

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25020278-B SPENCER-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Chesapeake, VA).

Pages or sheets covered by this seal: I71811832 thru I71811869

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

March 5,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	A01	Common Supported Gable	1	1	Job Reference (optional)	171811832

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:25 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	A01	Common Supported Gable	1	1	Job Reference (optional)	1/1811832

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 32, 88 lb uplift at joint 33, 82 lb uplift at joint 34, 81 lb uplift at joint 36, 88 lb uplift at joint 37, 60 lb uplift at joint 38, 171 lb uplift at joint 39, 157 lb uplift at joint 40, 72 lb uplift at joint 30, 88 lb uplift at joint 29, 82 lb uplift at joint 28, 81 lb uplift at joint 26, 87 lb uplift at joint 25, 62 lb uplift at joint 24, 161 lb uplift at joint 23 and 152 lb uplift at joint 22.
- 11) Non Standard bearing condition. Review required.
- 12) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:25 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	A02	Common	2	1	Job Reference (optional)	171811833

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:26 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

35:26 Page: 1 zJC?f

	6-9-1		13-1-4		19-5-8		25-9-12		32-	1-15		38-11-0	
	6-9-1	I	6-4-4	1	6-4-4	I	6-4-4	Į.	6-4	1-4	I	6-9-1	I
						5×6-							
						5,0=							
						5							
T				2x4 II				3x6					
							\sim		•				
				3x6 🚅	22	// \\	2	3 2x4 II					
				21	// /	/ \	$/$ \sim	24					
			12	3 4	~			6	,				
			6	THE				1 A					
2									\sim				
		2x4 -					10		\sim	\sim	2x4 ~		
<u>-</u>										\sim			
		/						.			~°		
	20							$\langle $				25	
	20	// ``	\sim									23	
	6x12 II												
-	1			> $ V/ $									9
4 -				11	26		27	10					×
					20		21	10					
	4x8=			8x10=				8x10=					4x5=
	1-0-0	10 1 1				25 0 42					20.44.0		
		13-1-4				12 0 7					38-11-0		—— I
Scale = 1:65.9	1-0-0	12-1-4				12-0-7					13-1-4		
Plate Offcotc (V V). [1.0 1 11 0 0 ·	2] [1·0 1 1 Edgo] [10.0 5 0 0 4	9] [11:0 5 0 0	1 01								
	A, T). [1.0-1-11,0-0-2	z], [1.0-1-1,⊏uge], [10.0-5-0,0-4-	-8], [11.0-5-0,0	-4-0]								
Loading	(nsf)	Spacing	2-0-0		CSI		DEEL	in (loc)	l/defl	l /d		GRIP	
TCLL (roof)	20.0	Plate Grip DOI	1 15		TC	0.88	Vert(LL)	-0.37 10-11	>999	240	MT20	244/190	
Snow (Pf/Pg)	20.8/30.0	Lumber DOI	1 15		BC	0.96	Vert(CT)	-0.59 10-11	>791	180		210,100	
TCDL	10.0	Rep Stress Incr	YES		WB	1.00	Horz(CT)	0.07 9	n/a	n/a			
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 233 lb	FT = 20%	
LUMBER			3)	TCLL: ASCE	: 7-16; Pr=20.0 p	osf (roof LL	: Lum DOL=1	.15					
TOP CHORD	2x4 SP No.1 *Exce	pt* 1-3,7-9:2x4 SP	No.2	Plate DOL=1	1.15); Pg=30.0 p	st; Pt=20.8	pst (Lum						
BOT CHORD	2x6 SP 2400F 2.0E	*Except* 11-10:2x	6 SP	DUL=1.15 P	ale DOL=1.15);	10 IS=1.0; R0	ugn Cat C; Fi	ліу					
WEBS	1NU.2 2x4 SP No 3 *Excel	nt* 11_5 10_5·2v4 S	P No 2 = 4	Unbalanced	snow loads have	e been con	sidered for th	is					
WEDGE	Left: 2x8 SP 2400F	2 0F	1 10.2 -7	desian.				-					
BRACING		2.02	5)	* This truss h	nas been design	ed for a live	e load of 20.0	psf					
TOP CHORD	Structural wood she	eathing directly app	lied.	on the bottor	n chord in all are	eas where	a rectangle						
BOT CHORD	Rigid ceiling directly	y applied or 2-2-0 o	С	3-06-00 tall b	by 2-00-00 wide	will fit betw	een the botto	m					
	bracing.			chord and ar	ny other member	rs, with BC	DL = 10.0pst.						
WEBS	1 Row at midpt	5-10	6)	All bearings	are assumed to	be SP 240	0F2.0E.						
REACTIONS	(size) 1=0-3-8,	9=0-3-8	()	bearing plate	canable of with	standing 4	04 lb unlift at i	, ioint					
	Max Horiz 1=219 (L	.C 15)		9 and 421 lb	uplift at joint 1	Standing 4		onn					
	Max Uplift 1=-421 (LC 15), 9=-404 (LC	16) 8)	This truss is	designed in acco	ordance wi	th the 2018						
	Max Grav 1=1778 ((LC 4), 9=1687 (LC	4) '	International	Residential Cod	le sections	R502.11.1 ar	nd					
FORCES	(lb) - Maximum Cor	npression/Maximur	n	R802.10.2 a	nd referenced st	andard AN	SI/TPI 1.						
TODOUODD	Tension	0007/011	LC	DAD CASE(S)	Standard								
TOP CHORD	1-2=-3304/712, 2-4	=-2997/611,											
	4-5=-3075/774, 5-6	=-3240/811, - 2616/701											
BOT CHORD	1-9=-731/3175												
WEBS	4-11=-556/385 5-1	1=-423/1278										in the	
	2-11=-337/302. 5-1	0=-468/1555.									IN THUA	ROUL	
	6-10=-524/372, 8-1	0=-529/363								A	A STOC	1A.	1
NOTES										22	OFE	Pila	11
1) Unbalance	ed roof live loads have	e been considered f	or						-	V		120	~
this design	۱.									2			-
2) Wind: ASC	CE 7-16; Vult=130mpl	h (3-second gust)									SEA	L :	=
Vasd=103	mph; TCDL=6.0psf; E	3CDL=6.0psf; h=25	ft; Cat.						-	:	0262	122 :	=
II; Exp C; E	Enclosed; MWFRS (e	nvelope) exterior z	one								0303	· · · ·	5
and U-U E	19-5-8 Exterior(2P)	-10-13, INTERIOF (1) 19-5-8 to 23-4-5 In	terior							2	1		E
(1) 23-4-5	to 38-11-0 zone: can	tilever left and right								2.	N.E.	Rick	2
exposed :	end vertical left and r	ight exposed:C-C for	or							25	S GIN	EFICA	5
members a	and forces & MWFRS	for reactions show	'n;							11	C	BEN	
Lumber D0	OL=1.60 plate grip D0	OL=1.33									11, A. C	all think	
											<i></i>	TUDE	
											Mar	ch 5,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	A03	Common	4	1	Job Reference (optional)	171811834

WEBS

NOTES

this design.

