

Trenco RE: 2501-0741-A - Blake Pond Lot 00.0128 Roof 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: DRB Raleigh Project Name: Blake Pond Lot 00.0128 Subdivision: Blake Pond Lot/Block: 00.0128 Model: Townsend Address: 203 Great Smoky Place City: Lillington State: NC General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2021/TPI2014 Design Program: MiTek 20/20 8.8 Wind Code: ASCE 7-16 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Wind Speed: 120 mph Floor Load: N/A psf Roof Load: 40.0 psf Exposure Category: B Mean Roof Height (feet): 25

INO.	Seal#	Truss Name	Date
1 2	170930161 170930162	G1G G1	1/23/25
3	170000404	P1G	1/23/25
4 5	170930164	P1 PB2	1/23/25
Ğ	170930166	PB1G	1/23/25
8	170930167	C1G	1/23/25
9	170930169	Č1	1/23/25
11	170930170	G3G G3	1/23/25
12	170020172	B1G	1/23/25
14	170930173	A1G	1/23/25
16	170930175	A1A	1/23/25
17	170930176	A13G	1/23/25
18	170930178	A1P	1/23/25
13	110330113		1/23/23

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a continue to that the engineer named is licensed in the jurisdiction (a) is a continue to the seal of th shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	G1G	Monopitch Supported Gable	3	1	Job Reference (optional)	170930161

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:45 ID:HGsSFFvt0ZxoM4t4TyqKwsy76yo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-3-4

Scale = 1:24.4

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) I/defl L/d PLATES GRIP TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.17 Vert(LL) n/a - n/a 999 MT20 244/190 Snow (Pf/Pg) 15.4/20.0 Lumber DOL 1.15 BC 0.15 Vert(CT) n/a - n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.07 Horz(CT) 0.00 2 n/a n/a 3CLL 0.0* Code IRC2021/TPI2014 Matrix-MP Matrix-MP Horz(CT) 0.00 2 n/a n/a	GRIP
BCDL 10.0 Weight: 14 lb FT = 20%	244/190 FT = 20%
LUMBER Ust SP No.2 Unbalanced snow loads have been considered for this design. COP CHORD 2x4 SP No.3 Subset Subset	AROLINIA B22

- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

January 23,2025

40000

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	G1	Monopitch	27	1	Job Reference (optional)	170930162

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:44 ID:2GIdoMbZ8afUF5t5xVMEtNy76zC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-1-12

0-3-4

2-3-15

Scale = 1:24.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MP	0.25 0.25 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.01 -0.01 0.00 0.00	(loc) 6-9 6-9 2 6-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-5-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=40 (LC Max Uplift 6=-6 (LC Max Grav 2=320 (LC (Ib) - Maximum Com Tension 1-2=0/41, 2-3=-82/6 2-6=-45/64, 5-6=0/0 3-6=-277/59	athing directly applie applied or 10-0-0 oc 5= Mechanical 16) 16) 2 40), 6=303 (LC 44) pression/Maximum 7, 3-4=-10/0	 6) This tr chord 7) * This on the 3-06-C d or 8) Bearin 9) Refer 10) Provid bearin 11) This tr load o panels Botton LOAD CA 	uss has been designe live load nonconcurre truss has been design bottom chord in all ar 0 tall by 2-00-00 wide and any other membe gs are assumed to be to girder(s) for truss to e mechanical connec g plate capable of witi uss has been designe f 250.0lb live and 3.0ll s and at all panel point n Chord, nonconcurre SE(S) Standard	ed for a 10. Int with any need for a live reas where will fit betw ers. Do truss conne tion (by oth hstanding 6 ed for a mov b dead loca ts along the nt with any	D psf bottom other live loa e load of 20. a rectangle veen the bott D No.2. ections. ers) of truss is lb uplift at jo ving concentri tied at all mice other live loa	ads. Opsf om to pint 6. rated d and ads.					
NOTES 1) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E vertical left forces & M	E 7-16; Vult=120mph ph; TCDL=6.0psf; BC nclosed; MWFRS (en) zone; cantilever left and right exposed;C- WFRS for reactions sl	(3-second gust) DL=6.0psf; h=25ft; C velope) and C-C and right exposed ; c C for members and hown; Lumber	at. end								TH CA	ROLIN

- DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.

STATISTICS STATISTICS G mmm January 23,2025

SEAL

036322

WITTER PARTY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	P1G	Monopitch Supported Gable	6	1	Job Reference (optional)	170930163

S

Scale = 1.24.7													
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.43	Vert(LL)	-0.06	9-10	>999	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.55	Vert(CT)	-0.08	9-10	>807	240			
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.03	9-10	>999	240			
BCDL	10.0										Weight: 28 lb	FT = 20%	
	2x4 SP No 2		4) Unbalance	d snow loads hav	e been cor	nsidered for t	his						

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
WEBS	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structura	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	2=0-3-0, 8= Mechanical
	Max Horiz	2=54 (LC 12)
	Max Uplift	2=-7 (LC 12)
	Max Grav	2=388 (LC 40), 8=376 (LC 48)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=0/26,	2-3=-585/105, 3-4=-80/11,
	4-5=-34/6	6, 5-6=-6/0
BOT CHORD	2-10=-18	5/542, 9-10=-185/542, 8-9=0/0,
	7-8=0/0	
	4.0.44/0	

WEBS 4-9=-41/209, 3-10=-13/329, 5-8=-313/84, 3-9=-589/201

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 1-11-8, Interior (1) 1-11-8 to 5-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable studs spaced at 2-0-0 oc. 7)
- This truss has been designed for a 10.0 psf bottom 8) chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 10) Bearings are assumed to be: Joint 2 SP No.2 .
- 11) Refer to girder(s) for truss to truss connections.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 2.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	P1	Monopitch	27	1	Job Reference (optional)	170930164

Scale = 1:23.8

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

FORCES

WEBS

NOTES

1)

2)

3)

4)

5)

design.

about its center.

TOP CHORD

BOT CHORD

(size)

Tension

4-7=-310/126

Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

s (X, V): [2:0-0-12 0-1-12] [2:Edge 0-1-10]

Left 2x4 SP No.3 -- 1-6-0

Rigid ceiling directly applied.

Max Horiz 2=54 (LC 12)

2-7=-109/72, 6-7=0/0

Wind: ASCE 7-16; Vult=120mph (3-second gust)

II; Exp B; Enclosed; MWFRS (envelope) and C-C

Structural wood sheathing directly applied.

2=0-3-0, 7= Mechanical

Max Uplift 2=-53 (LC 12), 7=-37 (LC 12)

Max Grav 2=419 (LC 40), 7=365 (LC 46)

(lb) - Maximum Compression/Maximum

1-2=0/26, 2-4=-473/166, 4-5=-6/0

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 5-11-8

zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown;

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

Plates checked for a plus or minus 5 degree rotation

Plate Offsets (X, Y): [2:0-0-12,0-1-1	2], [2:Edge,0-1-10]											
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.70	Vert(LL)	-0.10	7-12	>650	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.76	Vert(CT)	-0.15	7-12	>470	240			
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.01	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS		Wind(LL)	0.06	7-12	>999	240			
BCDL	10.0										Weight: 25 lb	FT = 20%	
LUMBER			6) This truss h	nas been designe	d for a 10.0) psf bottom							
TOP CHORD	2x4 SP No.2		chord live le	bad nonconcurre	nt with any	other live loa	ads.						
BOT CHORD	2x4 SP No.2	 * This truss has been designed for a live load of 20.0psf 											
WEBS	2x4 SP No 3		on the botto	om chord in all ar	eas where	a rectangle							

()	I his truss has been designed for a live load of 20
	on the bottom chord in all areas where a rectangle

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: Joint 2 SP No.2 . 8)
- 9)
- Refer to girder(s) for truss to truss connections.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	PB2	Piggyback	18	1	Job Reference (optional)	170930165

