

Trenco 818 Soundside Rd Edenton, NC 27932

Re: Repairs_05-05 RLH-VK-0101

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by NVR - Thurmont.

Pages or sheets covered by this seal: I73285256 thru I73285256

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

May 7,2025

Galinski, John

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss Truss Type Qty Ply RLH-VK-0101 173285256 COMN REPAIRS 05-05 SE-20632 Job Reference (optional) NVR, Thurmont, MD - 21788, 8.630 s Sep 26 2024 MiTek Industries, Inc. Tue May 6 15:48:25 2025 Page 1 ID:5lb56nez?NGp7jN5pS3vTuyrxGa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 15-10-9 21-0-0 26-1-7 . 36-4-4 37-10-4 1-6-0 42-0-0 4-1-12 1-6-0 5-1-7 4-1-12 5x6 = Scale = 1:72.8 6.00 12 SEE NOTE 1 BELOW FOR REPAIR CONDITION. 4x8 / 4x8 < 5 5x6 / 5x6 < 3x4 < 3x4 / 19 20 21 22 3x8 =18 17 16 15 14 13 12 3x8 =3x4 II 4x8 =5x6 = 4x8 =5x6 =4x8 =3x4 II APPLY 2 X 4 X 8' SPF/DF/SP NO.2 SCAB(S) TO EACH FACE OF TRUSS CENTERED ON DAMAGE AS SHOWN. ATTACH WITH (0.131" X 3") NAILS PER THE FOLLOWING NAIL SCHEDULE: 2 x 4'S - 2 ROWS, 2 x 6'S AND LARGER - 3 ROWS: SPACED @ 4" O.C. STAGGER NAIL SPACING FROM FRONT FACE AND BACK FACE FOR A NET 2" O.C SPACING IN THE TRUSS. USE 2" MEMBER END DISTANCE. 21-0-0 10-9-3 31-2-13 5-1-7 37-10-4 42-0-0 5-1-7 5-1-7 4-1-12 10-9-3 [2:0.9.0.0.0.5] [4:0.2.0.0.2.4] [9:0.2.0.0.2.4] [40:0.9.0.0.5] [44:0.2.0.0.2.0] [46:0.2.0.0.2.0] BRACING-LUMBER-

LOADING	G (psf)	SPACING-	2-0-0	CSI.		DEFL.	in (I	loc)	I/defI	L/d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.21 14	-15	>999	360	MT20	197/144
TCDL	10.0	Lumber DOL	1.15	BC	0.85	Vert(CT)	-0.43 14	-15	>999	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.62	Horz(CT)	-0.17	2	n/a	n/a		
BCDL	10.0	Code IBC2021/TI	PI2014	Matri	x-S	Wind(LL)	0.17	14	>999	240	Weight: 269 lb	FT = 5%

TOP CHORD

BOT CHORD

WEBS

TOP CHORD 2x4 SP No.2 or 2x4 SPF No.2 **BOT CHORD** 2x4 SP No.2 or 2x4 SPF No.2

2x4 SP No.3 or 2x4 SPF Stud

Max Horz 10=188(LC 10)

(size) 10=0-3-8, 2=0-3-8

Max Uplift 10=-239(LC 11), 2=-239(LC 10) Max Grav 10=1733(LC 1), 2=1733(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-3329/422, 3-4=-2851/366, 4-5=-2838/493, 5-6=-1946/329, 6-7=-1946/329, 7-8=-2837/493, 8-9=-2852/367, 9-10=-3329/419

BOT CHORD 2-18=-316/2905, 17-18=-316/2905, 16-17=-87/2104, 15-16=-87/2105, 14-15=-203/2104,

13-14=-203/2105, 12-13=-502/2904, 10-12=-502/2904

WEBS 3-17=-473/176, 4-17=-370/226, 5-17=-244/762, 5-15=-781/253, 6-15=-183/1441, 7-15=-780/253, 7-13=-244/759, 8-13=-369/226, 9-13=-471/173, 5-16=0/265, 7-14=0/265

NOTES-(8-10)

1) Repair Condition: bottom chord has 0-3-0 long break centered at 0-9-7 to the left of joint 16.

2) N/A

WEBS

REACTIONS.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=33ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; cantilever left and right exposed ;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

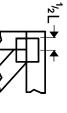
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 239 lb uplift at joint 10 and 239 lb uplift at joint 2. 8) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust), wind reaction x 0.78 will adjust wind uplift reaction
- to a wind speed of 115 mph. 9) Design checked for ASCE 7-16 ultimate wind speed at 130 mph (3-second gust) meets or exceeds IRC2012 nominal wind speed of
- 100 mph, wind reaction x 0.78 will adjust wind uplift reaction to a wind speed of 90 mph. 10) Metal hangers, of any seat size, can be used in place of wood bearing, of any seat size, provided the hanger has been sized for the

required maximum reaction.

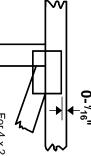
May 7,2025

Structural wood sheathing directly applied or 2-4-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

5-15.7-19.TH CAA


8-3-12 oc bracing: 12-13

8-3-6 oc bracing: 10-12.


1 Row at midpt

Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

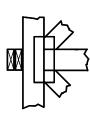
₹

This symbol indicates the required direction of slots in connector plates.

* Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

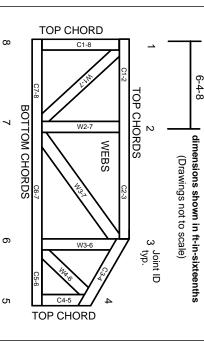

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur. Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.

œ

- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others.
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- 21. The design does not take into account any dynamic or other loads other than those expressly stated.