :	-
1) Unbalance	ed roof live loads have	been considered for	1:		hanical connect		ers) of truss t	to		-		N		-
this design	n.			bearing plate	e capable of with	nstanding 8	6 lb uplift at j	joint			3	·	air	5
					ift at joint 9, 80 l						2.5	NGIN	FERM	5
				uplift at joint	14, 82 lb uplift a	at joint 11 a	nd 157 lb up	lift at			11	710	E. E.	2

NOTES

- chord and any other members. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 15, 62 lb uplift at joint 9, 80 lb uplift at joint 13, 164 lb uplift at joint 14, 82 lb uplift at joint 11 and 157 lb uplift at joint 10.
- LOAD CASE(S) Standard

G


11111111 December 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	H1GR	Common Girder	1	2	Job Reference (optional)	170398874

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:vfVaTIBwgk33XXUHSgU44qy5oZG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

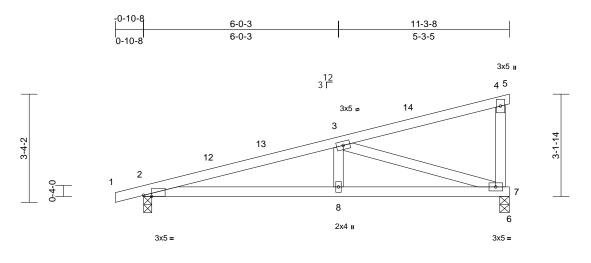
Page: 1

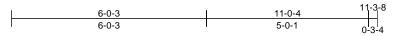
Scale = 1:52.3	

Scale = 1:52.3												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TPI20	CSI TC BC WB Matrix-MSH	0.56 0.31 0.90	Vert(CT)	in -0.06 -0.12 0.01	(loc) 8-9 8-9 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 203 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood she 4-4-10 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 1 Max Grav 1=5948 (I (lb) - Maximum Corr	athing directly applie applied or 10-0-0 oc 7=0-3-8 C 8) _C 5), 7=7693 (LC 6)	Vasd= II; Exp cantile right e 5) TCLL: Plate DOL= Cs=1. 6) Unbal desigr 7) This tr chord 8) * This	uss has been designed live load nonconcurrent truss has been designe	BCDL=((envelop) ed; end I.60 plate sf (roof Li (Lum DC (Lum DC tr B; Fully been co for a 10. with any d for a liv	6.0psf; h=25ft e) exterior zo vertical left ar e grip DOL=1 .: Lum DOL= DL=1.15 Plate e Exp.; Ce=0. Insidered for t 0 psf bottom other live loa ve load of 20.	ne; nd .60 .1.15 e 9; his ads.					
TOP CHORD BOT CHORD WEBS	Tension 1-3=-6025/0, 3-4=-5 5-7=-6121/0 1-9=0/4173, 8-9=0/3 4-8=0/4339, 5-8=-64 3-9=-55/261	890/0, 4-5=-5991/0, 8041, 7-8=0/4220	3-06-0 chord 9) Use S 14-10 space end to	 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 2-0-12 from the left end to 12-0-12 to connect truss(es) to back face of 								
 (0.131"x3" Top chords oc. Bottom chu staggered Web connu 2) All loads a except if m CASE(S) s provided tu unless oth 	to be connected toge) nails as follows: s connected as follows ords connected as follows at 0-5-0 oc. ected as follows: 2x4 - re considered equally oted as front (F) or ba section. Ply to ply com o distribute only loads erwise indicated. ad roof live loads have h.	s: 2x4 - 1 row at 0-9- ows: 2x8 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO nections have been noted as (F) or (B),	10) Fill all LOAD CA 0 1) Deac Incre Unifo Ve Conc AD 20	n chord. nail holes where hange SE(S) Standard I + Snow (balanced): Lu ase=1.15 rm Loads (lb/ft) rt: 1-4=-60, 4-7=-60, 10 entrated Loads (lb) rt: 8=-1837 (B), 9=-183 =-1837 (B), 21=-1837 (I	imber Inc 1-14=-20 7 (B), 16	erease=1.15, =-1842 (B),			A. antimas.	in	SEA 0363	

this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

G 11111111 December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	11	Monopitch	3	1	Job Reference (optional)	170398875

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:w4LI?dchbwB_MzuIsHIA2Ly5pIV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.6

Plate Offsets (X, Y): [2:0-2-15,Edge]

	(X, T): [2:0 2 10,20g0	L.											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.54 0.61	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.08 -0.12 0.02	(loc) 8-11 8-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 48 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-11-5 oc purlins, e Rigid ceiling directly bracing. 	xcept end verticals. applied or 7-0-12 or 7=0-3-8 C 10) .C 10), 7=-180 (LC 1	; 7) 0)	load of 12.0 overhangs n This truss ha chord live lo * This truss l on the botto 3-06-00 tall chord and an One H2.5A ² recommend UPLIFT at jt and does no	as been designed f psf or 1.00 times f on-concurrent with as been designed ad nonconcurrent in has been designed in chord in all area by 2-00-00 wide with y other members. Simpson Strong-Ti ed to connect truss (s) 2 and 7. This of t consider lateral for	lat roof I o other li for a 10. with any I for a liv s where ill fit betw e conne s to bear connectio	bad of 20.0 p ve loads. 0 psf bottom other live load ve load of 20.1 a rectangle veen the bott ctors ing walls due	esfon ads. Opsf com					
FORCES	(lb) - Maximum Com Tension			DAD CASE(S)	Standard								
TOP CHORD	4-5=-6/0, 4-7=-202/	109											
WEBS	3-8=-99/242, 3-7=-1	145/650											
NOTES		(0 1 3											1.1.2
Vasd=10 II; Exp B; and C-C to 8-3-8, and right MWFRS grip DOL 2) TCLL: AS Plate DO DOL=1.1 Cs=1.00;	SCE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	CDL=6.0psf; h=25ft; typelope) exterior zon 2-1-8, Interior (1) 2-1 I-3-8 zone; cantileve left exposed; porch li- bers and forces & imber DOL=1.60 pla proof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	e -8 r left eft te .15 ;							A. CONTRACT	The second secon	SEA 0363	• -

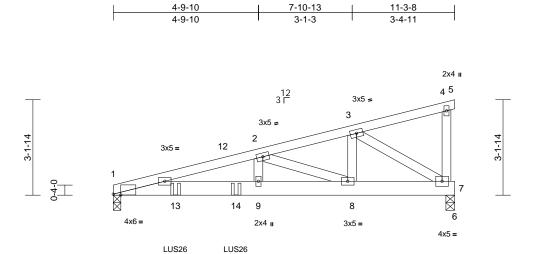
design.

A. GILBE December 27,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	I1GR	Monopitch Girder	1	2	Job Reference (optional)	170398876


7-10-13

4-9-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:kQ7kZF3TB5WNT2xekKRdkry5pJC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.1

Plate Offsets (X, Y): [1:0-2-15,0-0-5]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202 ⁻	I/TPI2014	CSI TC BC WB Matrix-MSH	0.30 0.71 0.22	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.01	(loc) 9-11 9-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 120 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (M FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss t (0.131"x3") Top chords oc. Bottom cho staggered a Web conne 2) All loads are except if no CASE(S) se provided to	6-0-0 oc purlins, exc Rigid ceiling directly bracing. size) 1=0-3-0,7 Max Horiz 1=102 (LC Max Uplift 1=-195 (LI Max Grav 1=1303 (L (lb) - Maximum Com Tension 1-2=-3139/462, 2-3= 4-5=-6/0, 4-7=-139/4 1-9=-520/3045, 8-9= 7-8=-239/1125, 6-7= 2-9=-83/883, 2-8=-20 3-7=-1297/274 to be connected toget nails as follows: connected as follows	applied or 10-0-0 oc 7=0-3-8 32) C 8), 7=-195 (LC 8) C 18), 7=884 (LC 18) pression/Maximum -1191/204, 3-4=-58/7 -520/3045, -0/0 049/300, 3-8=-113/67 ther with 10d :: 2x4 - 1 row at 0-9-0 cows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOA rections have been	4) 5) 6) 7) 7, 8) 9, 9) 10 LC 1)	Vasd=103mj II; Exp B; En cantilever lef exposed; po DOL=1.60 pi TCLL: ASCE Plate DOL=7 DOL=115); Cs=1.00; Ct Unbalanced design. This truss he chord live loa * This truss he chord and ar One H2.5A S recommended UPLIFT at jt and does no Use Simpsoi Truss, Single oc max. star connect trus) Fill all nail ho DAD CASE(S) Dead + Sno Increase=1 Uniform Lo Vert: 1-4 Concentrat	snow loads have b as been designed fr ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will y other members. Simpson Strong-Tie do to connect truss (s) 1 and 7. This co t consider lateral for n Strong-Tie LUS2 e Ply Girder) or equiting at 2-0-12 from S(es) to back face e bles where hanger Standard bow (balanced): Lun .15	SCDL=6 enveloped ; end v ; posed; (roof LI Lum DC B; Fully eeen cor or a 10. vith any for a liv s where I fit betw e conne to bear orces. 6 (4-100 vivalent the left of bottoo is in cor aber Inc	6.0psf; h=25ft a) exterior zo vertical left Lumber .: Lum DOL= .:	ne; 1.15 9; his ads. Opsf only 0d 0-0 2 to aber.		V. Contraction of the second s		SEA 0363	22 EER.X

December 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	J1	Monopitch	2	1	Job Reference (optional)	170398877

 12^{12} 4x5 🖌

4-4-4

4-4-4

8-6-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:WYf1zIAIjIcx?PufAq_VZry5pA0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-