Structural LLC Thurmont MD - 21788

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Wed. Jan 22 08:23:46 ID:k0eRhR1fcffiy0kHV4U1Y_y77Wo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-3-8 6-7-0 3-3-8 3-3-8 6-7-0 7¹² 4x4 = 3 13 1-11-1 ľ5 6 16 3x4 =3x4 =2x4 II 0-10-3 6-7-0 5-8-13 4-10-11 0-10-3 0-10-3 Scale = 1:45.4 Loading Spacing 2-0-0 CSI (psf) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.22 BC 0.33 Snow (Pf/Pg) Lumber DOL 15 4/20 0 1 15 TCDL 10.0 Rep Stress Incr YES WB 0.04 BCLL 0.0 Code IRC2021/TPI2014 Matrix-AS BCDL 10.0 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 LUMBER 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 2x4 SP No.3 Exp.; Ce=1.0; Cs=1.00; Ct=1.10 OTHERS 5) BRACING desian. TOP CHORD Structural wood sheathing directly applied. 6) BOT CHORD Rigid ceiling directly applied. about its center. **REACTIONS** (size) 1=6-7-0, 2=6-7-0, 4=6-7-0, 5=6-7-0, 7) Gable requires continuous bottom chord bearing. 6=6-7-0 8) Gable studs spaced at 4-0-0 oc. Max Horiz 1=-28 (LC 12) This truss has been designed for a 10.0 psf bottom 9) Max Uplift 1=-151 (LC 46), 2=-5 (LC 16), 4=-8 chord live load nonconcurrent with any other live loads. (LC 17), 5=-149 (LC 47) Max Grav 1=232 (LC 44), 2=433 (LC 62), 4=420 (LC 60), 5=234 (LC 56), 6=338 (I C 63) chord and any other members. FORCES (lb) - Maximum Compression/Maximum 11) All bearings are assumed to be SP No.3. Tension TOP CHORD 1-2=-32/88, 2-3=-123/52, 3-4=-123/51, 4-5=-12/87 1 and 149 lb uplift at joint 5. BOT CHORD 2-6=-55/44, 4-6=-56/44 13) N/A WFBS 3-6=-238/17 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Unbalanced snow loads have been considered for this Plates checked for a plus or minus 5 degree rotation

DEFL

Vert(LL)

Vert(TL)

Horiz(TL)

in

n/a

n/a

0.00

(loc)

10

l/defl

n/a 999

n/a 999

n/a n/a

L/d

PLATES

Weight: 20 lb

MT20

GRIP

244/190

FT = 20%

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	PB1G	Piggyback	6	1	Job Reference (optional)	170930166

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:46 ID:w8pc?B9Y1128mi4OeuBcVJy77Wd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

0-1	0-3

Scale = 1:21.6

		-											
Loading	(psf)	Spacing	2-0-0		CSI	0.04	DEFL	in r/s	(loc)	l/defl	L/d	PLATES	GRIP
FOLL (1001)	20.0	Plate Grip DOL	1.15			0.21	Vert(LL)	n/a	-	n/a	999	MI 20	244/190
	10.4/20.0	Ron Stross Incr	VES			0.51	Ven(TL)	0.00	- 7	n/a	999		
RCU	10.0	Codo	IDC20		Motrix AS	0.05	110112(11)	0.00	'	n/a	n/a		
BCDI	10.0	Code	IKC20	21/1712014	Maux-AS							Weight: 30 lb	FT – 20%
BODE	10.0											Weight: 50 lb	11 = 2070
LUMBER			3) Truss design	ed for wind loads ir	n the pl	ane of the true	SS					
TOP CHORD	2x4 SP No.2			only. For stu	ds exposed to wind	d (norm	al to the face)),					
BOT CHORD	2x4 SP No.3			see Standard	Industry Gable Er	nd Deta	ils as applicat	ole,					
OTHERS	2x4 SP No.3			or consult qu	alified building desi	igner a	s per ANSI/TH	41. 					
BRACING			4) TOLL: ASCE	7-16; Pr=20.0 psr			1.15					
TOP CHORD	Structural wood she	eathing directly applie	ed.	1 15 Plate DOL= I	.15); Pg=20.0 psi; 1	PI=15.4 Rough	e psi (Lum DC)L =					
BOT CHORD	Rigid ceiling directly	/ applied.		Exp : Ce=1 ($C_{s=1.00}$, $C_{t=1.10}$)	Cat D, T artial	iiy					
REACTIONS	(size) 1=8-7-0,	2=8-7-0, 6=8-7-0, 7=	8-7-0, 5) Unbalanced	snow loads have be	, een cor	nsidered for th	nis					
	8=8-7-0,	9=8-7-0, 10=8-7-0		design.									
		2 4 4)	6) Plates check	ed for a plus or mir	nus 5 de	egree rotation						
	Max Holiz 1=-37 (LO	(14)		about its cen	ter.								
	wax upint 1=-43 (L)	(LC 63), Z = 10 (LC 63), C 64), T = 42 (LC 66)	7) Gable require	es continuous botto	m choi	d bearing.						
	8=-15 (1)	C(17) = 42 (10000)) 8) Gable studs	spaced at 2-0-0 oc.								
	Max Grav 1=259 (L	C 44), 2=305 (LC 61)). g) This truss ha	s been designed fo	or a 10.) pst bottom	-1-					
	6=294 (L	C 73), 7=260 (LC 60)), 1	Chord live loa	a nonconcurrent w	for a liv	other live load	as.					
	8=332 (L	C 71), 9=322 (LC 70)), '	on the bottor	n chord in all areas	where	a rectandle	psi					
	10=334 (LC 69)		3-06-00 tall b	v 2-00-00 wide will	fit betv	veen the botto	m					
FORCES	(lb) - Maximum Cor	npression/Maximum		chord and ar	v other members.								
	Tension		1	1) All bearings	are assumed to be	SP No.	3.						
TOP CHORD	1-2=-44/51, 2-3=-67	7/70, 3-4=-110/50,	1	2) Provide mec	hanical connection	(by oth	ers) of truss to	0					U.,
	4-5=-110/50, 5-6=-6	57/70, 6-7=-15/33		bearing plate	capable of withsta	nding 1	6 lb uplift at jo	oint				White CA	Dalle
BOICHORD	2-10=-14/37, 9-10=	-14/37, 8-9=-14/37,		2, 27 lb uplift	at joint 6, 43 lb upl	ift at jo	nt 1, 42 lb upl	lift at				athon	To l'in
WEBS	4-9240/0 3-102	290/85 5-8289/85		joint 7, 14 lb	uplift at joint 10, 15	lb upli	t at joint 8, 16	5 lb			S.	O'EE89	CHAN'
NOTES	+ 5= 2+0/0, 5 10= 2	200/00, 0 0= 200/00		uplift at joint	2 and 27 lb uplift at	joint 6		ام م ا			57	125	Mill!
1) Unhalana	od roof live loade bave	boon considered for	۱ ۲	3) This truss ha	s been designed to	ad locs	ving concentra	ated		Z		101 -	ny.U
this design	n			nanels and a	t all nanel noints al	ong the	Top Chord a	nd		-		054	1 1 3
2) Wind AS	 CF 7-16 [.] Vult=120mpl	(3-second aust)		Bottom Chor	d. nonconcurrent w	ith anv	other live load	ds.				SEA	L <u>1</u> E -
Vasd=95r	nph; TCDL=6.0psf; BC	CDL=6.0psf; h=25ft; C	Cat. 1	 This truss de 	sign requires that a	minim	um of 7/16"			1		0363	22 : =
II; Exp B;	Enclosed; MWFRS (e	nvelope) and C-C		structural wo	od sheathing be ap	plied d	irectly to the t	ор		-			
Exterior(2	E) 0-3-8 to 3-3-8, Inte	rior (1) 3-3-8 to 4-3-8	,	chord and 1/	2" gypsum sheetroo	ck be a	pplied directly	∕ to		-		Sec. 19	1 - S - S
Exterior(2	R) 4-3-8 to 7-3-4, Inte	rior (1) 7-3-4 to 8-3-8	_	the bottom cl	nord.		-				11	N. SNOW	-ERIA S
zone; can	tilever left and right ex	posed ; end vertical I	left 1	5) See Standar	d Industry Piggybao	ck Trus	s Connection				1	S, GIN	E. P.
and right of	exposed;C-C for mem	bers and forces &	4.0	Detail for Co	nnection to base tru	uss as a	applicable, or				1	CA C	II BEIN
	or reactions snown; Li	umber DOL=1.60 plat	.e	consult quali	neu bullaing design	er.						1117. 6	
grip DOL=	=1.00		L	UAD CASE(S)	Standard							11111	LT

January 23,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	PB1	Piggyback	27	1	Job Reference (optional)	170930167

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:46 ID:RgjoD2xGGVnicxixb6sOmWy77Wv-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-3-13 Edge] [4:0-3-13 Edge]