4-15=-560/383, 14-15=-380/1419,

5-14=-342/1545, 2-15=-302/320,

6-10=-524/373, 5-12=-382/1872,

1) Unbalanced roof live loads have been considered for

11-13=-318/0

10-12=-420/1747, 8-10=-513/367,

Job		Truss		Truss T	уре		Qt	y Ply	s	PENCEF	R-Roof					
25020278-	В	A03		Comm	on		4	1	J	b Refere	ence (op	tional)			171811	1834
Carter Compon	ents (Chesapeak	e), Chesa	peake, VA - 23323,	•		Run: 8.73 S Feb ID:bLGxm6WoUE	19 2025 d?J6NsF	Print: 8.730 S lb?wOVzrtGN-	Feb 19 20 RfC?PsB)25 MiTek 70Hq3NS	Industries gPqnL8w	s, Inc. T 3uITXb	ue Mar 04 1 GKWrCDoi7	5:35:26 J4zJC?f		Page: 1
	 	<u>6-9</u> 6-9)-1)-1	<u>13-1-4</u> 6-4-4		<u>19-5-8</u> 6-4-4		<u>25-9-12</u> 6-4-4			<u>32-1-15</u> 6-4-4	;		<u>38-1</u> 6-9-	<u>1-0</u> ·1	
10-1-12	8× 0 0 0 0 1 0 5×8-	2	2x4 2 24	612	2x4 II 3x6 = 4 3 4 3 4 5 8x10=	26 	5 11 2x4 II	27 *** 	7 2 28 12 1 3x6=	3x6 x4 == 6 7			2x4 = 8	29		9
	5x8=				2x4	-	2x4 II		MT20	HS 8x12	=					4x5=
Scale – 1:70 5	1-0-0 1-0-0		<u>13-1-4</u> 12-1-4		13-10- 13-9-12 0-8-8 0-1-3	15 <u>19-5-8</u> 5-6-9		25-0-1 5-6-9	25-9- 25-1-4 0-1-3 0-8-	8			<u>38-11-0</u> 13-1-4			
Plate Offsets	(X, Y): [1:0-0-	7,0-0-14], [1:0-0-1,1-0-3], [9:	0-0-3,0-0-1	10], [10:0-6-0,0)-5-0], [15:0-5-0,0-4	-8]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.8	(psf) 20.0 3/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.98 0.67 0.94	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.50 -0.84 0.07	(loc) 11-15 11-15 9	l/defl >943 >557 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	5 249 lb	GRIP 244/190 187/143 FT = 20 ⁶	%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP 240 No.2 2x6 SP 240 No.2 2x4 SP No.3 Left: 2x6 SF Structural w Rigid ceiling bracing. 1 Row at mi (size) 1 Max Horiz 1 Max Grav 1 (lb) - Maxim Tension 1-2=-3816/5 4-5=-3607/6 6-8=-3740/4	0F 2.0E ' 0F 2.0E ' 3 *Excep > No.2 yood shea g directly idpt =0-3-8, 9 =219 (LC =2023 (L =2023 (L um Com 566, 2-4= 561, 5-6= 185, 8-9	*Except* 3-1,7-9:2x *Except* 14-12:2x4 t* 15-5,10-5:2x4 SP athing directly applie applied or 6-0-0 oc 5-10 9=0-3-8 C 15), 9=-337 (LC 1 C 15), 9=-337 (LC 1 C 4), 9=1919 (LC 4 pression/Maximum -3509/454, -3802/651, -4179/633	2) 4 SP SP No.2 ed. 3) 6) 5)) 6) 7) 8)	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Exte 3-10-13 to 15 (1) 23-4-5 to exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 Unbalanced design. All plates are * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) 0-0-0 to 3 9-5-8, Exterior(2R) 38-11-0 zone; can id vertical left and r d forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf; late DDL=1.15); ls 2; Cs=1.00; Ct=1.10 snow loads have b e MT20 plates unles has been designed in chord in all areas by 2-00-00 wide will by other members, are assumed to be hanical connection	n (3-sec GCDL=6 nvelope -10-13, 19-5-8 iilever la ght exp for rea DL=1.3; (roof LL Pf=20.8 =1.0; Ro) een cor ss other for a liv where fit betw where SP 240 (by oth	cond gust) i. Opsf; h=25fi b) exterior zo Interior (1) to 23-4-5, Int eft and right eft and right cossed; C-C fo cctions shown 3 :: Lum DOL= 8 psf (Lum Dugh Cat C; I hsidered for t wise indicate e load of 20. a rectangle veen the bott DL = 10.0ps 100 F zoE . ers) of truss	t; Cat. ine inerior in; f. 1.15 Fully ihis ed. Opsf if. to							
BOT CHORD	1-11=-605/3 13-14=-69/0	3296, 9-1), 12-13=	1=-460/3663, -69/0	5)	bearing plate 9 and 351 lb	e capable of withsta uplift at joint 1.	nding 3	37 lb uplift a	t joint				""TH	CA	RO	11.

This truss is designed in accordance with the 2018

R802.10.2 and referenced standard ANSI/TPI 1.

International Residential Code sections R502.11.1 and

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

9)

LOAD CASE(S) Standard

GI ununun . March 5,2025

SEAL 036322

Mannan and Bar

818 Soundside Road Edenton, NC 27932

Contraction and the

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	B01	Roof Special	3	1	Job Reference (optional)	171811835

15-16=-1210/3864, 14-15=-907/3765,

13-14=-179/1049, 11-13=-656/274,

2-17=-1459/674, 2-16=-874/3372,

7-13=-809/311, 8-13=-444/1649,

8-11=-2280/868, 9-11=-993/420,

3-16=-264/185, 3-15=-268/286, 5-15=-588/2508, 5-14=-3047/929

Unbalanced roof live loads have been considered for

6-14=-289/905, 7-14=-67/496,

10-11=-1110/368

WEBS

NOTES

this design.

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:26 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 552 lb uplift at joint 11, 356 lb uplift at joint 17 and 195 lb uplift at joint 10.
- 9) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	B02	Roof Special	1	1	Job Reference (optional)	171811836

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:26 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:80.2

Plate Offsets ((X, Y): [2:0-6-0,0-7-8],	[5:0-2-0,0-1-8], [10:0	0-1-14,0-1	-8], [10:0-1-2,1	-4-4], [14:0-5-4,0-2	2-8], [16	:0-5-0,0-3-11], [17:0-4	4-0,0-2-8	8]				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.97 0.87 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.47 -0.86 0.51	(loc) 16-17 16-17 11	l/defl >936 >511 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 236 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.1 *Excep 2x4 SP No.2 *Excep No.1 2x4 SP No.3 *Excep Right: 2x4 SP No.3 Structural wood shea Rigid ceiling directly bracing. 2 Rows at 1/3 pts (size) 10=0-4-8, Max Horiz 18=220 (L	t* 8-10:2x4 SP No.2 t* 18-16,16-14:2x4 S t* 17-2,5-16:2x4 SP athing directly applie applied or 2-4-13 oc 5-15 11=0-3-8, 18=0-3-8 .C 15)	2) SP No.2 d. ; 3)	Wind: ASCE Vasd=103mp II; Exp C; En and C-C Extr 19-5-8, Extel 23-11-8 to 44 exposed ; en members an Lumber DOL TCLL: ASCE Plate DOL=1.15 PExp.; Ce=0.5 Unbalanced	7-16; Vult=130mp h; TCDL=6.0psf; I closed; MWFRS (e erior(2E) 0-0-0 to 4 ior(2R) 19-5-8 to 2 4-11-8 zone; cantil d vertical left and d forces & MWFRS =1.60 plate grip D 7-16; Pr=20.0 psf; 15); Pg=30.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.1 snow loads have t	bh (3-sec BCDL=6 envelope 4-6-0, Ini 23-11-8, ever left right exp S for rea S for rea S for rea (roof LL Pf=20.8 =1.0; Rc 0 been cor	cond gust) .0psf; h=25ft; b) exterior zor terior (1) 4-6 Interior (1) and right oossed;C-C for ctions shown .: Lum DOL=: b) psf (Lum ough Cat C; F asidered for th	; Cat. ne 0 to ; 1.15 ⁻ ully nis						
FORCES	Max Uplift 10=-277 (l 18=-393 (l Max Grav 10=136 (L 18=1525 (LC 21), 11=-535 (LC LC 15) .C 45), 11=2323 (LC (LC 21)	5), 5) 5)	design. * This truss h on the bottor 3-06-00 tall b	has been designed n chord in all areas by 2-00-00 wide wi	I for a liv s where II fit betv	e load of 20.0 a rectangle veen the botto	Opsf om						
TOP CHORD	(i) Maximum Com Tension 1-2=-600/205, 2-3= 3-5=-4864/1463, 5-6 6-7=-1967/767, 7-8= 8-9=-693/293, 9-10=	4933/1473, =-1957/755, 1919/706, 404/1490	6) 7)	Bearings are SP No.2 , Jo Bearing at jo using ANSI/1 designer sho	assumed to be: Joint 10 SP No.2. int 10 SP No.2. int(s) 18 considers PI 1 angle to grain uld verify capacity	oint 18 \$ s parallel n formula of bear	SP No.3 , Joir to grain valu a. Building ng surface.	nt 11 e				TH CA	""" Ro"".	
BOT CHORD	1-18=-267/681, 17-1 16-17=-1342/4533, 1 14-15=-403/1675, 12 11-12=-1408/436, 10	8=-412/489, 15-16=-1137/4463, 2-14=-356/1253,)-11=-1408/436	8)	Provide mec bearing plate 11, 393 lb up	hanical connection capable of withsta lift at joint 18 and	n (by oth anding 5 277 lb u	ers) of truss t 35 lb uplift at plift at joint 10	o : joint).		C	A d	ORIEESS	A	11
WEBS	3-17=-332/208, 6-15 7-15=-143/316, 7-14 8-14=-115/528, 2-18 8-12=-1353/542, 2-1 5-16=-690/2946, 3-1 5-15=-3442/1036, 9- 9-12=-603/2306	i=-431/1333, i=-522/220, i=-1640/729, 7=-1076/3962, 6=-155/251, 11=-2212/701,	9) LC	This truss is International R802.10.2 a DAD CASE(S)	designed in accord Residential Code nd referenced stan Standard	dance w sections idard AN	ith the 2018 ; R502.11.1 a ISI/TPI 1.	Ind				SEA 0363	22 ER	ann ann an
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for									11	CA. G	ILBE	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March 5,2025

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	B03	Roof Special	5	1	Job Reference (optional)	171811837

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:27 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	B04	Roof Special	6	1	Job Reference (optional)	171811838

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:27 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:80.6