2x4 u 3⁴

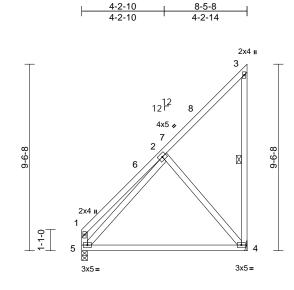
8-8-8

4-4-4

Page: 1

8 2 9-9-8 2x4 j 1 1-1-0 Гŧ ₩6 8 5 7 3x5= 3x5= 8-8-8 || 0-3-4 8-5-4 8-5-4 L/d PLATES CSI DEFL l/defl GRIP in (loc)

Scale = 1:64.4 Loading


Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.90 0.69 0.27	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.49 0.00	(loc) 6-7 6-7 6	l/defl >402 >201 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 64 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=100 II; Exp B; and C-C I to 5-8-8, I and right C for mer	2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 6=0-3-8, 1 Max Horiz 7=328 (L0 Max Uplift 6=-171 (L Max Grav 6=506 (L0 (lb) - Maximum Com Tension 1-2=-97/124, 2-3=-2 3-6=-245/122, 1-7=-	athing directly applie cept end verticals. 'applied or 10-0-0 oc 3-6 7=0-3-8 C 11) C 11), 7=-4 (LC 10) C 20), 7=398 (LC 30) pression/Maximum 39/238, 3-4=-21/0, 147/110 y/0 342/250 (G3-second gust) CDL=6.0psf; h=25ft; tvelope) interior zone 3-1-12, Interior (1) 3- 8-8 zone; cantilever left and right expose /FRS for reactions	Cat. Cat.	ss has been desig titom chord in all a all by 2-00-00 wide d any other memb SA Simpson Strong inded to connect ti at jt(s) 6 and 7. Thi not consider later (S) Standard	reas where e will fit bety ers. g-Tie conne russ to bear s connectio	a rectangle ween the both ctors ing walls due	om e to		4		ORTH CA	ROLIN
Plate DOI	CE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct=1 10	um DOL=1.15 Plate									0363	• •
 Unbalanc design. This truss 	s has been designed fo load nonconcurrent wi	r a 10.0 psf bottom									Decembe	ILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	J2	Jack-Closed	4	1	Job Reference (optional)	170398878

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:mGiRsNHxbWkfbo4NCDfdQly5p9t-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-5-8

Scal	≏ – 1	.58	a

Scale = 1:58.9											
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.87 0.91 0.25	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.53 0.00	(loc) 4-5 4-5 4	l/defl >367 >184 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 63 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD Structural wood s 6-0-0 oc purlins, BOT CHORD Rigid ceiling direct bracing, WEBS 1 Row at midpt REACTIONS (size) 4= Mec Max Horiz 5=320 Max Uplift 4=-166	ept* 3-4:2x4 SP No.2 neathing directly applie except end verticals. tly applied or 2-7-8 oc 3-4 hanical, 5=0-3-8 LC 11) (LC 11), 5=-2 (LC 10) LC 20), 5=389 (LC 25)	on the bo 3-06-00 f chord an 6) All bearin 7) Refer to 8) Provide r bearing p 4. 9) One H2.9 recomme UPLIFT a does not	ss has been designe totom chord in all are- all by 2-00-00 wide v d any other members gs are assumed to b girder(s) for truss to t nechanical connectit blate capable of withs 5A Simpson Strong-T ended to connect trus at jt(s) 5. This connect consider lateral force (S) Standard	as where vill fit betw s. De User D truss conr on (by oth standing 1 Fie conne as to bear ction is for	a rectangle veen the botto efined . nections. ers) of truss t 66 lb uplift at ctors ing walls due	o joint to					
Tension TOP CHORD 1-5=-127/88, 1-2=	ompression/Maximum -84/119, 2-3=-232/222),									
3-4=-215/116 BOT CHORD 4-5=-155/280 WEBS 2-5=-334/212, 2-4	=-296/332										
 NOTES 1) Wind: ASCE 7-16; Vult=130m Vasd=103mph; TCDL=6.0psf; II; Exp B; Enclosed; MWFRS d and C-C Exterior(2E) 0-1-12 to to 4-0-13, Exterior(2R) 4-0-13 left and right exposed; end ve exposed;C-C for members an reactions shown; Lumber DOI DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf DOL=1.15); Pf=20.0 psf DOL=1.15); Is=1.0; Rough Ca Cs=1.00; Ct=1.10 3) Unbalanced snow loads have design. 	BCDL=6.0psf; h=25ft; envelope) interior zone o 3-1-12, Interior (1) 3- to 8-3-12 zone; cantile trical left and right d forces & MWFRS for .=1.60 plate grip f (roof LL: Lum DOL=1 (Lum DOL=1.15 Plate t B; Fully Exp.; Ce=0.9	e 1-12 :ver 1.15 ;						Manna and and and and and and and and and		SEA 0363	

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. December 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	J2GE	Monopitch Supported Gable	1	1	Job Reference (optional)	170398879

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:bEe_pt_iA1wawZxL2hA_Emy5p9_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-5-8 3x5 II 5⁶ 12¹² 2x4 4 2x4 I 14 13 3 9-6-8 9-6-8 2x4 🛛 X 12 3x5 -1-0 $\overline{\mathbb{X}}$ $\times\!\!\times\!\!\times$ $\times\!\!\times\!\!\times$ 10 9 8 4x5 I 3x5= 2x4 II 2x4 II 2x4 II 8-5-8 8-2-4 ____ 0-3-4 8-2-4 Spacing 2-0-0 CSI DEFL l/defl in (loc) Plate Grip DOL 1.15 TC 0.61 Vert(LL) n/a n/a BC Lumber DOL 1 15 0.34 Vert(CT) n/a n/a Rep Stress Incr YES WB 0.25 Horz(CT) 0.00 7 n/a IRC2021/TPI2014 Matrix-MR 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; ed or Cs=1.00: Ct=1.10

- Unbalanced snow loads have been considered for this 4) desian.
- 5) Gable requires continuous bottom chord bearing.
- 6) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 175 lb uplift at joint 11, 103 lb uplift at joint 7, 55 lb uplift at joint 9, 263 lb uplift at joint 10 and 107 lb uplift at joint 8.

LOAD CASE(S) Standard

L/d

999

999

n/a

PLATES

Weight: 66 lb

MT20

GRIP

244/190

FT = 20%

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:58.2 Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	o.3 *Except* 5-7:2x4 SP No.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	I wood sheathing directly applied or
	6-0-0 oc j	ourlins, except end verticals.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing.	
WEBS	1 Row at	midpt 5-7
REACTIONS	(size)	7=8-5-8, 8=8-5-8, 9=8-5-8,
		10=8-5-8, 11=8-5-8
	Max Horiz	11=319 (LC 11)
	Max Uplift	7=-103 (LC 13), 8=-107 (LC 14),
		9=-55 (LC 14), 10=-263 (LC 14),
		11=-175 (LC 12)
	Max Grav	7=138 (LC 20), 8=282 (LC 20),
		9=180 (LC 20), 10=287 (LC 24),
		11=353 (LC 11)
FORCES		imum Compression/Maximum
	Tension	
TOP CHORD		6/379, 1-2=-429/550, 2-3=-243/380,
		/341, 4-5=-151/186, 5-6=-21/0,
	5-7=-136	
BOT CHORD		14/184, 9-10=-114/184,
		/184, 7-8=-114/184
WEBS	3-9=-143	/199, 2-10=-290/355, 4-8=-270/128
NOTES		
		It=130mph (3-second gust)
		=6.0psf; BCDL=6.0psf; h=25ft; Cat.
II [.] Exp B [.]	Enclosed: M	WFRS (envelope) interior zone

(psf)

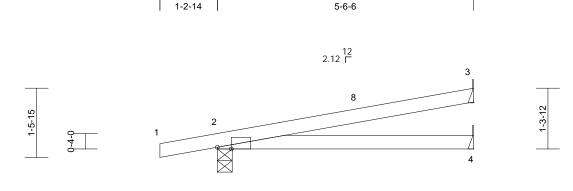
20.0

20.0

10.0

0.0

10.0


Code

Cat. II; Exp B; Enclosed; MWFRS (envelope) interior zone and C-C Corner(3E) 0-1-12 to 3-1-12, Exterior(2N) 3-1-12 to 5-5-8, Corner(3E) 5-5-8 to 8-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	K1	Jack-Open	1	1	Job Reference (optional)	170398880

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:TysXPiNrcIVqjY_aDurE2fy5pp4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 =

-1-2-14

5-6-6	

5-6-6

Scale = 1:24.8 Plate Offsets (X, Y): [2:0-3-10,Edge]

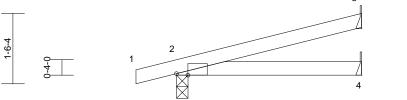
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.50 0.48 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.11 0.00	(loc) 4-7 4-7 2	l/defl >999 >602 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood shea 5-6-6 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or 3= Mechanical, 4= al 10), 3=-47 (LC 14) 2 21), 3=179 (LC 21) 7) pression/Maximum	; 7) 8) 9) 10	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Refer to gird Provide mec bearing plate 3. 0) One H2.5A S recommende UPLIFT at jt(s been designed di nonconcurrent has been designe in chord in all area y 2-00-00 wide w y other members are assumed to b er(s) for truss to t hanical connectio capable of withs simpson Strong-T di to connect trus s) 2. This connect sider lateral force Standard	with any d for a liv as where iill fit betw e User D russ conr n (by oth tanding 4 ie conner s to beari tion is for	other live loa e load of 20. a rectangle veen the bott efined . nections. ers) of truss 17 lb uplift at ctors ing walls due	0psf om to joint e to				Weight. 19 ib	
Vasd=103 II; Exp B; and C-C (CE 7-16; Vult=130mph imph; TCDL=6.0psf; B0 Enclosed; MWFRS (en Corner (3) -1-2-14 to 3- corne: cantilever left and	CDL=6.0psf; h=25ft; velope) exterior zon 0-1, Exterior(2R) 3-0	e)-1									WITH CA	ROIN