Fiale Olisels	(A, T). [2.0-3-13,Euge], [4.0-3-13,⊑uge]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-AS	0.33 0.52 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=8-7-0, 2 6=8-7-0 Max Horiz 1=-37 (LC Max Uplift 1=-274 (L 4=-20 (LC Max Grav 1=194 (LC 6=386 (LC	athing directly applie applied. 2=8-7-0, 4=8-7-0, 5= 2 (12) C 46), 2=-19 (LC 16) 2 (17), 5=-272 (LC 47) C 44), 2=544 (LC 46) C 47), 5=196 (LC 56) C 63)	ed. (8-7-0, - 8-7), -), -), -	 FTCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studes This truss ha chord live loc * This truss f on the bottor 3-06-00 tall b 	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have ted for a plus or m ter. es continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w	f (roof LL ; Pf=15.4); Rough 10 been cor inus 5 de tom chor c. for a 10.0 with any d for a liv is where ill fit betv	:: Lum DOL=1 psf (Lum DC Cat B; Partial isidered for th egree rotation d bearing.) psf bottom other live loac e load of 20.0 a rectangle veen the bottoc	I.15 DL = Ily ds. psf pm						
FORCES	(lb) - Maximum Com Tension	pression/Maximum		 All bearings Provide med 	are assumed to be hanical connection	e SP No. n (by oth	3 . ers) of truss to	0						
TOP CHORD	1-2=-43/150, 2-3=-1 4-5=-28/149	39/133, 3-4=-139/13	51,	bearing plate 1 and 272 lb	e capable of withst uplift at joint 5.	tanding 2	74 lb uplift at	joint						
BOT CHORD WEBS	2-6=-123/47, 4-6=-1 3-6=-250/20	24/47		3) N/A								mun	1117	
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95r II; Exp B; Exterior(2 Exterior(2	ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) 0-3-8 to 3-3-8, Inter (R) 4-3-8 to 7-3-4. Inter	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C ior (1) 3-3-8 to 4-3-8, ior (1) 7-3-4 to 8-3-8	Cat.	 4) This truss ha load of 250.0 panels and a Bottom Chor 5) This truss de structural wo 	as been designed ollb live and 3.0lb c at all panel points a d, nonconcurrent ssign requires that ood sheathing be a	for a mov lead loca along the with any a minim applied d	ving concentra ted at all mid Top Chord a other live load um of 7/16" rectly to the to	ated nd ds. op		Marini,	ALL .	ORTEESS SEA	ROLIN	Minni

- zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- 3) only. For studs exposed to wind loads in the plane of the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	C1G	Monopitch Supported Gable	2	1	Job Reference (optional)	170930168

-1-0-0

Structural, LLC, Thurmont, MD - 21788.

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:44 ID:_Z8vra6Kry1zRP8xbNeGViy76Ph-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.53 0.65 0.63	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.15 0.01 0.06	(loc) 12-20 12-20 21 12	l/defl >999 >938 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 61 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-3-0, 1 Max Horiz 2=62 (LC	eathing directly applied , y applied. 21=0-1-8 12) 12) 21=-75 (1 C 12)	 3) TCLL: ASC Plate DOL= 1.15 Plate D Exp.; Ce=1. 4) Unbalanced design. 5) This truss h load of 12.0 overhangs i 6) Plates chec about its ce 7) Gable studs 	E 7-16; $Pr=20.0 \text{ ps}$ 1.15); $Pg=20.0 \text{ ps}$ DOL = 1.15); Is=1.0 0; $Cs=1.00$; $Ct=1$. I snow loads have as been designed psf or 2.00 times non-concurrent wit ked for a plus or m nter. s spaced at 2-0-0 c	of (roof LL f; Pf=15.4 0; Rough 10 been cor for greate flat roof lo h other liv hinus 5 do	L Lum DOL= 4 psf (Lum DO Cat B; Partia nsidered for t er of min roo oad of 15.4 p ve loads. egree rotation	1.15 DL = ally his f live sf on					
FORCES	Max Grav 2=551 (L0 (lb) - Maximum Com	C 2), 21=473 (LC 23) npression/Maximum	8) This truss h chord live lo 9) * This truss	as been designed ad nonconcurrent has been designe	for a 10.0 with any d for a liv	other live loa re load of 20.	ads. Opsf					
TOP CHORD	1-2=0/20, 2-3=-1016 4-5=-970/356, 5-6=- 8-15=-171/459, 7-15	6/340, 3-4=-994/351, -133/13, 6-7=-124/29, 5=-171/459	on the botto 3-06-00 tall chord and a 10) Bearings ar	m cnord in all area by 2-00-00 wide w ny other members a assumed to be:	as where vill fit betv 5.	a rectangle veen the bott	om + 21					
BOT CHORD	2-12=-415/965, 11-1 10-11=-415/965, 9-1 8-9=-415/965	12=-415/965, 10=-415/965,	SP No.3 . 11) Bearing at jusing ANSI	pint(s) 21 consider	rs parallel	l to grain valu a. Building	le					
WEBS	5-10=-97/351, 5-14= 13-14=-906/384, 8- 6-13=-154/47, 9-14= 3-12=-125/127, 7-2	=-919/389, 13=-947/399, =-70/121, 4-11=-151/1 1=-481/191	designer sh 12) Provide me 104, bearing plat 13) One H2.5A recommence UPLIFT at i	ould verify capacit chanical connectio e at joint(s) 21. Simpson Strong-T led to connect trus	y of bear on (by oth ie conne is to bear connecti	ctors ing walls due	to e to t only			in the	ORTH CA	ROUT

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 11-6-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

the bottom chord.

LOAD CASE(S) Standard

and does not consider lateral forces.

14) This truss has been designed for a moving concentrated

load of 250.0lb live and 3.0lb dead located at all mid

15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top

panels and at all panel points along the Top Chord and

Bottom Chord, nonconcurrent with any other live loads.

chord and 1/2" gypsum sheetrock be applied directly to

Contraction of the WILLING IN GI mmm January 23,2025

SEAL

036322

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	C1	Monopitch	18	1	Job Reference (optional)	170930169

6-5-10

-1-0-0

Structural LLC Thurmont MD - 21788

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Wed. Jan 22 08:23:44 ID:WY?FxoTj5zULCPAyYSi3Oky76QV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-11-8

Page: 1

Scale = 1:39.4

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

2)

3)

4)

design.

REACTIONS (size)

Rigid ceiling directly applied.

5-7=-144/436, 4-7=-144/436

2-6=-418/973, 5-6=-418/973

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 11-6-4

zone; cantilever left and right exposed ; end vertical left

and right exposed; porch left and right exposed;C-C for

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL =

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

Exp.: Ce=1.0: Cs=1.00: Ct=1.10

Wind: ASCE 7-16; Vult=120mph (3-second gust)

II; Exp B; Enclosed; MWFRS (envelope) and C-C

Max Horiz 2=62 (LC 12)

Tension

2=0-3-0, 13=0-1-8

Max Uplift 2=-91 (LC 12), 13=-75 (LC 12)

Max Grav 2=551 (LC 2), 13=473 (LC 23)

(lb) - Maximum Compression/Maximum

1-2=0/20, 2-3=-1032/355, 3-4=-161/29,

3-6=-64/360, 3-5=-914/387, 4-13=-482/191

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.66	Vert(LL)	-0.13	6-12	>999	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.87	Vert(CT)	-0.18	6-12	>799	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.50	Horz(CT)	0.02	13	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS		Wind(LL)	0.05	6-12	>999	240			
BCDL	10.0											Weight: 54 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shee	athing directly applie	5) 6) 7) d,	Plates check about its cer This truss ha chord live lo * This truss on the botto 3-06-00 tall chord and a	ked for a plus or hter. as been designe ad nonconcurre has been desigr m chord in all ar by 2-00-00 wide ny other membe	r minus 5 de ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers.	egree rotation) psf bottom other live loa e load of 20. a rectangle veen the bott	n ads. Opsf rom						

- 8) Bearings are assumed to be: Joint 2 SP No.2, Joint 13 SP No 3
- 9) Bearing at joint(s) 13 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 13.
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	G3G	Common Supported Gable	1	1	Job Reference (optional)	170930170

Run: 8.83 E Dec 4 2024 Print: 8.830 E Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 14:15:35 ID:AYUSwGj7gmQHTGoMGsg82Xzt3UH-1AFdQ0suY5IYscAdK87DaWtwyJNUvufmgu0KfMzso4d