Plate Offsets	(X, Y): [1:0-7-1,Edge],	[8:0-5-12,0-2-8], [10	:0-1-11,0-	0-7], [10:0-1-2	,1-4-4]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.95 0.96 0.74	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.45 -0.78 0.10	(loc) 15-17 15-17 11	l/defl >984 >562 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEDGE SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Except 2.0E 2x4 SP No.1 2x4 SP No.3 Right: 2x4 SP No.3 Left 2x6 SP No.2 2 Structural wood shea Rigid ceiling directly bracing. 1 Row at midpt (size) 1= Mecha Max Horiz 1=-233 (L0 Max Uplift 1=-376 (L0 11=-539 (I) Max Grav 1=1616 (L 11=2183 ((lb) - Maximum Com	t* 1-4:2x4 SP 2400F 2-6-0 athing directly applie applied or 2-2-0 oc 5-15, 7-15, 8-11 nical, 10=0-4-8, 11= C 16) C 15), 10=-104 (LC LC 16) C 5), 10=280 (LC 45 LC 4) pression/Maximum	2) d. 3) 0-3-8 4) 12), 5) 5), 6)	Wind: ASCE Vasd=103m II; Exp C; En and C-C Ext to 18-5-8, Ex 22-10-4 to 4 exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL= DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. * This truss I on the bottor 3-06-00 tail II chord and at Bearings are	7-16; Vult=130mp bh; TCDL=6.0psf; iclosed; MWFRS (erior(2E) 0-0-0 to 4 terior(2R) 18-5-8 3-11-8 zone; cantil d vertical left and d forces & MWFR =1.60 plate grip D 5 7-16; Pr=20.0 psf late DOL=1.15); ls b; Cs=1.00; Ct=1.1 snow loads have I has been designed n chord in all area by 2-00-00 wide win by other members, assumed to be:.	h (3-sec BCDL=6 envelope 4-4-12, li to 22-10 lever left right exp S for rea OOL=1.33 f (roof LL ; Pf=20.6 s=1.0; Rc 0 oeen cor d for a liv s where ill fit betv with BC Joint 11	cond gust) .0psf; h=25ft e) exterior zon trerior (1) 4-4 4, Interior (1) and right lossed;C-C for ctions shown b ctions shown b ctions DOL= psf (Lum bugh Cat C; F isidered for th e load of 20.0 a rectangle veen the bottt DL = 10.0pst SP No.1. Jo	; Cat. ne I-12) 1.15 Tully his Opsf om f. junt						
TOP CHORD BOT CHORD	Tension 1-3=-3031/846, 3-5= 5-6=-2107/733, 6-7= 7-8=-2594/763, 8-9= 1-17=-636/2577, 15 14 15=-440(2107, 15)	-2915/877, -2115/726, -194/804, 9-10=-151 17=-474/2203, 214- 462/2112	7) 8) 1/626	10 SP No.1 Refer to gird Provide med bearing plate 1, 539 lb upl	er(s) for truss to tr hanical connection capable of withst ift at joint 11 and 1	uss conr n (by oth anding 3 04 lb up	ections. ers) of truss t 76 lb uplift at lift at joint 10.	to t joint			A.L	OR ZESS	ROLIN	
WEBS	14-13=440/2197, 12 11-12=-459/2119, 10 3-17=-192/259, 5-17 5-15=-773/399, 6-15 7-15=-705/364, 7-14 8-12=0/213, 8-11=-3	-14=-403/2112,)-11=-573/185 =-131/565, =-384/1444, =0/253, 8-14=-65/17 454/888, 9-11=-562.	9) 76, LC /260	This truss is International R802.10.2 a DAD CASE(S)	designed in accor Residential Code nd referenced star Standard	dance w sections ndard AN	ith the 2018 R502.11.1 a ISI/TPI 1.	Ind		Manna Manna		SEA 0363:	22	Mannun
 Unbalanc this desig 	ed roof live loads have n.	been considered for									in the second se	A CNGIN	EREALIN	11.

G mmm March 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	C01	Common Supported Gable	1	1	Job Reference (optional)	171811839

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:27 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BOT CHORD WEBS REACTIONS	6-0-0 oc p Rigid ceili bracing. 1 Row at (size)	midpt 22=36- 24=36- 26=36- 29=36- 31=36- 33=36-	except end verticals. tly applied or 10-0-0 oc 11-32, 10-33, 12-31 11-0, 23=36-11-0, 11-0, 25=36-11-0, 11-0, 27=36-11-0, 11-0, 30=36-11-0, 11-0, 32=36-11-0, 11-0, 34=36-11-0.	FORCES	(b) - Maximum Compression/Maximum Tension 1-42=-104/67, 1-2=-183/110, 2-3=-118/131, 3-4=-93/164, 4-5=-86/197, 5-6=-103/247, 6-8=-123/312, 8-9=-145/375, 9-10=-169/444, 10-11=-189/500, 11-12=-189/500, 12-13=-169/444, 13-14=-145/375,	3) 4)	exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum
	Max Horiz Max Uplift	35=36- 38=36- 40=36- 42=36- 42=-18 22=-37 24=-56 26=-81 31=-71 34=-88 37=-83 39=-90 41=-18	11-0, 3/=36-11-0, 11-0, 39=36-11-0, 11-0, 41=36-11-0, 11-0, 41=36-11-0, 11-0, 41=36-11-0, 11-0, 4(LC 11) (LC 15), 23=-170 (LC 16), (LC 16), 25=-89 (LC 16), (LC 16), 32=-89 (LC 16), (LC 16), 33=-73 (LC 15), (LC 15), 35=-81 (LC 15), (LC 15), 35=-81 (LC 15), (LC 15), 40=-52 (LC 15), 6 (LC 15), 42=-65 (LC 16)	BOT CHORD WEBS	$\begin{array}{llllllllllllllllllllllllllllllllllll$	5) 6) 7)	Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.
				NOTES			

March 5,2025

Continued on page 2 WARNING

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MTeK oconnectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **AMSITPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	171011000
25020278-B	C01	Common Supported Gable	1	1	Job Reference (optional)	1/1811839

- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 9)
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 22, 65 lb uplift at joint 42, 73 lb uplift at joint 33, 88 lb uplift at joint 34, 81 lb uplift at joint 35, 83 lb uplift at joint 37, 81 lb uplift at joint 38, 90 lb uplift at joint 39, 52 lb uplift at joint 40, 186 lb uplift at joint 41, 71 lb uplift at joint 31, 89 lb uplift at joint 30, 81 lb uplift at joint 29, 83 Ib uplift at joint 27, 81 lb uplift at joint 26, 89 lb uplift at joint 25, 56 lb uplift at joint 24 and 170 lb uplift at joint 23.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:27 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	C02	Common	10	1	Job Reference (optional)	171811840

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:27 Carter Components (Chesapeake), Chesapeake, VA - 23323 Page: 1 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 12-4-13 24-6-3 30-6-13 6-4-3 18-5-8 36-11-0 6-4-3 6-0-11 6-0-11 6-0-11 6-0-11 6-4-3 5x6= 5 3x5 💋 3x6. 19 20 3x6 3x5 21 18 4 6 12 61 3 7 10-1-12 4x5 🖌 4x5 2 8 17 3x5 II 3x5 II 1 9 0-11-0 16 15 23 14 24 13 25 12 26 11 5x10= $5 \times 10 =$ 3x5= 4x6 =3x8= 4x6 =3x5= 9-4-8 18-5-8 27-6-8 36-11-0 9-4-8 9-1-0 9-1-0 9-4-8 Scale = 1:64.8 Loading Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.80 Vert(LL) -0.25 11-13 >999 240 MT20 244/190 BC Snow (Pf/Pg) 20 8/30 0 Lumber DOL 1 15 0.79 Vert(CT) -0 42 11-13 >999 180 TCDL 10.0 Rep Stress Incr YES WB 0.69 Horz(CT) 0.11 10 n/a n/a BCLL 0.0 Code IRC2018/TPI2014 Matrix-MSH BCDL 10.0 Weight: 215 lb FT = 20%Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP No.2 II; Exp C; Enclosed; MWFRS (envelope) exterior zone BOT CHORD 2x4 SP No.1 and C-C Exterior(2E) 0-2-12 to 3-10-11, Interior (1) 2x4 SP No.3 *Except* 16-1,10-9:2x6 SP No.2 WFBS 3-10-11 to 18-5-8, Exterior(2R) 18-5-8 to 22-1-7, Interior BRACING (1) 22-1-7 to 36-8-4 zone; cantilever left and right TOP CHORD Structural wood sheathing directly applied or exposed ; end vertical left and right exposed;C-C for 2-2-0 oc purlins, except end verticals. members and forces & MWFRS for reactions shown; BOT CHORD Rigid ceiling directly applied or 7-7-12 oc Lumber DOL=1.60 plate grip DOL=1.33 bracing TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) WEBS 6-13, 4-13, 2-16, 8-10 1 Row at midpt Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum **REACTIONS** (size) 10= Mechanical, 16= Mechanical DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Max Horiz 16=-185 (I C 11) Exp.: Ce=0.9: Cs=1.00: Ct=1.10 Max Uplift 10=-381 (LC 16), 16=-381 (LC 15) 4) Unbalanced snow loads have been considered for this Max Grav 10=1628 (LC 4), 16=1628 (LC 4)

- design.
- 5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 381 lb uplift at joint 16 and 381 lb uplift at joint 10.
- This truss is designed in accordance with the 2018 8) International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

NOTES

WEBS

FORCES

TOP CHORD

BOT CHORD

Tension

Unbalanced roof live loads have been considered for 1) this design.

