

RE: 2503-4263-A - Blake Pond Lot 00.0094 Roof Trenco	
Site Information:818 Soundside Rd Edenton, NC 27932	
Project Customer: DRB Raleigh Project Name: Blake Pond Lot 00.0094 Lot/Block: 00.0094 Subdivision: Blake Pond	
Model: Stonehaven	
Address: 149 Whimbrel Court	
City: Lillington State: NC	
General Truss Engineering Criteria & Design Loads (Individual Truss Design	
Drawings Show Special Loading Conditions):Design Code:IRC2021/TPI2014Design Program:MiTek 20/20 8.8	
Wind Code: ASCE 7-16Design Hogram: Milek 20/20 0.0Design Method: MWFRS (Envelope)/C-C hybrid Wind	ASCE 7-16
Wind Speed: 120 mph Floor Load: N/A psf	
Roof Load: 40.0 psfMean Roof Height (feet): 25Exposure Category: B	
Mean Roof Height (feet): 25 Exposure Category: B	
No. Seal# Truss Name Date No. Seal# Truss Name Date	
1 I72897067 D1G 4/22/25 35 I72897101 A2A 4/22/25 2 I72897068 D1 4/22/25 36 I72897102 A1SG 4/22/25 3 I72897069 VC1 4/22/25 37 I72897103 A1B 4/22/25	
2 172897068 D1 4/22/25 36 172897102 A1SG 4/22/25 3 172897069 VC1 4/22/25 37 172897103 A1B 4/22/25 4 172897070 V1 4/22/25 38 172897104 A1A 4/22/25	
5 172897071 VC2 4/22/25 39 172897105 A1 4/22/25 6 172897072 P1G 4/22/25 40 172897106 A1G 4/22/25	
7 172897072 F1G 4/22/25 7 172897073 P1 4/22/25	
7 172897073 P1 4/22/25 8 172897074 P2G 4/22/25 9 172897075 V2 4/22/25	
10 I72897076 G1 4/22/25 11 I72897077 VC3 4/22/25 12 I72897078 PB1A 4/22/25	
12 I72897078 PB1A 4/22/25	
I72897081 G1G 4/22/25	
172897081 G1G 4/22/25 16 172897082 G1A 4/22/25 17 172897083 B2GR 4/22/25	
18 172897084 VC4 4/22/25 19 172897085 B2G 4/22/25 20 172897086 V4 4/22/25	
16 I72897082 G1A 4/22/25 17 I72897083 B2GR 4/22/25 18 I72897084 VC4 4/22/25 19 I72897085 B2G 4/22/25 20 I72897086 V4 4/22/25 21 I72897087 C1G 4/22/25 22 I72897088 C1 4/22/25 23 I72897089 V5 4/22/25	
21 I72897087 C1G 4/22/25 22 I72897088 C1 4/22/25 172027080 VE 4/22/25	
I72897090 B1G 4/22/25	
26 1/289/092 MR2G 4/22/25	
27 172897093 MR2 4/22/25 28 172897094 MR3 4/22/25 29 172897095 G3G 4/22/25	
29 172897095 G3G 4/22/25 30 172897096 G3A 4/22/25	
30 172897096 G3A 4/22/25 31 172897097 G3 4/22/25 32 172897098 A2G 4/22/25	
172897099 A2B 4/22/25 34 172897100 A2 4/22/25	
The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters	
provided by Structural, LLC.	
Truss Design Engineer's Name: Galinski, John	
My license renewal date for the state of North Carolina is December 31, 2025	
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the	
designs comply with ANSI/TPI 1. These designs are based upon parameters	
shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or	
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use,	
applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly	

Galinski, John

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	D1G	Monopitch Supported Gable	3	1	Job Reference (optional)	172897067

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:35 ID:UHj5wzjzyq?Coz77nf1gevzvado-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:28.5

Plate Offsets (X, Y): [2:0-1-12,0-0-3]

	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		21/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood sheat 1-11-8 oc purlins, e: Rigid ceiling directly bracing. (size) 2=1-11-8, Max Horiz 2=38 (LC Max Uplift 5=-5 (LC Max Grav 2=180 (LC (lb) - Maximum Com Tension 1-2=0/41, 2-4=-53/48	athing directly appli xcept end verticals. applied or 10-0-0 o 5=1-11-8 15) 13) 2 23), 5=65 (LC 23) pression/Maximum	9 DC 1 1	 load of 12.0 overhangs n Plates check about its cer Gable requin Gable studs This truss ha chord live lo * This truss on the bottoo 3-06-00 tall chord and a Provide medo 	es continuous bo spaced at 2-0-0 as been designed ad nonconcurren has been designe m chord in all are by 2-00-00 wide en hanical connecti e capable of with	a flat roof le ith other li minus 5 de ottom chor oc. d for a 10. t with any ed for a 10. t with any ed for a liv eas where will fit betw s. on (by oth	bad of 15.4 p ve loads. egree rotation d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss	osf on n ads. Opsf tom to					
Vasd=95n	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed: MWERS (en	DL=6.0psf; h=25ft;										WILL CA	Politi

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces &

MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

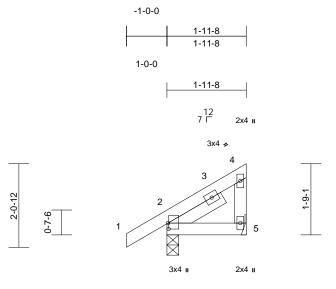
see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Exp.; Ce=1.0; Cs=1.0; Ct=1.10
 Unbalanced snow loads have been considered for this

design.

SEAL 28677

April 22,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	D1	Monopitch	13	1	Job Reference (optional)	172897068

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:35 ID:mNKdabLOLIA9fhZGkn?U9Nzvagt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1 4

1-11-8

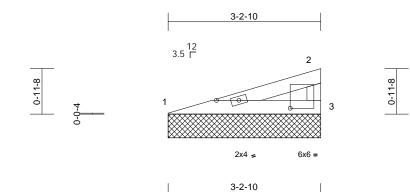
Scale = 1:28.5

Plate Offsets (X, Y): [2:0-1-12,0-0-3]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDI	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TF	PI2014	CSI TC BC WB Matrix-MP	0.10 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 0.00 0.00 0.00	(loc) 8 5-8 2 8	l/defl >999 >999 n/a >999	L/d 360 180 n/a 240	PLATES MT20	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	athing directly applie xcept end verticals. applied or 10-0-0 or 5= Mechanical 15) 13) C 23), 5=62 (LC 23) pression/Maximum	ch 7) * 1 or 3- ch ed or 8) Re 9) Pr c be 10) Ou re Ul dc	nord live loa This truss h the bottom 06-00 tall b nord and an efer to girde rovide mech earing plate ne H2.5A S commende PLIFT at jt(s	s been designed d nonconcurrent as been designed n chord in all area y 2-00-00 wide w y other members r(s) for truss to tr nanical connectio capable of withst impson Strong-Ti d to connect truss s) 2. This connect sider lateral force Standard	with any d for a liv as where rill fit betw russ conr n (by oth tanding 5 ie conne s to bear tion is for	other live load e load of 20.0 a rectangle veen the botto nections. ers) of truss t i lb uplift at jo ctors ing walls due	Opsf om o int 5. to				Weight: 12 lb	FT = 20%
BOT CHORD	2-5=-20/22												
 Wind: ASC Vasd=95m II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=1 Unbalance design. This truss load of 12. overhangs 	CE 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) zone; cantilever left t and right exposed;C- WFRS for reactions s plate grip DOL=1.60 CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf (=1.15); Pg=20.0 psf, F DOL = 1.15); Is=1.0; 1 1.0; Cs=1.00; Ct=1.10 ad snow loads have be has been designed for 0 psf or 2.00 times flat or non-concurrent with or cocked for a plus or min enter.	DL=6.0psf; h=25ff; C ivelope) and C-C and right exposed ; C for members and hown; Lumber roof LL: Lum DOL=1 2f=15.4 psf (Lum DC Rough Cat B; Partial en considered for th r greater of min roof t roof load of 15.4 ps other live loads.	end I.15 JL = Ily nis live of on								Sunday Sunday	SEA 286	EEP. Stummer

April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	VC1	Valley	1	1	Job Reference (optional)	172897069

3-2-10

Structural, LLC, Thurmont, MD - 21788.

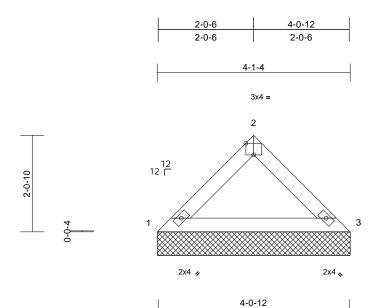
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:41 ID:d11WKCYyvF1ctrOLAkyoR1zqDty-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:24.3

Plate Offsets (X, Y): [3:1-6-11,0-2-0]

-											1	
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roo	. ,	Plate Grip DOL	1.15	тс	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/		Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 9 lb	FT = 20%
			Z) Cabla at			•	-					
LUMBER TOP CHO	RD 2x4 SP No.2			ids spaced at 4-0-0 s has been designed		and hottom						
BOT CHO				load nonconcurren			40					
WEBS	2x4 SP No.3			ss has been designed								
BRACING				ttom chord in all are			poi					
TOP CHO		othing directly onnly	2 00 00	all by 2-00-00 wide			m					
	3-2-10 oc purlins, e		eu ui	d any other member								
ВОТ СНО				(S) Standard								
	bracing.		-									
REACTIO	NS (size) 1=3-2-10	3=3-2-10										
	Max Horiz 1=18 (LC											
	Max Grav 1=135 (L0	C 22), 3=135 (LC 22	2)									
FORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
TOP CHO	, .	7/48										
BOT CHO	ORD 1-3=-128/233											
NOTES		(a										
	ASCE 7-16; Vult=120mph		• (
	=95mph; TCDL=6.0psf; BC b B; Enclosed; MWFRS (er		Cat.									
	or(2E) zone; cantilever left		ond									UIL.
	al left and right exposed;C-										M' C	AD
	& MWFRS for reactions s										"ath U	TON'S
	1.60 plate grip DOL=1.60									S	Oricks	SILIAN
	designed for wind loads in	the plane of the tru	SS							32	· JOY	1. 7 -
	For studs exposed to wind									2	the second	are -
see S	tandard Industry Gable En	d Details as applicat	ble,						-		1	
	nsult qualified building desi								=	. :	SE/	AL : =
	: ASCE 7-16; Pr=20.0 psf (=		286	77 : -
	DOL=1.15); Pg=20.0 psf; I								=		. 200	11 E E
	Plate DOL = 1.15); Is=1.0;		lly							-	N	1 2
	Ce=1.0; Cs=1.00; Ct=1.10 anced snow loads have be		hia								S. En.	ANNE
4) Unbai desigr		en considered for tr	nis							19	O, MGIN	IEE. CT
	checked for a plus or min	us 5 degree rotation	h							11	SEA 286	111111
,	its center.										111. L. C	iAL
	requires continuous botto	m chord bearing.									N.L.C	mm


April 22,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	V1	Valley	4	1	Job Reference (optional)	172897070

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:39 ID:hsOgZy17YhteJpG5Qoiz_QzqF3V-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

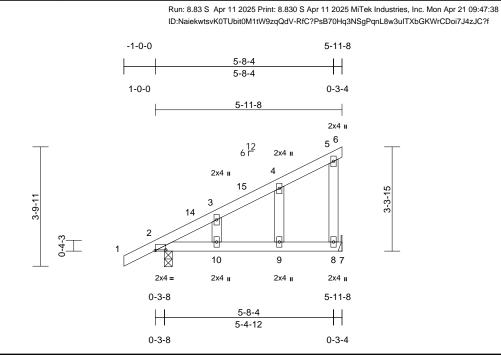
Scale = 1:24.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

	(; :): [<u>2:0 2 0</u> ; <u>2</u> ago]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.17 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 3) Truss desig only. For s see Standa or consult d 4) TCLL: ASC Plate DOL= 1.15 Plate I Exp.; Ce=1 5) Unbalanced design.	Max Horiz 1=-30 (LC Max Grav 1=174 (LC (Ib) - Maximum Com Tension 1-2=-231/84, 2-3=-2 1-3=-66/156 d roof live loads have E 7-16; Vult=120mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er E) zone; cantilever left and right exposed;C- WFRS for reactions s plate grip DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi E2 7-16; Pr=20.0 psf; F DOL = 1.15); Pg=200 psf; F DOL = 1.15); Is=1.0; I 1.0; Cs=1.00; Ct=1.10 d snow loads have be cked for a plus or min	applied or 10-0-0 or 3=4-1-4 (14) C 22), 3=174 (LC 23 pression/Maximum 31/86 been considered for (3-second gust) DL=6.0psf; h=25ft; (vyelope) and C-C and right exposed; C for members and hown; Lumber the plane of the trust (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=- 2f=15.4 psf (Lum DOL Rough Cat B; Partial pen considered for th	8) Gable st 9) This trus chord liv 10) * This tru on the bi- 3-06-00 chord an 11) Beveled surface v LOAD CASE r Cat. end ss), ble, PI 1. 1.15 DL = lly his	quires continuous bo udds spaced at 4-0-0 d s has been designed e load nonconcurrent iss has been designed ottom chord in all are tall by 2-00-00 wide v d any other members plate or shim require with truss chord at joi :(S) Standard	oc. I for a 10. t with any ed for a liv as where vill fit betw s. d to provi	D psf bottom other live load load of 20.0 a rectangle veen the botto de full bearing	ipsf im			A A A A A A A A A A A A A A A A A A A	SEA 286	EER. St.

April 22,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Qty	Ply	Blake Pon	d Lot 00	.0094	Roof	172897071
503-4263-A	VC2	Valley	1		1	Job Refer	ence (op	tional)		1/209/0/1
ructural, LLC, Thurmont, I	MD - 21788,		Run: 8.83 S Apr 11 202			1 2025 MiTek	ndustries	, Inc. Mo	•	Page: 1
			ID:o9CgezgsJdQ2iXkSJ	TENULZQL	JIN-KIG?PS	ь <i>т</i> инqзiNSgP	µn∟øw3ul	I NDGK\	vicDoi/J4zJC?f	
			5-6-1							
		'				I				
			5-6-1							
		I				2x4 u				
						2				
		3.5	1 <u>2</u>					\top	-	
	1-7-8	5.5	7					1-7-8		
	,		6					4		
				~~~~~	******	3			-	
		•								
			3x4 =			2x4 u				
			5-6-1							
Scale = 1:26.7	· · · ·		· · · · ·							
<b>oading</b> CLL (roof)	(psf) <b>Spacing</b> 20.0 Plate Grip D0	2-0-0 DL 1.15	<b>CSI</b> TC 0.4 ²	DEFL Vert(L		in (loc) n/a -	l/defl n/a	L/d 999	PLATES MT20	<b>GRIP</b> 244/190
now (Pf/Pg)	15.4/20.0 Lumber DOL	1.15	BC 0.76	Vert(	ΓL)	n/a -	n/a	999		21.,100
CDL	10.0 Rep Stress In 0.0* Code	IRC2021/TPI2014	WB 0.00 Matrix-AS	) Horiz	(1L) 0	.01 3	n/a	n/a		
CDL	10.0								Weight: 17 lb	FT = 20%
UMBER OP CHORD 2x4 SP		chord live	s has been designed for a 10 e load nonconcurrent with ar	iy other li	ve loads.					
OT CHORD 2x4 SP /EBS 2x4 SP		on the bo	bits has been designed for a lottom chord in all areas wher	e a recta	ngle					
RACING OP CHORD Structur	al wood sheathing directly	applied. chord an	all by 2-00-00 wide will fit be d any other members.							
	end verticals.	structura	s design requires that a mini I wood sheathing be applied	directly t	o the top					
EACTIONS (size)	1=5-6-1, 3=5-6-1 z 1=35 (LC 13)	the botto		applied o	directly to					
Max Grav	/ 1=249 (LC 22), 3=249 (L	-C 22)	<b>:(S)</b> Standard							
Tension		num								
OP CHORD 1-2=-60 OT CHORD 1-3=-26	8/176, 2-3=-163/108 9/575									
OTES	/ult=120mph (3-second gus	t)								
Vasd=95mph; TCDL	_=6.0psf; BCDL=6.0psf; h=2 MWFRS (envelope) and C	25ft; Cat.								
Exterior(2E) 0-0-14	to 3-0-14, Interior (1) 3-0-14 and right exposed ; end ver	4 to 5-5-3								
and right exposed;C	-C for members and forces as shown; Lumber DOL=1.6	&								11111
grip DOL=1.60	wind loads in the plane of th							J.	RTHU	ROUT
only. For studs exp	osed to wind (normal to the try Gable End Details as ap	face),						iz		PH: 7".
or consult qualified I	ouilding designer as per AN	SI/TPI 1.					E		TA S	m4
Plate DOL=1.15); P	Pr=20.0 psf (roof LL: Lum D g=20.0 psf; Pf=15.4 psf (Lu	m DOL =						1	SEA	
Exp.; Ce=1.0; Cs=1							E.		280	1 : :
design.	bads have been considered							1.0	S. SNOW	FERIA S
<ol> <li>Plates checked for a about its center.</li> </ol>	a plus or minus 5 degree ro	tation						14	SEA 286	EER.St.
<ul><li>Gable requires cont</li><li>Gable studs spaced</li></ul>	inuous bottom chord bearin at 4-0-0 oc.	g.							Chin L. G	ALININ
									Apr	il 22.2025
									•	,