Scolo	_ '	1.62 0	
SUGIE	_	1.02.0	

forces & MWFRS for reactions shown; Lumber

DOL=1.60 plate grip DOL=1.60

22-0-0

00010 = 1.02.0													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing 2 Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr 1 Code 1	2-0-0 1.15 1.15 YES RC2021	I/TPI2014	CSI TC BC WB Matrix-S	0.33 0.33 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS (Ib)	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shere 6-0-0 oc purlins. Rigid ceiling directly bracing. All bearings 22-0-0. Max Horiz 2=-112 (LI Max Uplift All uplift 11 2, 14, 15, Max Grav All reaction (s) except (LC 60), 1 (LC 78), 1 (LC 74), 2 (LC 72), 2 	athing directly applied c applied or 10-0-0 oc C 14) 00 (lb) or less at joint(s, 16, 17, 19, 20, 22, 23 ns 250 (lb) or less at jo 2=330 (LC 50), 12=33 4=370 (LC 79), 15=32 6=336 (LC 77), 17=335 0=336 (LC 77), 19=335 0=336 (LC 77), 22=320 3=370 (LC 71)	3) 4) 5) 6)) int 7) 0 8) 5 5 10] 0 11]	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DI Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs m Plates check about its cen Gable requir Gable studs This truss ha chord live loa chord live loa	ed for wind loads in ids exposed to wind d Industry Gable Er alified building des 7-16; Pr=20.0 psf; JL = 1.15; IS=1.0; Ct = 1.15; IS=1.0; Ct = 1.15; IS=1.0; Ct = 1.0; Ct = 1.10 snow loads have b s been designed for psf or 2.00 times fla on-concurrent with ed for a plus or mir ter. es continuous botto spaced at 2-0-0 oc s been designed for a nonconcurrent w has been designed in chord in all areas	n the pl d (norm nd Deta signer a: (roof LI Pf=15.4 Rough o eeen cor or great at roof li other lin nus 5 do om chor or a 10. vith any for a liv s where	ane of the tru al to the face ils as applical s per ANSI/TF :: Lum DOL= b psf (Lum DC Cat B; Partia asidered for th er of min roof bad of 15.4 p: ve loads. agree rotation d bearing. D psf bottom other live loa e load of 20.0.	ss), ble, 1 1. 1.15 DL = Ily his live sf on ds. Dpsf					
FORCES WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95; II; Exp 8; Exterior(2 Exterior(2 23-0-0 zo	(lb) - Max. Comp./Ma (lb) or less except wl 6-19=-282/52, 5-20= 3-23=-307/60, 8-17= 10-15=-279/38, 11-1 ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter R) 11-0-0 to 14-0-0, Inter ne; cantilever left and ri	ax. Ten All forces 250 hen shown. -283/46, 4-22=-279/38, -282/52, 9-16=-283/46, 4=-307/60 been considered for (3-second gust) DL=6.0psf; h=25ft; Cat. ivelope) and C-C rior (1) 2-0-0 to 11-0-0, ierior (1) 14-0-0 to ight exposed ; end) , 12, 13, - LO	 3-06-00 tall b chord and ar Provide mecibearing plate (s) 19, 20, 22 This truss had load of 250.0 panels and a Bottom Chor DAD CASE(S) 	y 2-00-00 wide wil y other members. hanical connection capable of withsta 2, 23, 17, 16, 15, 14 s been designed fo lb live and 3.0lb de t all panel points al d, nonconcurrent w Standard	(by oth anding 1 4. or a mo ead loca long the vith any	veen the botto ers) of truss t 00 lb uplift at ving concentr ted at all mid top Chord a other live loa	om ∶joint ated and ds.			2	SEA 0363	

A. GILD January 23,2025

A. GILB

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	G3	Common	6	1	Job Reference (optional)	170930171

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:45 ID:MgfdE0r158ojIz8TPgMj_rzt3U6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-11-13	14-0-3	22-0-0
Scale = 1:64.6	7-11-13	6-0-6	7-11-13

Plate Offsets (J	X, Y): [2:0-1-0,0-1-9],	[6:0-1-0,0-1-9]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.65 0.55 0.22	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.22 -0.30 0.02 0.02	(loc) 10-13 8-16 6 10-13	l/defl >999 >880 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 109 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E 23-0-0 zon vertical left forces & M DOL=1.60 3) TCLL: ASC Plate DOL: 1.15 Plate Exp.; Ce=1 4) Unbalance design.	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shee Rigid ceiling directly (size) 2=0-3-8, 6 Max Horiz 2=112 (LC Max Grav 2=1041 (L (Ib) - Maximum Com Tension 1-2=0/41, 2-3=-1626 4-5=-1460/91, 5-6=- 2-10=-63/1338, 8-10 4-8=-2/592, 5-8=-34 3-10=-341/104 ed roof live loads have b CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Intel R) 11-0-0 to 14-0-0, Int e; cantilever left and r t and right exposed;C- IWFRS for reactions s plate grip DOL=1.60 DE 7-16; Pr=20.0 psf; F DOL = 1.15); Is=1.0; F 1.0; Cs=1.00; Ct=1.10 ed snow loads have be	athing directly applied applied. 5=0-3-8 C 15) LC 34), 6=1041 (LC 3 apression/Maximum 5/67, 3-4=-1459/91, 1626/67, 6-7=0/41)=0/894, 6-8=-46/134 1/104, 4-10=-2/591, been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C rior (1) 2-0-0 to 11-0-1 terior (1) 14-0-0 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1. Pf=15.4 psf (Lum DOL Rough Cat B; Partially	5) 6) 7) d. 8) 5) 9) 10, 11] 0 11] LC at. 0, $\frac{15}{y} = \frac{15}{y} = \frac{15}{y}$	This truss ha load of 12.0 () overhangs nir Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a load of 250.0 panels and a Bottom Chor 1 This truss ha load of 250.0 panels and a Bottom Chor the bottom ch AD CASE(S)	s been designed from the solution of the solut	or greats at roof k other lis nus 5 de or a 10.0 vith any for a liv s where I fit betw with BC SP SS or a mov ead loca long the vith any a minim pplied di ck be a	er of min roof pad of 15.4 p (e loads. ggree rotation opsf bottom other live loa e load of 20.1 a rectangle veen the bott DL = 10.0psi ring concentri ted at all mid Top Chord a other live loa um of 7/16" pplied directly	f live sf on n ads. Opsf om f. rated and ads. top y to				SEA 0363	ROUL 22 E.R. KI	Manunna
-												January	23,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	B1G	Common Supported Gable	3	1	Job Reference (optional)	170930172

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:43 ID:HvCmlLrgrE5CUJM9wfBlm7y77VI-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

2x4 II

32-6-8

0			
Scale	= 1	1:75	.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.22 0.32	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 235	GRIP 244/19 lb FT = 2(0
LUMBER TOP CHORD BOT CHORD WEBS DTHERS BRACING TOP CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sl except end vertice Rigid ceiling direc 1 Row at midpt (size) 22=32-1 25=32-1 32=32-1 36=32-1 Max Horiz 40=-17: Max Uplift 22=-25 25=-13 27=-10 30=-1 (neathing directly applied. 11-31, 10-32, 12-30 3-8, 23=32-6-8, 24=32 3-8, 30=32-6-8, 31=32 3-8, 30=32-6-8, 35=32 3-8, 37=32-6-8, 38=32 3-8, 40=32-6-8 3 (LC 14) (LC 14), 23=-47 (LC 1 (LC 17), 29=-14 (LC 1 -C 17), 32=-2 (LC 16), -2 (LC 17), 32=-	T(ed, B() -6-8, -6-8, -6-8, -6-8, W -6-8, W 7), 7), 7), N	OT CHORD	2-40=-300/50, 1-2= 3-4=-100/92, 4-5=- 7-8=-90/139, 8-9=- 10-11=-156/254, 11 2-13=-137/220, 11 14-15=-90/139, 15- 77-18=-79/69, 18-12 20-21=0/47, 20-22= 30-40=-75/90, 38-33 36-37=-75/90, 31-32 29-30=-75/90, 31-32 30-27-25/90, 31-32 30-27-25/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 30-32=-75/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 30-32=-75/90, 31-32 30-32=-75/90, 31-32 29-30=-75/90, 31-32 29-30=-75/90, 31-32 30-32=-75/90, 31-32 30-32=-	0/47, 2- 97/94, 5 112/179 1-12=-1! 3-14=-11 17=-77/ 9=-75/9 6=-75/9 9=-75/9 5=-75/9 32=-275/9 =-275/5 =-284/5 29=-275/ 22=-275/2 =-284/5 29=-275/2 26=-271/2 24=-28/	3=-128/118, -7=-88/99, ,9-10=-137/2 56/254, 12/179, 100, 5, 19-20=-97/2 0, 37-38=-75/0, 0, 37-38=-75/0, 0, 33-35=-75/0, 0, 26-27=-75/0, 0, 23-24=-75/3/40, 4, 7-36=-278/3, 3, 3-39=-287/3/61, 3/55, 1/52,	220, /77, /90, /90, /90, /90, /90, /55, /78,	4) TCL Plat Plat Exp 5) Unb des 6) This loac ove 7) Plat abo 8) Gab 9) Trus brac 10) Gab 11) This cho 12) * Tr on t 3-00 cho	L: ASCI e DOL= 5 Plate DL ; Ce=1. ; Ce=1. ; alanced gn. s truss h I of 12.0 rhangs r es chec ut its ceiole requiss s to be sed agai ble studs is truss h rd live lo is truss h be botto 5-00 tall rd and a eearings	E 7-16 1.15); JOL = : JOC CS= s now as beee psf or non-cooked for ner. res coo fully sh nst lata space ad nor has beee ad nor has beee ad nor has beev ad nor has beev has bev has beev has beev has bev has beev	; Pr=20.0 psf (Pg=20.0 psf; F 1.15); Is=1.0; F 1.00; Ct=1.10 loads have be en designed for 2.00 times flat ncurrent with c r a plus or mini- ntinuous bottor heathed from c eral movement ad at 2-0-0 oc. en designed for nconcurrent wi ben designed far din all areas 0-00 wide will er members. ssumed to be §	roof LL: Lun f=15.4 psf (cough Cat E en consider greater of 1 roof load o ther live load us 5 degree n chord bea ne face or : (i.e. diagor or a 10.0 psf th any other or a live loa where a rec fit between	n DOL=1.15 (Lum DOL = 3; Partially red for this min roof live if 15.4 psf on ads. rotation aring. securely nal web). bottom r live loads. d of 20.0psf tangle the bottom
FORCES	33=-14 36=-10 39=-58 Max Grav 22=321 108), 24 (LC 106 27=333 103), 30 (LC 101 33=323 36=333 38=332 40=321 (lb) - Maximum Co Tension	(LC 16), 35=-10 (LC 1 (LC 16), 37=-13 (LC 1 (LC 13), 40=-57 (LC 1 (LC 109), 23=336 (LC ⊨332 (LC 107), 25=33), 26=333 (LC 105), (LC 104), 29=333 (LC (LC 104), 29=333 (LC (LC 99), 35=333 (LC (LC 99), 35=333 (LC (LC 97), 37=333 (LC (LC 93) mpression/Maximum	6), 1) 6), 1) 2) 233 28 98), 96), 94), 3)	Unbalanced this design. Wind: ASCE Vasd=95mpf II; Exp B; Enu (3E) -1-0-0 to (3R) 16-3-4 t zone; cantile and right exp MWFRS for r grip DOL=1.6 Truss design only. For stu see Standarc or consult qu	roof live loads have 7-16; Vult=120mp n; TCDL=6.0psf; Be closed; MWFRS (c o 2-3-4, Exterior(2N o 19-6-5, Exterior(2N or 19-6-5, Exterior(ver left and right e: osed;C-C for mem reactions shown; L 50 ed for wind loads i ds exposed to wind l ndustry Gable E alified building des	e been of h (3-sec CDL=6.0 nvelope J) 2-3-4 2N) 19-1 kposed bers an umber [n the pla d (norm nd Deta signer as	considered for ond gust))psf; h=25ft; C) and C-C Co to 16-3-4, Co 3-5 to 33-6-8 end vertical 1 d forces & DOL=1.60 plat ane of the trus al to the face) is as applicat s per ANSI/TP	r Drner rner left te ss s, ble, PI 1.		Walling		SE 036	AROL AL 322	A A A A A A A A A A A A A A A A A A A