(Ib) - Maximum Compression/Maximum

1-2=-610/177. 2-4=-2924/627

4-5=-2176/571, 5-6=-2176/571

6-8=-2924/627, 8-9=-610/177,

1-16=-437/182. 9-10=-437/182

15-16=-655/2608, 13-15=-449/2292

11-13=-356/2291, 10-11=-494/2605

6-11=-90/528, 8-11=-185/264, 4-13=-766/381,

5-13=-284/1513, 6-13=-766/381,

2-16=-2519/485, 8-10=-2519/484

4-15=-90/528, 2-15=-185/263,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	D01	Common Supported Gable	1	1	Job Reference (optional)	171811841

Scale = 1:52.4

Loading

TCDL

BCLL

BCDL

LUMBER

WFBS OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:27 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 21=19-11-0, 22=19-11-0 Max Horiz 22=261 (LC 12) 3) Max Uplift 12=-226 (LC 12), 13=-205 (LC 14), 14=-79 (LC 14), 15=-112 (LC 14), 16=-99 (LC 14), 18=-98 (LC 13), 20=-103 (LC 13), 21=-119 (LC 13), 4) 22=-115 (LC 13) Max Grav 12=176 (LC 9), 13=356 (LC 23) 14=150 (LC 35), 15=188 (LC 23), 16=197 (LC 23), 17=354 (LC 24),
 - 18=193 (LC 22), 20=191 (LC 22), 21=139 (LC 22), 22=323 (LC 1) (lb) - Maximum Compression/Maximum
- Tension TOP CHORD 11-12=-116/167, 6-7=-102/322, 7-8=-55/262, 8-9=-78/242, 9-10=-109/242, 10-11=-185/309, 1-2=-73/212, 2-3=-11/156, 3-4=-6/181, 4-5=-56/241, 5-6=-102/322 BOT CHORD 1-22=-151/111, 21-22=-242/168, 20-21=-242/168, 18-20=-242/168 17-18=-242/168, 16-17=-242/168, 15-16=-242/168, 14-15=-242/168, 13-14=-242/168, 12-13=-242/168
- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

Lumber DOL=1.60 plate grip DOL=1.33

- chord and any other members. All bearings are assumed to be SP No.2 . 8)
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 226 lb uplift at joint 12, 98 lb uplift at joint 18, 103 lb uplift at joint 20, 119 lb uplift at joint 21, 115 lb uplift at joint 22, 99 lb uplift at joint 16, 112 lb uplift at joint 15, 79 lb uplift at joint 14 and 205 lb uplift at joint 13.

members and forces & MWFRS for reactions shown;

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum

10) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	D02	Common	2	1	Job Reference (optional)	171811842

Loading

TCDL

BCLL

BCDL

WFBS

FORCES

WEBS

NOTES

1)

2)

3)

LUMBER

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:27 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	D03	Common Girder	1	3	Job Reference (optional)	171811843

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:28 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:51.5 Plate Offsets (X, Y): [7:Edge,0-4-0], [8:0-6-4,0-2-8], [10:0-6-0,0-6-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.36 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.18 0.04	(loc) 10-11 10-11 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 446 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x8 SP 2400F 2.0E 2x4 SP No.2 Left 2x6 SP No.2 2 3-0-0 Structural wood she 4-9-13 oc purlins. Rigid ceiling directly bracing. (size) 1=0-3-8, 7 Max Horiz 1=222 (10)	2-6-0, Right 2x6 SP № athing directly applie applied or 10-0-0 oc 7=0-3-8 2 8)	3) 4) No.2 d or 5)	Unbalanced n this design. Wind: ASCE Vasd=103mp II; Exp C; End cantilever left right exposed TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 * This truss h	roof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; B closed; MWFRS (er and right exposed t; Lumber DOL=1.6 7-16; Pr=20.0 psf (.15); Pg=30.0 psf; F ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 as been designed f	been of CDL=6 nvelope ; end v 0 plate (roof LL Pf=20.8 1.0; Ro	considered fo ond gust) .0psf; h=25ft; e) exterior zon retrical left an grip DOL=1. .: Lum DOL= e) psf (Lum ough Cat C; F e load of 20.0	r ; Cat. ne; d 33 1.15 fully Dpsf	Cd	Vert: 4-7 oncentra Vert: 8= 22=-146 (B), 26=	7=-62, ted Los -1467 37 (B), -1467	1-4=-62, 12-16=- ads (lb) (B), 20=-1469 (B 23=-1467 (B), 24 (B), 27=-1467 (B	20 , 21=-1467 (B) =-1467 (B), 25 , 28=-1467 (B), ;=-1467 ;)
FORCES TOP CHORD BOT CHORD WEBS	Max Horiz 1=222 (LC Max Uplift 1=-2224 (Max Grav 1=9017 (I (lb) - Maximum Com Tension 4-5=-7611/1976, 5-7 1-3=-10093/2522, 3 1-11=-2115/8257, 1 8-10=-1982/8269, 7 4-10=-2001/8023, 3 3-11=-706/2988, 5-1 5-8=-719/3039	5 8) LC 9), 7=-2094 (LC - .C 4), 7=8478 (LC 4) pression/Maximum '=-10113/2530, -4=-7612/1976 0-11=-2115/8257, -8=-1982/8269 -10=-2513/811, 0=-2530/817,	10) 7) 8) 9) 10)	on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate joint 7 and 22 This truss is of International R802.10.2 ar Hanger(s) or provided suff	n chord in all areas y 2-00-00 wide will y other members. are assumed to be standing capable of withstan 224 lb uplift at joint designed in accorda Residential Code s and referenced standio other connection do icient to support co	where fit betw SP 240 (by oth nding 2 1. ance w ections lard AN evice(s ncentra	a rectangle veen the botto 0F 2.0E . ers) of truss t 094 lb uplift a ith the 2018 R502.11.1 a ISI/TPI 1.) shall be tted load(s) 1	om o at and 609			A	NITH CA	RO	
NOTES				ib down and 3	392 lb up at 0-10-0	, 1608	lb down and	393		/	55	FESS	ON TON	1
 3-ply truss (0.131"x3' Top chord oc. Bottom ch staggered Web conn All loads a except if r CASE(S) provided t unless oth 	s to be connected toge ') nails as follows: Is connected as follows: lords connected as follows: lords connected as follows: lords connected as follows: 2x4 - are considered equally loted as front (F) or ba section. Ply to ply conr o distribute only loads herwise indicated.	ther with 10d s: 2x4 - 1 row at 0-9-0 ows: 2x8 - 2 rows 1 row at 0-4-0 oc. applied to all plies, ck (B) face in the LO. hections have been noted as (F) or (B),) AD LO 1)	lb up at 2-7-4 1608 lb down 393 lb up at 10-7-4, 1608 down and 39 393 lb up at 18-4-12 on be connection de AD CASE(S) Dead + Sno Increase=1. Uniform Loa	4, 1608 lb down and and 393 lb up at 6 8-7-4, 1608 lb down lb down and 393 lb 3 lb up at 14-7-4, a 16-7-4, and 1608 lb tottom chord. The d evice(s) is the respo Standard w (balanced): Lumi 15 ads (lb/ft)	d 393 ll 5-7-4, 1 n and 3 o up at and 160 o down lesign/s onsibili	o up at 4-7-4 608 lb down 993 lb up at 12-7-4, 1608 8 lb down an and 393 lb u selection of si ty of others.	, and d p at uch Plate		Jan 1999		SEA 0363	L 22 ILBER I	Wannana

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	E01	Common Supported Gable	1	1	Job Reference (optional)	171811844

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:28 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	174044044
25020278-B	E01	Common Supported Gable	1	1	Job Reference (optional)	1/1811844

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:28 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	E02	Common	2	1	Job Reference (optional)	171811845

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:28 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/ITPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4. GIL

rg) 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	E03	Common Girder	1	3	Job Reference (optional)	171811846

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:28 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

mm March 5,2025

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	E03	Common Girder	1	3	Job Reference (optional)	1/1811846

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:28

ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Chesapeake), Chesapeake, VA - 23323,

12) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1597 Ib down and 388 lb up at 0-10-12, 1596 lb down and 388 lb up at 2-10-12, 1596 lb down and 388 lb up at 4-10-12, 1596 lb down and 388 lb up at 6-10-12, 1596 Ib down and 388 lb up at 8-10-12, 1596 lb down and 388 lb up at 10-10-12, 1608 lb down and 393 lb up at 12-10-12, 1608 lb down and 393 lb up at 14-8-4, 1608 Ib down and 393 lb up at 16-8-4, 1608 lb down and 393 Ib up at 18-8-4, 1608 Ib down and 393 Ib up at 20-8-4, 1608 lb down and 393 lb up at 22-8-4, 1608 lb down and 393 lb up at 24-8-4, 1608 lb down and 393 lb up at 26-8-4, and 1608 lb down and 393 lb up at 28-8-4, and 1609 lb down and 392 lb up at 30-5-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft) Vert: 1-6=-62, 6-11=-62, 12-20=-20

Concentrated Loads (lb)

Vert: 23=-1464 (B), 24=-1463 (B), 25=-1463 (B), 26=-1463 (B), 27=-1463 (B), 28=-1463 (B), 29=-1467 (B), 30=-1467 (B), 31=-1467 (B), 32=-1467 (B), 33=-1467 (B), 34=-1467 (B), 35=-1467 (B), 36=-1467 (B), 37=-1467 (B), 38=-1469 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V1	Valley	1	1	Job Reference (optional)	171811847

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16=28-6-15, 17=28-6-15 Max Horiz 1=273 (LC 12) Max Uplift 1=-62 (LC 11), 9=-2 (LC 12), 10=-131 (LC 16), 11=-189 (LC 16), 12=-198 (LC 16), 15=-198 (LC 15), 16=-188 (LC 15), 17=-136 (LC 15) Max Grav 1=120 (LC 27), 9=75 (LC 29), 10=353 (LC 27), 11=447 (LC 27), 12=520 (LC 6), 13=418 (LC 29), 15=520 (LC 5), 16=446 (LC 26), 17=358 (LC 26) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-252/219, 2-3=-199/180, 3-4=-171/186, 4-5=-191/266, 5-6=-191/262, 6-7=-126/124, 7-8=-118/74.8-9=-177/109 BOT CHORD 1-17=-93/172, 16-17=-87/172 15-16=-87/172, 13-15=-87/172 12-13=-87/172. 11-12=-87/172.