- to 5-5-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;
- Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 3) desian.
- This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 4) overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	К2	Jack-Open	4	1	Job Reference (optional)	170398881

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Fri Dec 27 10:52:26 ID:TysXPiNrclVqjY_aDurE2fy5pp4-m?GVuBdz1mS5UieTboWNHvDX_lpHKm2fLqWEFvy4nkq



12 3 Г

1-4-0

Page: 1

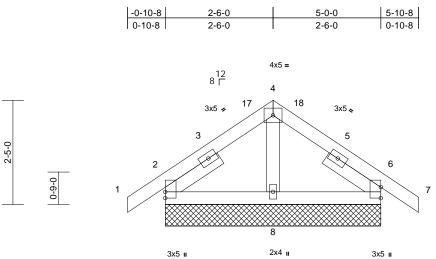
4-0-0

Scale = 1:24.9

Plate Offsets (X, Y): [2:0-2-15,Edge]

	13,Edgej						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) Spacing 20.0 Plate Grip DOL 20.0 Lumber DOL 10.0 Rep Stress Incr 0.0* Code 10.0 Experimentation	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.25 BC 0.25 WB 0.00 Matrix-MP	Vert(CT) -0.03	4-7 × 4-7 ×	l/defl L/d >999 240 >999 180 n/a n/a	PLATES GRIP MT20 244/190 Weight: 14 lb FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural w 4-0-0 oc put BOT CHORD Rigid ceiling bracing. REACTIONS (size) 2 Max Horiz 2 Max Uplift 2 Max Grav 2 4 FORCES (lb) - Max. C	2 2 rood sheathing directly applie rlins. g directly applied or 10-0-0 oc =0-3-0, 3= Mechanical, 4= fechanical	on the botto 3-06-00 tall chord and a 7) All bearings 8) Refer to girc 9) Provide med bearing plat 3. 10) One H2.5A recommend UPLIFT at jt does not coi LOAD CASE(S)	has been designed for a li m chord in all areas where by 2-00-00 wide will fit bet ny other members. are assumed to be User I der(s) for truss to truss cor chanical connection (by ot e capable of withstanding Simpson Strong-Tie conne ed to connect truss to bea (s) 2. This connection is for nsider lateral forces.	e a rectangle ween the bottom Defined . inections. hers) of truss to 35 lb uplift at joint ectors ring walls due to			
 II; Exp B; Enclosed; MW and C-C Exterior(2E) zo exposed; end vertical le members and forces & M Lumber DOL=1.60 plate TCLL: ASCE 7-16; Pr=2 Plate DOL=1.15); Is=1.0; Rou Cs=1.00; Ct=1.10 Unbalanced snow loads design. This truss has been des load of 12.0 psf or 1.00 to overhangs non-concurre This truss has been des 	6.0psf; BCDL=6.0psf; h=25ft; /FRS (envelope) exterior zon ne; cantilever left and right sft and right exposed;C-C for /WFRS for reactions shown; grip DOL=1.60 10.0 psf (roof LL: Lum DOL=1 10.0 psf (Lum DOL=1.15 Plate gh Cat B; Fully Exp.; Ce=0.9 have been considered for the igned for greater of min roof times flat roof load of 20.0 psent with other live loads.	e .15 ; is live f on				and a state of the	SEAL 036322 December 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	LGE	Common Supported Gable	1	1	Job Reference (optional)	170398882

2-7-3

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:XrGCZqZF4vOh0seSbYcl9py5por-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-0-0

Scale = 1:26.7

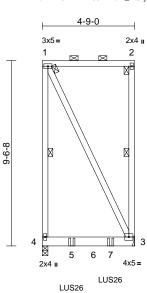
Scale = 1.20.7		1			i		· · ·						
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
FCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
FCDL	10.0	Rep Stress Incr	YES		WB	0.02	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 27 lb	FT = 20%
LUMBER	2x4 SP No.2		2	Plate DOL=	E 7-16; Pr=20.0 p 1.15); Pf=20.0 ps	f (Lum DC	DL=1.15 Plate	e					
BOT CHORD	2x4 SP No.2				Is=1.0; Rough Ca	at B; Fully	Exp.; Ce=0.9	9;					
DTHERS	2x4 SP No.3			Cs=1.00; Ct				h:a					
SLIDER	Left 2x4 SP No.3 1-6-0	1-6-0, Right 2x4 SP	110.0	design.	snow loads have								
BRACING				6) This truss has been designed for greater of min roof live									
OP CHORD	Structural wood she 5-0-0 oc purlins.	athing directly appli		load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.7) Gable requires continuous bottom chord bearing.									
SOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C	 Gable studs 	spaced at 2-0-0	oc.							
REACTIONS	(size) 2=5-0-0,	6=5-0-0, 8=5-0-0	, i		as been designed ad nonconcurrent			do					
	Max Horiz 2=53 (LC	13)	4		has been designe								
	Max Uplift 2=-59 (LC	,, , , ,			m chord in all are			opai					
	Max Grav 2=297 (L0 8=88 (LC		2),	3-06-00 tall	by 2-00-00 wide v ny other members	will fit betv	0	om					
ORCES	(lb) - Maximum Com Tension	npression/Maximum	1	1) Provide med	chanical connection e capable of with	on (by oth							
OP CHORD	1-2=0/46, 2-4=-157/ 6-7=0/46	206, 4-6=-157/206,			ft at joint 6, 59 lb ι								
BOT CHORD	2-8=-25/117, 6-8=-2	25/117		OAD CASE(S)									
VEBS	4-8=-120/68				Clandara								
IOTES												ORTH CA	in the
	ed roof live loads have	been considered fo	r									TH CA	Rain
this desigr											N	A	2. 911's
 Wind: ASC 	CE 7-16; Vult=130mph	(3-second gust)								/	5.	U E E OS	Carl In In

2) Wind: ASCE 7-16; Vult=130mph (3 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-10-8 to 2-1-8, Corner(3R) 2-1-8 to 2-10-8, Corner(3E) 2-10-8 to 5-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


SEAL 036322

With Hall

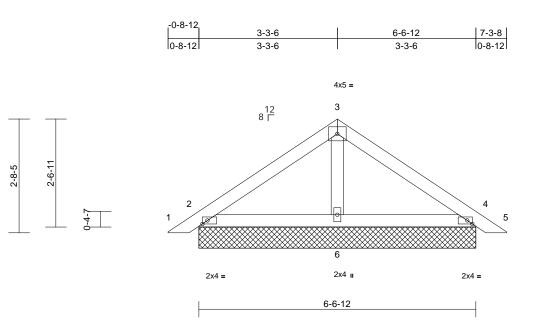
VIIII III WANNER

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG				
24110166-01	MGR	Flat Girder	2	2	Job Reference (optional)	170398883			

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:00 ID:bWAPOhBMAF39TAkcXI_zQLy5p8j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:59.3

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.58 0.48 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.04 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 118 lb	GRIP 244/190 FT = 20%
BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt	1-4, 2-3 nical, 4=0-3-8 (29) C 9), 4=-518 (LC 8) (21), 4=881 (LC 22) pression/Maximum 117/89, 2-3=-134/55 ther with 10d (224 - 1 row at 0-9-0 pows: 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LOAL lections have been noted as (F) or (B), (3-second gust) CDL=6.0psf; h=25ft; Ca velope) exterior zone; end vertical left and	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Provide aded Provide aded This truss ha chord live load * This truss ha chord live load * This truss ha chord and ar Refer to gird Provide mec bearing plate a. One H2.5A S recommende UPLIFT at jt(does not com Graphical pu or the orienta bottom chord Use Simpson Truss, Single oc max. starf Single and truss J Dead + Sno Increase=1 Uniform Load Vert: 1-2: Concentrate 	snow loads have b juate drainage to p s been designed for d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members, er(s) for truss to tru- nanical connection capable of withsta simpson Strong-Tie d to connect truss s) 4. This connectin sider lateral forces rlin representation tion of the purlin al a Strong-Tie LUS26 Ply Girder) or equing at 1-6-4 from th s(es) to back face of les where hanger i Standard w (balanced): Lum 15	Lum DC 3; Fully een cor revent v r a 10.0 ith any for a liv where fit betw with BC ss conre- to bear on is for does no ong the s (4-100 ivalent t e left e f bottor s in cor ber Inc	L=1.15 Plate Exp.; Ce=0.1 sidered for t vater pondin-) psf bottom other live load e load of 20. a rectangle veen the bott DL = 10.0ps rections. ers) of truss i 42 lb uplift al ctors ng walls due uplift only al to depict the s top and/or Girder, 3-10 spaced at 2-t to n chord. tact with lum	e 9; his g. hds. Opsf om f. to to to nd size bd 0-0 0 bber.				SEA 0363	EER.KI


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	Tenley A 3CG-Roof-Tenley A 3CG				
24110166-01	PB1	Piggyback	10	1	Job Reference (optional)	170398884			

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:01 ID:QS34Lpnz3owU30dlvvbi1gy5opH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

JC?f

Scale = 1:27.3	
----------------	--

Plate Offsets (X, Y): [2:0-1-7,Edge], [4:0-1-7,Edge]