A. GILBEN January 23,2025

Page: 1

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Ver Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	B1G	Common Supported Gable	3	1	Job Reference (optional)	170930172

- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 40, 25 lb uplift at joint 22, 2 lb uplift at joint 32, 14 lb uplift at joint 33, 10 lb uplift at joint 35, 10 lb uplift at joint 36, 13 lb uplift at joint 37, 58 lb uplift at joint 39, 1 lb uplift at joint 30, 14 lb uplift at joint 29, 10 lb uplift at joint 27, 10 lb uplift at joint 26, 13 lb uplift at joint 25 and 47 lb uplift at joint 23.
- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:43 ID:HvCmlLrgrE5CUJM9wfBIm7y77VI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	B1	Common	20	1	Job Reference (optional)	170930173

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:42 ID:AmY_szirtMA_7Ns_8mUehly77Ud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.3		
Plate Offsets (X, Y):	[2:0-0-14,0-1-8],	[10:0-0-14,0-1-8]

			-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.68 0.64 0.48	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.30 -0.43 0.06 0.03	(loc) 12-13 12-13 12 12 15-17	l/defl >999 >896 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 210 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD COP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 *Excep No.2 Structural wood she except end verticals Rigid ceiling directly 1 Row at midpt (size) 12=0-3-8, Max Horiz 18=-180 (Max Grav 12=1530 (lb) - Maximum Com Tension 1-2=0/51, 2-3=-715/ 5-6=-1643/148, 6-7= 7-9=-2156/107, 9-10 2-18=-580/83, 10-12 17-18=-6/1840, 15-1 12-13=0/1837 6-15=-81/1367, 5-15 3-17=-223/110, 3-18 7-15=-617/94, 7-13= 9-12=-1634/37	t* 18-2,12-10:2x6 SF athing directly applie applied. 5-15, 3-18, 7-15, 9-1 18=0-3-8 LC 14) (LC 35), 18=1530 (LC 9pression/Maximum 73, 3-5=-2156/107, 1643/148,)=-715/73, 10-11=0/5 :=-580/83 7=0/1564, 13-15=0/ ;=-617/94, 5-17=0/49]=-1635/37, -0/493, 9-13=-223/11	3) 4) 4, 5) 2 6) 7) 2 7) 2 34) 9) 1, 10 11 1563, 12 0, 12	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p overhangs no All plates are Plates check about its cen This truss ha chord live loa * This truss ha on the botton 3-06-00 tall b chord and an 0 All bearings a 1) This truss ha load of 250.0 panels and a Bottom Chore 2) This truss da totom Chore 2) This truss da	7-16; Pr=20.0 p .15); Pg=20.0 ps DL = 1.15); Is=1. ; Cs=1.00; Ct=1 snow loads have s been designed osf or 2.00 times on-concurrent wi MT20 plates un ed for a plus or n ter. s been designed in chord in all are by 2-00-00 wide to y other member are assumed to 1 s been designed to blive and 3.0lb t all panel points d, nonconcurren sign requires the od sheathing be of gypsum sheet nord.	sf (roof LL sf; Pf=15.4 0; Rough 10 been cor flor great flat roof li th of regreat flat roof li th of regreat flat roof li th of regreat flat roof li th of regreat so the minus 5 di d for a 10.1 t with any ad for a liv as where will fit betw s, with BC be SP SS d for a moi decal locz along the t with any applied d trock be a	:: Lum DOL= 4 psf (Lum DC Cat B; Partia nsidered for th er of min roof oad of 15.4 ps ve loads. wwise indicate egree rotation 0 psf bottom other live load e load of 20.0 a rectangle veen the botto DL = 10.0psf ving concentri tated at all mid e Top Chord a other live load um of 7/16" irectly to the t pplied directly	1.15 DL = Illy nis live sf on d. d. Dpsf om ated and ds. om (to				WITH CA	ROLIN	
 Unbalance this design Wind: ASC Vasd=95m II; Exp B; I Exterior(2I 33-6-8 zor vertical lef 	ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-3-1, Inte R) 16-3-4 to 19-6-5, In ne; cantilever left and ri t and right exposed;C-	been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C rior (1) 2-3-1 to 16-3- terior (1) 19-6-5 to ight exposed ; end C for members and	LC at. 4,	DAD CASE(S)	Standard							SEA 0363	L 22 EERER	"annununun

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-3-1, Interior (1) 2-3-1 to 16-3-4, Exterior(2R) 16-3-4 to 19-6-5, Interior (1) 19-6-5 to 33-6-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G

40000 January 23,2025

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	A1G	Piggyback Base Supported Gable	3	1	Job Reference (optional)	170930174

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:38 ID:SZQnCkOvE3mpODIo3bVI5cy77V2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:91.2

Plate Offsets (X, Y): [13:0-3-0,0-1-12], [17:0-3-0,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.	(psf) 20.0 .4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014		CSI TC BC WB Matrix-AS	0.21 0.19 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 30	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 352 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No 2x4 SP No 2x4 SP No 2x4 SP No Structural v except end (6-0-0 max Rigid ceilin 1 Row at m (size)	.2 .2 .3 .3 .3 wood sheat t verticals, .): 13-17. ng directly nidpt 30=43-0-0 33=43-0-0 33=43-0-0 40=43-0-0 47=43-0-0 50=43-0-0 50=43-0-0 50=43-0-0 53=43-0-0 47=43-0-0 53=-10 [L1 33=-10 [L1 53=-19 [L1 48=-10 [L1 53=-98 [L1	athing directly applied and 2-0-0 oc purlins applied. 15-42, 14-43, 12-44, 11-45, 10-47, 16-41, 18-40, 19-39, 20-37 , 31=43-0-0, 32=43-6 , 37=43-0-0, 39=43-6 , 41=43-0-0, 45=43-6 , 44=43-0-0, 45=43-6 , 54=43-0-0, 52=43-6 , 54=43-0-0 , 51=43-0-0, 52=43-6 , 54=43-0-0 C 15) C 13), 31=-71 (LC 17) C 17), 33=-10 (LC 17) C 17), 35=-10 (LC 17) C 17), 37=-9 (LC 12) C 16), 47=-10 (LC 16 C 16), 51=-13 (LC 16 C 16), 51=-13 (LC 12) C 13), 54=-99 (LC 12))-0, FORCES)-0, TOP CHORD)-0,)-0,)-0,)-0,)-0,)-0,),),),),),	(I T 2 3 6 1 1 1 1 1 2 2 2 2	ax Grav 30=307 (I 160), 32= (LC 158), 35=333 (I 155), 37= (LC 153), 41=333 (I 150), 43= (LC 148), 47=333 (I 145), 49= (LC 143), 52=337 (I 140), 54= b) - Maximum Conr ension -54=-293/74, 1-2=(-4=-120/121, 4-5=- -8=-100/106, 8-9=- 0-11=-128/213, 11: 2-13=-146/237, 13 4-15=-139/244, 17 8-19=-155/259, 19 0-21=-109/174, 21: 2-24=-75/94, 24-22 6-27=-73/75, 27-28 8-30=-293/34	LC 161 337 (LL 337 (LC 333 (LC 40=33 (LC 156 333 (LC 45=33 333 (LC 45=33 333 (LC 45=33 333 (LC 51=33 LC 144 337 (LC 112/11 95/133 -142=-142=-142=-142=-142=-142=-142=-142=), 31=313 (LC C 159), 33=3: 3 (LC 157),), 36=333 (LC C 154), 39=3; 3 (LC 152),), 42=333 (LC C 144), 44=3; 3 (LC 147),), 48=333 (LC C 144), 50=3; 2 (LC 142),), 53=313 (LC C 139) on/Maximum 3=-162/149, 0, 5-6=-103/1, 9, 910=-109/1 55/259, 39/244, 39/26	, 32 33 33 33 33 2 07, 74, 74, 771, 47,	WEBS		53-54 51-52 49-50 47-48 44-45 42-43 33-34 40-41 37-39 35-36 33-34 40-41 37-39 35-36 9-48= 5-51= 16-41 20-37 22-35 25-33 27-31	=83/115, 52-53 =83/115, 50-51 =83/115, 48-49 =83/115, 48-49 =83/115, 45-47 =83/115, 43-44 =83/115, 39-40 =83/115, 39-40 =83/115, 39-40 =83/115, 39-40 =83/115, 30-31 =264/58, 14-43 =269/70, 10-47 =274/55, 8-49=2-2 =263/7, 18-40= =263/7, 18-40= =276/55, 24-34 =265, 26-32 =273/78 SEA 0363 VGIN		-264/1, 19/55, 13/81, 169/70,