	10-11=-87/172, 9-10=-87/172
WEBS	5-13=-219/0, 4-15=-396/246, 3-16=-323/235,
	2-17=-279/195, 6-12=-396/246,
	7-11=-323/236, 8-10=-279/193
NOTES	

1) Unbalanced roof live loads have been considered for this design.

- or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2 .
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 62 lb uplift at joint 1, 2 lb uplift at joint 9, 198 lb uplift at joint 15, 188 lb uplift at joint 16, 136 lb uplift at joint 17, 198 lb uplift at joint 12, 189 lb uplift at joint 11 and 131 lb uplift at joint 10.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 9.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V2	Valley	1	1	Job Reference (optional)	171811848

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale =	1:51
---------	------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 20.8/30.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.20 0.30	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0	oode	11(02010/11/12014	Matrix Mort							Weight: 108 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=25-1-1: 9=25-1-1: 12=25-1- Max Horiz 1=-239 (L 13=-205 U Max Grav 1=143 (L 8=492 (L 10=538 (L 10=538 (L) 10=538 (L)	eathing directly applied applied or 6-0-0 oc 3, 7=25-1-13, 8=25-1 3, 10=25-1-13, 13, 13=25-1-13 .C 11) C 11), 8=-203 (LC 16) .C 16), 12=-193 (LC 16) .C 27), 7=124 (LC 22) C 27), 7=124 (LC 22) C 27), 9=467 (LC 6), .C 26), 12=467 (LC 5)	 2) Wind: ASC Vasd=103r II; Exp C; E and C-C C; 12-6-14, C0 15-6-14 to: exposed; e members a Lumber DC -13, 3) Truss desig only. For s see Standa or consult c 4) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 5) Unbalancee, design. 6) All plates a 	E 7-16; Vult=130m pph; TCDL=6.0psf; nclosed; MWFRS rmer(3E) 0-0-0 to 3 rmer(3E) 0-0-0 to 3 rmer(3R) 12-6-14 t 25-1-13 zone; cant nd vertical left and nd forces & MWFF L=1.60 plate grip I ned for wind loads; uds exposed to wi rd Industry Gable I ualified building de E 7-16; Pr=20.0 ps 1.15); Pg=30.0 ps Plate DOL=1.15); I 9; Cs=1.00; Ct=1. 1 snow loads have e 2x4 MT20 unles	ph (3-sec BCDL=6 (envelop 3-0-0, Ex: o 15-6-1: ilever left right exp S for rea DOL=1.3: in the pl nd (norm End Deta ssigner a: of (roof LL f; Pf=20.8 s=1.0; Rd 10 been cor	cond gust) a Opsf; h=25ft; b) exterior zor terior(2N) 3-0 4, Exterior(2N) and right bosed;C-C for tcitons shown ane of the tru: al to the face ils as applical s per ANSI/TF b) psf (Lum b) psf (Lum b) psf (Lum b) psf (clum b)	Cat. ne -0 to) ; ss , , ole, 1.15 ully ully					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	 Gable required Gable stude 	res continuous bo spaced at 4-0-0 c	ttom chor	d bearing.						
TOP CHORD	1-2=-224/286, 2-3=- 4-5=-55/215, 5-6=-3	-101/234, 3-4=-55/233 3/160, 6-7=-171/218	3, 9) 1 nis truss on the botto	mas been designe m chord in all area	a for a liv as where	e load of 20.0 a rectangle	pst				White CA	Della
BOT CHORD	1-13=-161/219, 12- 10-12=-161/176, 9- 8-9=-161/176, 7-8=-	13=-161/176, 10=-161/176, 161/176	chord and a 10) All bearings 11) Provide me	any other members are assumed to b chanical connection	, with BC e SP No. n (by oth	DL = 10.0psf 2 . ers) of truss t	0				ORTEESS	Children .
WEBS	4-10=-323/0, 3-12=- 5-9=-390/247, 6-8=-	·390/247, 2-13=-349/2 ·349/231	^{232,} bearing pla 1, 193 lb up	e capable of withs lift at joint 12, 205	tanding 2 Ib uplift a	26 lb uplift at j it joint 13, 193	oint 3 Ib			u	R CEA	
NOTES 1) Unbalance this design	ed roof live loads have	been considered for	uplift at join 12) Beveled pla surface witi 13) This truss i Internationa R802.10.2	t 9 and 203 lb uplif te or shim required truss chord at join designed in acco and Residential Code and referenced sta	t at joint a d to provi nt(s) 1, 7. rdance w e sections ndard AN	8. de full bearing ith the 2018 \$ R502.11.1 a \$SI/TPI 1.	nd				0363	L 22

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V3	Valley	1	1	Job Reference (optional)	171811849

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V4	Valley	1	1	Job Reference (optional)	171811850

Loading

TCDL

BCLL

BCDL

WEBS

2)

NOTES

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V5	Valley	1	1	Job Reference (optional)	171811851

BCDL

1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V6	Valley	1	1	Job Reference (optional)	171811852

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

GRIP 244/190

FT = 20%

11-4-6

-												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-(1.15 1.15 YES IRC2) 2018/TPI2014	CSI TC BC WB Matrix-MSH	0.62 0.55 0.19	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 9-4-6 oc purlins. Rigid ceiling direbracing. (size) 1=11-5 Max Horiz 1=106 Max Uplift 1=-80 Max Grav 1=90 (LC 22	theathing directly appli ctly applied or 6-0-0 oc (LC 12) (LC 12), 3=-80 (LC 21) 5 (LC 15) LC 21), 3=90 (LC 22),)	ed or 3 , 4=953	 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. Gable require Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings at Provide mec bearing plate 80 bu built 	7-16; Pr=20.0 ps 15); Pg=30.0 ps late DOL=1.15); l: cs=1.00; Ct=1.1 snow loads have es continuous bot spaced at 4-0-0 of has been designer n chord in all area y 2-00-00 wide w y other members are assumed to b hanical connectio c capable of withs at joint 3 and 243	f (roof LI ; Pf=20.8 s=1.0; R (10 been con tom chon ic. d for a liv is where ill fit betw - e SP No. n (by oth tanding ξ a lb uplift	.: Lum DOL= 8 psf (Lum bugh Cat C; F d bearing. e load of 20.0 a rectangle veen the botti 2 . ers) of truss 1 80 lb uplift at j at joint 4.	1.15 Fully his Opsf om oont				
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum C Tension 1-2=-323/555, 2- 1-4=-468/403, 3- 2-4=-880/594	ompression/Maximum 3=-319/555 4=-468/403		 Beveled plate surface with This truss is International R802.10.2 ar 	e or shim required truss chord at joir designed in accou Residential Code nd referenced sta	to provi at(s) 1, 3. rdance w sections ndard AN	de full bearin ith the 2018 s R502.11.1 a ISI/TPI 1.	g Ind				

Scale = 1:31.7

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 5-8-10, Corner(3R) 5-8-10 to 8-8-10, Exterior(2N) 8-8-10 to 11-5-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WWWWWWWW SEAL 036322 G mmm March 5,2025

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V7	Valley	1	1	Job Reference (optional)	171811853

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER		
TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural 7-11-3 oc	l wood sheathing directly applied or purlins.
BOT CHORD	Rigid ceili bracing.	ing directly applied or 6-0-0 oc
REACTIONS	(size)	1=8-0-1, 3=8-0-1, 4=8-0-1
	Max Horiz	1=-72 (LC 11)
	Max Uplift	1=-20 (LC 22), 3=-23 (LC 11),
		4=-147 (LC 15)
	Max Grav	1=109 (LC 21), 3=109 (LC 22),
		4=589 (LC 21)
FORCES	(lb) - Max Tension	imum Compression/Maximum
TODOLODD	1 0 000	004 0.0 044/004

Scale = 1:26.3 Loading

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD	1-2=-222/321, 2-3=-214/321
WEBS	2-4=-518/399
NOTES	