	X, 1). [2.0-1-7,Euge],	[4.0-1-7,Euge]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.21 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBERTOP CHORD $2x4$ SP No.2BOT CHORD $2x4$ SP No.2OTHERS $2x4$ SP No.3BRACINGStructural wood sheathing directly applied or $6-0-0$ oc purlins.BOT CHORDStructural wood sheathing directly applied or $10-0-0$ oc bracing.BOT CHORDRigid ceiling directly applied or $10-0-0$ oc bracing.REACTIONS(size) $2=6-6-12, 4=6-6-12, 6=6-6-12$ Max Horiz $2=59$ (LC 13)Max Grav $2=258$ (LC 21), $4=258$ (LC 22), $6=234$ (LC 21)FORCES(lb) - Maximum Compression/Maximum TensionTOP CHORD $1-2=0/26, 2-3=-145/85, 3-4=-145/85, 4-5=0/26BOT CHORD2-6=-18/60, 4-6=-6/60WEBS3-6=-99/1$				Plate DOL= DOL=1.15); Cs=1.0; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa) * This truss ha chord live loa) * This truss da on the botton 3-06-00 tall l	7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have b as been designed for psf or 1.00 times file on-concurrent with es continuous botto spaced at 4-0-0 oc as been designed for ad nonconcurrent v has been designed n chord in all areas by 2-00-00 wide will hy other members.	Lum DC B; Fully peen col or great at roof I other li om chol c. or a 10. vith any for a liv s where	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof oad of 20.0 pi ve loads. d bearing. 0 psf bottom other live loa a rectangle	e 9; f live sf on ds. 0psf					
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 				Detail for Co	d Industry Piggyba nnection to base tr fied building desigr Standard	uss as				4	i	ORTH CA	ROUNT

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 4-9-11, Exterior(2E) 4-9-11 to 7-9-11 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

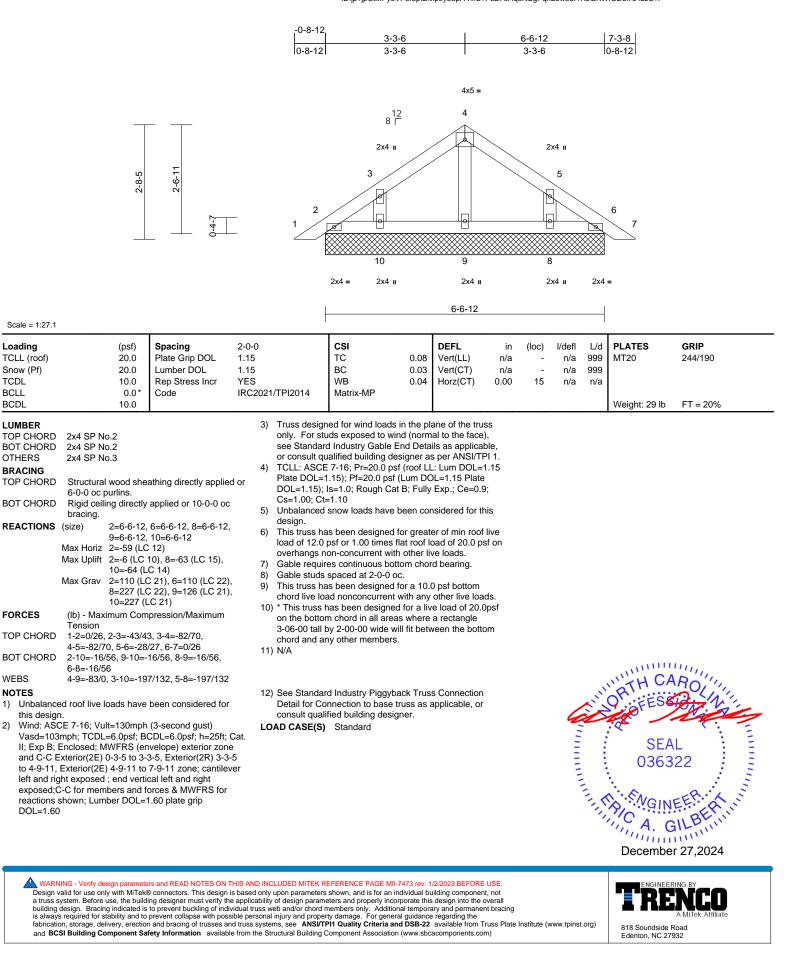
TRENCISERING BY A MITCH Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type		Ply	Tenley A 3CG-Roof-Tenley A 3CG				
24110166-01	PB1GE	Piggyback	1	1	Job Reference (optional)	170398885			

TCDL

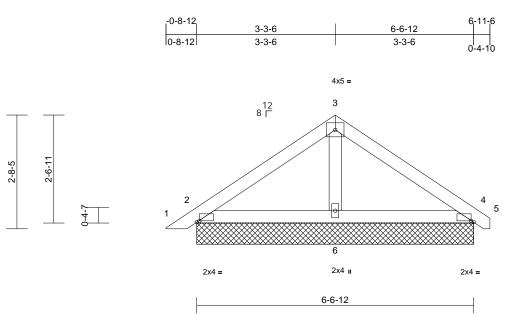
BCLL

BCDL


1)

2)

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue Dec 24 10:20:01 ID:jp?jpCtMPyoVP5feptDMp9y5opA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Job	Truss	Truss Type		Ply	Tenley A 3CG-Roof-Tenley A 3CG				
24110166-01	PB2	Piggyback	10	1	Job Reference (optional)	170398886			

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:01 ID:bJip4mjCTy9LL5A8ZeUInPy5opN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:27.3

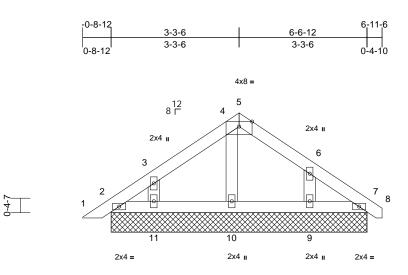
Plate Offsets (X, Y): [2:0-0-12.0-0-6], [4:0-0-12.0-0-6]

Plate Offsets	(X, Y): [2:0-0-12,0-0-6], [4:0-0-12,0-0-6]	-									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.22 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=6-6-12, Max Horiz 2=58 (LC Max Uplift 2=-34 (LC Max Grav 2=256 (LC 6=235 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-3=-144/ 4-5=0/16	d or d or d or d or d or d or d or d or	SCE 7-16; Pr=20.0 ps DL=1.15); Pf=20.0 psf (5); Is=1.0; Rough Ca ; Ct=1.10 ced snow loads have s has been designed 2.0 psf or 1.00 times (gs non-concurrent with quires continuous bot uds spaced at 4-0-0 o s has been designed e load nonconcurrent iss has been designed tall by 2-00-00 wide w d any other members	(Lum DC t B; Fully been cou for great flat roof I h other li ttom chor c. for a 10. with any d for a liv as where vill fit betv	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof oad of 20.0 pi ve loads. d bearing. D ps bottom other live loa e load of 20.0 a rectangle	e 9; f live sf on ds. 0psf						
this desig 2) Wind: ASt Vasd=100 II; Exp B; and C-C E to 4-7-10, left and rig exposed;(reactions DOL=1.60 3) Truss des only. For	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Br Enclosed; MWFRS (er Exterior(2E) 0-3-5 to 3- Exterior(2E) 4-7-10 to ght exposed ; end verti C-C for members and fr shown; Lumber DOL=	(3-second gust) CDL=6.0psf; h=25ft; (ivelope) exterior zone 3-5, Exterior(2R) 3-3- 7-7-10 zone; cantilev cal left and right orces & MWFRS for 1.60 plate grip the plane of the truss (normal to the face),	Detail fo consult o LOAD CASE 5 5 rer	ndard Industry Piggyb r Connection to base ualified building desig :(S) Standard	truss as					N. Q.D	SEA 0363	

- left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

G

minim December 27,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	Tenley A 3CG-Roof-Tenley A 3CG				
24110166-01	PB2GE	Piggyback	1	1	Job Reference (optional)	170398887			

2-6-11

2-8-5

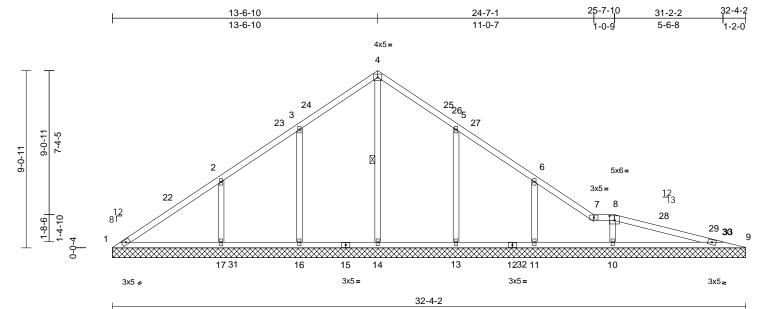
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:01 ID:b1BOWyWYTk0lpUNt3ahJbqy5ope-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 🛛

6-6-12

Scale = 1:29.6											I		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 F 20.0 L 10.0 F	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.03 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	10=6-6-12, 1 Max Horiz 2=58 (LC 13 Max Uplift 2=-10 (LC 10 10=-5 (LC 14 Max Grav 2=78 (LC 21	pplied or 6-0-0 oc =6-6-12, 9=6-6-12, 11=6-6-12 3) 9), 9=-61 (LC 15), 4), 11=-64 (LC 14) 1), 7=104 (LC 22), 10=182 (LC 21) 21) ession/Maximum 3-4=-52/59, 3, 6-7=-52/46, 7-8=(5 6 7 8 9 , 1	only. For stu see Standarr or consult qu) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=) Unbalanced design.) This truss ha load of 12.0 overhangs n overhangs n) Gable requirn) Gable studs) This truss ha chord live loa chord live loa 0) * This truss ha chord live loa chord live loa	ed for wind load ds exposed to w 1 Industry Gable alified building d 7-16; Pr=20.0 p .15); Pf=20.0 ps s=1.0; Rough C .110 snow loads have s been designed of or 1.00 times pon-concurrent wi es continuous be spaced at 2-0-0 s been designed d nonconcurren has been designed n chord in all are y 2-00-00 wide v by other member	vind (norm End Detai lesigner as sis (roof LL f (Lum DC at B; Fully b been cor d for greate flat roof Ic ith other liv bttom chor oc. d for a 10. t with any ed for a liv as where will fit betw	al to the face ils as applica s per ANSI/T: .: Lum DOL= PL=1.15 Plate Exp.; Ce=0.! asidered for t er of min roof pad of 20.0 p ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle), ble, Pl 1. 1.15 9; his f live sf on ds. 0psf					
, this desigr	4-10=-139/45, 3-11=-1 ed roof live loads have be	een considered for	1	Detail for Co	d Industry Piggyl nnection to base fied building des Standard	truss as a				4	run a	OR FESS	ROLIN