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	A1G	Piggyback Base Supported Gable	3	1	Job Reference (optional)	170930174

Structural LLC Thurmont MD - 21788

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. 2) II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 3-6-0, Exterior(2N) 3-6-0 to 18-2-8, Corner (3R) 18-2-8 to 22-6-2, Exterior(2N) 22-6-2 to 24-9-8, Corner(3R) 24-9-8 to 29-1-2, Exterior(2N) 29-1-2 to 44-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 5) desian.
- This truss has been designed for greater of min roof live 6) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding. 8) Plates checked for a plus or minus 5 degree rotation about its center.
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely
- braced against lateral movement (i.e. diagonal web). 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) All bearings are assumed to be SP No.2 .
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 99 lb uplift at joint 54, 44 lb uplift at joint 30, 4 lb uplift at joint 42, 19 lb uplift at joint 45, 10 lb uplift at joint 47, 10 lb uplift at joint 48, 10 lb uplift at joint 49, 10 lb uplift at joint 50, 13 lb uplift at joint 51, 98 lb uplift at joint 53, 20 lb uplift at joint 39, 9 lb uplift at joint 37, 10 lb uplift at joint 36, 10 lb uplift at joint 35, 10 lb uplift at joint 34, 13 lb uplift at joint 33, 1 lb uplift at joint 32 and 71 lb uplift at joint 31.
- 16) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 17) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 18) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Wed. Jan 22 08:23:38 ID:SZQnCkOvE3mpODIo3bVI5cy77V2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	A1A	Piggyback Base	15	1	Job Reference (optional)	170930175

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:35 ID:P1eFugEplabtn_eF9IIjwNy77Ty-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	9-1-11	18-4-4	24-7-12	33-10-5	43-0-0	
Scale = 1:93.7	9-1-11	9-2-9	6-3-8	9-2-9	9-1-11	

Plate Offsets (X, Y): [6:0-4-0,0-2-4], [7:0-6-0,0-2-4]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.79 0.70 0.79	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.39 -0.60 0.13 0.05	(loc) 14-16 14-16 13 17-19	l/defl >999 >846 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 283 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 *Excep 2x4 SP SS 2x4 SP No.3 *Excep 20-2,13-11:2x6 SP N Structural wood shee except end verticals, (4-5-6 max.): 6-7. Rigid ceiling directly 1 Row at midpt (size) 13=0-3-8, Max Horiz 20=199 (L	t* 6-7:2x4 SP SS t* 17-7:2x4 SP No.2, lo.2 athing directly applied and 2-0-0 oc purlins applied. 5-17, 7-17, 8-16, 3-20 10-13 20=0-3-8 .C 15)	2) I,), 3)	Wind: ASCE Vasd=95mpf II; Exp B; Eni Exterior(2E) 18-2-8, Exter to 24-9-8, Ex 30-11-5 to 44 exposed ; en members ani Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced	7-16; Vult=120mp n; TCDL=6.0psf; Bi closed; MWFRS (e 1-0-0 to 3-3-10, Ir ior(2R) 18-2-8 to 2 terior(2R) 24-9-8 t 4-0-0 zone; cantile' d vertical left and I d forces & MWFRS =1.60 plate grip D 7-16; Pr=20.0 psf; JCl = 1.15); Is=1.0; i; Cs=1.00; Ct=1.1; snow loads have t	h (3-sec CDL=6.0 envelope terior (1 24-3-8, li o 30-11- ver left a right exp S for rea OL=1.60 (roof LL Pf=20.4 Rough 0, Lu=50 peen cor	ond gust) Dpsf; h=25ft; () and C-C) 3-3-10 to hterior (1) 24- 5, Interior (1) and right lossed;C-C for ctions shown) : Lum DOL= \$psf (Lum DC Cat B; Partia)-0-0 isidered for th	Cat. -3-8) r; 1.15 DL = Illy his	14) Gra or ti bott LOAD (phical p ne orient om chor CASE(S	urlin re ation o d.) Star	epresentation doe of the purlin along ndard	s not depict the the top and/or	ə size
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/51, 2-3=-751/3 5-6=-2615/77, 6-7=-3 8-10=-3264/0, 10-11 2-20=-596/76, 11-13 19-20=0/2726, 17-13	pression/Maximum 36, 3-5=-3258/0, 2175/102, 7-8=-2621/ =-752/36, 11-12=0/5' =-596/76 9=0/2562, 16-17=0/20	5) 777, 6) 1, 7) 8) 994,	design. This truss ha load of 12.0 p overhangs no Provide adeo All plates are Plates check about its cen	s been designed for osf or 2.00 times flor on-concurrent with uate drainage to p MT20 plates unle ed for a plus or mi ter.	or greate at roof le other liv prevent v ss other nus 5 de	er of min roof oad of 15.4 ps /e loads. water ponding wise indicate egree rotation	flive sf on g. ed. n				AN CH CA	ROUL	
WEBS NOTES 1) Unbalance this design	14-15=0/2506, 13-14 3-19=-178/112, 5-19 6-17=0/915, 7-17=-1 8-16=-767/77, 8-14= 3-20=-2689/0, 10-13 ad roof live loads have h.	I=0/451, 5-17=-766/73 82/185, 7-16=0/928, 0/451, 10-14=-178/1 =-2694/0 been considered for	9) 7, 10] 13, 11] 12]	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a This truss ha load of 250.0 panels and a Bottom Chor	s been designed for an onconcurrent were has been designed in chord in all areas y 2-00-00 wide will y other members, are assumed to be s been designed for a lb live and 3.0lb do t all panel points and d, nonconcurrent w	or a 10.0 vith any for a liv s where Il fit betw with BC SP SS or a move ad loca long the vith any) psf bottom other live loa e load of 20.0 a rectangle veen the botto DL = 10.0psf ring concentr ted at all mid Top Chord a other live loa	nds. Opsf om f. ated I and uds.		Manna	A. A.	SEA 0363	L 22	Munning

13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

January 23,2025

C

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILB

A. GILD

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	A1SG	Piggyback Base Structural Gable	3	1	Job Reference (optional)	170930176

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:41 ID:7AcHt_FR8mue7gn2nXPWhAy771W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	6-4-0	13-2-4	18-4-4	26-7-12	32-6-0	38-8-0	45-0-0	
Scale = 1:94.2	6-4-0	6-10-4	5-2-0	8-3-8	5-10-4	6-2-0	6-4-0	-