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 4-0-1, Corner(3R) 4-0-1 to 6-11-2, Exterior(2N) 6-11-2 to 8-0-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing. 6)
- Gable studs spaced at 4-0-0 oc. 7)
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 . 9)
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1, 23 lb uplift at joint 3 and 147 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	SPENCER-Roof			
25020278-B	V8	Valley	1	1	Job Reference (optional)	171811854		

12 7 Г

1

2-3-1

2-3-1

Carter Components (Chesapeake), Chesapeake, VA - 23323,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-0-2

1-9-2

4-6-1

3

 \leftarrow ò 2x4 🍃 2x4 👟 4-6-1

3x5 =

2

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.15 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 13 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 S BOT CHORD 2x4 S BRACING TOP CHORD Struct 4-6-1 BOT CHORD Rigid BOT CHORD Rigid BOT CHORD Rigid FORCES (lb) -1 Tensi TOP CHORD 1-2=- BOT CHORD 1-2=- BOT CHORD 1-3=- NOTES 1) Unbalanced roof I this design. 2) Wind: ASCE 7-16 Vasd=103mph; TG II; Exp C; Enclose and C-C Corner(3 exposed ; end ver members and forc Lumber DOL=1.60 3) Truss designed fo only. For studs ep see Standard Indu or consult qualifie 4) TCLL: ASCE 7-16 Plate DOL=1.15); DOL=1.15 Plate I Exp.; Ce=0.9; Cs= 5) Unbalanced snow design. 6) Gable requires co	P No.2 P No.2 P No.2 ural wood she oc purlins. ceiling directly g. 1=4-6-15, oriz 1=39 (LC Jiff 1=-48 (LC av 1=216 (LC Maximum Com 397/332, 2-3=- 265/332 ve loads have c Vult=130mph CDL=6.0psf; B d; MWFRS (er E) zone; canli tical left and ri, tes & MWFRS 0 plate grip DC r wind loads in sposed to wind ustry Gable En d building desi ; Pr=20.0 psf; F 0CL=1.10; IS= 1.00; Ct=1.10 loads have be ntinuous botto	athing directly applied applied or 10-0-0 oc , 3=4-6-15 14) 2 15), 3=-48 (LC 16) 2 21), 3=216 (LC 22) apression/Maximum 397/332 been considered for (3-second gust) CDL=6.0psf; h=25ft; C hvelope) exterior zone lever left and right ght exposed; C-C for for reactions shown; DL=1.33 the plane of the truss (normal to the face), d Details as applicabl gner as per ANSI/TPI roof LL: Lum DOL=1. Pf=20.8 psf (Lum 1.0; Rough Cat C; Ful een considered for this m chord bearing.	 7) Gable studs 8) * This truss h on the bottor 3-06-00 tall b chord and ar 9) All bearings : 10) Provide mec bearing plate 1 and 48 lb u 11) Beveled platt surface with 12) This truss is International R802.10.2 ar LOAD CASE(S) 	spaced at 4-0-0 oc has been designed n chord in all areas by 2-00-00 wide will y other members. are assumed to be hanical connection a capable of withsta plift at joint 3. e or shim required it truss chord at joint(designed in accord Residential Code s nd referenced stand Standard	for a liv where fit betw (by oth nding 4 to provi s) 1, 3. ance w sections fard AN	e load of 20.0 a rectangle veen the botto 2 . ers) of truss to 8 lb uplift at jc de full bearing ith the 2018 ; R502.11.1 ar ISI/TPI 1.	psf m pint nd		Martin Martin		SEA 0363	L 22 L B F F R F R F R F R F R F R F R F R F R

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1-0-5

0-0-4

1-4-0

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V9	Valley	1	1	Job Reference (optional)	171811855

TCDL

BCLL

BCDL

1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:29 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Edenton, NC 27932

Job	Truss	Truss Type	Qty		SPENCER-Roof			
25020278-B	V10	Valley	1	1	Job Reference (optional)	171811856		

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V11	Valley	1	1	Job Reference (optional)	171811857

3-5-1

3-9-7

(psf)

20.0

10.0

0.0

10.0

20.8/30.0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Uplift

Max Grav

Tension

DOL=1.60 plate grip DOL=1.33

2-4=-907/638

9-0-9 oc purlins.

Max Horiz 1=-120 (LC 9)

(LC 1)

and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 5-8-2, Corner(3R) 5-8-2 to 8-8-2, Exterior(2N) 8-8-2 to 11-4-4 zone; cantilever left and right exposed ; end

vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face). see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Scale = 1:33.7 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WFBS

1)

2)

3)

NOTES

TOP CHORD

BOT CHORD

this design

REACTIONS (size)

Snow (Pf/Pg)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-7-12 10-10-5 5-7-12 5-2-9 4x5 =2 9 10 12 8 Г 3 4 2x4 ı 3x5 🍫 3x5 💊 11-3-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.38 Vert(LL) n/a 999 MT20 244/190 n/a BC 1 15 Lumber DOL 0.41 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.23 Horiz(TL) 0.00 4 n/a n/a Code IRC2018/TPI2014 Matrix-MSH Weight: 40 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Gable requires continuous bottom chord bearing. 5) Gable studs spaced at 4-0-0 oc. 6) Structural wood sheathing directly applied or * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle Rigid ceiling directly applied or 6-0-0 oc 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 1=11-4-4, 3=11-4-4, 4=11-4-4 8) All bearings are assumed to be SP No.2 . Provide mechanical connection (by others) of truss to 9) 1=-53 (LC 35), 3=-53 (LC 34), bearing plate capable of withstanding 53 lb uplift at joint 4=-269 (LC 13) 1, 53 lb uplift at joint 3 and 269 lb uplift at joint 4. 1=60 (LC 34), 3=60 (LC 35), 4=917 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3. (lb) - Maximum Compression/Maximum 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and 1-2=-334/540, 2-3=-329/540 R802.10.2 and referenced standard ANSI/TPI 1. 1-4=-441/421, 3-4=-441/421 LOAD CASE(S) Standard Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof				
25020278-B	V12	Valley	1	1	Job Reference (optional)	171811858			

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-3-8

Scale =	1:28.1
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 20.8/30.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.31 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 8-3-8 oc purlins. Rigid ceiling directly bracing. (size) 1=8-4-4, 3 Max Horiz 1=-87 (LC Max Uplift 1=-18 (LC 4=-176 (LI Max Grav 1=66 (LC 1) (LC 1) (lb) - Maximum Com Tension 1-2=-251/344, 2-3=-2 1-4=-307/344, 3-4=-2	athing directly applie applied or 6-0-0 oc 3=8-4-4, 4=8-4-4 11) 35), 3=-22 (LC 9), C 13) 34), 3=66 (LC 35), 4 pression/Maximum 242/344 307/344	4) ed or 5) 6) 7) 8) 9) 4=618 1(1 ⁻¹	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Gable requir Gable studs * This truss h on the bottor 3-06-00 tall h chord and ar All bearings Provide mec bearing plate 1, 22 lb upliff D) Beveled plat surface with 1) This truss is International R802.10.2 a	E 7-16; Pr=20.0 1.15); Pg=30.0 p Plate DOL=1.15) 9; Cs=1.00; Ct= es continuous b spaced at 4-0-0 has been design m chord in all ar by 2-00-00 wide my other membe are assumed to chanical connect e capable of with t at joint 3 and 1 te or shim requir truss chord at ji designed in acc Residential Co nd referenced s Standard	psf (roof LL ssf; Pf=20.8 ; Is=1.0; Rd 1.10 oottom chor 0 oc. hed for a liv eas where will fit betw rs. be SP No. cion (by oth hestanding 1 76 Ib uplift red to provi pint(s) 1, 3. cordance w de sections tandard AN	L: Lum DOL= 3 psf (Lum bugh Cat C; I rd bearing. re load of 20. a rectangle veen the bott 2 . ers) of truss 8 lb uplift at at joint 4. de full bearing ith the 2018 s R502.11.1 a VSI/TPI 1.	1.15 Fully Opsf om to joint g and				Weight. 23 lb	
 NOTES 1) Unbalance this design 2) Wind: ASC 	ed roof live loads have n. CE 7-16; Vult=130mph	been considered for	r									WITH CA	RO

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 4-2-2, Corner(3R) 4-2-2 to 7-4-11, Exterior(2N) 7-4-11 to 8-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Vernanderster SEAL 036322 G minim March 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V13	Valley	1	1	Job Reference (optional)	171811859

2-7-12 2-7-12

Carter Components (Chesapeake), Chesapeake, VA - 23323,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-10-5