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	P1G	Monopitch Supported Gable	2	1	Job Reference (optional)	172897072



Scale = 1:36.8

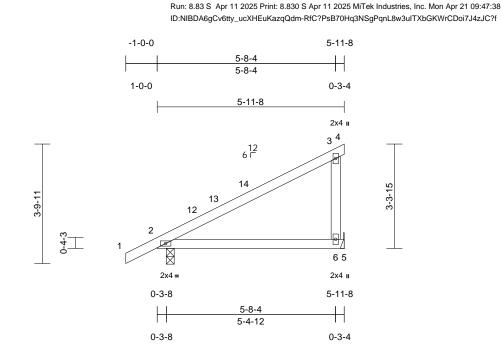
Plate Offsets (X, Y): [2:0-4-0,0-0-4]

	(, 1): [ <u>2</u> :0 1 0,0 0 1]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	<b>CSI</b> TC BC WB Matrix-AS	0.47 0.51 0.04	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.15 0.00 0.09	(loc) 9-10 9-10 2 9-10	l/defl >788 >458 n/a >744	L/d 360 240 n/a 240	PLATES MT20 Weight: 28 lb	<b>GRIP</b> 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS ( FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASCI Vasd=95m II; Exp B; E Exterior(2E Exterior(2E Exterior(2E Zone; cantil and right ex members a Lumber DCQ 0 Truss desig only. For si see Standa or consult of 3) TCLL: ASCI Plate DCL 1.15 Plate I Exp.; Ce=1	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she: Rigid ceiling directly (size) 2=0-3-0, 8 Max Horiz 2=73 (LC Max Uplift 2=-6 (LC Max Grav 2=305 (LC (Ib) - Maximum Com Tension 1-2=0/36, 2-3=-111/ 4-5=-62/63, 5-6=-10, 2-10=-56/63, 9-10=C 4-9=-70/45, 3-10=-5 E 7-16; Vult=120mph ph; TCDL=6.0psf; BC inclosed; MWFRS (er E) -1-0-0 to 1-11-8, Int lever left and right exy xposed; porch left and and forces & MWFRS DL=1.60 plate grip DO gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig 2E 7-16; Pr=20.0 psf; F DOL = 1.15); IS=1.0; f DOL = 1.15); IS=1.0; f 1.0; CS=1.00; Ct=1.10 d snow loads have be	applied. applied. B= Mechanical 16) 13), 8=-27 (LC 13) C 23), 8=302 (LC 23) pression/Maximum 45, 3-4=-92/46, 70 7/30, 5-8=-175/114 (3-second gust) DL=6.0psf; h=25ff; C welope) and C-C erior (1) 1-11-8 to 5- bosed; end vertical I d right exposed; C-C 1 for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO Rough Cat B; Partial	6) 7) d. 8) 9) 10) 11) 12) 13) 24. 13) 24. 13) 24. 13) 24. 14. 15 15 15 15 19 10 10 10 10 10 10 10 10 10 10 10 10 10	load of 12.0 overhangs n Plates check about its cer Gable studs This truss ha chord live lo: * This truss ha chord live lo: * This truss ha chord live lo: * This truss d 3.06-00 tall l chord and an Refer to gird Provide mec bearing plate 8. One H2.5A \$ recommende UPLIFT at jt does not cor This truss de structural wo	spaced at 2-0-0 c as been designed ad nonconcurrent nas been designe m chord in all area oy 2-00-00 wide w ny other members er(s) for truss to t hanical connectic a capable of withs Simpson Strong-T ed to connect trus (s) 2. This connec usider lateral force sign requires tha od sheathing be a 2" gypsum sheet hord.	flat roof le h other li hinus 5 de cc. for a 10.1 with any d for a liva as where russ conr i (by oth tanding 2 "ie conne s to bear s to bear sto bear tion is foi s. t a minim applied d	bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss 27 lb uplift at ctors ing walls due r uplift only a um of 7/16"	osf on n ads. 0psf tom to joint to nd top				ORTH CA ORTH CA SEA 286 OF NGIN	EER. A

- Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.



.....


April 22,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	P1	Monopitch	16	1	Job Reference (optional)	172897073

Structural LLC Thurmont MD - 21788



#### Scale = 1:36.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	-0.04	6-11	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.33	Vert(CT)	-0.09	6-11	>794	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.06	6-11	>999	240		
BCDL	10.0										Weight: 25 lb	FT = 20%

- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS BRACING TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 2=0-3-0, 6= Mechanical Max Horiz 2=73 (LC 16) Max Uplift 2=-6 (LC 13), 6=-27 (LC 13) Max Grav 2=321 (LC 23), 6=286 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/36, 2-3=-123/158, 3-4=-10/0
- BOT CHORD 2-6=-157/143, 5-6=0/0 WEBS 3-6=-211/139

#### NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation 5) about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

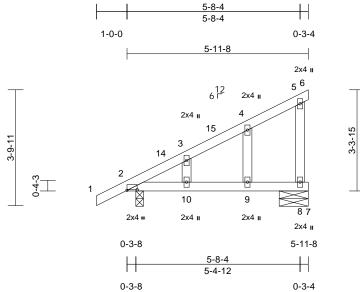
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate at joint(s) 2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 6
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard



April 22,2025

Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members on the permanent bracing temporary and permanent bracing temporary and permanent bracing temporary and permanent bracing tempora and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	P2G	Monopitch Supported Gable	2	1	Job Reference (optional)	172897074

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:39 ID:80j5_TAY009w_R6h_6_k0QzqQd6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-11-8 -1-0-0 5-8-4  $\mathbb{H}$ 5-8-4 1-0-0 0-3-4 5-11-8 2x4 II 5 ⁶ 6¹² 2x4 II Ø 4 2x4 🛛 15 3-3-15 3 14 2

Page: 1



Scale = 1:37.9

Plate Offsets (X, Y): [2:0-4-0,0-0-4]

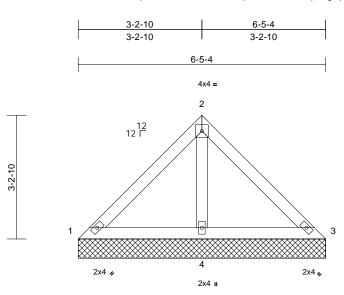
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.47 0.51 0.04	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.15 0.00 0.09	(loc) 9-10 9-10 2 9-10	l/defl >788 >458 n/a >744	L/d 360 240 n/a 240	PLATES MT20 Weight: 28 lb	<b>GRIP</b> 244/190 FT = 20%
BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4 BRACING 2x4 TOP CHORD Str BOT CHORD Rig REACTIONS (size Max Max	gid ceiling directly           e)         2=0-3-0, 8           Horiz         2=73 (LC           Uplift         2=-6 (LC           Grav         2=305 (LC	3=0-11-8	9)	load of 12.0 overhangs n Plates check about its cer Gable studs This truss ha chord live loa * This truss to on the bottoo 3-06-00 tall l chord and ar	as been designed f psf or 2.00 times f on-concurrent with ted for a plus or m iter. spaced at 2-0-0 or as been designed f ad nonconcurrent f has been designed m chord in all area by 2-00-00 wide wi hy other members. hanical connection e capable of withst	lat roof le n other li inus 5 de c. for a 10. with any d for a liv s where ill fit betw n (by oth	bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott ers) of truss t	sfon n ads. Opsf om to					
TOP CHORD 1-2 4-5 BOT CHORD 2-1 WEBS 4-9 NOTES 1) Wind: ASCE 7- Vasd=95mph; 7 I; Exp B; Enclo Exterior(2E) -1- zone; cantilever	nsion =0/36, 2-3=-111// i=-62/63, 5-6=-10 0=-56/63, 9-10=(0 =-70/45, 3-10=-5 16; Vult=120mph TCDL=6.0psf; BC psed; MWFRS (er -0-0 to 1-11-8, Int r left and right exp	45, 3-4=-92/46, /0 //0, 8-9=0/0, 7-8=0/0 7/30, 5-8=-175/114 (3-second gust) DL=6.0psf; h=25ft; C	12 Cat. 11-8 <b>LC</b> eft	<ul> <li>8.</li> <li>One H2.5A S recommende UPLIFT at jt does not cor</li> <li>This truss de structural work</li> </ul>	Simpson Strong-Ti ed to connect truss (s) 2. This connect hisider lateral force ssign requires that bod sheathing be a (2" gypsum sheetro hord.	e conne s to bear tion is foi s. a minim applied d	ctors ing walls due r uplift only ar um of 7/16" irectly to the	to nd top			- States	ORTH CA	ROUVI

members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

HILLING WARDEN WWWWWWWWWW 28677 GA .....


April 22,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	V2	Valley	4	1	Job Reference (optional)	172897075

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:40 ID:2qBZcf5GNEVwQa83DMI8hUzqF3Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



6-5-4



Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.29 0.07	<b>DEFL</b> Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 26 lb	<b>GRIP</b> 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-5-4 oc purlins. Rigid ceiling directly bracing. (size) 1=6-5-4, 3 Max Horiz 1=48 (LC Max Grav 1=68 (LC (LC 2) (lb) - Maximum Com Tension 1-2=-95/165, 2-3=-7 1-4=-130/134, 3-4=-	applied or 6-0-0 oc 3=6-5-4, 4=6-5-4 13) 22), 3=68 (LC 23), 4 apression/Maximum 5/165	1 L	<ul> <li>about its cer</li> <li>Gable require</li> <li>Gable studs</li> <li>This truss has chord live lo</li> <li>* This truss on the botto 3-06-00 tall</li> </ul>	res continuous bo spaced at 4-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide ny other member	ottom chor oc. d for a 10.0 t with any ed for a liv eas where will fit bety	d bearing. D psf bottom other live loa e load of 20. a rectangle	ads. Opsf					
WEBS NOTES	2-4=-348/191 ed roof live loads have		r										

this design.
Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

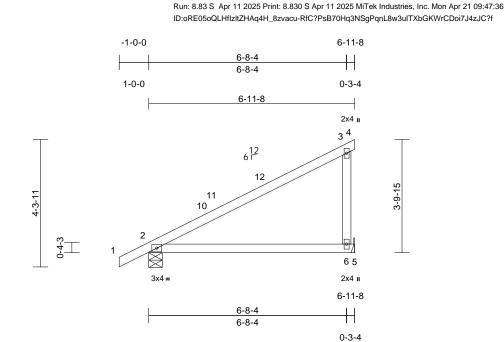
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) Unbalanced snow loads have been considered for this design.

# SEAL 28677




Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	G1	Monopitch	10	1	Job Reference (optional)	172897076

Structural LLC Thurmont MD - 21788



Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	-0.10	6-9	>823	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.53	Vert(CT)	-0.21	6-9	>389	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.08	6-9	>999	240		
BCDL	10.0										Weight: 28 lb	FT = 20%

- BOT CHORD 2x4 SP No.2 WFBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 2=0-5-8, 6= Mechanical Max Horiz 2=84 (LC 16) Max Uplift 6=-10 (LC 16) Max Grav 2=332 (LC 23), 6=346 (LC 23) FORCES (Ib) - Maximum Compression/Maximum Tension
- TOP CHORD
- 1-2=0/36, 2-3=-101/81, 3-4=-10/0 BOT CHORD 2-6=-49/98.5-6=0/0 WEBS 3-6=-253/143

#### NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this desian.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation 5) about its center.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 10 lb uplift at joint 6
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard



April 22,2025

Page: 1



Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

b	Truss		Truss Type		Qty	Ply	Bla	ake Pon	d Lot 00	.0094 I	Roof	
503-4263-A	VC3		Valley		1	1		b Refere	ence (op	tional)		172897077
uctural, LLC, Thurmont,	MD - 21788,						or 11 202	5 MiTek I	ndustries	, Inc. Mo	on Apr 21 09:47:41 GKWrCDoi7J4zJC	-
					7-9-8							
					7-9-8				2x4 II			
			3.5 F	7 8					2		2-3-8	
	_	-0-0-0-0-			<u> </u>				₽ 3			
			4x4	=					2x4 <b>I</b>			
cale = 1:29.3					7-9-8				_			
ading LL (roof) ow (Pf/Pg) DL LL DL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	<b>CSI</b> TC BC WB Matrix-AS	0.90 0.87	<b>DEFL</b> Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	<b>GRIP</b> 244/190 FT = 20%
except T CHORD Rigid c ACTIONS (size) Max Hor	No.2 No.3 ral wood she end verticals eiling directly 1=7-9-8, 3 z 1=52 (LC	applied. 3=7-9-8	<ul> <li>9) * This truss h on the bottor 3-06-00 tall b chord and ar</li> <li>10) This truss de structural wo</li> </ul>	Id nonconcurrent as been designe n chord in all are y 2-00-00 wide v y other members sign requires tha od sheathing be 2" gypsum sheet nord.	with any o ed for a live as where a vill fit betwe s. t a minimur applied dire	ther live load load of 20.0 rectangle een the botto m of 7/16" ectly to the to	ipsf im op					
RCES         (lb) - M           Tensio           P CHORD         1-2=-90           T CHORD         1-3=-20           TES         Wind: ASCE 7-16;	aximum Com ) )6/200, 2-3=-; )6/863 /ult=120mph	pression/Maximum 239/142										

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Unbalanced snow loads have been considered for this 4) design.

5) Plates checked for a plus or minus 5 degree rotation about its center.

6) Gable requires continuous bottom chord bearing.

7) Gable studs spaced at 4-0-0 oc.



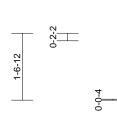
April 22,2025

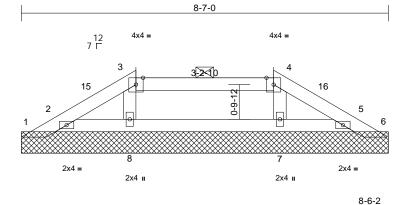
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	PB1A	Piggyback	4	1	Job Reference (optional)	172897078

2-7-12

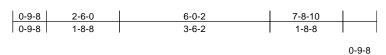
2-7-12


Structural, LLC, Thurmont, MD - 21788.


# Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:39 ID:MKKddZpziAWe4ZaX5uMg_ezqF1B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-6-2

2-7-12


Page: 1





<u>5-</u>10-6

3-2-10



Scale = 1:26.9

												i	
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC202	21/TPI2014	Matrix-AS		, , ,						
BCDL	10.0											Weight: 27 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (6-0 Rigid ceiling directly (size) 1=8-7-0, 2 7=8-7-0, 8 Max Horiz 1=21 (LC Max Uplift 1=-22 (LC 5=-17 (LC Max Grav 1=17 (LC	-0 max.): 3-4. applied. 2=8-7-0, 5=8-7-0, 6=8 3=8-7-0 13) 5 57), 2=-13 (LC 16), 17), 6=-14 (LC 45)	8 9 3-7-0, 1	<ul> <li>design.</li> <li>Provide adeq</li> <li>Plates check</li> <li>about its cen</li> <li>Gable requir</li> <li>This truss ha</li> <li>chord live loa</li> <li>* This truss f</li> <li>on the bottor</li> <li>3-06-00 tall t</li> <li>chord and ar</li> <li>Provide mec</li> <li>bearing plate</li> </ul>	snow loads have quate drainage to ted for a plus or m ter. es continuous bot is been designed ad nonconcurrent has been designer n chord in all area by 2-00-00 wide w hy other members hanical connectio c capable of withsi uplift at joint 6.	prevent inus 5 de tom chor for a 10.1 with any d for a liv as where ill fit betv n (by oth	water ponding egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bott ers) of truss 1	g. n ads. Opsf om to					
FORCES	(lb) - Maximum Com	=231 (LC 44) pression/Maximum											
TOP CHORD	Tension 1-2=-26/50, 2-3=-40 4-5=-40/23, 5-6=-6/3	37	1	structural wo	esign requires that od sheathing be a 2" gypsum sheetr	applied d	irectly to the						
BOT CHORD	2-8=-6/16, 7-8=-4/27	,		the bottom c	hord.								lu.
WEBS	3-8=-162/44, 4-7=-1	62/44	1		d Industry Piggyb							M' CA	Dille
this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E	ed roof live loads have DE 7-16; Vult=120mph ph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) zone; cantilever left t and right exposed;C-	(3-second gust) DL=6.0psf; h=25ft; C velope) and C-C and right exposed ; d	at.	consult quali 4) Graphical pu		ner. does n	ot depict the s				and the second s	OR TH CA OR TH CA SEA 2865	

DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0

forces & MWFRS for reactions shown; Lumber



April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	PB1	Piggyback	22	1	Job Reference (optional)	172897079

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:39 ID:MKKddZpziAWe4ZaX5uMg_ezqF1B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



#### Scale = 1:47.4

Plate Offsets (X, Y): [2:0-3-1,Edge], [4:0-3-1,Edge]

or consult qualified building designer as per ANSI/TPI 1.