Plate Offsets (X, Y): [9:0-5-0,0-2-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20	(psf) 20.0 0.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-AS	0.57 0.74 0.60	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.18 -0.28 0.05 0.03	(loc) 36-37 36-37 29 36-37	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 427	GRIP 244/19 187/14 Ib FT = 2	0 3 0%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No 2x4 SP Sc 2x4 SP No 2x4 SP No 2x4 SP No Left 2x4 SP 1-6-0 Structural except 2-0-0 oc p Rigid ceili 1 Row at 1 Brace a	o.2 S *Except* o.3 o.3 P No.3 1 wood sheat burlins (6-0 ng directly midpt t Jt(s): 38,	31-35:2x4 SP No.2 -6-0, Right 2x4 SP N athing directly applied -0 max.): 7-11. applied. 11-32, 14-29, 6-34	BC No.3 WI	DT CHORD 2 3 3 2 2 2 EBS 7 3 9 9 4 4 3 6 4 3 1	-37=-107/1886, 3 4-36=0/1521, 33- 0-32=-327/67, 29 8-29=-127/40, 27 6-27=-127/40, 25 4-25=-127/40, 22 -34=0/426, 11-32 2-38=-916/18, 34 -43=-12/678, 18-2 4-29=-1812/0, 29 1-42=-242/33, 18 2-39=0/1335, 39- -36=0/496, 4-37= -36=-433/57, 9-33 2-39=-34, 13-44	6-37=0/' 34=0/82 -30=-32 -28=-12 -26=-12 -24=-12 -43=-12/ 26=-139/ -41=-24 40=0/13 0/357, 6 3=0/322, 	1886, 7, 32-33=0/82 7/67, 7/40, 7/40, 4, 9-38=-978/1 635, 1/23, 5/33, 5/33, 5/33, 56, 14-40=0/1 -34=-957/52, 10-38=0/68, 0: 30-4099/	27, 18, 1359,	 4) TCL Plat 1.15 Exp 5) Unb des 6) This load ove 7) Pro 8) All p 9) Plat abo 10) Gab 11) Tbic 	L: ASCI e DOL= 5 Plate D ; Ce=1. alanced ign. s truss ha d of 12.0 rhangs r vide ade plates ar es checl ut its ce ple studs	E 7-16 1.15); OOL = 0; Cs= snow as bee psf or non-co quate e MT2 ked for nter. space	: Pr=20.0 psf Pg=20.0 psf; 1.15); Is=1.0; 1.00; Ct=1.10 loads have be n designed fo 2.00 times fla neurrent with drainage to pi drainage to pi a plus or min ed at 2-0-0 oc.	roof LL: Lur Pf=20.4 psf Rough Cat I , Lu=50-0-0 sen conside r greater of tt roof load c other live loa revent wateu us 5 degree	n DOL=1.15 (Lum DOL = 3; Partially red for this min roof live of 15.4 psf on ads. ponding. indicated. p rotation
FORCES TOP CHORD	39, 40, 41 (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=0/41, 6-7=-1392 8-9=-1113 10-11=-55 12-13=-68 14-15=0/3 18-19=-41 20-22=-16	$\begin{array}{c} , 42, 43\\ 2=0-3-8, 2\\ 25=12-9-0\\ 28=12-9-0\\ 28=-12-9-0\\ 2=-180 \ (Lc\\ 22=-22 \ (Lc\\ 22=-22 \ (Lc\\ 22=-171 \ (Lc\\ 23=1501 \ (L\\ 24=371 \ (Lc\\ 132), 26=2\\ (LC \ 130), \\ 29=2059 \ (imum \ Com\\ 2-4=-2314\\ 2/114, 7-8=3\\ 3/126, 9-10\\ 29/131, 11-\\ 33/115, 13-\\ 374, 15-16=\\ 374, 15-16=\\ 56/184, 22-\\ 56/184, 22-\\ \end{array}$	22=12-9-0, 24=12-9-0, 26=12-9-0, 26=12-9-0, 27=12-9-0 C 14) C 64), 24=-21 (LC 17 17), 26=-68 (LC 64) C 17), 28=-31 (LC 12 C 57), 22=261 (LC 8 C 133), 25=309 (LC 258 (LC 131), 27=31 28=323 (LC 129), LC 51) pression/Maximum /0, 4-6=-1891/47, -1113/126, =-599/131, 12=-660/127, 14=-722/89, =0/408, 16-18=0/355 0=-24/140, 23=0/41	0, 9-0, 7), 1) , 27) 2) 55), 8 8 3)	 4-36=433/57, 9-33=0/322, 10-36=0 12-39=-35/4, 13-40=-99/150, 30-40: 15-41=-284/18, 28-41=-280/17, 16-42=-222/43, 27-42=-222/43, 19-25=-244/26, 20-24=-304/48, 8-43 >TES Unbalanced roof live loads have been considere this design. Wind: ASCE 7-16; Vult=120mph (3-second gust Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=2 II; Exp B; Enclosed; MWFRS (envelope) and C-4 Exterior(2E) -1-0-0 to 3-6-0, Interior (1) 3-6-0 to Exterior(2R) 18-2-8 to 24-6-0, Interior (1) 24-6-0 26-9-8, Exterior(2R) 26-9-8 to 33-1-14, Interior (33-1-14 to 46-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C members and forces & MWFRS for reactions sh Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the only. For studs exposed to wind (normal to the I see Standard Industry Gable End Details as app or consult qualified building designer as per AN\$ 				5/1	12) * Th on t 3-06 cho 13) All t	rd live lo iis truss he botto 5-00 tall rd and a bearings	ad nor has be m cho by 2-0 ny oth are as	SE OSC SE OSC SE OSC SE OSC SE OSC SE OSC SE OSC SE OSC SE OSC SE OSC SE OSC SE	A ROULE SP SS.	r live loads. d of 20.0psf tangle the bottom 10.0psf.

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oulcapes with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	A1SG	Piggyback Base Structural Gable	3	1	Job Reference (optional)	170930176

14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 22, 26, 28, 27, 25, and 24. This connection is for uplift only and does not consider lateral forces.

- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:41 ID:7AcHt_FR8mue7gn2nXPWhAy771W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof	
2501-0741-A	A1	Piggyback Base	6	1	Job Reference (optional)	170930177

Structural, LLC, Thurmont, MD - 21788

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Wed Jan 22 08:23:34 ID:iPeJ1GRD_uw72hATbZue7My77Gm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-1-0-0 46-0-0 6-4-0 13-2-4 18-2-8 22-6-0 26-9-8 31-9-12 38-8-0 45-0-0 -6-4-0 6-10-4 5-0-4 4-3-8 4-3-8 5-0-4 6-10-4 6-4-0 1-0-0 1-0-0 45-0-0

LUM	BER
	CUODE

Loading

TCDL

BCLL

BCDL

2x6 SP No.2 TOP CHORD BOT CHORD 2x4 SP SS WFBS 2x4 SP No 3 SI IDER Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 -- 1-6-0 BRACING TOP CHORD Structural wood sheathing directly applied, except 2-0-0 oc purlins (4-9-15 max.): 7-9. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 8-20, 8-19, 10-19, 6-20 REACTIONS 2=0-3-8, 14=0-3-8 (size) Max Horiz 2=-180 (LC 14) Max Grav 2=2170 (LC 57), 14=2170 (LC 59) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/41, 2-4=-3580/0, 4-6=-3245/14, 6-7=-2804/76.7-8=-2341/93.8-9=-2341/93. 9-10=-2804/76, 10-12=-3245/14

10.0

- 12-14=-3580/0, 14-15=0/41 BOT CHORD 2-23=-60/2937, 22-23=0/2937, 20-22=0/2703, 19-20=0/2263, 17-19=0/2703, 16-17=0/2938, 14-16=0/2938 WEBS 7-20=0/1094, 8-20=-287/119, 8-19=-287/118, 9-19=0/1094, 12-16=0/344, 10-17=0/415,
- 12-17=-315/67, 10-19=-885/61, 4-23=0/344, 6-22=0/415, 4-22=-315/66, 6-20=-885/61

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 3-6-0, Interior (1) 3-6-0 to 18-2-8, Exterior(2R) 18-2-8 to 24-6-14, Interior (1) 24-6-14 to 26-9-8, Exterior(2R) 26-9-8 to 33-1-14, Interior (1) 33-1-14 to 46-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- Unbalanced snow loads have been considered for this 4) design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated. 7)
- Plates checked for a plus or minus 5 degree rotation 8) about its center.
- 9) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) All bearings are assumed to be SP SS .
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Weight: 349 lb

FT = 20%

Page: 1

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof		
2501-0741-A	A1P	Attic	21	1	Job Reference (optional)	170930178	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Wed Jan 22 08:23:40 ID:te1THqcyyIfkgMAnkGE4SDy77N?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-4-0	13-2-4	18-4-4	22-6-0	26-7-12	31-9-12	38-8-0	45-0-0
Scale = 1:94.2	6-4-0	6-10-4	5-2-0	4-1-12	4-1-12	5-2-0	6-10-4	6-4-0