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 4-7-10, Exterior(2E) 4-7-10 to 7-7-10 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V1	Valley	1	1	Job Reference (optional)	170398888

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:01 ID:?cysa_6EjqFzesI2hhFEViy5pbD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:58.8

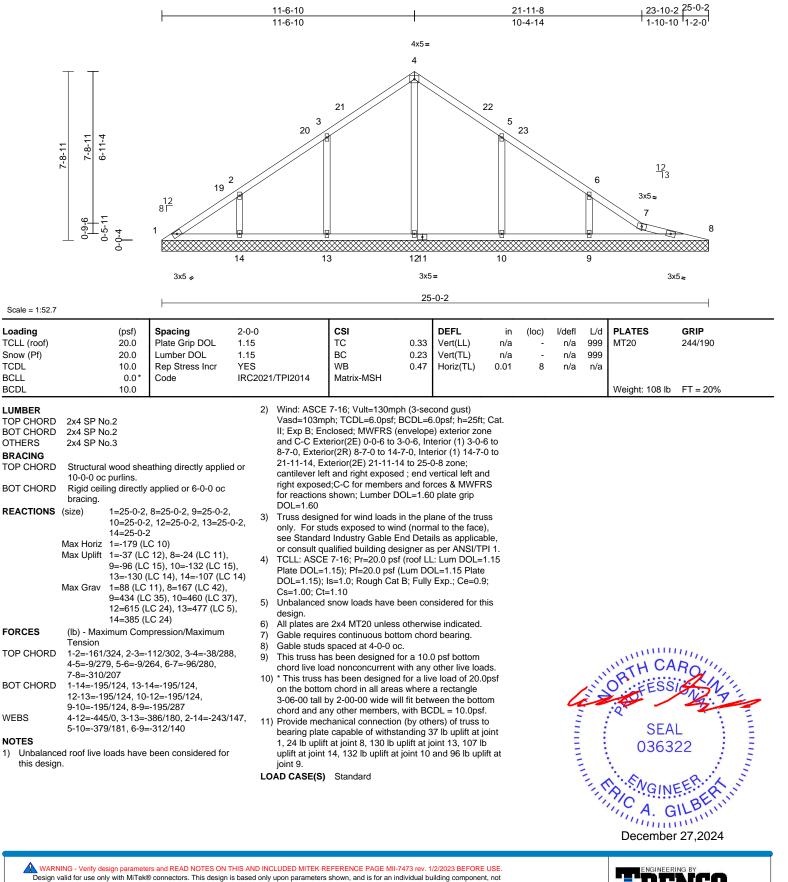
Plate Offsets (X, Y): [8:0-3-0,0-2-12]

												1	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.54		n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.72	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.28	Horiz(TL)	0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 143 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		,	this design. Wind: ASCE Vasd=103m	roof live loads hav 7-16; Vult=130m bh; TCDL=6.0psf; closed; MWFRS (ph (3-seo BCDL=6	cond gust) 5.0psf; h=25ft;	Cat.	or the bott		tation rd.	of the purlin along	es not depict the size g the top and/or
TOP CHORD	6-0-0 oc purlins, exe 2-0-0 oc purlins (10-	-0-0 max.): 7-8.	d or	10-4-3, Exter 16-9-13 to 24	erior(2E) 0-0-6 to rior(2R) 10-4-3 to 4-7-7, Exterior(2R o 31-3-5 zone; ca	16-9-13,) 24-7-7	Interior (1) to 28-0-8, Ext						
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc		exposed ; en	d vertical left and	right exp	oosed;C-Č for						
WEBS	1 Row at midpt	4-14			d forces & MWFR			;					
	11=32-4- 16=32-4- Max Horiz 1=-210 (L Max Uplift 1=-26 (LC 10=-66 (L 13=-132 (17=-151 (Max Grav 1=163 (LC 10=570 (l 13=560 (l 16=466 (l	(4-2, 3) (), 4) (14), 5) (6), 5) (4), 6)	Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Provide adeo	=1.60 plate grip I lead for wind loads dds exposed to wii d Industry Gable E lalified building de 7-16; Pr=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have quate drainage to 2 2x4 MT20 unless	in the pland and (norm End Deta ssigner as f (roof LL (Lum DC t B; Fully been cor prevent	ane of the trus all to the face) ills as applicab s per ANSI/TF .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 hsidered for th water ponding), ole, PI 1. 1.15); his				WITH CA	NRO1111	
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8) 9)		es continuous bot spaced at 4-0-0 o		d bearing.				1	OFFESS	ON'S
TOP CHORD			10) This truss ha chord live loa	spaced at 4-0-0 o is been designed ad nonconcurrent has been designed	for a 10.0 with any	other live load			6	12		TAL
BOT CHORD	1-17=-146/205, 16- 14-16=-146/145, 13 11-13=-146/145, 10 9-10=-126/665	17=-146/145, -14=-146/145, -11=-146/145,	1:	on the bottor 3-06-00 tall to chord and an	n chord in all area by 2-00-00 wide w by other members hanical connectio	is where ill fit betv , with BC	a rectangle veen the botto CDL = 10.0psf.	om				SEA 0363	• -
WEBS	4-14=-360/0, 3-16=- 5-13=-393/183, 6-1 8-10=-344/132	361/168, 2-17=-335/1 I=-340/147,	88,	bearing plate 1, 17 lb uplift uplift at joint	e capable of withst at joint 9, 115 lb 17, 132 lb uplift at 66 lb uplift at joint	tanding 2 uplift at jo t joint 13,	26 lb uplift at jo pint 16, 151 lb	oint o				A. C	BELIN
												1111	COLUMN STATES

December 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V2	Valley	1	1	Job Reference (optional)	170398889

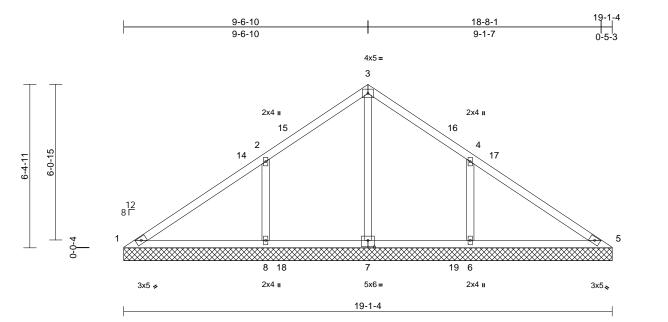

1)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:01 ID:eBCqfvSQulvrdJ0dtHH1Apy5pam-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V3	Valley	1	1	Job Reference (optional)	170398890

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:01 ID:fSkFDjg4uz2R9wpuNL41MPy5paV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:45.1

Plate Offsets (X, Y): [7:0-3-0,0-3-0]

		1					-					1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		Plate Grip DOL	1.15		тс	0.49	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.26	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.43	Horiz(TL)	-0.01	13	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		()						
BCDL	10.0											Weight: 79 lb	FT = 20%
LUMBER		•	3)		ned for wind loads in								
TOP CHOR	D 2x4 SP No.2				uds exposed to wine								
BOT CHOR					d Industry Gable Er								
OTHERS	2x4 SP No.3				alified building des								
BRACING			4)		7-16; Pr=20.0 psf								
TOP CHOR	D Structural wood she 10-0-0 oc purlins.	eathing directly applie	ed or	DOL=1.15);	I.15); Pf=20.0 psf (I Is=1.0; Rough Cat								
BOT CHOR		applied or 6-0-0 oc	5)		=1.10 snow loads have b	een coi	nsidered for t	his					
REACTION	S (size) 1=19-1-4	, 5=19-1-4, 6=19-1-4	., 6)	design. Gable requir	es continuous botto	om chou	d bearing						
	7=19-1-4	, 8=19-1-4	7)		spaced at 4-0-0 oc		u bearing.						
	Max Horiz 1=146 (L		ຄ່		as been designed for) nsf hottom						
	Max Uplift 1=-88 (LC), 0)		ad nonconcurrent w			ads					
	8=-170 (L				has been designed								
	Max Grav 1=88 (LC				m chord in all areas								
		=732 (LC 6), 8=589 (LC 5)	3-06-00 tall I	by 2-00-00 wide wil	l fit betv	veen the bott	om					
FORCES	(lb) - Maximum Con	npression/Maximum		chord and ar	y other members,	with BC	DL = 10.0ps	f.					
	Tension		10) Provide med	hanical connection	(by oth	ers) of truss	to					
TOP CHOR	,	/418, 3-4=0/439,		bearing plate	e capable of withsta	inding 8	88 lb uplift at j	joint					
	4-5=-136/501			1, 170 lb upl	ift at joint 8 and 164	1 lb upli	ft at joint 6.	-					
BOT CHOR	,	-376/104, 5-6=-400/1		DAD CASE(S)	Standard								1111
WEBS	3-7=-606/0, 2-8=-44	2/205, 4-6=-441/204		(-)								M' CA	D
NOTES												"aTH UT	NOL !!!
 Unbalar this des 	nced roof live loads have sign.	been considered for	r							1	11	OFFESS	ICAN 'S
	SCE 7-16; Vult=130mph									Z	2		Mill
	03mph; TCDL=6.0psf; B											:*	N
	B; Enclosed; MWFRS (er											SEA	1 E E
	C Exterior(2E) 0-0-6 to 3-									-			• -
	Exterior(2R) 6-7-0 to 12-7) to							-		0363	22 -
), Exterior(2E) 16-1-10 to									-			1 E
	er left and right exposed										-	·	- 1 E
	posed;C-C for members		S								11	A. SNOW	FFM. A S
	tions shown; Lumber DC	DL=1.60 plate grip									1	SGIN	5. 24 1
DOL=1	.60										1	ICA C	II BEIN