2-0-0 CSI DEFL l/defl L/d PLATES GRIP Loading (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.25 Vert(LL) 999 MT20 244/190 n/a n/a Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.15 Vert(TL) n/a n/a 999 TCDL Rep Stress Incr WB Horiz(TL) 10.0 YES 0.02 0.00 4 n/a n/a BCLL 0.0 IRC2021/TPI2014 Matrix-AS Code BCDL 10.0 Weight: 28 lb FT = 20% LUMBER 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 2x4 SP No.2 TOP CHORD 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially BOT CHORD 2x4 SP No.3 Exp.; Ce=1.0; Cs=1.00; Ct=1.10 OTHERS 2x4 SP No.3 5) Unbalanced snow loads have been considered for this BRACING desian. TOP CHORD Structural wood sheathing directly applied. Plates checked for a plus or minus 5 degree rotation 6) BOT CHORD Rigid ceiling directly applied. about its center. **REACTIONS** (size) 1=8-7-0, 2=8-7-0, 4=8-7-0, 5=8-7-0, 7) Gable requires continuous bottom chord bearing. 6=8-7-0 Gable studs spaced at 4-0-0 oc. 8) Max Horiz 1=37 (I C 15) 9) This truss has been designed for a 10.0 psf bottom 1=-184 (LC 23), 2=-20 (LC 16), Max Uplift chord live load nonconcurrent with any other live loads. 4=-22 (LC 17), 5=-181 (LC 24) 10) * This truss has been designed for a live load of 20.0psf Max Grav 1=27 (LC 16), 2=459 (LC 23), on the bottom chord in all areas where a rectangle 4=445 (LC 24), 5=19 (LC 17), 3-06-00 tall by 2-00-00 wide will fit between the bottom 6=207 (LC 2) chord and any other members. FORCES (Ib) - Maximum Compression/Maximum 11) Provide mechanical connection (by others) of truss to Tension bearing plate capable of withstanding 184 lb uplift at joint TOP CHORD 1-2=-42/124, 2-3=-105/75, 3-4=-105/74, 1 and 181 lb uplift at joint 5. 4-5=-32/11812) N/A BOT CHORD 2-6=-67/38, 4-6=-67/38 WEBS 3-6=-113/21 NOTES ORT Unbalanced roof live loads have been considered for 13) This truss design requires that a minimum of 7/16" 1) structural wood sheathing be applied directly to the top this design Wind: ASCE 7-16; Vult=120mph (3-second gust) chord and 1/2" gypsum sheetrock be applied directly to 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. the bottom chord. II; Exp B; Enclosed; MWFRS (envelope) and C-C 14) See Standard Industry Piggyback Truss Connection Exterior(2E) 0-3-11 to 3-3-11, Interior (1) 3-3-11 to 4-3-8, Detail for Connection to base truss as applicable, or consult qualified building designer. Exterior(2R) 4-3-8 to 7-3-8, Interior (1) 7-3-8 to 8-3-5 867 zone; cantilever left and right exposed ; end vertical left LOAD CASE(S) Standard and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), GA see Standard Industry Gable End Details as applicable

April 22,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	V3	Valley	4	1	Job Reference (optional)	172897080

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:40

ID:pRnIZe?xUa48XGyfgJfzmVzqF2E-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural, LLC, Thurmont, MD - 21788,

4-6-10 4-2-10 8-9-4 4-2-10 4-2-10 0-4-0 8-9-4 4x4 = 2 12 12 Г 3-11-2 4-2-10 10 ٦ 4 3x4 🕢 3x4 💊 2x4 II 8-9-4

Scale = 1:38.2

LUMBER       4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10         BRACING       5) Unbalanced snow loads have been considered for this design.         TOP CHORD       Structural wood sheathing directly applied or 8-9-4 oc purlins.         BOT CHORD       Rigid ceiling directly applied or 6-0-0 oc bracing.         REACTIONS       (size)       1=8-9-4, 3=8-9-4, 4=8-9-4 Max Horiz 1=67 (LC 13)         Max Horiz 1=67 (LC 13)       0 (0.000)         Max Horiz 1=67 (LC 13)       0 (0.000)
Max Uplift       1=-39 (LC 23), 3=-39 (LC 22), 4=-14 (LC 16)       1=-56 (LC 39), 3=-56 (LC 40), 4=671 (LC 2)       10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.         FORCES       (lb) - Maximum Compression/Maximum Tension       1-2=-161/309, 2-3=-150/309 1-4=-231/211, 3-4=-231/211       10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.         TOP CHORD       1-2=-161/309, 2-3=-150/309 1-4=-231/211, 3-4=-231/211       11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 39 lb uplift at joint 1, 39 lb uplift at joint 4.         NOTES       2-4=-593/286

1)

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-4-10, Exterior(2R) 4-4-10 to 7-4-10, Interior (1) 7-4-10 to 8-9-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.



April 22,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
	2503-4263-A	G1G	Monopitch Supported Gable	2	1	Job Reference (optional)	172897081

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:36 ID:oFpIoE2LHJjkNjy4f2VEZuzvac5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

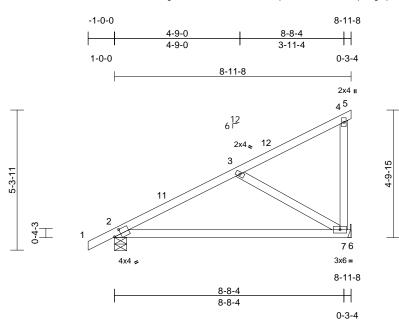
Page: 1



Scale = 1:44.9

00010 = 111110													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	<b>CSI</b> TC BC WB Matrix-AS	0.09 0.05 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 46 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	<ul> <li>2x4 SP No.2</li> <li>2x4 SP No.3</li> <li>2x4 SP No.3</li> <li>Structural wood she Rigid ceiling directly (size) 2=8-11-8, 9=8-11-8, 12=8-11-4</li> <li>Max Horiz 2=106 (LC Max Uplift 8=-21 (LC 16), (LC 12), 9 (LC 23), 1 (LC 2)</li> <li>(lb) - Maximum Com Tension</li> <li>1-2=0/36, 2-3=-241/ 4-5=-107/46, 5-6=-3</li> </ul>	3 -8, 5 1=-5 6 -6 7 -8 8 -24 9 1/	<ul> <li>only. For sti see Standar, or consult qu</li> <li>TCLL: ASCE</li> <li>Plate DOL='</li> <li>1.15 Plate D</li> <li>Exp.; Ce=1.0</li> <li>Unbalanced</li> <li>design.</li> <li>This truss ha load of 12.0</li> <li>overhangs n</li> <li>Plates check about its cer</li> <li>Gable requir</li> <li>Gable studs</li> <li>This truss ha chord live load</li> <li>* This truss ha</li> <li>on the botton 3-06-00 tall li</li> <li>chord and an</li> <li>Provide mective load</li> <li>bearing plate</li> </ul>	es continuous bol spaced at 2-0-0 c as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs	nd (norm End Deta ssigner a signer a f (roof Ll f; Pf=15.4 D; Rough 10 been cou- for great flat roof I h other li hinus 5 d ttom chou oc. for a 10. with any d for a li as where ill fit betw s. n (by oth tanding 2	al to the face ils as applica is per ANSI/T : Lum DOL= 4 psf (Lum DO Cat B; Partia nsidered for t er of min rooi bad of 15.4 p ve loads. egree rotation d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 21 lb uplift at	<ul> <li>adds.</li> <li>opsif</li> <li>opsif</li> <li>opsif</li> <li>opsif</li> <li>opsif</li> <li>opsif</li> </ul>				WITH CA	Route	
3-12=-177/141, 6-9=-75/61 <b>NOTES</b> 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 8-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip				<ul> <li>3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.</li> <li>11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 8, 8 lb uplift at joint 10, 5 lb uplift at joint 11 and 9 lb uplift at joint 12.</li> <li>12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.</li> <li>LOAD CASE(S) Standard</li> </ul>									

DOL=1.60




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	G1A	Monopitch	10	1	Job Reference (optional)	172897082

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:36 ID:gfQhoX3XMRWD9GGWQXYEmpzvadM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Scale = 1:43.6

Plate Offsets (X, Y): [2:0-3-2,0-2-2]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.57 0.67 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.35 0.00 0.02	(loc) 7-10 7-10 7 7-10	l/defl >612 >298 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 43 lb	<b>GRIP</b> 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E zone; canti and right e MWFRS fo grip DOL=' 2) TCLL: ASC Plate DOL= 1.15 Plate Exp; Ce=1 3) Unbalance design. 4) This truss 1 load of 12.0 overhangs	Rigid ceiling directly (size) $2=0-5-8$ , $1$ Max Horiz $2=105$ (L0 Max Upliff $7=-13$ (LC Max Grav $2=411$ (LC (Ib) - Maximum Com Tension $1-2=0/36$ , $2-3=-401/$ 2-7=-160/366, $6-7=(1)4-7=-144/89$ , $3-7=-4E 7-16; Vult=120mphph; TCDL=6.0psf; BCinclosed; MWFRS (erE) -1-0-0 to 2-0-0, Intelever left and right exxposed; C-C for memtreactions shown; Lu1.60E 7-16; Pr=20.0 psf; EDOL = 1.15); Pg=20.0 psf; FDOL = 1.15); IS=1.0; IOL = 1.00; Ct=1.10d snow loads have behas been designed fo0 psf or 2.00 times flanon-concurrent with ofcked for a plus or min$	7= Mechanical C 16) C 2), 7=423 (LC 23) pression/Maximum 46, 3-4=-91/40, 4-5=- 0/0 21/184 (G-second gust) DL=6.0psf; h=25ft; C rvelope) and C-C rior (1) 2-0-0 to 8-11- posed ; end vertical le bers and forces & Imber DOL=1.60 plat roof LL: Lum DOL=1 Pf=15.4 psf (Lum DOI Rough Cat B; Partiall een considered for thi r greater of min roof 1 t roof load of 15.4 psf bther live loads.	7) d. 8) 9) 10 -10/0 LC -10/0 LC -10/0 LC -10/0 LC -115 L = y s ive	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Refer to gird Provide mec bearing plate 7. ) This truss de structural wo		with any d for a liv is where ill fit betw uss conr n (by oth anding 1 a minim applied d	other live loa e load of 20.0 a rectangle veen the botton nections. ers) of truss t 3 lb uplift at j um of 7/16" irectly to the f	Opsf om to oint top				SEA 286 SA SEA 286 SA SEA	EER. A.

April 22,2025

Page: 1

ENGINEERING BY RENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	B2GR	Hip Girder	2	2	Job Reference (optional)	172897083

3-8-5

3-8-5

12 12 F

0-1-12

q

4x8

Structural LLC Thurmont MD - 21788

4-10-13

4-9-

4-10-13

0-1-12

Run: 8.83 S. Apr 11 2025 Print: 8.830 S. Apr 11 2025 MiTek Industries. Inc. Mon Apr 21 09:47:34 ID:YLBnv?OV46uBgXWWjBhAF2zqF?9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6x6 =

3

9-10-0

3-8-5

10

13

HUS26

9-10-0

3-6-9

(loc)

7-8

7-8

7-8

5

4x8、

5

3x4 I

L/d

360

240

240

Concentrated Loads (lb)

PLATES

Weight: 149 lb

Vert: 5=-1279 (B), 7=-1272 (B), 11=-1272 (B), 12=-1272 (B), 13=-1272 (B)

MT20

ORTH

GRIP

244/190

FT = 20%

HUS26

l/defl

>999

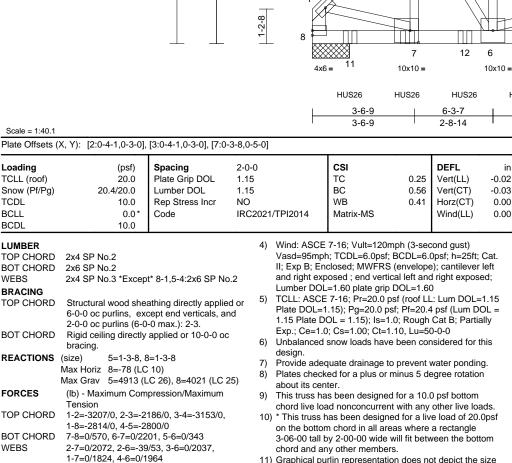
>999

>999

n/a n/a

6-1-11

2-5-6


9-10-0

 $\boxtimes$ 

6x6 =

2





WEBS NOTES

Scale = 1:40.1

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

**REACTIONS** (size)

bracing

Tension

BRACING

TCLL (roof)

Snow (Pf/Pg)

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x4 - 1 row at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-6-0 oc.

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

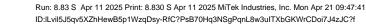
- 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- 3) Unbalanced roof live loads have been considered for this design.

- 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 12) Use Simpson Strong-Tie HUS26 (14-10d Girder, 4-10d Truss) or equivalent spaced at 2-0-0 oc max, starting at 1-7-4 from the left end to 9-7-4 to connect truss(es) to back face of bottom chord.
- Fill all nail holes where hanger is in contact with lumber.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1664 Ib down at 9-10-12 on bottom chord. The design/ selection of such connection device(s) is the responsibility of others.

## LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (lb/ft)
  - Vert: 1-2=-51, 2-3=-61, 3-4=-51, 5-8=-20

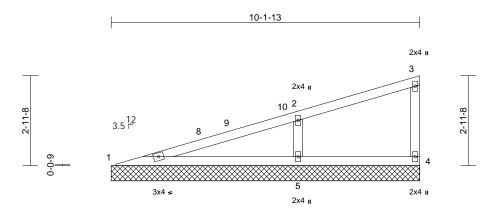
Service Servic THURSDAY WANTED 867 GA


April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	VC4	Valley	1	1	Job Reference (optional)	172897084







Page: 1



9-11-15

0.37

0.59

0.08

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

in

n/a

n/a

0.01

(loc)

5

l/defl

n/a 999

n/a

n/a n/a

L/d

999

PLATES

Weight: 34 lb

MT20

GRIP

244/190

FT = 20%

Scale = 1:37.9

Loading

TCLL (roof)

Snow (Pf/Pg)

TCDL BCLL BCDL		10.0 0.0* 10.0	Rep Stress Incr Code	YES IRC2021	/TPI2014
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No 2x4 SP No 2x4 SP No	0.3		5) 6) 7)	Plates ch about its Gable red Gable stu
OTHERS BRACING	2x4 SP No			8)	This truss chord live
TOP CHORD		wood shea d verticals.	athing directly applied	i, 9)	* This true on the bo
BOT CHORD	Rigid ceili	ng directly	applied.		3-06-00 ta
REACTIONS	(size) Max Horiz Max Grav	1=69 (LC	2), 4=105 (LC 22),	10)	chord and Beveled p surface w This truss structural
FORCES	(lb) - Max Tension	imum Com	pression/Maximum		chord and the bottor
TOP CHORD BOT CHORD WEBS		501, 4-5=-4	57/44, 3-4=-95/80 42/43	LO	AD CASE

(psf)

20.0

15.4/20.0

Spacing

Plate Grip DOL

Lumber DOL

2-0-0

1.15

1.15

#### NOTES

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

- Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

CSI

тс

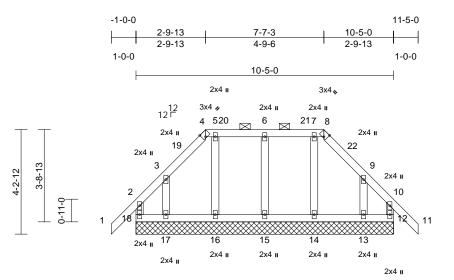
BC

WB

Matrix-AS

- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. AD CASE(S) Standard

HON STATES OR Martin Hall SEAL 28677 GA April 22,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer index very the applications of design had very the applications of design index very the applications of design index very the application of the applicat and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	B2G	Hip Supported Gable	2	1	Job Reference (optional)	172897085

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:34 ID:OWT15ZxkCY_d_kElWq4KCyzqF3c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



	10-5-0
Scale = 1:46.6	
Plate Offsets (X, Y): [4:0-1-8,Edge], [8:0-1-8,Edge]	

Plate Offsets (	X, Y): [4:0-1-8,Edge]	, [8:0-1-8,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.16 0.03 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 60 lb	<b>GRIP</b> 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	T CHORD 2x4 SP No.2 BS 2x4 SP No.3 HERS 2x4 SP No.3 ACING P CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (10-0-0 max.): 4-8. T CHORD Rigid ceiling directly applied or 6-0-0 oc				<ul> <li>Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0ps; BCDL=6.0ps; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-to 20-0. Exterior(2N) 2-0-0 to 2-9-13, Corner (3R) 2-9-13 to 5-9-13, Exterior(2N) 10-7-3, Corner(3R) 7-7-3 to 10-7-3, Exterior(2N) 10-7-3 to 11-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces &amp; MWFRS for reactions shown; Lumber DDL=1.60 plate grip DOL=1.60</li> <li>14) Provide mechanical connection (by oth bearing plate capable of withstanding 3 at joint 17 and 36 lb uplift at joint 13.</li> <li>15) Graphical purlin representation does n or the orientation of the purlin along the bottom chord.</li> </ul>								
				<ul> <li>3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0</li> <li>5) Unbalanced snow loads have been considered for this design.</li> </ul>								111111	
FORCES TOP CHORD BOT CHORD WEBS	ORCES         (lb) - Maximum Compression/Maximum Tension           "OP CHORD         2-18=-190/120, 1-2=0/83, 2-3=-64/54, 3-4=-81/122, 4-5=-49/119, 5-6=-49/119, 6-7=-49/119, 7-8=-49/119, 8-9=-81/121, 9-10=-55/44, 10-11=0/83, 10-12=-190/120           BOT CHORD         17-18=-39/81, 16-17=-39/81, 15-16=-39/81, 14-15=-39/81, 13-14=-39/81, 12-13=-39/81				<ul> <li>6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.</li> <li>7) Provide adequate drainage to prevent water ponding.</li> <li>8) Plates checked for a plus or minus 5 degree rotation about its center.</li> <li>9) Gable requires continuous bottom chord bearing.</li> <li>10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).</li> <li>11) Gable studs spaced at 2-0-0 oc.</li> <li>12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>13) * This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.</li> </ul>								
NOTES	7-14=-161/3, 9-13=- ed roof live loads have	161/96		<ul> <li>chord live load nonconcurrent with any other live loads.</li> <li>13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.</li> </ul>								EEP. St. Internet	

April 22,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	V4	Valley	2	1	Job Reference (optional)	172897086

5-3-2

5-3-2

2x4 II

8

2x4 II

5-4-14

5-4-14

CSI

TC

BC

WB

3x4 .