Plate Offsets (X, Y): [28:0-2-8,0-3-0], [29:0-2-8,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.93 0.88 0.98	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.34 -0.46 0.15 0.18	(loc) 17-19 20 14 21-23	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 365 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x6 SP No.2 2x4 SP SS *Except* 2x4 SP No.3 *Excep SP No.2 Left 2x4 SP No.3 1 1-6-0 Structural wood sheat except 2-0-0 oc purlins (5-2 Rigid ceiling directly 1 Brace at Jt(s): 25, 26	22-18:2x4 SP No.2 t* 7-21,9-19,25-26:2x I-6-0, Right 2x4 SP N athing directly applied -13 max.): 7-9. applied. 6-28, 10-29	1) 2) k4 d, 3)	Unbalanced I this design. Wind: ASCE Vasd=95mpH II; Exp B; Enc Exterior(2E) · Exterior(2E) · Exterior(2R) 26-9-8, Exter 33-1-14 to 46 exposed ; en members and Lumber DOL TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.: Ce=1.0	roof live loads hav 7-16; Vult=120mp ; TCDL=6.0psf; B closed; MWFRS (et 1-0-0 to 3-6-0, Int 18-2-8 to 24-6-14, ior(2R) 26-9-8 to 3 -0-0 zone; cantile d vertical left and d vertical left and d forces & MWFRS =1.60 plate grip D 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; CS=1.00; Ct=1.1	e been of th (3-sec CDL=6.1 envelope erior (1) Interior 33-1-14, ver left a right exp S for rea OL=1.60 f (roof LL Pf=20.4; ; Rough O, Lu=50	considered fo cond gust) Dpsf; h=25ft; (a) and C-C 3-6-0 to 18-2 (1) 24-6-14 to Interior (1) and right bossed;C-C for ctions shown .: Lum DOL=' t psf (Lum DC Cat B; Partial)-0-0	r Cat. 8, 5 ; 1.15 DL = IIy	 13) This structure 14) Graor the 14) Graor the 15) Attice LOAD C 	s truss d ctural w rd and 1 bottom o phical p ne orient om chor c room c CASE(S)	esign r pod sh /2" gyp chord. urlin re cation c d. hecked) Star	requires that a m eathing be appli osum sheetrock l presentation door of the purlin alon d for L/360 defle ndard	inimum of 7/16 ad directly to the applied directly to the applied directly to the the applied direct the g not depict the g the top and/or attion.	6" he top ectly to he size or
FORCES	(SI2e) 2=0-3-6, 1 Max Horiz 2=-180 (L Max Grav 2=-1983 (L (Ib) - Maximum Com Tension 1-2=0/41, 2-4=-3038 6-7=-2374/73, 7-8=- 9-10=-2374/72, 10-1	14=0-3-8 C 14) .C 46), 14=1983 (LC pression/Maximum //0, 4-6=-2755/15, 1979/99, 8-9=-1979/9 2=-2755/15,	4) 46) 5) 99, 6) 7) 8)	Unbalanced design. This truss ha load of 12.0 p overhangs no Provide adeo All plates are Plates check	snow loads have to s been designed for the store 2.00 times floor- concurrent with uate drainage to p MT20 plates unle ed for a plus or mi	or great at roof lo other liv orevent ss other nus 5 de	nsidered for the er of min roof bad of 15.4 ps ve loads. water ponding wise indicate egree rotation	nis live sf on g. d.				TH CA	ROUT	
BOT CHORD WEBS NOTES	12-14=-3038/0, 14-1 2-24=-60/2490, 23-2 20-21=0/1310, 19-2 16-17=0/2490, 14-16 21-28=0/352, 25-28= 19-29=0/352, 26-29= 25-26=-61/461, 27-2 20-27=-6/95, 8-25=-/ 12-16=0/339, 10-17= 4-24=0/339, 6-23=0/ 23-28=-59/999, 6-28 17-29=-35/999, 10-2	5=0/41 44=0/2490, 21-23=0/1 0=0/1310, 17-19=0/1 5=0/2490 =0/842, 7-25=0/892, =0/842, 9-26=0/882, 8=0/608, 27-29=0/60 464/120, 8-26=-464/ =0/335, 12-17=-304/62, i=-687/82, 9=-694/86	1315, 9) 315, 10 08, 121, 11 52, 12	about its cen This truss ha chord live loa) * This truss h on the botton 3-06-00 tall b chord and an All bearings a) This truss ha load of 250.0 panels and a Bottom Chord	er. s been designed f d nonconcurrent v as been designed n chord in all areas y 2-00-00 wide wi y other members. are assumed to be s been designed f lb live and 3.0lb d t all panel points a d, nonconcurrent v	or a 10. with any I for a liv s where II fit betv e SP SS or a move ad loca along the with any	D psf bottom other live loa e load of 20.C a rectangle veen the botto	ds.)psf om ated nd ds.		Mannan		SEA 0363	L 22 EEER.X	and an an an an an

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 23,2025

Job	Truss	Truss Type		Ply	Blake Pond Lot 00.0128 Roof		
2501-0741-A	A1AG	Piggyback Base Structural Gable	3	1	Job Reference (optional)	170930179	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:36 ID:dmr4WS_0_wrYhj3nGbfLV8y77CB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-4-0	13-2-4	18-4-4	26-7-12	31-9-12	38-8-0	42-9-8 45-0-0
Scale = 1:94.2	6-4-0	6-10-4	5-2-0	8-3-8	5-2-0	6-10-4	4-1-8 2-2-8

Plate Offsets (X, Y): [15:0-4-0,0-4-8], [21:0-3-12,0-7-8], [22:0-3-8,0-2-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.99 0.60 0.67	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.28 -0.49 0.14 0.06	(loc) 31-32 31-32 21 25-26	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS M18AHS Weight: 410 lb	GRIP 244/190 187/143 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD	2x6 SP No.2 2x4 SP SS 2x4 SP No.3 *Excep 22-19:2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 7 Structural wood she	t* 21-19:2x6 SP No.2 1-6-0 athing directly applie	WE 2, d,	EBS 7 8 1 3 1 1 3 1 1 3		=0/1093 22=0/29 315/67, 4=0/285 40=-33 36=-830 37=-845 0-36=-14 37=-18/	, 8-31=-282/1 988, 4-35=0/3 6-32=-887/6 5, 27-38=-325 3/48, 6/61, 5/58, 45/164, 188, 13-38=0	19, 444, 1, 5/50, 0/58,	 7) Prov 8) All p 9) Plat abo 10) Gat 11) This cho 12) * Th on t 	vide ade blates ar es chec ut its ce ble studs s truss h rd live lo his truss he botto	equate e MT2 ked fo nter. space as bee ad not has be m cho	drainage to prev 0 plates unless o r a plus or minus ed at 2-0-0 oc. en designed for a nconcurrent with sen designed for rd in all areas w	ent water pond otherwise indic 5 degree rotal a 10.0 psf botto any other live a live load of 2 here a rectang	ding. ated. tion om loads. 20.0psf le
BOT CHORD WEBS JOINTS REACTIONS	except end verticals (4-10-4 max.): 7-9. Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 36, 39, 40 (size) 2=0-3-8, 2 Max Horiz 2=193 (LC	, and 2-0-0 oc purlins applied. 8-31, 8-32, 6-32 21=2-3-8, 22=2-3-8 C 15)	4-39=-72/164, 26- 5-40=-90/155, 25- 7-23=-53/192, 18- roof live loads have 7-16; Vult=120mpl ; TCDL=6.0psf; BC	r Cat.	 3-06-00 tall by 2-00-00 wide will fit between the botton chord and any other members, with BCDL = 10.0psf. 13) All bearings are assumed to be SP SS . 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 22. This connection is for uplift only an does not consider lateral forces. 15) This truss has been designed for a moving concentration of the second s					ottom psf. due to ily and entrated				
FORCES TOP CHORD	Max Horiz 2=193 (LC 15) Max Uplift 22=-245 (LC 45) Max Grav 2=2157 (LC 57), 21=2343 (LC 59), 22=188 (LC 113) (lb) - Maximum Compression/Maximum Tension RD 1-2=0/41, 2-4=-3554/0, 4-6=-3217/11, 6-7=-2775/73, 7-8=-2316/90, 8-9=-2308/92, 9-10=-2664/75, 10-11=-2709/59, 11-12=-2769/35, 12-13=-2981/23.			 II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 3-6-0, Interior (1) 3-6-0 to 18-2-8, Exterior(2R) 18-2-8 to 24-6-14, Interior (1) 24-6-14 to 26-9-8, Exterior(2R) 26-9-8 to 33-1-14, Interior (1) 33-1-14 to 46-0-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For study exposed to wind (ourmal to the face) 						bad of 200 bill we and 300 bead tocated at an ind panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.				nid rd and loads.
BOT CHORD	13-14=-3088/16, 14- 16-17=-3444/0, 17-1 18-19=-3256/0, 19-2 2-35=-65/2922, 34-3 31-32=0/2239, 30-3 27-28=0/2654, 26-2 24-25=0/2901, 23-2 21-22=-5/102	Industry Gable End Details as applicable, alified building designer as per ANSI/TPI 1. 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 .15); Pg=20.0 psf; Pi=20.4 psf (Lum DOL= OL = 1.15); Is=1.0; Rough Cat B; Partially); Cs=1.00; Ct=1.10, Lu=50-0-0 snow loads have been considered for this is been designed for greater of min roof live psf or 2.00 times flat roof load of 15.4 psf on on-concurrent with other live loads.						EER.X	WWWWWWWWW					

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 23,2025

Job	Truss	Truss Type	Qty	Ply	Blake Pond Lot 00.0128 Roof			
2501-0741-A	A1AG	Piggyback Base Structural Gable	3	1	Job Reference (optional)	170930179		
Structural, LLC, Thurmont, MD -	21788,	Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:23:36						

ID:dmr4WS_0_wrYhj3nGbfLV8y77CB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