2-2-9

5-3-8

5-3-8

Scale = 1:24.1

00010 = 1.24.1												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI20	CSI TC BC WB Matrix-MP	0.08 0.14 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-3-8 oc purlins. Rigid ceiling directly bracing. (size) 1=5-4-4, 3 Max Horiz 1=-54 (LC Max Uplift 1=-13 (LC 4=-83 (LC Max Grav 1=65 (LC (LC 1)	athing directly applie applied or 6-0-0 oc 3=5-4-4, 4=5-4-4 2 9) 2 13), 3=-22 (LC 14), 2 13) 34), 3=65 (LC 35), 4	5) Gabl 6) Gabl 7) * This on th 3-06- chore 8) All be 9) Provi beari 1, 22 10) Beve surfa 11) This Interr R802	e requires continuous b e studs spaced at 4-0-0 t truss has been design e bottom chord in all are 00 tall by 2-00-00 wide a and any other member earings are assumed to de mechanical connecting plate capable of with lb uplift at joint 3 and 8: led plate or shim require ce with truss chord at jo russ is designed in acc national Residential Cool .10.2 and referenced st	ottom chor oc. ed for a live eas where will fit betv rs. be SP No. ion (by oth ion (by oth)) and ion (by oth) ion (by oth) and ion (by oth) ion (by oth) and ion (by oth) ion (by oth) and ion (b) and ion (b) a	d bearing. e load of 20.0 a rectangle veen the botto 2 . ers) of truss t 3 lb uplift at j tt joint 4. de full bearing ith the 2018 s R502.11.1 a JSI/TPI 1.	Dpsf om ooint g					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=1003 II; Exp C; and C-C C exposed ; members Lumber D 3) Truss des only. For see Stand or consult 4) TCLL: AS Plate DOL DOL=1.15 Exp.; Ce=	(lb) - Maximum Com Tension 1-2=-93/138, 2-3=-9 1-4=-134/191, 3-4=- 2-4=-274/255 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) zone; cantil end vertical left and rig and forces & MWFRS (OL=1.60 plate grip DC UC=1.60 plate grip DC UC=1.60 plate grip DC CC 7-16; Pr=20.0 psf (is qualified building desi; CE 7-16; Pr=20.0 psf; F 5 Plate DCL=1.15); Is= 60.9; Cs=1.00; Ct=1.10	apression/Maximum 3/138 134/191 been considered for (3-second gust) CDL=6.0psf; h=25ft; twelope) exterior zom ever left and right ght exposed;C-C for for reactions shown; DL=1.33 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DDL=1 2f=20.8 psf (Lum 1.0; Rough Cat C; Fi	Cat. ne ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	ASE(S) Standard					C. HILLIN		SEA 0363	L 22 HBH HIL Sh 5,2025
WAR	NING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED	MITEK REFERENCE PAGE N	1II-7473 rev. 1	/2/2023 BEFORE	USE.				ENGINEER	ING BY

818 Soundside Road Edenton, NC 27932

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V14	Valley	1	1	Job Reference (optional)	171811860

5)

6)

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 1-1-12
 1-10-5

 1-1-12
 0-8-9

3x5 =

2

12 8 Г

Page: 1

0-5-11 0-9-7 3 0-0-4 1 2x4 🍫 2x4 💊 2-3-8 A. GILBERIN PIC. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. March 5,2025 GINEERING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:23														
Plate Offsets ((X, Y): [2:0-2-8,Edge]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	12014	CSI TC BC WB Matrix-MP	0.05 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 6 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she 2-3-8 oc purlins. Rigid ceiling directly bracing. (size) 1=2-4-4, 3 Max Horiz 1=-20 (LC Max Uplift 1=-25 (LC Max Grav 1=96 (LC	athing directly applie applied or 10-0-0 oc 3=2-4-4 2 11) 2 13), 3=-25 (LC 14) 1), 3=96 (LC 1)	7) * T on 3-(ch d or 8) All 9) Pro be 12 10) Be su 11) Th Int R8	This truss ha the bottom D6-00 tall by ord and any bearings a ovide mech and 25 lb up eveled plate rface with tr is truss is d ernational F 302.10.2 an	as been designed o chord in all areas y 2-00-00 wide wil y other members. re assumed to be anical connection capable of withsta blift at joint 3. or shim required russ chord at joint lesigned in accoror Residential Code d referenced stan	for a liv s where Il fit betv SP No. (by oth anding 2 to provi (s) 1, 3. dance w sections (dard AN	re load of 20.0p a rectangle veen the bottor 2 . ers) of truss to 25 lb uplift at jo de full bearing ith the 2018 \$ R502.11.1 an VSI/TPI 1.	osf m int						
TOP CHORD BOT CHORD	(IB) - Maximum Corr Tension 1-2=-162/152, 2-3=- 1-3=-103/127	162/152	LOAD	CASE(S)	Standard									
NOTES 1) Unbalance	ed roof live loads have	been considered for												
 this design Wind: ASC Vasd=103 II; Exp C; and C-C C exposed; members Lumber Di Truss desi only. For see Stand or consult TCLL: ASI Plate DOL DOL=1.15 Exp.; Ce= 	palanced roof live loads have been considered for design. d: ASCE 7-16; Vult=130mph (3-second gust) d: ASCE 7-16; Vult=130mph (3-second gust) d=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Exp C; Enclosed; MWFRS (envelope) exterior zone I C-C Corner(3E) zone; cantilever left and right wosed ; end vertical left and right exposed; C-C for mbers and forces & MWFRS for reactions shown; nher DOL=1.60 plate grip DOL=1.33 ss designed for wind loads in the plane of the truss y. For studs exposed to wind (normal to the face), Standard Industry Gable End Details as applicable, consult qualified building designer as per ANSI/TPI 1. L: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 te DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum L=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully											SEA 0363	L EEER	and a second second

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V15G	Valley	1	1	Job Reference (optional)	171811861

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

March 5,2025

1111111111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V16G	Valley	1	1	Job Reference (optional)	171811862

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1	1:54.5
-----------	--------

Plate Offsets (X, Y): [21:0-2-8,0-1-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20	(psf) 20.0 0.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.07 0.04 0.23	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 142 lt	GRIP 244/19 0 FT = 2	30
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No Structural 6-0-0 oc p Rigid ceili bracing. (size)	5.2 5.2 5.3 wood sheat purlins. ng directly 1=24-4-4, 15=24-4-4 18=24-4-4 22=24-4-4	athing directly applie applied or 10-0-0 oc 13=24-4-4, 14=24-4 , 16=24-4-4, 17=24- , 19=24-4-4, 20=24- 23=24-4-4 24=24	d or W 4, 4-4, 4-4, N	OT CHORD 1 2 2 1 1 1 2 2 2 2 3 1 1 2 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1	-25=-98/192, 24-2 -25=-98/192, 22-2 -22=-98/192, 19-3 8-19=-98/192, 17- 6-17=-98/192, 15- 4-15=-98/192, 13- -19=-195/61, 6-20 -22=-165/129, 4-2 -22=-165/129, 4-2 -24=-164/132, 2-2 -18=-167/123, 9-1 0-16=-164/124, 11 2-14=-163/116	5=-98/1 23=-98 20=-98 18=-98 16=-98 14=-98 =-167/1 3=-164, 5=-163, 7=-165, -15=-1	92, 1192, 1192, 1192, 1192, 1192, 1192 26, 1125, 1116, 1131, 64/132,		8) * Ti on 3-0 chc 9) All 10) Prc 1, 1 upl joir 100 upl 11) Thi	his truss the bottc 6-00 tall rrd and <i>a</i> bearings vide me iving plat 02 lb up ft at join t 25, 99 0 lb uplift ft at join s truss is	has be om cho by 2-0 iny oth a are as chanic te capa ilift at jo at join at join t 14. s desig	een designed fo rd in all areas w 10-00 wide will fi er members. Ssumed to be S al connection (b able of withstand oint 20, 105 lb u 08 lb uplift at joi ft at joint 18, 107 it at 6, 110 lb upli ned in accordar	r a live loa here a red t between P No.2. y others) Jing 60 lb plift at joir nt 24, 83 l 7 lb uplift a ft at joint 1	of truss to uplift at joint at joint 17, 15 and 77 lb ne 2018
FORCES TOP CHORD	Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=-250/ 4-5=-131/ 7-8=-152/ 10-11=-67 12-13=-18	22=24-4-4 25=24-4-4 1=-265 (LC 15=-110 (I 17=-107 (I 20=-102 (I) 23=-101 (I 23=-101 (I 25=-83 (LC 1=129 (LC 1=129 (LC 1=129 (LC 1=129 (LC 1=129 (LC 23=185 (L 20=194 (L 23=185 (L 20=194 (L 23=185 (L 23=185 (L 25=207 (L imum Com 213, 2-3=- 253, 8-9=- 7/56, 11-12 33/113	, 23=24-4-4, 24=24- C 9) 9), 14=-77 (LC 14), LC 14), 16=-100 (LC LC 14), 18=-99 (LC LC 13), 22=-105 (LC LC 13), 24=-108 (LC C 13), 13=85 (LC 25) C 23), 13=85 (LC 25) C 24), 14=85 (LC 25) C 25), 14=85 (LC 25) C 25), 14=85 (LC 25) C	(4-4, N 1) 2) 14), (14), (13), (13), (13), (14), (23), (22), (2), (Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp C; End and C-C Cori 12-2-2, Corio to 24-4-4 zori vertical left ai forces & MW DOL=1.60 pli Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pli Exp.; Ce=0.9 All plates are Gable require Gable studs st 	roof live loads have 7-16; Vult=130mpt h; TCDL=6.0psf; B closed; MWFRS (e ner(3E) 0-0-0 to 3-6 er(3R) 12-2-2 to 15 ie; cantilever left ar nd right exposed; C FRS for reactions s ate grip DOL=1.33 ed for wind loads ir ds exposed to wind I ndustry Gable Er alified building desi 7-16; Pr=20.0 psf .15); Pg=30.0 psf; ate DOL=1.10; ; Cs=1.00; Ct=1.10; 2x4 MT20 unless es continuous botto spaced at 2-0-0 oc.	been (3-sec CDL=6 nvelope)-0, Ext -2-2, E d right -2-2, E d ri	considered fo cond gust) .0psf; h=25ft e) exterior zon erior(2N) 3-0 xterior(2N) 15 exposed; en nembers and Lumber ane of the tru al to the face ils as applica s per ANSI/TI .: Lum DOL= 8 psf (Lum ough Cat C; F se indicated. d bearing.	or ;; Cat. ne -0 to 5-2-2 nd I sss -), ble, PI 1. 1.15 =ully	Inter R8(LOAD	inationa 02.10.2 c CASE(S) Sta	Corrector account of the contract of the contr	AROY AROY AL 322	PI1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