12 12 2 13

5-3-6

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

10.0

0.0

15 4/20 0

7-0-0

2-0-0

1.15

1 15

YES

IRC2021/TPI2014

Structural LLC Thurmont MD - 21788

Scale = 1:50.6 Loading

TCLL (roof)

TCDL

BCLL

Snow (Pf/Pg)

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:40 ID:WNO4f37C7fLjkojaGQrJAczqF24-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-6-10 10-9-12  $\mathbb{H}$ 5-3-2 0-3-8 10-9-12 4x8 = 3 2x4 II 14 4 7 6 2x4 II 2x4 II 3x4 💊 10-9-12 5-4-14 DEFL in l/defl L/d PLATES GRIP (loc) 0.28 Vert(LL) n/a n/a 999 MT20 244/190 0.21 Vert(TL) n/a n/a 999 0.07 Horiz(TL) 0.00 5 n/a n/a Matrix-MS Weight: 47 lb FT = 20%

BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 1=10-9-12, 5=10-9-12, 6=10-9-12, 7=10-9-12, 8=10-9-12 Max Horiz 1=82 (LC 13) Max Uplift 1=-48 (LC 14), 5=-24 (LC 15), 6=-63 (LC 17), 8=-68 (LC 16) 1=69 (LC 13), 5=48 (LC 12), 6=367 Max Grav (LC 23), 7=213 (LC 2), 8=373 (LC 22) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-113/93, 2-3=-194/96, 3-4=-196/96, 4-5=-110/83 BOT CHORD 1-8=-51/67, 7-8=-18/64, 6-7=-18/66, 5-6=-48/66 WEBS 3-7=-125/0 4-6=-377/237 2-8=-393/242 NOTES Unbalanced roof live loads have been considered for 1) this design 2) Wind: ASCE 7-16; Vult=120mph (3-second gust)

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-0-4, Exterior(2N) 3-0-4 to 5-6-0, Corner (3R) 5-6-0 to 8-6-0, Exterior(2N) 8-6-0 to 10-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1, 24 lb uplift at joint 5, 63 lb uplift at joint 6 and 68 lb uplift at joint 8.
- LOAD CASE(S) Standard



April 22,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	C1G	Monopitch Supported Gable	1	1	Job Reference (optional)	172897087

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:35 ID:7qZ8BM2scLZSgPZ49e9oBBzqDpQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1







0-3-4



#### Scale = 1:50.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing         2-0           Plate Grip DOL         1.1           Lumber DOL         1.1           Rep Stress Incr         YE           Code         IRC	5 S C2021/TPI2014	TC BC WB Matrix-AS	0.56 0.75 0.16	Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.37 0.01 0.18	(loc) 9-12 9-12 9 9-12	l/defl >727 >328 n/a >664	L/d 360 240 n/a 240	MT20 Weight: 56 lb	244/190 FT = 20%
	Rigid ceiling directly (size) 2=0-4-8, ( 8=1-11-8, Max Horiz 2=85 (LC Max Uplift 2=-66 (LC (LC 12), 8 12) Max Grav 2=418 (LC (LC 7), 8= 23)	5-1-11-8, 7=1-11-8, 9=1-11-8 12) 3 (LC 2), 6=-33 (LC 2), 7=-62 3=-799 (LC 7), 9=-131 (LC C 2), 6=5 (LC 12), 7=504 -111 (LC 12), 9=934 (LC	<ul> <li>load of 12.0 ; overhangs n</li> <li>Plates check about its cen</li> <li>This truss h on the botton 3-06-00 tall b chord and an</li> <li>Provide mecione</li> <li>P</li></ul>	s been designed fo osf or 2.00 times fla on-concurrent with ed for a plus or min ter. s been designed fo ad nonconcurrent w ias been designed i n chord in all areas by 2-00-00 wide will y other members. hanical connection capable of withsta at joint 7 and 799 l	t roof k other lives 5 de r a 10.0 ith any for a live where fit betw (by oth nding 3	bad of 15.4 ps ve loads. ggree rotation ) psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss to 3 lb uplift at jo	f on ds. psf m					
FORCES	(lb) - Maximum Com Tension 1-2=0/23, 2-3=-376/			sign requires that a od sheathing be ap			מר					
BOT CHORD WEBS	4-5=-18/20, 5-6=-14 2-9=-165/342, 8-9=- 5-8=-121/58, 4-9=-3 3-9=-541/238	109/35, 7-8=0/0 03/91, 4-8=-76/237,		2" gypsum sheetroo nord.							TH CA	ROUL

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 11-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

OHA

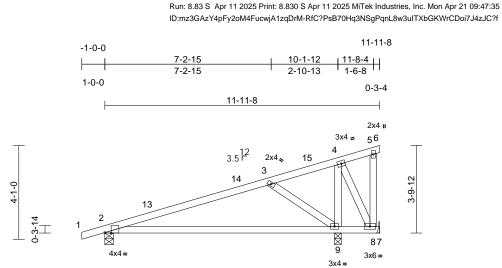
Summan Sum

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



GA

mm


April 22,2025

SEAL

28677

WWWWWWWWWWWW

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	C1	Monopitch	7	1	Job Reference (optional)	172897088





Scale = 1:50.1

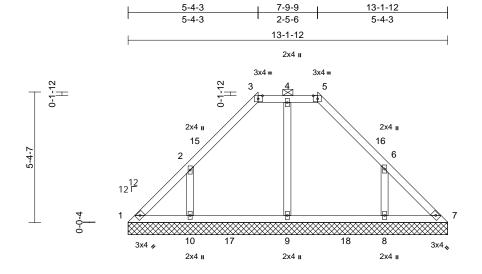
# Plate Offsets (X, Y): [2:0-3-5,Edge]

	(X, T): [2:0 0 0,20g0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	I/TPI2014	CSI TC BC WB Matrix-AS	0.56 0.74 0.16	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.17 -0.38 0.01 0.19	(loc) 9-12 9-12 9 9-12	l/defl >709 >320 n/a >649	L/d 360 240 n/a 240	PLATES MT20 Weight: 56 lb	<b>GRIP</b> 244/190 FT = 20%
Vasd=95 II; Exp B; Exterior(2 zone; car and right and force DOL=1.6	<ul> <li>2x4 SP No.2 2x4 SP No.3</li> <li>Structural wood she Rigid ceiling directly (size) 2=0-4-8, 8 Max Horiz 2=85 (LC Max Uplift 2=-66 (LC 9=-120 (L Max Grav 2=419 (LC (LC 23)</li> <li>(lb) - Maximum Com Tension</li> <li>1-2=0/23, 2-3=-377/ 4-5=-17/16, 5-6=-6/C</li> </ul>	applied. 3= Mechanical, 9=0-3 (12), 8=-256 (LC 2), C 12), 8=-256 (LC 2), C 2), 8=43 (LC 12), 9 pression/Maximum 90, 3-4=-67/114, 108/35, 7-8=0/0 6/93, 4-8=-76/235, (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C rior (1) 2-0-0 to 11-11 posed; c-C for membra ins shown; Lumber	3-8 7) =876 9) 10 11 20 11 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	load of 12.0 overhangs n Plates check about its cer This truss ha chord live loa * This truss l on the bottoo 3-06-00 tall H chord and an Refer to gird Provide mec bearing plate 8. ) One H2.5A S recommended UPLIFT at ju and does no ) This truss de structural wo	as been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will y other members. er(s) for truss to tru- hanical connection e capable of withsta Simpson Strong-Tie ed to connect truss (s) 2 and 9. This co t consider lateral for asign requires that bood sheathing be ap (2" gypsum sheetro hord.	at roof le other lin nus 5 de or a 10.0 vith any for a liv s where Il fit betv uss conre (by oth anding 2 e conne to bear onces. a minim pplied d	bad of 15.4 p ve loads. agree rotation D psf bottom other live loa e load of 20. a rectangle veen the bott nections. ers) of truss i 256 lb uplift ai ctors ing walls due n is for uplift um of 7/16"	sf on ads. Opsf om to t joint t only top			Ares Ares	ORTH CA SEA 2867	L <u>i E</u>

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

SEAL 28677 April 22,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	V5	Valley	2	1	Job Reference (optional)	172897089

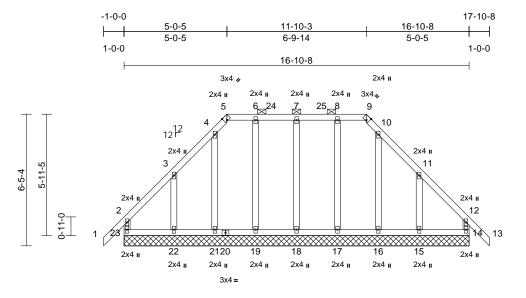
Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:40 ID:iUYEzqG6X1j9ZU3iPDXu6xzqF1v-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



1	13-1-12	
Scale = 1:47.4		
Plate Offsets (X, Y): [3:0-2-3,0-1-8], [5:0-2-3,0-1-8]		


Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.18 0.17 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 57 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, exo 2-0-0 oc purlins (6-0	cept	5	Vasd=95mpl II; Exp B; En (3E) 0-0-4 to (3E) 5-4-7 to Exterior(2N) right expose for members Lumber DOL	7-16; Vult=120m ; TCDL=6.0psf; I closed; MWFRS 3-0-4, Exterior(2 7-9-13, Corner(3 10-6-14 to 13-2-C 4; end vertical lef and forces & MW =1.60 plate grip I	ACDL=6. (envelope N) 3-0-4 R) 7-9-1: 2 zone; ca t and right /FRS for DOL=1.60	Desf; h=25ft; and C-C C o 5-4-7, Corr to 10-6-14, antilever left a at exposed;C reactions sho	orner ner and -C own;					
REACTIONS	9=13-1-1: Max Horiz 1=-81 (LC Max Uplift 1=-7 (LC 10=-51 (L Max Grav 1=206 (LC	12), 8=-47 (LC 17), .C 16) C 44), 7=210 (LC 44) C 58), 9=349 (LC 61)	4) ), ),	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0	ed for wind loads Ids exposed to wid Industry Gable I alified building de 7-16; Pr=20.0 ps .15); Pg=20.0 ps OL = 1.15); Is=1.0 ; Cs=1.00; Ct=1. snow loads have	nd (norm End Deta esigner as f (roof Ll f; Pf=20.4 ); Rough 10, Lu=50	al to the face ils as applica s per ANSI/TI :: Lum DOL= psf (Lum DC Cat B; Partia )-0-0	e), ble, PI 1. 1.15 DL = ally					
FORCES	(lb) - Maximum Com Tension 1-2=-243/52, 2-3=-2		5) 23, 7)	design. Provide adeo	quate drainage to ed for a plus or m	prevent	water ponding	g.					Um.
BOT CHORD	1-10=-22/170, 9-10= 7-8=-19/172	,	6, 8) 9)	about its cen Gable requir		tom choi	0				and a	OR TH CA	ROLI
WEBS NOTES	4-9=-178/13, 2-10=-	338/211, 6-8=-335/2		) This truss ha	s been designed ad nonconcurrent	for a 10.		ads			13		A. 7 1.
	ed roof live loads have n.	been considered for	12	) * This truss h on the bottor 3-06-00 tall h chord and ar ?) Provide mec bearing plate 51 lb uplift at 8) Graphical pu	has been designe n chord in all area by 2-00-00 wide w by other members hanical connection capable of withs joint 10 and 47 II fin representation ation of the purlin	d for a liv as where vill fit betw s, with BC n (by oth tanding 7 o uplift at n does no	e load of 20.0 a rectangle veen the botto DL = 10.0psi ers) of truss to b uplift at jo joint 8. bt depict the s	0psf om f. to vint 1,				SEA 286	EER. Stunner

April 22,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	B1G	Hip Supported Gable	2	1	Job Reference (optional)	172897090

### Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:33 ID:DOItnopqo9cB92ueN0OIFdzqF3n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



	-8	
Scale = 1:56.4	I	
Plate Offsets (X, Y): [5:0-1-8,Edge], [9:0-1-8,Edge]		

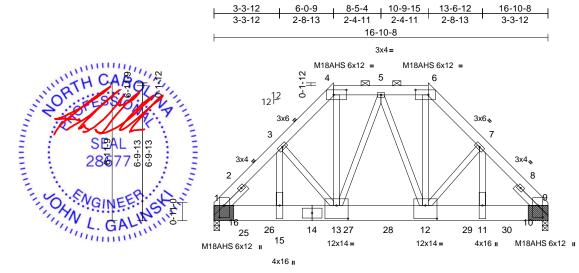
	λ, i). [5.0-1-0,∟uge]	, [9.0-1-0,∟uge]					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC 0.	DEFLii16Vert(LL)n/05Vert(CT)n/13Horz(CT)0.0	′a - n/a 999	9 MT20 244/190 9
	6-0-0 oc purlins, ex 2-0-0 oc purlins (6- Rigid ceiling directly bracing. (size) 14=16-10 16=16-10 23=16-10 23=16-10 23=114 ( Max Horiz 23=114 ( Max Uplift 14=-13 (l 18=-2 (L0 23=-24 (l Max Grav 14=268 ( 18=248 (	v applied or 6-0-0 oc )-8, 15=16-10-8, )-8, 17=16-10-8, )-8, 19=16-10-8, )-8, 22=16-10-8, )-8, 22=16-10-8, )-8, 22=16-10-8, )-8, 22=170, (LC 17), C 12), 15=-78 (LC 17), C 12), 15=-78 (LC 17), LC 45), 15=274 (LC 55), LC 45), 15=274 (LC 55), LC 44), 19=240 (LC 44), LC 44), 22=277 (LC 55), LC 45), 22=277 (LC	this design or 2) Wind: ASC y Vasd=95m II; Exp B; I (3E) -10-0 (3R) 50-5 Corner(3R 17-10-8 zc vertical lef forces & M DOL=1.60 3) Truss desi only. For see Stand or consult 0), 4) TCLL: ASC the DOL the DOL the DOL t	7-18=-218/61, 6-19=-20 3-22=-287/143, 8-17=-2 11-15=-288/143 ed roof live loads have be h. CE 7-16; Vult=120mph (3- nph; TCDL=6.0psf; BCDL Enclosed; MWFRS (enve 0 to 2-0-0, Exterior(2N) 8-6 (3) 11-10-3 to 14-10-3, Ext ne; cantilever left and rig it and right exposed; C-C f MWFRS for reactions show 0 plate grip DOL=1.60 igned for wind loads in the studs exposed to wind (ne lard Industry Gable End D qualified building designe CE 7-16; Pr=20.0 psf (roo L=1.15); Pg=20.0 psf; Pf=: DOL = 1.15); Is=1.0; Roo 1.0; Cs=1.00; Ct=1.10, Lu ed snow loads have been	200/9, 10-16=-170/1, en considered for second gust) =6.0psf; h=25ft; Cat. lope) and C-C Corner 0-0 to 5-0-5, Corner 0-5 to 11-10-3, erior(2N) 14-10-3 to ht exposed ; end or members and wn; Lumber e plane of the truss ormal to the face), retails as applicable, er as per ANSI/TPI 1. f LL: Lum DOL=1.15 20.4 psf (Lum DOL = ugh Cat B; Partially i=50-0-0	on the bottom cl 3-06-00 tall by 2 chord and any co 14) Provide mechar bearing plate ca 23, 13 lb uplift a at joint 22 and 7 15) Graphical purlin or the orientatio bottom chord. LOAD CASE(S)	ical connection (by others) of truss to pable of withstanding 24 lb uplift at joint t joint 14, 2 lb uplift at joint 18, 79 lb uplift 8 lb uplift at joint 15. representation does not depict the size n of the purlin along the top and/or tandard
FORCES TOP CHORD BOT CHORD	Tension 2-23=-242/35, 1-2= 3-4=-135/125, 4-5= 6-7=-105/124, 7-8= 9-10=-121/115, 10- 11-12=-101/95, 12- 22-23=-52/87, 21-2	-121/115, 5-6=-105/12 -105/124, 8-9=-105/12 11=-135/125, 13=0/83, 12-14=-242/3 2=-52/87, 19-21=-52/8 8=-52/87, 16-17=-52/8	<ul> <li>load of 12.</li> <li>overhangs</li> <li>Provide ac</li> <li>Plates che</li> <li>about its c</li> <li>Gable reqi</li> <li>Truss to b</li> <li>braced ag</li> <li>Gable struss</li> </ul>	has been designed for gr .0 psf or 2.00 times flat ro s non-concurrent with othe dequate drainage to preve acked for a plus or minus enter. uires continuous bottom of e fully sheathed from one ainst lateral movement (i. ds spaced at 2-0-0 oc. has been designed for a load nonconcurrent with a	of load of 15.4 psf on er live loads. ent water ponding. 5 degree rotation shord bearing. face or securely e. diagonal web). 10.0 psf bottom	and the second second	SEAL 28677