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 6-7-0, Exterior(2R) 6-7-0 to 12-7-0, Interior (1) 12-7-0 to 16-1-10, Exterior(2E) 16-1-10 to 19-1-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G 11111111 December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V4	Valley	1	1	Job Reference (optional)	170398891

Loading

TCDL

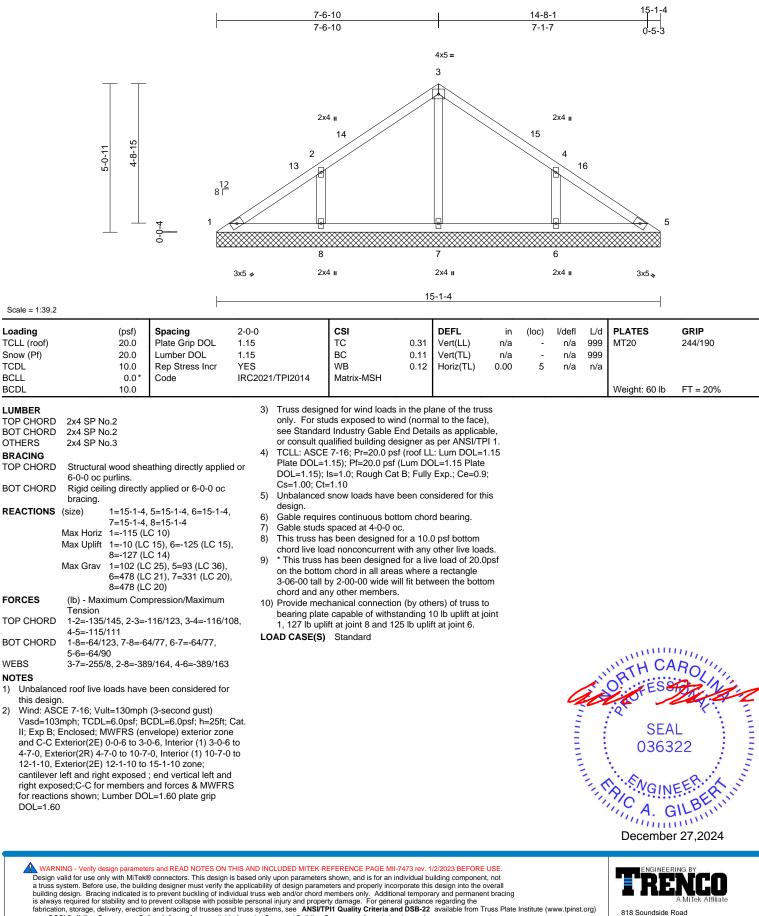
BCLL

BCDL

OTHERS

FORCES

WEBS


NOTES

1)

2)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:01 ID:QgaYf5LGR38uw?A1ML??tJy5pTA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V5	Valley	1	1	Job Reference (optional)	170398892

5-6-10

5-6-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

3-4-15

12 8 Г

2-0-0

1.15

1 15

YES

IRC2021/TPI2014

4)

5)

3x5 🖌

3-8-11

(psf)

20.0

20.0

10.0

10.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

2-4=-769/251

10-0-0 oc purlins.

Max Horiz 1=-83 (LC 10)

(LC 21)

1-2=-120/487, 2-3=-120/487

1-4=-358/168, 3-4=-358/168

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

to 8-1-10, Exterior(2E) 8-1-10 to 11-1-10 zone; cantilever

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6

Wind: ASCE 7-16; Vult=130mph (3-second gust)

left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

0.0

Spacing

Code

Structural wood sheathing directly applied or

1=11-1-4, 3=11-1-4, 4=11-1-4

1=-75 (LC 21), 3=-75 (LC 20),

1=81 (LC 20), 3=81 (LC 21), 4=916

Rigid ceiling directly applied or 6-0-0 oc

4=-104 (LC 14)

(lb) - Maximum Compression/Maximum

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Scale = 1:33.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WFBS

1)

2)

3)

NOTES

TOP CHORD

BOT CHORD

this design

DOL=1.60

REACTIONS (size)

TCDL

BCLL

BCDL

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:02 ID:Fqxpw8Q11vu2ewdAic6P6ay5pT4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-8-1

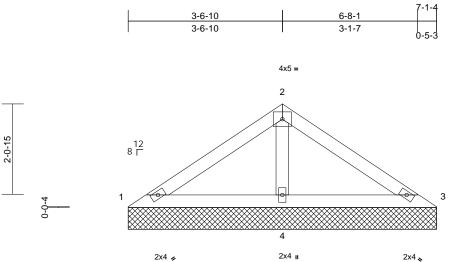
5-1-7

Page: 1

4x5 = 2 9 10 3 4 2x4 ı 3x5 💊 11-1-4 CSI DEFL l/defl L/d PLATES GRIP in (loc) TC 0.59 Vert(LL) n/a 999 MT20 244/190 n/a BC 0.52 Vert(TL) n/a n/a 999 WB 0.20 Horiz(TL) 0.01 4 n/a n/a Matrix-MSH Weight: 39 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this

- desian.
- Gable requires continuous bottom chord bearing. 6)
- 7) Gable studs spaced at 4-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 1, 75 lb uplift at joint 3 and 104 lb uplift at joint 4. LOAD CASE(S) Standard
 - C Variation SEAL 036322 G

(1111111) December 27,2024 VIIIIIIIIIIII


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V6	Valley	1	1	Job Reference (optional)	170398893

2-4-11

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:02 ID:qXn6swapkDf3K4itXYMihXy5pSs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-1-4