March 5,2025

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V17	Valley	1	1	Job Reference (optional)	171811863

1)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

21-3-8

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V18	Valley	1	1	Job Reference (optional)	171811864

BCLL

BCDL

1)

2)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:30 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

mmm March 5,2025

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V19	Valley	1	1	Job Reference (optional)	171811865

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

FORCES

WEBS

NOTES

1)

2)

BRACING

TCLL (roof)

Run: 8 73 S. Feb 19 2025 Print: 8 730 S Feb 19 2025 MiTek Industries. Inc. Tue Mar 04 15:35:31 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

11111111111

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V20	Valley	1	1	Job Reference (optional)	171811866

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:31 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V21	Valley	1	1	Job Reference (optional)	171811867

3-1-7

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:31 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-3-8

9-3-8

Scale = 1:29.5													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.24 0.31 0.15	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 9-3-8 oc purlins. Rigid ceiling directly bracing. (size) 1=9-3-8, 1 Max Horiz 1=98 (LC Max Uplift 1=-18 (LC 4=-189 (L Max Grav 1=75 (LC (LC 1) (lb) - Maximum Com Tension 1-2=-229/359, 2-3=- 1-4=-295/319, 3-4=-	eathing directly applied y applied or 6-0-0 oc 3=9-3-8, 4=9-3-8 10) C 35), 3=-25 (LC 9), C 13) 34), 3=75 (LC 35), 4= appression/Maximum -221/359 -295/319	4) d or 5) 6) 7) 8) 9) =680 10) LO	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requirin Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 1, 25 lb uplift) This truss is International R802.10.2 ar	7-16; Pr=20.0 ps .7-16; Pr=20.0 ps .15); Pg=30.0 ps late DOL=1.15); I es continuous boi spaced at 4-0-0 c as been designe n chord in all area by 2-00-00 wide w y other members are assumed to b hanical connectic e capable of withs . at joint 3 and 18 designed in acco Residential Code nd referenced sta Standard	sf (roof Ll f; Pf=20.8 s=1.0; Rd 10 ttom choro- c. d for a liv as where vill fit betv s. e SP No. n (by oth ttanding 1 9 lb uplift rdance w e sections indard AN	2: Lum DOL= 3 psf (Lum bugh Cat C; F rd bearing. re load of 20.0 a rectangle veen the botto 2. ers) of truss t 18 lb uplift at j at joint 4. ith the 2018 s R502.11.1 a USI/TPI 1.	1.15 Fully Opsf om to joint					
WEBS	2-4=-655/493	200/010											
NOTES													
 Unbalance this design Wind: ASC Vasd=103 II: Exp C: 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed: MWFRS (ei	been considered for (3-second gust) CDL=6.0psf; h=25ft; (nyelope) exterior zone	Cat.								and a	OP. FESS	
and C-C C 4-8-2, Cor 9-3-14 zor vertical lef forces & M	Corner(3E) 0-0-6 to 3-0 mer(3R) 4-8-2 to 7-8-2 ne; cantilever left and l ft and right exposed;C- MWFRS for reactions s) plate grin DOI =1 33)-6, Exterior(2N) 3-0-6 ;, Exterior(2N) 7-8-2 to right exposed ; end -C for members and shown; Lumber	o to							4	Ċ	SEA 0363	L 22

Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. A. GI A. GILIN March 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof	
25020278-B	V22	Valley	1	1	Job Reference (optional)	171811868

3-1-12

3-1-12

Carter Components (Chesapeake), Chesapeake, VA - 23323,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:31 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-10-5

2-8-9

6-3-8

3

818 Soundside Road Edenton, NC 27932

3x5 💊

h-5-

3x5 🍫

6-3-8

Scale - 1:25 4

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES C TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.13 Vert(LL) n/a - n/a 999 MT20 2 Snow (Pf/Pg) 20.8/30.0 Lumber DOL 1.15 BC 0.20 Vert(TL) n/a - n/a 999 MT20 2 TCDL 10.0 Rep Stress Incr YES WB 0.10 Horiz(TL) 0.00 3 n/a n/a	GRIP 244/190
BCLL 0.0* Code IRC2018/TPI2014 Matrix-MP Weight: 21 lb F	FT = 20%
LUMBER 5) Gable requires continuous bottom chord bearing. TOP CHORD 2x4 SP No.2 6) Gable studs spaced at 4-0-0 oc. BOT CHORD 2x4 SP No.3 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle BRACING 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BOT CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. 8) BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 21 lb uplift at joint 2, 11, 21 lb uplift at joint 3 and 108 lb uplift at joint 4. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LUMBER 1=69 (LC 34), 3=69 (LC 35), 4=411 LOAD CASE(S) Standard	
 FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1.2=-139/189, 2-3=-139/189 BOT CHORD 1.4=-177/244, 3-4=-177/244 WEBS 2-4=-360/337 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II: Exp C; Enclosed; WWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS//TP11. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DDL=1.15 Plate DOL=1.15); Ig=3.0; psf (roof LL: Lum DDL=1.15 Plate DOL=1.15); Ig=3.0; psf (roof LL: 10 	2 E.R. H.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	SPENCER-Roof		
25020278-B	V23	Valley	1	1	Job Reference (optional)	171811869	

Run: 8,73 S Feb 19 2025 Print: 8,730 S Feb 19 2025 MiTek Industries, Inc. Tue Mar 04 15:35:31 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-5

1-2-9

3-3-8

0-5-3

Page: 1

1-7-12

1-7-12

2x4 💊

3-3-8

Scale = 1:24.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.8/30.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TP	PI2014	CSI TC BC WB Matrix-MP	0.09 0.08 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS (2x4 SP No.2 2x4 SP No.2 Structural wood shea 3-3-8 oc purlins. Rigid ceiling directly bracing. (size) 1=3-3-8, 3 Max Horiz 1=-31 (LC Max Uplift 1=-34 (LC Max Gray 1=134 (LC	athing directly applied applied or 10-0-0 oc =3-3-8 9) 13), 3=-34 (LC 14) 11 3=134 (LC 11)	7) * 1 on 3-i chi i or 8) Ali 9) Pr be 1 a 10) Th In R& LOAD	This truss h the bottom 06-00 tall b hord and an I bearings a rovide mech earing plate and 34 lb up nis truss is of ternational 802.10.2 an D CASE(S)	as been designed a chord in all areas y 2-00-00 wide will y other members. Ire assumed to be nanical connection capable of withsta plift at joint 3. designed in accord Residential Code s d referenced stand Standard	for a liv where I fit betw SP No. (by oth- nding 3 lance wisections dard AN	e load of 20.0 a rectangle een the botto 2. ers) of truss tr 4 lb uplift at jo th the 2018 R502.11.1 a SI/TPI 1.	ipsf om o bint nd					
FORCES TOP CHORD BOT CHORD NOTES 1) Unbalanced this design. 2) Wind: ASCI Vasd=103n II; Exp C; E and C-C C; exposed ; and C-C C; exposed ; and C-C C; exposed ; see Standa or consult q 4) TCLL: ASC Plate DOL= DOL=1.151 Exp; Ce=0 5) Gable requi 6) Gable studs	(lb) - Maximum Com Tension 1-2=-245/216, 2-3=-2 1-3=-155/192 d roof live loads have E 7-16; Vult=130mph nph; TCDL=6.0psf; BC inclosed; MWFRS (en orner(3E) zone; cantile and vertical left and rig nd forces & MWFRS 1 DL=1.60 plate grip DO gned for wind loads in tuds exposed to wind rd Industry Gable Enc ualified building desig E 7-16; Pr=20.0 psf (t =1.15); Pg=30.0 psf; P Plate DOL=1.15); Is=- .9; Cs=1.00; Ct=1.10 s spaced at 4-0-0 oc.	245/216 been considered for (3-second gust) CDL=6.0psf; h=25ft; C velope) exterior zone ever left and right ht exposed;C-C for for reactions shown; L=1.33 the plane of the truss (normal to the face), d Details as applicabl ner as per ANSI/TPI f=20.8 psf (Lum 1.0; Rough Cat C; Fu n chord bearing.	Cat. e, 1. 15							Contraction of the second seco		SEA 0363	EEP. A

March 5,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