April 22,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	B1GR	Hip Girder	2	2	Job Reference (optional)	172897091

Scale = 1:58.2

Run: 8.83 E Feb 1 2025 Print: 8.830 E Feb 1 2025 MiTek Industries, Inc. Tue Apr 22 20:34:33 ID:LdwTsZ9eaZ6TXosg7EhxbjzqEpr-N6_acWEUmXrX3MLq7WF_8nWSfVcCoRhxcl8UqYzODMM

16-10-8

Page: 1



6-0-9

3-3-12

# M18AHS 6x12 =

3-3-12	6-2-5	10-8-3	13-6-12	16-10-8	Ē
3-3-12	2-10-9	4-5-14	2-10-9	3-3-12	

Plate Offsets (X, Y): [1	[1:0-7-4,0-2-12], [4:0-7-12,0-3-0], [6:0-	7-12,0-3-0], [9:0-7-4,0-2-12],	[12:0-7-0,0-8-0], [13:0-7-0,0-8-0]
--------------------------	-------------------------------------------	--------------------------------	------------------------------------

								-					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MS	0.46 0.42 0.74	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.12 0.03 0.00	(loc) 12-13 12-13 9 13	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES M18AHS MT20 Weight: 389 lb	<b>GRIP</b> 186/179 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x10 SP DSS 2x4 SP No.3 *Excep Left 2x4 SP No.3 *Excep Left 2x4 SP No.3 1-6-0 Structural wood she 5-4-1 oc purlins, exc 2-0-0 oc purlins (5-3 Rigid ceiling directly bracing. (size) 1=(0-3.8 - 0-5-9), 9= (req. 0-5-; Max Horiz 1=-94 (LC Max Grav 1=11004 (lb) - Max. Comp./M (lb) or less except w 1-2=-9771/0, 2-3=-1 4-5=-7358/0, 5-6=-7 7-8=-10838/0, 8-9=-	t* 13-4,12-6:2x4 SP 1-6-0, Right 2x4 SP athing directly applie sept -8 max.): 4-6. applied or 10-0-0 or + bearing block), (rer (0-3-8 + bearing blo 2) 2 8) (LC 44), 9=10110 (L ax. Ten All forces hen shown. 1232/0, 3-4=-9908/0 267/0, 6-7=-9781/0, 8658/0 =0/7815, 13-14=0/7 8=0/7168, 12-28=0/7 8=0/7465, 11-30=0/7 =0/7465, 11-30=0/7 =0/7465, 1-30=0/6089 -581/0, 7-11=0/1572	No.3 ed or 2) c 3) c 4) c 4) 250 0, 5) 315, 6) 7168, 7465, 7)	(0.131"x3") I Top chords : staggered a Bottom chor staggered a Web connec All loads are except if not CASE(S) se provided to unless other 2x10 SP DS each face w 3" o.c. 20 To to be SP DS 2x10 SP DS each face w 3" o.c. 20 To to be SP DS Unbalanced this design. Wind: ASCE Vasd=95mp II; Exp B; Er and right ex, Lumber DOI TCLL: ASCE Plate DOL= 1.15 Plate D Exp; Ce=1. roof snow lo	ds connected as t 0-4-0 oc. ted as follows: 2: e considered equa ed as front (F) or ction. Ply to ply c distribute only loa wise indicated. S bearing block ' ith 5 rows of 10d otal fasteners per S. S bearing block ' th 5 rows of 10d otal fasteners per	ows: 2x6 follows: 2 x4 - 1 row ally applie back (B) connection ads noted 12" long a d (0.131"x; block. Be 12" long a d (0.131"x; block. Be	- 2 rows x10 - 3 rows at 0-9-0 oc. d to all plies, face in the LC is have been as (F) or (B), t jt. 1 attached 3") nails spac aring is assuit t jt. 9 attached 3") nails spac aring is assuit considered for cond gust) 0psf; h=25ft; antilever d right expose Cat Lum DOL= 4 psf (Lum DC Cat B; Partia Partia D-0; Min. fla ge applied to c	d to ed med d to ed med or Cat. left ed; 1.15 DL = IIIy at	abc 12) Thi chc 13) * Ti on 3-0 chc 14) Gra or t bot 15) Hau pro bot 15) Hau pro b c at 8-9 12- The res <b>LOAD</b> ( 1) Do	but its ce s truss h rrd live k his truss the botto 6-00 tall rrd and a phical p he orien tom cho nger(s) c vided su lown at 4-9-12, 252 9-12, an e design, ponsibili <b>CASE(S</b>	enter. has been bad note that be obm chood of by 2-00 any othe burlin re- tration of rd. 00 rother ufficient 1-6-4, 2523 lb 23 lb do hod 2523 /selecti ity of ot s) Sta now (ba	en designed for a nconcurrent with een designed for rd in all areas wh 00-00 wide will fit ter members. apresentation doe of the purlin along r connection devi 2523 lb down at 2523 lb down at 0 down at 6-9-12 wm at 10-9-12, a 8 lb down at 14-9 ion of such connec- tions of such connec- tions.	any other live loads. a live load of 20.0psf here a rectangle between the bottom as not depict the size g the top and/or
					snow loads have		sidered for th	his					

8) Unbalanced snow loads have been considered for this design.

9) Provide adequate drainage to prevent water ponding. 10) All plates are MT20 plates unless otherwise indicated.

April 22,2025

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

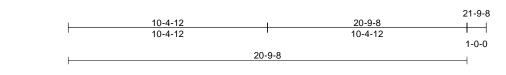
Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	170007004
2503-4263-A	B1GR	Hip Girder	2	2	Job Reference (optional)	172897091

Run: 8.83 E Feb 1 2025 Print: 8.830 E Feb 1 2025 MiTek Industries, Inc. Tue Apr 22 20:34:33 ID:LdwTsZ9eaZ6TXosg7EhxbjzqEpr-N6_acWEUmXrX3MLq7WF_8nWSfVcCoRhxcl8UqYzODMM Page: 2

Uniform Loads (lb/ft)

Vert: 1-4=-51, 4-6=-61, 6-9=-51, 17-21=-20

Concentrated Loads (lb) Vert: 14=-2234 (B), 12=-2234 (B), 25=-1843 (B),


26=-2234 (B), 27=-2234 (B), 28=-2234 (B), 29=-2234 (B), 30=-2234 (B)

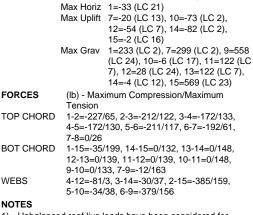

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	MR2G	Roof Special Supported Gable	1	1	Job Reference (optional)	172897092

#### Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:38 ID:gZo2eGh2OkDXU52u31hNcGzqDv2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f






Scale = 1:60.1		0-3-6  + 0-3-6	<u>9-10-</u> 9-7-2	-	10-10-14     1-0-4	•	-	·6-0 7-2			0-9-8 ┿  -3-8	
Loading	(psf)	Spacing	2-0-0	CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	20.0 15.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC BC	0.39 0.37	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190
CDL	10.4,20.0	Rep Stress Incr	YES	WB	0.08	Horz(CT)	0.01	1	n/a	n/a		
CLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS								
CDL	10.0										Weight: 75 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD DTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		Vasd=95mp II; Exp B; Ei (3E) 0-0-0 t Corner(3R)	E 7-16; Vult=12 bh; TCDL=6.0ps nclosed; MWFF o 3-0-0, Exterio 10-4-12 to 13-4	sf; BCDL=6.0 RS (envelope r(2N) 3-0-0 t I-12, Exterio	0psf; h=25ft; ) and C-C C o 10-4-12, r(2N) 13-4-12	orner	14) Bev surf 15, 15) This	eled pla ace with 10, 9, 10 s truss d	ite or s n truss 6, 19. esign i	chord at joint(s)	provide full bearing 1, 13, 11, 7, 12, 14,

This truss design requires that a minimum of 7/16' structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Page: 1

LOAD CASE(S) Standard



Rigid ceiling directly applied.

Structural wood sheathing directly applied.

1=20-2-8, 7=20-2-8, 9=20-2-8,

10=20-2-8, 11=20-2-8, 12=20-2-8,

13=20-2-8, 14=20-2-8, 15=20-2-8

TOP CHORD

BOT CHORD

**REACTIONS** (size)

1) Unbalanced roof live loads have been considered for this design

- Corner(3R) 10-4-12 to 13-4-12, Exterior(2N) 13-4-12 to 21-9-8 zone: cantilever left and right exposed : end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation 7)
- about its center. Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9)
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 12, 82 lb uplift at joint 14, 2 lb uplift at joint 15 and 73 lb uplift at joint 10.
- 12) N/A



April 22,2025




818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	MR2	Roof Special	4	1	Job Reference (optional)	172897093

### Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:37 ID:W9v9?ecnxbF_3XhStx2gYozqDsZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



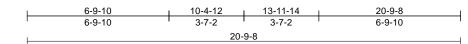


	0-3-8		10-10-14		20-9-8
	μ	9-10-10	1 1	20-6-0	
		9-7-2	1 1	9-7-2	П
Scale = 1:60.1	0-3-8		1-0-4		0-3-8

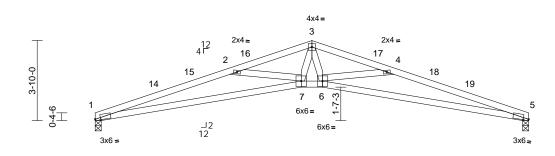
# Plate Offsets (X, Y): [1:0-2-13,0-0-12], [2:Edge,0-0-0], [5:0-2-13,0-0-12]

	x, i). [1.0 2 10,0 0 1	zj, [z.cugo,o o oj, [o	.0 2 10,0 0	12]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	<b>CSI</b> TC BC WB Matrix-AS	0.57 0.69 0.31	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.24 -0.52 0.22 0.13	(loc) 7-8 8-11 5 7-8	l/defl >999 >477 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 81 lb	<b>GRIP</b> 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E Exterior(2E Exterior(2F 21-9-8 zon vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL= 1.15 Plate Exp; Ce=1	Max Horiz 1=-33 (LC Max Grav 1=830 (LC (lb) - Maximum Com Tension 1-2=-3262/361, 2-3= 3-4=-2643/220, 4-5= 1-8=-293/3118, 7-8= 5-7=-304/3105 3-7=-20/733, 4-7=-6 2-8=-688/190 ed roof live loads have	athing directly applie applied. 5=0-3-8 17) 22), 5=893 (LC 2) pression/Maximum 2647/229, 3251/370, 5-6=0/26 102/2282, 81/187, 3-8=-26/746, been considered for (3-second gust) DL=6.0psf; h=25ft; C royelope) and C-C for (1) 3-0-0 to 10-4-7 Interior (1) 13-4-12 t ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO Rough Cat B; Partiall	6) d. 7) 8) 9) 10) LO, LO, 2, 0 15 y	load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/7 designer sho This truss de structural wo	is been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members int(s) 1, 5 conside FPI 1 angle to gra ruld verify capacit sign requires that od sheathing be a 2" gypsum sheet hord.	flat roof k th other linnus 5 de for a 10.0 with any d for a liv as where vill fit betv s. ers parall in formula ty of bear t a minim applied d	bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott el to grain va a. Building ing surface. um of 7/16" irectly to the	n ads. Opsf om lue top			A A A A A A A A A A A A A A A A A A A	SEA 286	EEP. GLUUN

April 22,2025


Page: 1




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	MR3	Roof Special	2	1	Job Reference (optional)	172897094

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:38 ID:W9v9?ecnxbF_3XhStx2gYozqDsZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



Page: 1



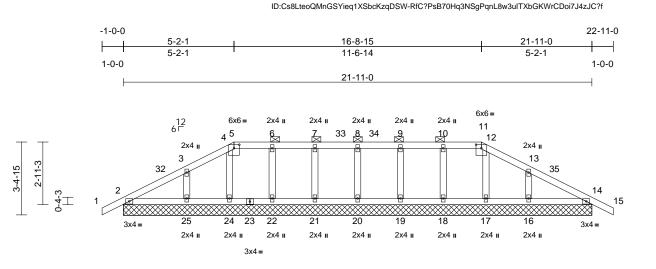
	0-3-8		10-10-14		20-9-8
	LL	9-10-10	1 1	20-6-0	11
		9-7-2	I I	9-7-2	TI
Scale = 1:55.3	0-3-8		1-0-4		0-3-8

### Plate Offsets (X, Y): [1:0-3-1,0-0-12], [5:0-3-1,0-0-12]

Flate Offsets	(A, F). [1.0-3-1,0-0-12	.], [5.0-3-1,0-0-12]				-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/T	PI2014	CSI TC BC WB Matrix-AS	0.57 0.69 0.31	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.24 -0.52 0.22 0.13	(loc) 6-7 7-10 5 7	l/defl >999 >476 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 80 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x4 SP SS *Except* 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=0-3-8, 5 Max Horiz 1=28 (LC Max Grav 1=832 (LC (lb) - Maximum Com Tension 1-2=-3271/386, 2-3= 3-4=-2655/243, 4-5=	athing directly applie applied. 5=0-3-8 20) C 2), 5=832 (LC 2) apression/Maximum =-2655/238, =-3271/382 =-128/2290,	ed. 3 8) E 9) T <b>LOA</b>	about its cen Fhis truss has chord live loa This truss h on the bottor 8-06-00 tall h chord and ar Bearing at jo using ANSI/ ⁻ designer sho Fhis truss des structural wo	as been designed ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w y other members int(s) 1, 5 conside FPI 1 angle to gra uld verify capacit esign requires tha bod sheathing be : 2" gypsum sheet hord.	for a 10.0 with any d for a liv as where vill fit betv s. ers paralle in formula ty of beari t a minim applied d	D psf bottom other live loa e load of 20. a rectangle veen the bott el to grain va a. Building ng surface. um of 7/16" irectly to the	ads. Opsf om lue top					
this design 2) Wind: AS0 Vasd=95n II; Exp B; Exterior(2 Exterior(2 20-9-8 zon vertical left	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) 0-0-0 to 3-0-0, Inter R) 10-4-12 to 13-4-12, ne; cantilever left and r ft and right exposed;C- /WFRS for reactions s	(3-second gust) DL=6.0psf; h=25ft; ( ivelope) and C-C ior (1) 3-0-0 to 10-4- Interior (1) 13-4-12 ight exposed ; end C for members and	Cat. 12,									ORTH CA	

- DOL=1.60 plate grip DOL=1.60
   TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.






WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	G3G	Hip Supported Gable	1	1	Job Reference (optional)	172897095

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:37

Structural, LLC, Thurmont, MD - 21788,



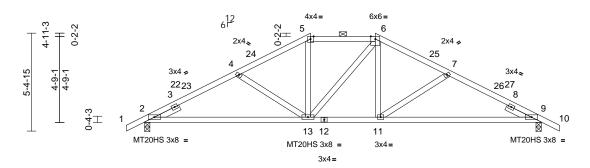
0						21-1	1-0						
Scale = 1:53.9 Plate Offsets (	(X, Y): [5:0-3-0,0-2-0],	[11:0-3-0,0-2-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 20.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TF	92014	CSI TC BC WB Matrix-AS	0.11 0.07 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 29	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 244/190
BCDL	10.0			-								Weight: 99 lb	FT = 20%
OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she except 2-0-0 oc purlins (6-0 Rigid ceiling directly (size) 2=21-11- 18=21-11 20=21-11 20=21-11 22=21-11 Max Horiz 2=-27 (LC Max Uplift 16=-10 (L Max Grav 2=240 (LC 18=306 (L 18=225 (L 20=216 (L)	C 44), 24=134 (LC 4 C 44), 24=134 (LC 4 C 44), 24=24 C 44), 24=24 C 44), 24=24 C 44), 24=24 C 44), 24=24 C 44), 24=24 C 44), 24=34 C	th 2) W 2) W V. (3) (3) C 2: vec fo 5) D 5), O 15), O (4), O (4), O (5) 4) Τ ⁻	2 3 3 3 3 3 3 3 3 3 3 3 3 3	8-20=-176/45, 7-2 4-24=-107/20, 3-2 10-18=-183/41, 12 13-16=-231/86 roof live loads hav 7-16; Vult=120m h; TCDL=6.0psf; E closed; MWFRS ( 0 2-0-0, Exterior(2) (6-8-15 to 19-8-15 e; cantilever left al nd right exposed; /FRS for reactions late grip DOL=1.6 ted for wind loads uds exposed to wi d Industry Gable E tailfied building e is 7-16; Pr=20.0 ps	25=-231/8 2-17=-10 we been ph (3-sec 3CDL=6. (envelop 2N) 2-0-0 N) 8-2-1 5, Exterio nd right e C-C for r s shown; 0 in the pl nd (norm End Deta ssigner a sf (roof Li	36, 9-19=-173 7/22, considered for cond gust) 0psf; h=25ft; 9) and C-C C to 5-2-1, Coi to 16-8-15, rr(2N) 19-8-19 exposed ; eno nembers and Lumber ane of the tru ils as applica s per ANSI/T :: Lum DOL=	B/46, or Cat. orner mer 5 to 5 5 5 5 ble, PI 1. 1.15	on t 3-06 choi 13) Prov bea 25 a 14) This stru choi the 15) Gra or th	he bottc -00 tall rd and a vide me ring plata and 10 ll truss d ctural w rd and 1 bottom c phical p he orien om chor <b>ASE(S</b> )	om cho by 2-0 iny oth chanic te capa o uplift lesign i ood sh /2" gyţ chord. urlin re tation o rd. ) Stat	rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstand at joint 16. requires that a m ieathing be appli osum sheetrock epresentation doo of the purlin alon ndard	between the bottom y others) of truss to ing 10 lb uplift at joint inimum of 7/16" ed directly to the top be applied directly to es not depict the size
FORCES	(lb) - Maximum Com Tension 1-2=0/39, 2-3=-42/5	pression/Maximum	E: 5) U	xp.; Ce=1.0 nbalanced	OL = 1.15); ls=1.0 ); Cs=1.00; Ct=1.1 snow loads have	10, Lu=5	0-0-0			1	N.C.	OF AS	in and
BOT CHORD	4-5=-56/72, 5-6=-34 7-8=-34/71, 8-9=-34 10-11=-34/71, 11-12 13-14=-39/46, 14-15 2-25=-30/58, 24-25=	/71, 6-7=-34/71, /71, 9-10=-34/71, 2=-56/72, 12-13=-60/ 5=0/39 =-17/58, 22-24=-17/5  =-17/58, 19-20=-17/	6) Ti 69, ov 8, 7) P 8, 8) P 58, al 58, 9) G 10) G	ad of 12.0 µ verhangs no rovide adec lates check pout its cen able require able studs	as been designed psf or 2.00 times i on-concurrent witi quate drainage to ted for a plus or m ter. es continuous bot spaced at 2-0-0 c is been designed	flat roof I h other li prevent hinus 5 d tom cho	oad of 15.4 p ve loads. water pondin egree rotatior rd bearing.	sf on g.		CONTRACT OF CONTRACT		SEA 286	

chord live load nonconcurrent with any other live loads.

L. GAL

April 22,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	G3A	Нір	1	1	Job Reference (optional)	172897096

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:37 ID:kCdqowB7bwQm?nfATzYKSIzqDS?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

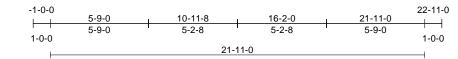


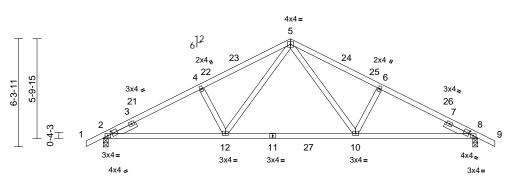


Scale = 1:63.6	H	<u>9-0-5</u> 9-0-5	12-10-11 3-10-6	<u>21-11-0</u> 9-0-5	{
BCDL 10	.0     Plate Grip DOL     1.1       .0     Lumber DOL     1.1       .0     Rep Stress Incr     YE       .0*     Code     IRC	15 TC 15 BC ES WB C2021/TPI2014 Matrix-AS	0.61 Vert(CT) 0.19 Horz(CT) Wind(LL)	in (loc) I/defl L/ -0.12 11-20 >999 36i -0.26 11-20 >992 24i 0.05 9 n/a n/ 0.03 13-16 >999 24i	0 MT20 244/190 0 MT20HS 187/143
1-6-0 BRACING TOP CHORD Structural wood except 2-0-0 oc purlins BOT CHORD Rigid ceiling di REACTIONS (size) 2=0- Max Horiz 2=-4 Max Grav 2=11 FORCES (lb) - Maximum Tension TOP CHORD 1-2=0/45, 2-4= 5-6=-1156/112 9-10=0/45 BOT CHORD 2-13=-34/1522 WEBS 4-13=-423/81, i 6-11=0/355, 7- NOTES 1) Unbalanced roof live loads this design. 2) Wind: ASCE 7-16; Vult=120 Vasd=95mph; TCDL=6.0ps II; Exp B; Enclosed; MWFR Exterior(2E) 9-2-1 to 12-8-1	3-8, 9=0-3-8 3 (LC 14) 58 (LC 45), 9=1158 (LC 45) Compression/Maximum 1721/119, 4-5=-1384/98, 6-7=-1383/99, 7-9=-1721/119, 11-13=0/1155, 9-11=-45/1522 5-13=0/355, 6-13=-107/110, 1=-424/80 have been considered for imph (3-second gust) f; BCDL=6.0psf; h=25ft; Cat. S (envelope) and C-C Interior (1) 2-0-0 to 9-2-1, 5, Exterior(2R) 12-8-15 to to 22-11-0 zone; cantilever vertical left and right and forces & MWFRS for	11) This truss design requires that	f; Pf=20.4 psf (Lum DOL ); Rough Cat B; Partially 10, Lu=50-0-0 been considered for this for greater of min roof lif flat roof load of 15.4 psf h other live loads. prevent water ponding. ess otherwise indicated. inus 5 degree rotation for a 10.0 psf bottom with any other live loads d for a live load of 20.0p as where a rectangle vill fit between the botton t. a minimum of 7/16" applied directly to the top ock be applied directly t	, = , s ve on on s. sf	SEAL 28677

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932


GA mm April 22,2025

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	G3	Common	5	1	Job Reference (optional)	172897097

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:36 ID:SgIS1zjkERzWHX0d2CLeEZzqDRJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

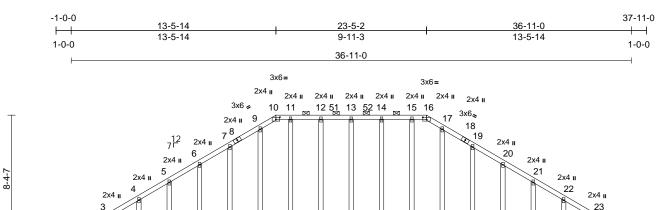
Page: 1

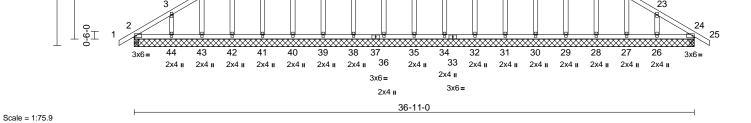




				7-1-11 7-1-11		14-9-		-		<u>11-0</u> -12		4	
Scale = 1:67.4						/-/-{	5		7-1	-12			
Plate Offsets (	X, Y): [2:0-0-8,0-1-13	8], [8:0-0-8,0-1-13], [8:	Edge,0-0	-0]		-							
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.35 0.67 0.26	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.22 0.04 0.03	(loc) 10-12 10-12 8 12-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 105 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3	8=0-3-8 15) C 3), 8=992 (LC 3) pression/Maximum	6) 10.3 7) 1. 8) 9) 522	load of 12.0 overhangs n Plates check about its cer This truss ha chord live loa * This truss lo on the bottoo 3-06-00 tall l chord and au This truss de structural wo	as been designe ad nonconcurrer has been design m chord in all ar by 2-00-00 wide my other membe ssign requires th bod sheathing be (2" gypsum shee hord.	s flat roof I vith other li minus 5 d d for a 10. nt with any hed for a liv eas where will fit betv will fit betv at a minim e applied d	bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott CDL = 10.0psi um of 7/16" irectly to the	sf on n ads. Opsf om f. top					
<ul> <li>this design</li> <li>Wind: ASC</li> <li>Vasd=95m</li> <li>II; Exp B; I</li> <li>Exterior(2I</li> <li>Exterior(2I</li> <li>22-11-0 zc</li> <li>vertical lef</li> <li>forces &amp; M</li> <li>DOL=1.60</li> <li>TCLL: ASS</li> <li>Plate DOL</li> <li>1.15 Plate</li> <li>Exp.; Ce=</li> </ul>	ed roof live loads have h. CE 7-16; Vult=120mph hph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inte R) 10-11-8 to 13-11-8, one; cantilever left and t and right exposed;C- WFRS for reactions s oplate grip DOL=1.60 CE 7-16; Pr=20.0 psf; F DOL = 1.15); Is=1.0; 1 1.0; Cs=1.00; Ct=1.10 ed snow loads have be	(3-second gust) iDL=6.0psf; h=25ft; Ci vrelope) and C-C rior (1) 2-0-0 to 10-11 Interior (1) 13-11-8 to right exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. Pf=15.4 psf (Lum DOL Rough Cat B; Partially	-8, ) 15 - = /								and a state of the	SEA 2867	F.P. Stun

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A2G	Hip Supported Gable	2	1	Job Reference (optional)	172897098

8-9-8

#### Run: 8.83 E Feb 1 2025 Print: 8.830 E Feb 1 2025 MiTek Industries. Inc. Tue Apr 22 20:37:08 ID:EN5Z1k48ldAf5nhaqoEcK3zqF0s-HKzwZC8zomdFOUs?q_Zo?uWNonHs5ZU2jDglqyzODJv





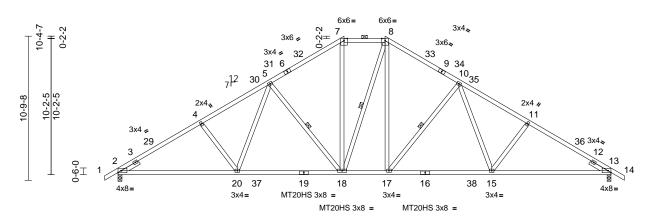


# Plate Offsets (X, Y): [10:0-3-0,0-1-12], [16:0-3-0,0-1-12]

	,, ,, ,, [10:0 0 0,0 1 1	2], [10:0 0 0,0 1 12]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr		1/TPI2014	CSI TC BC WB Matrix-AS	0.09 0.04 0.23	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	0.00 0.01 0.00	(loc) 44-47 44-47 24 44-47	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 255 lb	<b>GRIP</b> 244/190 FT = 20%
<ul> <li>(lb) -</li> <li>FORCES</li> <li>NOTES</li> <li>1) Unbalance this design</li> <li>2) Wind: ASC</li> <li>Vasd=95m</li> <li>II; Exp B; E</li> <li>(3E) -1-0-0</li> <li>Corner(3R</li> <li>23-5-2, Co</li> <li>to 37-11-0</li> <li>vertical left forces &amp; M</li> <li>DOL=1.60</li> <li>3) Truss desisionly. For sist see Standard Standard</li></ul>	except 2-0-0 oc purlins (6-0 Rigid ceiling directly All bearings 36-11-0. Max Horiz 2=-136 (L Max Uplift All uplift 1 2, 26, 27, 43, 44 Max Grav All reaction (s) 2, 24, 2 34, 35, 36 44 (lb) - Max. Comp./Ma (lb) or less except will ed roof live loads have b. E 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en 0 to 2-5-8, Exterior(2N) ) 13-5-14 to 17-2-3, E: rmer(3R) 23-5-2 to 27- zone; cantilever left at and right exposed;C- WFRS for reactions si plate grip DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable End	applied. C 14) 00 (lb) or less at joint(s 28, 29, 30, 36, 40, 41, ns 250 (lb) or less at jo 26, 27, 28, 29, 30, 31, i, 38, 39, 40, 41, 42, 43 ax. Ten All forces 25 hen shown. been considered for (3-second gust) DL=6.0psf; h=25ft; Cal velope) and C-C Corn 1.2-5-8 to 13-5-14, kterior(2N) 17-2-3 to 1-7, Exterior(2N) 27-1- nd right exposed ; end C for members and hown; Lumber the plane of the truss	5) 6) 42, 7) 42, 8) 9) 32, 10 33, 11 0 11 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	Plate DOL=' 1.15 Plate DOL Exp.; Ce=1.0 roof snow lo exposed sur accordance Unbalanced design. This truss ha load of 12.0 overhangs n Provide adee Plates check about its cer Gable studs D) This truss ha chord live loo 3-06-00 tall H chord and an E) Provide medo bearing plate (s) 2, 40, 41, D) This truss de structural wo chord and 12.0 (s) 2, 40, 41, D) This truss de structural wo chord and 12.0 (s) 2, 40, 41, D) This truss de structural wo chord and 12.0 (s) 2, 40, 41, D) This truss de structural wo chord and 11.0 D) Graphical pu	spaced at 2-0-0 d s been designed ad nonconcurrent has been designe n chord in all are: by 2-00-00 wide w hy other members hanical connectic e capable of withs 42, 43, 44, 30, 2 sign requires tha nod sheathing be 2" gypsum sheet hord. Irlin representatio dition of the purlin d.	f; Pf=20.4 0; Rough 10, Lu=50 o surcharç less thar 4. been cor for great flat roof k th other lin prevent v ninus 5 de cc. for a 10.0 with any ed for a liv as where vill fit betv s. on (by oth 19, 28, 27, t a minim applied d rock be a on does no	I psf (Lum DC Cat B; Partia D-0-0; Min. fla je applied to a 0.500/12 in asidered for the er of min roof bad of 15.4 ps ve loads. water ponding agree rotation D psf bottom other live load a rectangle veen the bottot ers) of truss t 00 lb uplift at 26, 2. um of 7/16" irectly to the t opplied directly ot depict the s	DL = Ily tt all his live sf on g. ds. opsf om o joint			A DE LE DE L	SEA 2867	FER Stur

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI Quality Criteria and DSB-22</u> available from Truss Plate Institute (www.tpinst.org) and <u>Before Building Component Scient Information</u> available from the Structural Building Component Science (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 22,2025




Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A2B	Нір	2	1	Job Reference (optional)	172897099

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:32 ID:uyLX7fQKwXpY4EP81OGP?AzqF0P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1





	8-11-2	16-9-5	20-1-11	27-11-14	36-11-0
Scale = 1:86.3	8-11-2	7-10-2	3-4-7	7-10-2	8-11-2

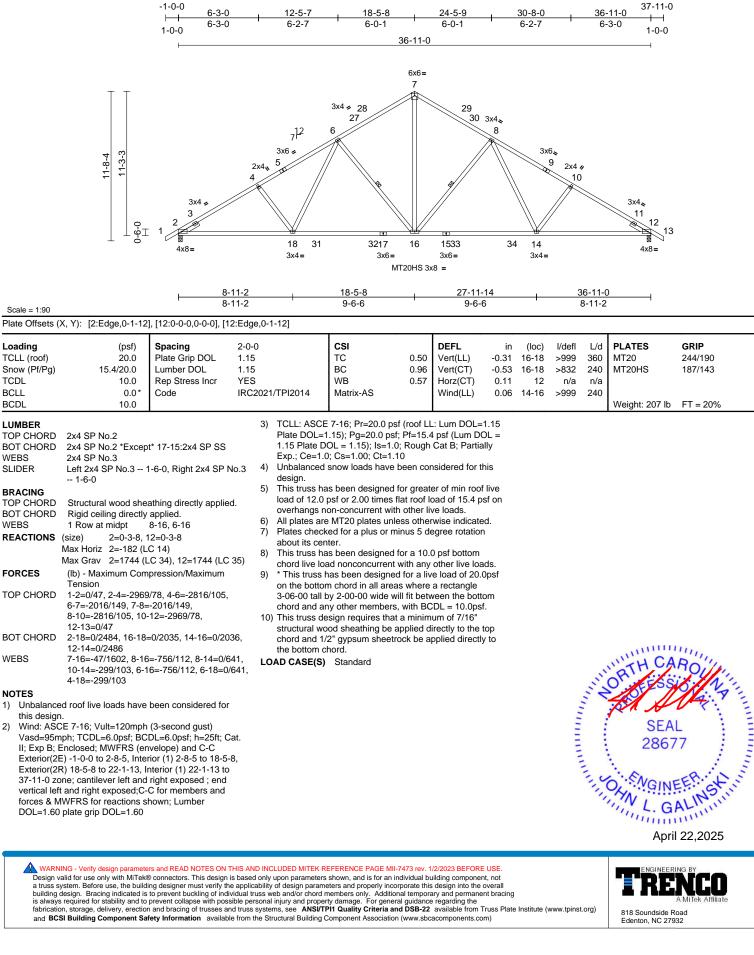
# Plate Offsets (X, Y): [2:Edge,0-1-12], [13:Edge,0-1-12]