Scale - 1.26 5

Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	CSI TC BC WB Matrix-MP	0.23 0.24 0.07	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
applied or 6-0-0 oc 3=7-1-4, 4=7-1-4 10) 21), 3=-9 (LC 15), 4=-5 2 20), 3=103 (LC 21), 2 21) pression/Maximum 8/225 190/128 been considered for (3-second gust) CDL=6.0psf; h=25ft; Ca velope) exterior zone 0-6, Exterior(2R) 3-0-6 7-1-10 zone; cantilever cal left and right orces & MWFRS for 1.60 plate grip the plane of the truss (normal to the face), d Details as applicable,	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live loo 9) * This truss l on the botton 3-06-00 tall l chord and an 10) Provide med bearing plate 9 lb uplift at LOAD CASE(S)	I.15); Pf=20.0 psf Is=1.0; Rough Car =1.10 snow loads have es continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent nas been designed nchord in all area by 2-00-00 wide w ny other members hanical connection e capable of withst joint 3 and 51 lb u	(Lum DC t B; Fully been cor tom chor c. for a 10.1 with any d for a liv s where iill fit betv n (by oth tanding §	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t I buplift at joi	ds. Opsf om				ORTH CA	• –
	Plate Grip DOL Lumber DOL Rep Stress Incr Code applied or 6-0-0 oc =7-1-4, 4=7-1-4 10) 21), 3=-9 (LC 15), 4=-5 20), 3=103 (LC 21), 21) pression/Maximum 3/225 190/128 been considered for (3-second gust) DDL=6.0psf; h=25ft; Ca velope) exterior zone b-6, Exterior(2R) 3-0-6 7-1-10 zone; cantileve sal left and right prces & MWFRS for .60 plate grip the plane of the truss (normal to the face), 1 Details as applicable	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014 4) TCLL: ASCE Plate DOL=- DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live los 7) Gable studs 8) This truss ha chord live los 9) * This truss ha chord live los 10) 21), 3=-9 (LC 15), 4=-51 20), 3=103 (LC 21), 21) pression/Maximum 8/225 190/128 been considered for (3-second gust) DDL=6.0psf; h=25ft; Cat. velope) exterior zone -6, Exterior(2R) 3-0-6 7-1-10 zone; cantilever al left and right proces & MWFRS for .60 plate grip the plane of the truss (normal to the face),	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014 Matrix-MP 4) TCLL: ASCE 7-16; Pr=20.0 ps Plate DOL=1.15); IF=20.0 ps Plate DOL=1.15); IS=1.0; Rough Ca Cs=1.00; Ct=1.10 5) Unbalanced snow loads have design. 6) Gable requires continuous bot 7) Gable studs spaced at 4-0-0 oc 8) This truss has been designed chord live load nonconcurrent 9) * This truss has been designed chord live load nonconcurrent 9) * This truss has been designed chord live load nonconcurrent 9) * This truss has been designed chord live load nonconcurrent 9) * This truss has been designed on the bottom chord in all area 3-06-00 tall by 2-00-00 wide w chord and any other members 10) Provide mechanical connection bearing plate capable of withs 9 Ib uplift at joint 3 and 51 Ib u LOAD CASE(S) Standard LOAD CASE(S) Standard	Plate Grip DOL 1.15 TC 0.23 Lumber DOL 1.15 BC 0.24 Rep Stress Incr YES WB 0.07 Code IRC2021/TPI2014 Matrix-MP 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Cs=1.00; Ct=1.10 9 athing directly applied or applied or 6-0-0 oc 4) TCLL: ASCE continuous bottom chor Gable requires continuous bottom chor =7-1-4, 4=7-1-4 6 5 Unbalanced snow loads have been condesign. 10) 5 Unbalanced snow loads have been condesign. 6 20), 3=103 (LC 21), 121) 7 This truss has been designed for a liv on the bottom chord in all areas where 3-06-00 tall by 2-00-00 wide will fit betw chord and any other members. 10) 8/225 10 Provide mechanical connection (by oth- bearing plate capable of withstanding 8 9 Ib uplift at joint 3 and 51 Ib uplift at joint 3 and 51 Ib uplift at joint 2 OAD CASE(S) Standard Boeen considered for (3-second gust) CDL=6.0psf; h=25ft; Cat. velope) exterior zone be6, Exterior(2R) 3-0-6 7-1-10 zone; cantilever val left and right proces & MWFRS for .60 plate grip Standard the plane of the truss (normal to the face), 1 Details as applicable, Herein an inght	Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL= Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.5 Code Code athing directly applied or applied or 6-0-0 oc =7-1-4, 4=7-1-4 10) 21), 3=-9 (LC 15), 4=-51 :20), 3=103 (LC 21), :21) pression/Maximum 3/225 190/128 been considered for (3-second gust) CDL=6.0ps; h=25ft; Cat. velope) exterior zone -6, Exterior(2R) 3-0-6 7-1-10 zone; cantilever al left and right proces & MWFRS for .60 plate grip the plane of the truss (normal to the face), 1Details as applicable,	Plate Gip DOL 1.15 TC 0.23 Vert(LL) n/a Lumber DOL 1.15 BC 0.24 Vert(TL) n/a Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 Code IRC2021/TPI2014 Matrix-MP Horiz(TL) 0.00 4) TCL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Cc1=1.10 5) Unbalanced snow loads have been considered for this design. applied or 6-0-0 oc 6 Gable requires continuous bottom chord bearing. 6 Gable requires continuous bottom chord bearing. 1) .9-9 (LC 15), 4=-51 .6 Gable requires continuous bottom chord is ald on concourtent with any other live loads. 1) .9-9 (LC 15), 4=-51 .9 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 10) .10 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 9 lb uplift at joint 3 and 51 lb uplift at joint 4. 20DL=6.0psf; h=25ft; Cat. Vertor 200; Standard Vertor 200; Standard 2012E6.0psf; h=25ft; Cat. Vertor 200; Standard	Plate Grip DOL 1.15 TC 0.23 Vert(LL) n/a - Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 4 Code IRC2021/TPI2014 Matrix-MP Vert(LL) n/a - 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 0 athing directly applied or applied or 6-0-0 oc 6 Gable requires continuous bottom chord bearing. 6 applied or 6-0-0 oc 7 Gable studs spaced at 4-0-0 oc. 7 This truss has been designed for a 10.0 psf bottom chord live load on onconcurrent with any other live loads. 9) * This truss has been designed for a 10.0 psf bottom chord and any other members. 10) 10 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 9 lb uplift at joint 3 and 51 lb uplift at joint 4. LOAD CASE(S) Standard W2255 90/128 Verterior zone -6, Exterior(ZR) 3-0-6 Verterior zone -6, Exterior(ZR) 3-0-6 Verterior zone -6, Exterior(ZR) 3-0-6 <td>Plate Gip DOL 1.15 TC 0.23 Vert(LL) n/a - n/a Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - n/a Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 4 n/a Code IRC2021/TPI2014 Matrix-MP Matrix-MP Horiz(TL) 0.00 4 n/a athing directly applied or applied or applied or 6-0-0 cc 6 Gable requires continuous bottom chord bearing. 6 Gable requires continuous bottom chord bearing. 6 Gable requires continuous bottom chord bearing. 7 Gable studs spaced at 4-0-0 oc. 7 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a 10.0 psf bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 9 lb uplift at joint 3 and 51 lb uplift at joint 4. V225 90/128 Vert(CL) n/a LOAD CASE(S) Standard been considered for Gasecond gust) DL=6.0psf; h=25ft; Cat. velope) exterior zone +6. Exterior(ZR) 3-0-6 Feabrace Feabrace Feabrace Feabrace <</td> <td>Plate Gip DOL 1.15 TC 0.23 Vert(LL) n/a n/a 999 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a n/a 999 Code IRC2021/TPI2014 WB 0.07 Matrix-MP Vert(TL) n/a n/a 999 Horiz(TL) 0.00 4 n/a n/a 999 Horiz(TL) 0.00 4 n/a n/a 999 Horiz(TL) 0.00 4 n/a n/a Code IRC2021/TPI2014 Matrix-MP Vert(LL) n/a n/a 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Subclassing Color, Ct=1.10 Subclassing Color, Ct=1.10 5) Unbalanced snow loads have been considered for this design. Gable studs spaced at 4-0-0 oc. Strist truss has been designed for a 10.0 psf bottom chord live loads. 9 * This truss has been designed for a 10.0 psf bottom chord live loads. 9 * This truss has been designed for a 10.0 psf bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 9 lb uplift at joint 3</td> <td>Plate Grip DOL 1.15 TC 0.23 Vert(LL) n/a n/a 999 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - n/a 999 Code IRC2021/TPI2014 Matrix-MP WB 0.07 Vert(TL) n/a n/a n/a MW Code IRC2021/TPI2014 Matrix-MP WB 0.07 Vert(TL) n/a n/a n/a MW Code IRC2021/TPI2014 Matrix-MP Weight: 24 lb Weight: 24 lb Weight: 24 lb 4) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DOL=1.15 Plate DOL=1.15); I=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.0; Cs=1.0</td>	Plate Gip DOL 1.15 TC 0.23 Vert(LL) n/a - n/a Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - n/a Rep Stress Incr YES WB 0.07 Horiz(TL) 0.00 4 n/a Code IRC2021/TPI2014 Matrix-MP Matrix-MP Horiz(TL) 0.00 4 n/a athing directly applied or applied or applied or 6-0-0 cc 6 Gable requires continuous bottom chord bearing. 6 Gable requires continuous bottom chord bearing. 6 Gable requires continuous bottom chord bearing. 7 Gable studs spaced at 4-0-0 oc. 7 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a 10.0 psf bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 9 lb uplift at joint 3 and 51 lb uplift at joint 4. V225 90/128 Vert(CL) n/a LOAD CASE(S) Standard been considered for Gasecond gust) DL=6.0psf; h=25ft; Cat. velope) exterior zone +6. Exterior(ZR) 3-0-6 Feabrace Feabrace Feabrace Feabrace <	Plate Gip DOL 1.15 TC 0.23 Vert(LL) n/a n/a 999 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a n/a 999 Code IRC2021/TPI2014 WB 0.07 Matrix-MP Vert(TL) n/a n/a 999 Horiz(TL) 0.00 4 n/a n/a 999 Horiz(TL) 0.00 4 n/a n/a 999 Horiz(TL) 0.00 4 n/a n/a Code IRC2021/TPI2014 Matrix-MP Vert(LL) n/a n/a 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Subclassing Color, Ct=1.10 Subclassing Color, Ct=1.10 5) Unbalanced snow loads have been considered for this design. Gable studs spaced at 4-0-0 oc. Strist truss has been designed for a 10.0 psf bottom chord live loads. 9 * This truss has been designed for a 10.0 psf bottom chord live loads. 9 * This truss has been designed for a 10.0 psf bottom chord and any other members. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 1, 9 lb uplift at joint 3	Plate Grip DOL 1.15 TC 0.23 Vert(LL) n/a n/a 999 Lumber DOL 1.15 BC 0.24 Vert(TL) n/a - n/a 999 Code IRC2021/TPI2014 Matrix-MP WB 0.07 Vert(TL) n/a n/a n/a MW Code IRC2021/TPI2014 Matrix-MP WB 0.07 Vert(TL) n/a n/a n/a MW Code IRC2021/TPI2014 Matrix-MP Weight: 24 lb Weight: 24 lb Weight: 24 lb 4) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DOL=1.15 Plate DOL=1.15); I=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.0; Cs=1.0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GI A. GILIN December 27,2024

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V7	Valley	1	1	Job Reference (optional)	170398894

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:02 ID:BUa?veeyYIILQraqJ5xtOay5pSn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-8-1

1-1-7

3-1-4

3

Page: 1

3x5 = 12 8 Г 2 0-0-4

2x4 🍫

0-8-15

1-0-11

1-6-10

1-6-10

2x4 💊

3-1-4

Scale = 1:24.1

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2 BOT CHORD 2 BRACING TOP CHORD 8 BOT CHORD 9 BOT CHORD 9 BOT CHORD 9 TOP CHORD 9 BOT CHORD 9 DOT	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-1-4 oc purlins. Rigid ceiling directly bracing. ize) 1=3-1-4, 2 ax Horiz 1=-21 (LC ax Uplift 1=-12 (LC ax Grav 1=140 (LC (b) - Maximum Com Tension 1-2=-204/74, 2-3=-2 1-3=-48/161 roof live loads have 7-16; Vult=130mph oh; TCDL=6.0psf; Bi closed; MWFRS (er erior(2E) zone; cant d vertical left and rig d forces & MWFRS i=1.60 plate grip DC ted for wind loads in uds exposed to wind d Industry Gable En- ialified building desig 7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (12) 14), 3=-12 (LC 15) 20), 3=140 (LC 21) pression/Maximum 04/74 been considered for (3-second gust) CDL=6.0psf; h=25ft; typelope) exterior zon ilever left and right ght exposed; C-C for for reactions shown. 	8) This truss chord live 9) * This trus on the boi c 10) Provide m bearing pl 1 and 12 LOAD CASE() r Cat. r Cat. r Cat. r Ss 0, ole, P11. 1.15	ds spaced at 4-0-0 of has been designed load nonconcurrent s has been designe tom chord in all area II by 2-00-00 wide w any other members echanical connectio ate capable of withs b uplift at joint 3. S) Standard	for a 10. with any d for a liv as where vill fit betv s. on (by oth	other live loa e load of 20.0 a rectangle veen the botto ers) of truss t	Opsf com to			A LAND	Weight: 9 lb ORTH CA ORTES SEA 0363	
design.		en considered for th m chord bearing.	is								Decembe	GILBER 111 or 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V11	Valley	1	1	Job Reference (optional)	170398895