Plate Offsets (	(X, Y): [2:Edge,0-1-12]	], [13:Edge,0-1-12]	-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	<b>CSI</b> TC BC WB Matrix-AS	0.70 0.94 0.31	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.47 0.13	(loc) 15-17 15-17 13 15-17	l/defl >999 >929 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 229 lb	<b>GRIP</b> 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 1-6-0 Structural wood shea except 2-0-0 oc purlins (4-2 Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 (max Horiz 2=166 (LC Max Grav 2=1877 (L (lb) - Maximum Com Tension 1-2=0/47, 2-4=-3164 5-7=-2306/45, 7-8=- 10-11=-3032/0, 11-1 2-20=0/2658, 18-20= 15-17=0/2321, 13-15 4-20=-256/81, 5-20= 7-18=0/821, 8-18=-1	athing directly applied -0 max.): 7-8. applied. 5-18, 8-18, 10-17 13=0-3-8 C 57), 13=1877 (LC 5 pression/Maximum /0, 4-5=-3032/0, 1908/70, 8-10=-2305/ 3=-3164/0, 13-14=0/4 =0/2320, 17-18=0/182 5=0/2660 0/555, 5-18=-781/62, 72/180, 8-17=0/823, 5=0/556, 11-15=-255	1, 59) 4) 5) (52, 6) 47 7) 22, 8) 9)	Vasd=95mpl II; Exp B; En Exterior(2E) Exterior(2E) to 25-2-10, In cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded All plates are Plates check about its cen This truss ha load of 12.0 overhangs n Provide aded All plates are plates check about its cen This truss ha chord live loa	7-16; Vult=120mp n; TCDL=6.0psf; B: closed; MWFRS (e- 1-0-0 to 2-8-5, Int 16-11-1 to 19-11-1 nterior (1) 25-2-10 t and right exposed d;C-C for members shown; Lumber D: 7-16; Pr=20.0 psf; OL = 1.15); Is=1.0; y; Cs=1.00; Ct=1.1 snow loads have to as been designed find on-concurrent with quate drainage to p a MT20 plates unler ter. Is been designed find and nonconcurrent with the plates of the plates of the ad nonconcurrent with the plates of the plates of the ad nonconcurrent with as been designed find and nonconcurrent with a been designed find a b	CDL=6. envelopperior (1) 55, Exter d; end v s and fo OL=1.60 f (roof LI Pf=20.4; Rough 0, Lu=5 been color or great at roof I other li orrevent ss other nus 5 d or a 10. with any for a li s where	Opsf; h=25ft; a) and C-C 2-8-5 to 16- irior(2R) 19-1i (-0 zone; vertical left ar rces & MWFF D plate grip L: Lum DOL= 4 psf (Lum DO Cat B; Partia D-0-0 hsidered for the er of min roof bad of 15.4 p ve loads. water ponding; wise indicate agree rotation D psf bottom other live loag a load of 20.0 a rectangle	11-1, 1-15 nd RS 1.15 DL = illy his f live sf on g. sd. 1 n ds. 0psf			A state		ROULE
this design			12	chord and ar ) This truss de structural wo chord and 1/ the bottom c 2) Graphical put	y other members, sign requires that od sheathing be a 2" gypsum sheetro hord. Irlin representation ation of the purlin a d.	with BC a minim pplied d ock be a does n	DL = 10.0psi um of 7/16" irectly to the pplied directly ot depict the s	f. top y to			A A A A A A A A A A A A A A A A A A A	SEA 2867	T ER Stu

LOAD CASE(S) Standard



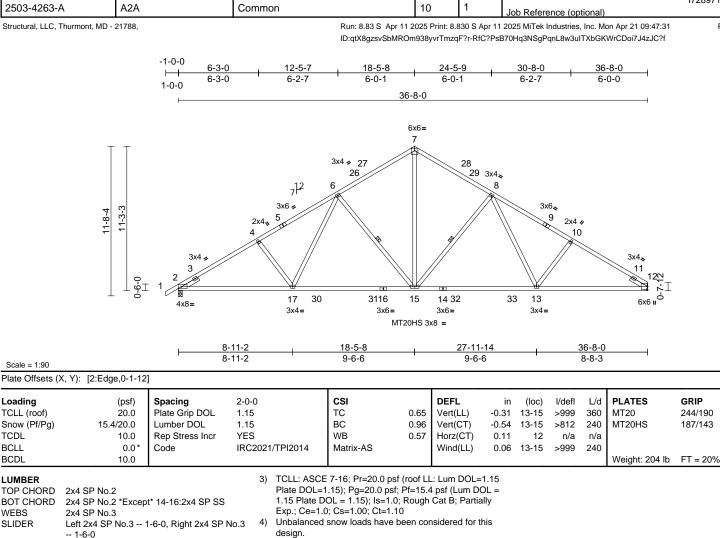
11111


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof		
2503-4263-A	A2	Common	8	1	Job Reference (optional)	172897100	

Structural LLC Thurmont MD - 21788

2)


Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:31 ID:uyLX7fQKwXpY4EP81OGP?AzqF0P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A2A	Common	10	1	Job Reference (optional)	172897101

Structural LLC Thurmont MD - 21788

Page: 1



SLIDER BRACING

Scale = 1:90

Loading

TCDL

BCLL

BCDL

WEBS

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

- TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. WEBS 6-15, 8-15 1 Row at midpt 2=0-3-8, 12= Mechanical REACTIONS (size) Max Horiz 2=178 (LC 13) Max Grav 2=1741 (LC 34), 12=1677 (LC 35) FORCES (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 1-2=0/47, 2-4=-2961/78, 4-6=-2808/105, 6-7=-2008/149, 7-8=-2009/150, 8-10=-2781/109. 10-12=-2932/82 BOT CHORD 2-17=-14/2474, 15-17=0/2023, 13-15=0/2016, 12-13=-80/2441 WEBS 7-15=-48/1595, 10-13=-278/104, 6-15=-756/112, 6-17=0/640, 4-17=-299/103, 8-13=0/610, 8-15=-743/112

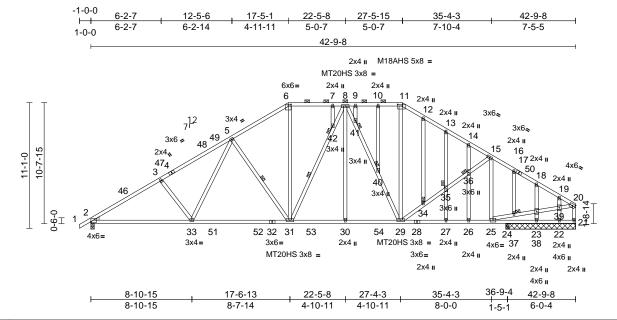
#### NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-8-0, Interior (1) 2-8-0 to 18-5-8, Exterior(2R) 18-5-8 to 22-1-8, Interior (1) 22-1-8 to 36-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- All plates are MT20 plates unless otherwise indicated. 6) 7) Plates checked for a plus or minus 5 degree rotation
- about its center.
- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) Refer to girder(s) for truss to truss connections. 11) This truss design requires that a minimum of 7/16"
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard



April 22,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A1SG	Hip Structural Gable	2	1	Job Reference (optional)	172897102

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:30 ID:hh?VwEh_IZQ36MBV_zkam_zqEX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



# Scale = 1:101.7 Plate Offsets (X, Y): [2:Edge,0-0-12], [6:0-3-0,0-1-12], [11:0-5-0,0-1-12]

		1		-		· · · ·					1		
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.64	Vert(LL)	-0.29	31-33	>999	360	MT20	244/190	
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15	BC	0.96	Vert(CT)	-0.47	31-33	>936	240	M18AHS	186/179	
TCDL	10.0	Rep Stress Incr	YES	WB	0.83	Horz(CT)	0.10	24	n/a	n/a	MT20HS	187/143	
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.10	27	>999	240			
BCDL	10.0										Weight: 342 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she except end verticals (3-9-3 max.): 6-11. Rigid ceiling directly 1 Row at midpt	eathing directly applies and 2-0-0 oc purlins applied. 5-31, 31-42	d,	3-33=-345/94, 5-36-31=0/930, 31-48-30=0/200, 8-4129-40=-535/74, 134-35=-71/328, 315-36=-60/370, 137-38=0/1804, 3312-34=0/53, 13-314-36=0/88, 26-318-38=-309/47, 219-39=-67/37, 229-41=-62/0, 7-42=0/219-39=-67/37, 229-41=-62/0, 7-42=0/219-39=-67/37, 229-41=-62/0, 7-42=0/219-39=-67/37, 229-41=-62/0, 7-42=0/219-39=-67/37, 229-41=-62/0, 7-42=0/219-39=00000000000000000000000000000000000	2=-183/1 =-511/69 1-29=0/6 5-36=-60 5-25=-73 3-39=0/17 5=-200/6 6=0/106, 3-38=-49 -39=0/15	93, 8-42=-152 , 40-41=-539/0 54, 29-34=-70 /360, 7/0, 25-37=0/ 75, 20-39=0/1 5, 27-35=-121 16-37=0/124, 0/53,	2/197, 60, )/359, 1836, 1808, 1/62,	8) All 9) Pla abo 10) Ga 11) Thi cho 12) * Thi on 3-0	plates an tes chec out its ce ble studs s truss h ord live lo his truss the botto 6-00 tall ord and a	re MT2 ked fo nter. s space has be bad not has be om cho by 2-0	20 plates unless c r a plus or minus ed at 2-0-0 oc. en designed for a nconcurrent with een designed for rd in all areas wh 00-00 wide will fit	any other live loads. a live load of 20.0psf	
JOINTS	1 Brace at Jt(s): 34, 35, 36, 37, 40, 41, 42		, this design				r	14) Th	o truco d	logian	requires that a mi	inimum of 7/46"	
			Vasd=95m II; Exp B; E Exterior(2E 51), 27-5-15, E 9), 33-4-3 to 4	Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 3-3-6, Interior (1) 3-3-6 to 17-5-1, Exterior(2R) 17-5-1 to 23-4-3, Interior (1) 23-4-3 to 27-5-15, Exterior(2R) 27-5-15 to 33-4-3, Interior (1) 33-4-3 to 42-7-12 zone; cantilever left and right					<ul> <li>14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.</li> <li>15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.</li> </ul>				
FORCES	(lb) - Maximum Con	,	members a	end vertical left and and forces & MWFF	RS for rea	actions shown				1	RTHUA	ROUT	
Tension TOP CHORD 1-2=0/41, 2-3=-3491/0, 3-5=-3324/0, 5-6=-2484/68, 6-7=-2073/82, 7-8=-2073/82, 8-9=-1868/105, 9-10=-1868/105, 10-11=-1868/105, 11-12=-2081/94, 12-13=-2164/74, 13-14=-2144/31, 14-15=-2262/9, 15-16=-1956/52, 16-18=-2077/38, 18-19=-1961/14, 19-20=-1971/0, 20-21=-1382/0 BOT CHORD 2-33=-105/2976, 31-33=0/2483, 30-31=0/1970, 29-30=0/1970, 27-29=0/1717, 26-27=0/1717, 25-26=0/1717, 24-25=-77/25, 20-4-77/05, 20-20-77/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 20-27/05, 2			<ol> <li>Truss desi only. For s see Standa or consult</li> <li>TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce='</li> <li>Unbalance design.</li> </ol>	<ul> <li>only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.</li> <li>TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0</li> <li>Unbalanced snow loads have been considered for this design.</li> </ul>						L PT			
		3=-77/25, 21-22=-77/2	load of 12.	nas been designed 0 psf or 2.00 times non-concurrent wit	flat roof l	oad of 15.4 ps					L. G	ALININ	

April 22,2025



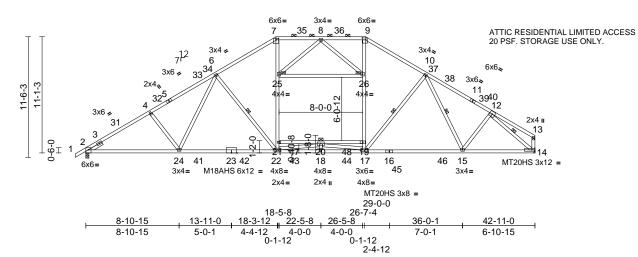
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A1SG	Hip Structural Gable	2	1	Job Reference (optional)	172897102
Structural, LLC, Thurmont, MD -	21788.	Run: 8.83 S Apr 11 2	025 Print: 8.8	830 S Apr 11	2025 MiTek Industries, Inc. Mon Apr 21 09:47:30	Page: 2

ID:hh?VwEh_IZQ36MBV_zkam_zqEX4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A1B	Attic	14	1	Job Reference (optional)	172897103

#### Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:28 ID:fSjG7qIATs2aNwZYVS_NigzqEup-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0	6-2-7	12-5-6	18-2-0	22-5-8	26-9-0	32-5-10	38-8-9	42-11-0
1-0-0	6-2-7	6-2-14	5-8-10	4-3-8	4-3-8	5-8-10	6-2-15	4-2-7
100				42-11-	0			



Scale = 1:110.1

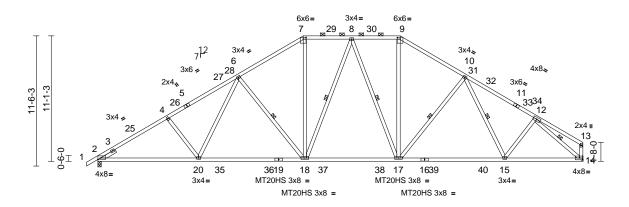
# Plate Offsets (X, Y): [2:Edge,0-3-8], [7:0-3-0,0-1-12], [9:0-4-0,0-2-4]

			_										
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.79	Vert(LL)	-0.39	22-24	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.80	Vert(CT)	-0.70	22-24	>732	240	M18AHS	186/179
TCDL	10.0	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.17	14	n/a	n/a	MT20HS	187/143
BCLL	0.0*		IRC202	21/TPI2014	Matrix-AS		Wind(LL)		22-24	>999	240		
BCDL	10.0							02		- 000	2.0	Weight: 296 lb	FT = 20%
			2	Wind ASCE	7-16; Vult=120m	nh (2 cor	cond quet)		14) Thi	e truce d	locian	requires that a mi	nimum of 7/16"
LUMBER TOP CHORD		4* 4 E-0-4 CD CC	2		n; TCDL=6.0psf; E			Cat					ed directly to the top
BOT CHORD	2x4 SP No.2 *Excep 2x4 SP SS *Except*				closed; MWFRS (			Jal.					be applied directly to
			<u>_</u>		-1-0-0 to 3-3-8, In			2-0		bottom		Journ Sheetrock L	e applied directly to
WEBS	25-26:2x4 SP No.3 Excep	t* 7-22,9-17:2x4 SP S	З,	. ,	18-2-0 to 24-2-13	. ,						presentation doe	s not depict the size
SLIDER	Left 2x4 SP No.3 1	1.0.0			rior(2R) 26-9-0 to			5				of the purlin along	
	Left 2x4 SP No.3	1-0-0			2-9-4 zone; cantile		. ,			tom choi			g the top and/or
BRACING					d vertical left and							d for L/360 deflec	tion
TOP CHORD		athing directly applied,	,		d forces & MWFR				LOAD				
		, and 2-0-0 oc purlins			=1.60 plate grip E			,	LUAD	SASE(S	<b>)</b> 31a	nuaru	
	(3-3-12 max.): 7-9.	and the st	3		7-16; Pr=20.0 ps			1.15					
BOT CHORD	Rigid ceiling directly				.15); Pg=20.0 psf								
WEBS JOINTS		6-22, 10-17, 10-15, 12	2-14		OL = 1.15); ls=1.0								
JOINTS	1 Brace at Jt(s): 25, 26				; Cs=1.00; Ct=1.1			,					
			4		snow loads have			nis					
REACTIONS		14= Mechanical		design.									
	Max Horiz 2=191 (LC		. 5	) This truss ha	s been designed	for great	er of min roof	live					
	,	_C 58), 14=2543 (LC 6	60)	load of 12.0	psf or 2.00 times f	flat roof le	oad of 15.4 ps	sf on					
FORCES	(lb) - Maximum Com	pression/Maximum		overhangs n	on-concurrent with	h other liv	ve loads.						
	Tension		6	) 250.0lb ĂC ເ	init load placed or	n the bott	om chord, 22	-5-8					
TOP CHORD	1-2=0/47, 2-4=-4453			from left end	, supported at two	points, s	5-0-0 apart.						
	6-7=-3546/0, 7-8=-3		7	) Provide adeo	quate drainage to	prevent	water ponding	<b>j</b> .				annun.	UIII.
	9-10=-3460/0, 10-12		8	) All plates are	MT20 plates unle	ess other	wise indicate	d.				W'LL CA	Pall
	12-13=-230/29, 13-1		9	) Plates check	ed for a plus or m	inus 5 de	egree rotation				~	all	OUT:
BOT CHORD	,	=0/3418, 18-22=0/3710	,	about its cen	ter.							0' · 7-85	ik Min
	,	7=0/3098, 14-15=0/272	28, 1		s been designed						53		11: 7 3
	20-21=-232/250, 19-				ad nonconcurrent						2	JAN J	V K . 2
WEBS		5=0/1446, 7-25=0/1451			as been designed			)psf			1		. <u>1</u> 1 2
		6=0/1273, 9-26=0/1384	4,		n chord in all area						. :	SEA	L : =
	25-26=-29/270, 18-2				y 2-00-00 wide w					=	:	2067	
	8-25=-263/126, 8-26				y other members							2007	/ ; =
	20-22=-1169/0, 17-2	,			d live load (20.0 p								1 2
	,	'=-453/150, 6-24=0/55	,		oad (20.0 psf) app	blied only	to room. 20-	21,			-	·	als S
	4-24=-234/111, 10-1 12-14=-3567/0	5=-190/2, 12-15=0/54		19-20								O. SVGINI	EFRICES
	12-14=-3307/0		1	<ol><li>Refer to gird</li></ol>	er(s) for truss to tr	russ conr	nections.				11	YA	L T EER CLIN
NOTES												SEA 2867	ALILIN
,	ed roof live loads have	been considered for										11111	un un
this desigr	۱.												and the second

# NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

April 22,2025

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A1A	Piggyback Base	2	1	Job Reference (optional)	172897104

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:27 ID:nJeJhLUeOzOg8_2OE1kMgKzqEtH-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





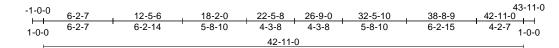
	8-10-15	18-3-12	26-7-4	36-0-1	42-11-0
Scale = 1:101.9	8-10-15	9-4-13	8-3-8	9-4-13	6-10-15

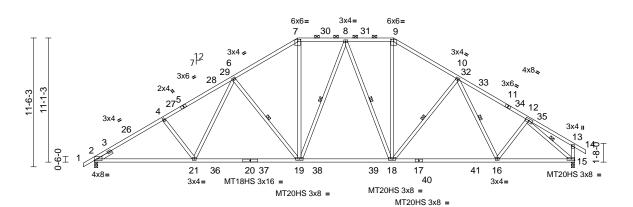
# Plate Offsets (X, Y): [2:Edge,0-1-12], [7:0-3-0,0-1-12], [9:0-3-0,0-1-12]

<b>-oading</b> CLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.83	DEFL Vert(LL)	in -0.35	(loc) 18-20	l/defl >999	L/d 360	PLATES MT20	<b>GRIP</b> 244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.56	Vert(CT)	-0.58		>882	240	MT20HS	187/143
CDL	10.0	Rep Stress Incr	YES		WB	0.64	Horz(CT)	0.13	14	n/a	n/a		
CLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.06	18-20	>999	240		
BCDL	10.0	1								-		Weight: 278 lb	FT = 20%
JMBER			2)	Wind: ASCE	7-16; Vult=120m	nph (3-seo	cond gust)						
OP CHORD	2x4 SP No.2				h; TCDL=6.0psf;			Cat.					
OT CHORD	2x4 SP SS				closed; MWFRS								
/EBS	2x4 SP No.3 *Excep	ot* 14-13:2x4 SP No.	2		-1-0-0 to 3-3-8, I								
LIDER	Left 2x4 SP No.3 7	1-6-0			18-2-0 to 24-2-1			0					
RACING					rior(2R) 26-9-0 to								
OP CHORD	Structural wood she	athing directly applie	ed,		2-9-4 zone; cantil			_					
	except end verticals	, and 2-0-0 oc purlin	s		nd vertical left and								
	(3-9-15 max.): 7-9.				d forces & MWFF _=1.60 plate grip			ι,					
OT CHORD	Rigid ceiling directly		2)		= 1.60 plate grip E 7-16; Pr=20.0 p			1 15					
/EBS	1 Row at midpt	8-18, 8-17, 12-14, 1	0-17, ³⁾		1.15); Pg=20.0 ps								
		10-15, 6-18			OL = 1.15); ls=1.								
EACTIONS	· · · ·	14= Mechanical			); Cs=1.00; Ct=1.			any					
	Max Horiz 2=191 (L0		4)		snow loads have			his					
	Max Grav 2=2094 (I	_C 57), 14=2056 (LC	; 59) ''	design.									
DRCES	(lb) - Maximum Corr	pression/Maximum	5)	0	as been designed	I for great	er of min roof	live					
	Tension			load of 12.0	psf or 2.00 times	flat roof l	oad of 15.4 p	sf on					
OP CHORD	1-2=0/47, 2-4=-3655				on-concurrent wit								
	6-7=-2698/65, 7-8=-	,	(88, 6)		quate drainage to								
	9-10=-2606/67, 10-1		7)		e MT20 plates un								
	12-13=-202/46, 13-1		8)		ked for a plus or n	ninus 5 de	egree rotatior	۱				minin	UIII.
OT CHORD	2-20=0/3112, 18-20		168,	about its cer								W'TH CA	Rollin
/EBS	15-17=0/2422, 14-1		9)		as been designed						1	R	. Kil
EBS	7-18=0/1004, 8-18= 9-17=0/954, 4-20=-2	,	,		ad nonconcurrent						2.	OR THESS	No. March
	12-15=0/387, 12-14	, , ,	3/03		has been designe			Upst			35	10/ //	14: 7 -
	10-15=-47/151, 6-18		5/95,		n chord in all are						4		14: 3
OTES					by 2-00-00 wide way other members							SEA	1 1 2
	ed roof live loads have	been considered for	. 1		er(s) for truss to t					=		SEA	
this design		been considered for			esign requires that						: :	2867	7 : 2
ans design			12		od sheathing be			top					1 I I
					2" gypsum sheet						-	A	1 5
				the bottom of				,			20	S.ENO	- CRIDS
			13		Irlin representatio	on does no	ot depict the	size			1	GIN	Et. G
					ation of the purlin						1	NI	111111
				bottom chor		0	•					111, L.G.	ALIN

LOAD CASE(S) Standard

April 22,2025


Page: 1


mmm

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof	
2503-4263-A	A1	Piggyback Base	10	1	Job Reference (optional)	172897105

Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:26 ID:65IoG2Q0i7YzKaH8cect94zqEqn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





	8-10-15	18-3-12	26-7-4	36-0-1	42-11-0
Scale = 1:103	8-10-15	9-4-13	8-3-8	9-4-13	6-10-15

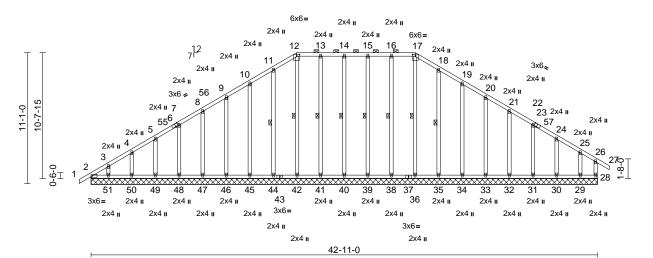
# Plate Offsets (X, Y): [2:Edge,0-1-12], [7:0-3-0,0-1-12], [9:0-3-0,0-1-12]

		], [	,-	,	1	-	-		-	-			
Loading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	1 1	1.15		TC	0.83	Vert(LL)	-0.35	19-21	>999	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0		1.15		BC	0.56	Vert(CT)	-0.58	19-21	>882	240	MT18HS	244/190
TCDL	10.0		YES		WB	0.64	Horz(CT)	0.13	15	n/a	n/a	MT20HS	187/143
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.06	19-21	>999	240		
BCDL	10.0					-						Weight: 280 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=120m	ph (3-sec	cond gust)						
TOP CHORD	2x4 SP No.2			Vasd=95mp	h; TCDL=6.0psf; I	BCDL=6.	0psf; h=25ft;	Cat.					
BOT CHORD	2x4 SP SS				closed; MWFRS								
WEBS	2x4 SP No.3 *Excep	ot* 15-13:2x4 SP No.2			-1-0-0 to 3-3-8, Ir								
SLIDER	Left 2x4 SP No.3	1-6-0			18-2-0 to 24-2-13			to					
BRACING					rior(2R) 26-9-0 to								
TOP CHORD	Structural wood she	athing directly applied,			3-11-0 zone; cant								
	except end verticals	, and 2-0-0 oc purlins			nd vertical left and								
	(3-10-0 max.): 7-9.				d forces & MWFF			1,					
BOT CHORD	Rigid ceiling directly	applied.	2)		=1.60 plate grip I			1 15					
WEBS		6-19, 8-19, 8-18, 10-1	8, ³⁾		: 7-16; Pr=20.0 ps 1.15); Pg=20.0 ps								
		10-16, 12-15			OL = 1.15); Is=1.0								
REACTIONS	(size) 2=0-3-8,	15=0-3-8			C = 1.13, $C = 1.00$ ; $C =$			any					
	Max Horiz 2=195 (LO	C 15)	4)		snow loads have			his					
	Max Grav 2=2093 (I	LC 57), 15=2110 (LC 5	9) ''	design.		20011001							
FORCES	(lb) - Maximum Com	npression/Maximum	5)		as been designed	for great	er of min roo	f live					
	Tension		,		psf or 2.00 times								
TOP CHORD	1-2=0/47, 2-4=-3653	3/0, 4-6=-3520/0,		overhangs n	on-concurrent wit	h other li	ve loads.						
	,	2248/86, 8-9=-2168/89	9, 6)	<ol> <li>Provide adequate drainage to prevent water ponding.</li> </ol>									
	,	-10=-2604/66, 10-12=-2933/0,			e MT20 plates unl								
	,	14=0/47, 13-15=-243/6	<i>U</i> ,		ked for a plus or n	ninus 5 de	egree rotation	n				minin	1111
BOT CHORD		=0/2698, 18-19=0/2163	3,	about its cer								W'TH CA	Rollin
	16-18=0/2416, 15-1		9)		as been designed							R	. Chille
WEBS		=0/599, 6-19=-853/76,	•		ad nonconcurrent						5.	O'. FESS	On Min
		-223/165, 8-18=-360/9 -541/94, 10-16=-52/14			nas been designe			0psf			: <		7 16/19 2
	12-16=0/390, 12-15		9,		m chord in all area		0				-	7×1×1	11: 3
NOTES	12 10-0/030, 12-10	- 2007/0			by 2-00-00 wide w							CEA	r 1 E
NOTES 1) Unbalanced roof live loads have been considered for			4.4	<ul> <li>a) Flowide adequate that age to prevent water portung.</li> <li>All plates are MT20 plates unless otherwise indicated.</li> <li>B) Plates checked for a plus or minus 5 degree rotation about its center.</li> <li>This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.</li> <li>10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.</li> <li>11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the bottom chord.</li> <li>12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.</li> <li>LOAD CASE(S) Standard</li> </ul>									
,		been considered for			od sheathing be			ton		=		2867	'7 : :
this desigr	1.				2" gypsum sheet					-	1	:/	1 - E
				the bottom c			pplied ullecti	y 10			-	N	1 2
			12		Irlin representatio	n does n	ot depict the	size			20	. En	CR. NS
			12		ation of the purlin			0.20			1	OL GIN	S. ST.
				bottom chore							1	NI	111. 111
			LC	DAD CASE(S)								11, L. G.	ALIN
			_									1111111	1111

mm April 22,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty Ply		Blake Pond Lot 00.0094 Roof	
2503-4263-A	A1G	Hip Supported Gable	2	1	Job Reference (optional)	172897106

#### Run: 8.83 S Apr 11 2025 Print: 8.830 S Apr 11 2025 MiTek Industries, Inc. Mon Apr 21 09:47:29 ID:tttEqrPbgxeFBwnC4262SFrzqF1T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f





Scale	_	1:97.6	

Plate Offsets (X, Y):	[6:0-2-12,Edge], [12:0-3-0,0-1-12], [17:0-3-0,0-1-12], [23:0-2-12,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.	(psf) 20.0 .4/20.0 10.0 0.0* 10.0	<b>Spacing</b> Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-	0.12 0.07 0.23 AS	Vert(CT)	in n/a 0.00	-	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 346 lb	<b>GRIP</b> 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No. 2x4 SP No. 2x4 SP No. Structural v	.2 .2 .3 wood sheat verticals, .): 12-17. Ig directly hidpt	athing directly applied and 2-0-0 oc purlins applied. 14-40, 13-41, 12-42, 11-44, 15-39, 16-38, 17-36, 18-35		(lb) - Ma>	2=169 (LC 35) 29=141 (LC 33) 31=211 (LC 44) 33=220 (LC 44) 38=232 (LC 44) 38=232 (LC 44) 40=220 (LC 44) 40=220 (LC 44) 47=223 (LC 44) 49=159 (LC 34) 51=146 (LC 34) timum Compres	), 30=169 (L ), 32=223 (L ), 34=220 (L ), 36=155 (L ), 39=220 (L ), 41=232 (L ), 44=228 (L ), 44=220 (L ), 46=220 (L ), 48=213 (L ), 50=167 (L )	C 2), C 45), C 45), C 65), C 44), C 44), C 44), C 45), C 45), C 45), C 45), C 64),	,		12-42 10-45 7-48= 3-51= 16-38 18-35 20-33 22-31 25-29 d roof li	-174/55, 5-49=-1 -118/51, 15-39=- =-192/26, 17-36= =-188/49, 19-34= =-180/55, 21-32= =-173/55, 24-30= =-111/73	188/49, 180/55, 8-47=-183/55, 33/55, 4-50=-139/57, 180/38, 115/4, 181/59, 183/55,
	Max Horiz 2 Max Uplift 2 3 3 4 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	2=42-11-0 29=42-11- 31=42-11- 33=42-11- 33=42-11- 33=42-11- 40=42-11- 40=42-11- 45=42-11- 45=42-11- 51=42-11- 2=187 (LC 29=62 (LL 31=-12 (LC 35=-6 (LC 45=-12 (LL 47=-10 (LL 47=-10 (LL	$\begin{array}{l} 28 = 42 - 11 - 0, \\ 0, 30 = 42 - 11 - 0, \\ 0, 32 = 42 - 11 - 0, \\ 0, 33 = 42 - 11 - 0, \\ 0, 36 = 42 - 11 - 0, \\ 0, 39 = 42 - 11 - 0, \\ 0, 39 = 42 - 11 - 0, \\ 0, 41 = 42 - 11 - 0, \\ 0, 44 = 42 - 11 - 0, \\ 0, 46 = 42 - 11 - 0, \\ 0, 48 = 42 - 11 - 0, \\ 0, 48 = 42 - 11 - 0, \\ 0, 50 = 42 - 11 - 0, \\ 0, 50 = 42 - 11 - 0, \\ 0, 50 = 42 - 11 - 0, \\ 0, 50 = 42 - 11 - 0, \\ 0, 50 = 42 - 11 - 0, \\ 0, 50 = 42 - 11 - 0, \\ 0, 50 = 42 - 11 - 0, \\ 0, 48 = 42 - 11 - 0, \\ 0, 48 = -10 (LC 16), \\ 16), 48 = -10 (LC 16), \\ 16), 50 = -8 (LC 16), \\ \end{array}$	BOT CHORD	Tension 1-2=0/41 4-5=-153 8-9=-128 10-11=-1 12-13=-1 14-15=-1 18-19=-1 20-21=-1 20-21=-1 20-21=-1 20-21=-97 48-49=-4 45-46=-4 41-42=-4 38-39=-4 34-35=-4	, 2-3=-178/173, /149, 5-7=-145// 164, 9-10=-120 44/245, 11-12=- 44/257, 13-14=- 44/257, 15-16=- 02/164, 21-22=- 5/84, 24-25=-36 47, 26-28=-130/ /89, 50-51=-42/ 2/80, 47-48=-42 2/80, 40-41=-42 2/80, 36-38=-42 2/80, 30-34=-42 2/80, 30-31=-42 2/80, 30-31=-42 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/	3-4=-158/166 48, 7-8=-136 (203, 165/281, 144/257, 165/281, 120/203, 84/124, 14(45, 25-26=-4) 14(45, 25-26=-4) 14(80, 46-47=-4) (80, 46-47=-4) (80, 45-36=-4) (80, 35-36=-4) (80, 32-33=-4) (80, 32-33=-4)	0, 5/147, 46/48, 2/80, 42/80, 42/80, 42/80, 42/80, 42/80,		0	and a state of the	SEA 2867	EER.St.

# April 22,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0094 Roof		
2503-4263-A	A1G	Hip Supported Gable	2	1	Job Reference (optional)	172897106	

- Wind: ASCE 7-16: Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 3-5-8, Exterior(2N) 3-5-8 to 17-5-1, Corner (3R) 17-5-1 to 21-5-8, Exterior(2N) 21-5-8 to 27-5-15, Corner(3R) 27-5-15 to 31-9-7, Exterior(2N) 31-9-7 to 43-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7) Plates checked for a plus or minus 5 degree rotation 8)
- about its center. 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 12)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 2, 4 lb uplift at joint 28, 8 lb uplift at joint 44, 12 lb uplift at joint 45, 10 lb uplift at joint 46, 10 lb uplift at joint 47, 10 Ib uplift at joint 48, 11 lb uplift at joint 49, 8 lb uplift at joint 50, 24 lb uplift at joint 51, 6 lb uplift at joint 35. 13 lb uplift at joint 34, 10 lb uplift at joint 31, 0 lb uplift at joint 30, 13 lb 32, 12 lb uplift at joint 31, 3 lb uplift at joint 30, 62 lb uplift at joint 29 and 77 lb uplift at joint 2.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S. Apr 11 2025 Print: 8.830 S. Apr 11 2025 MiTek Industries. Inc. Mon Apr 21 09:47:29

ID:ttEqrPbgxeFBwnC4262SFrzqF1T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