5-10-8

5-10-8

2x4 II

2

8

2x4 🛛

3x5 🍫

12 12 Г 13

Carter Components (Sanford, NC), Sanford, NC - 27332,

5-10-12

2-7-

ċ

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:02 ID:F3LypOPXS?GpX?zJC3UVgyy5pLL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> <u>11-5-9</u> 5-7-1

4x5= 3 11-9-0

Page: 1

 14

 4

 7

 6

 2x4 II

 3x5

 11-9-0

2x4 II

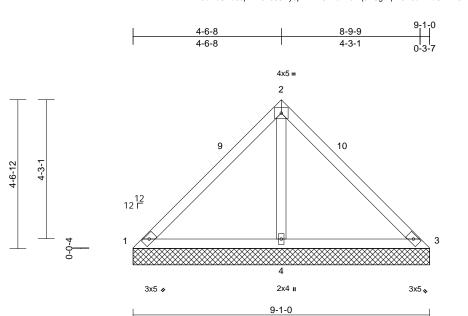
Scale = 1:45.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	2 2 1	Spacing 0.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.12 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.3 Structural woo 6-0-0 oc purlin Rigid ceiling (size) 1=1 Max Horiz 1=1 Max Uplift 1=-4 6=4	irectly applied or 10-0-0 1-9-0, 5=11-9-0, 6=11-9- 1-9-0, 8=11-9-0	0, 5) 0, 6) 7)), 8) 14) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable studs This truss ha chord live log * This truss ha chord live log on the bottor 3-06-00 tall b	snow loads have es continuous bot spaced at 4-0-0 c s been designed di nonconcurrent ias been designe n chord in all area by 2-00-00 wide w	nd (norm End Detai ssigner as sf (roof LL (Lum DC tom LT) been cor tom chor c. for a 10.0 with any d for a liv as where rill fit betw	al to the face ils as applica s per ANSI/TI :Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle), ble, PI 1. 1.15 d; his ds. Dpsf					
FORCES	Tension 1-2=-158/124,	n Compression/Maximun 2-3=-253/134, 3-4=-253	10	Provide mec bearing plate	y other members hanical connectio capable of withs at joint 5, 176 lb	n (by oth tanding 5	i0 lb uplift at j	oint					
BOT CHORD WEBS	5-6=-41/95	8=-41/95, 6-7=-41/95, 8=-421/283, 4-6=-421/28		uplift at joint AD CASE(S)	6.	. ,						TH CA	11111

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- 2) Wind: ASCE 7-16, Vulle130nph (3-sectoral gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 8-9-4, Exterior(2E) 8-9-4 to 11-9-4 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to preven toucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPII Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

December 27,2024

SEAL


036322

Vannannan

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V12	Valley	1	1	Job Reference (optional)	170398896

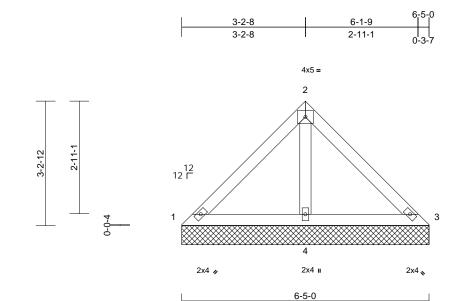
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:02 ID:YPGbHoUwo98pt4?f6168SRy5pLE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:35.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.41 0.41 0.20	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 Structural wood sh 9-1-0 oc purlins. Rigid ceiling direct bracing. (size) 1=9-1-0, Max Horiz 1=102 (I Max Uplift 1=-34 (L 4=-128 (Max Grav 1=108 (I 4=711 (I	C 21), 3=-34 (LC 20) LC 14) .C 20), 3=108 (LC 21 .C 20) mpression/Maximum 128/327	6) 7) 8) 9) ,), 10	Plate DOL=' DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live lo: * This truss I on the bottor 3-06-00 tail I chord and at) Provide mec bearing plate	snow loads have es continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all are: by 2-00-00 wide v hy other members hanical connection e capable of withs t at joint 3 and 12	(Lum DC at B; Fully been cor toon chor oc. for a 10.0 with any d for a liv as where vill fit betv s. no (by oth standing 3	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the botthers) of truss is the lought fat ja	e); his ds. Dpsf om					
NOTES 1) Unbalance this design	ed roof live loads hav n.	e been considered fo	r									, minin	11111

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-4 to 3-0-4, Exterior(2R) 3-0-4 to 6-1-4, Exterior(2E) 6-1-4 to 9-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V13	Valley	1	1	Job Reference (optional)	170398897

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:02 ID:rlBFIBaJ9I1qC92?0?knFvy5pL7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

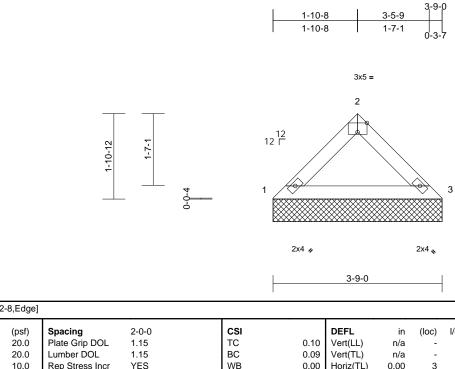
Page: 1

Scale = 1:29.9

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.20	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.20	Vert(TL)	n/a	_	n/a	999	101120	244/130
TCDL	10.0	Rep Stress Incr	YES		WB	0.22	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code		1/TPI2014	Matrix-MP	0.07	110112(112)	0.00	0	n/a	n/a		
BCDL	10.0		IIII									Weight: 26 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-5-0 oc purlins. Rigid ceiling directly bracing. (size) 1=6-5-0, 1 Max Horiz 1=-71 (LC Max Uplift 1=-2 (LC (LC 14) Max Grav 1=108 (LC 4=448 (LC	v applied or 6-0-0 oc 3=6-5-0, 4=6-5-0 C 10) 21), 3=-2 (LC 20), 4 C 20), 3=108 (LC 2 ⁻ C 20)	9) 10 !=-77 I), LC	design. Gable requir Gable studs This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a) Provide mee bearing plate	snow loads have res continuous bo spaced at 4-0-0 as been designe m chord in all are by 2-00-00 wide ny other member hanical connecti e capable of with joint 3 and 77 lb Standard	ottom chor oc. d for a 10.1 it with any ed for a liv eas where will fit betw rs. on (by oth standing 2	d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the bott ers) of truss t t buplift at jo	nds. Opsf om to					
FORCES	(lb) - Maximum Corr Tension	npression/Maximum											
TOP CHORD		34/174											
BOT CHORD													
WEBS	2-4=-347/184												
NOTES													
1) Unbalance this design	ed roof live loads have n.	been considered fo	or										11111

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WITTER PARTY SEAL 036322 GI Thummen and the second December 27,2024


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Tenley A 3CG-Roof-Tenley A 3CG	
24110166-01	V14	Valley	1	1	Job Reference (optional)	0398898

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Dec 24 10:20:02 ID:fvYW?Ee4l8nzw4V9NGrBUAy5pL1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:25.6

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.09 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BOT CHORD 2 BRACING TOP CHORD S BOT CHORD F BOT CHORD (si Ma Ma FORCES (I TOP CHORD 1	-9-0 oc purlins. tigid ceiling directly racing. ze) 1=3-9-0, 5 ax Horiz 1=40 (LC ax Uplift 1=-10 (LC ax Grav 1=180 (LC	11) C 14), 3=-10 (LC 15) C 20), 3=180 (LC 21 npression/Maximum	8) This truss chord live 9) * This truss on the bott 3-06-00 ta chord and 10) Provide m bearing pla 1 and 10 lb LOAD CASE(5	Is spaced at 4-0-0 c has been designed oad nonconcurrent is has been designe om chord in all area by 2-00-00 wide w any other members bechanical connection the capable of withs o uplift at joint 3. S) Standard	for a 10. with any d for a liv as where vill fit betw s. on (by oth	other live loa re load of 20.0 a rectangle veen the botto ers) of truss t	Opsf om to				Weight: 12 lb	FT = 20%
 this design. Wind: ASCE Vasd=103mp II; Exp B; Enc and C-C Exte exposed; enc members anc Lumber DOL= 	7-16; Vult=130mph h; TCDL=6.0psf; B losed; MWFRS (er rior(2E) zone; cant j vertical left and ri l forces & MWFRS =1.60 plate grip DC	CDL=6.0psf; h=25ft; nvelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown DL=1.60	Cat. ne ;						4	it	OR TH CA	AROJ NII
only. For stud see Standard or consult qua 4) TCLL: ASCE Plate DOL=1.	ds exposed to wind Industry Gable En alified building desi 7-16; Pr=20.0 psf (15); Pf=20.0 psf (L s=1.0; Rough Cat E	a the plane of the true I (normal to the face) d Details as applical gner as per ANSI/TF (roof LL: Lum DOL=' .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9), ble, Pl 1. 1.15								SEA 0363	
5) Unbalanced s design.		een considered for th m chord bearing.	is								<i></i>	er 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

