

 \triangle = Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package or online @ sbcindustry.com

Jonathan Landry

Jonathan Landry

(BASED ON TABLES R502.5(1) & (b))

END REACTION (UP TO) REQ'D STUDS FOR (3) PLY HEADER

2550 1

5100 2

7650 3

10200 4

12750 5

15300 6

D STUDS

3400 1

6800 2

10200 3

13600 4

17000 5

Jonathan Landry

DRAWN BY SALES REP.

J0424-2426

#

JOB

07/01/24

DATE REV.

Roof

1

Residence

The Armstrong

PLAN

N/A

SEAL DATE

#

QUOTE

Lenny Norris

END EQ.

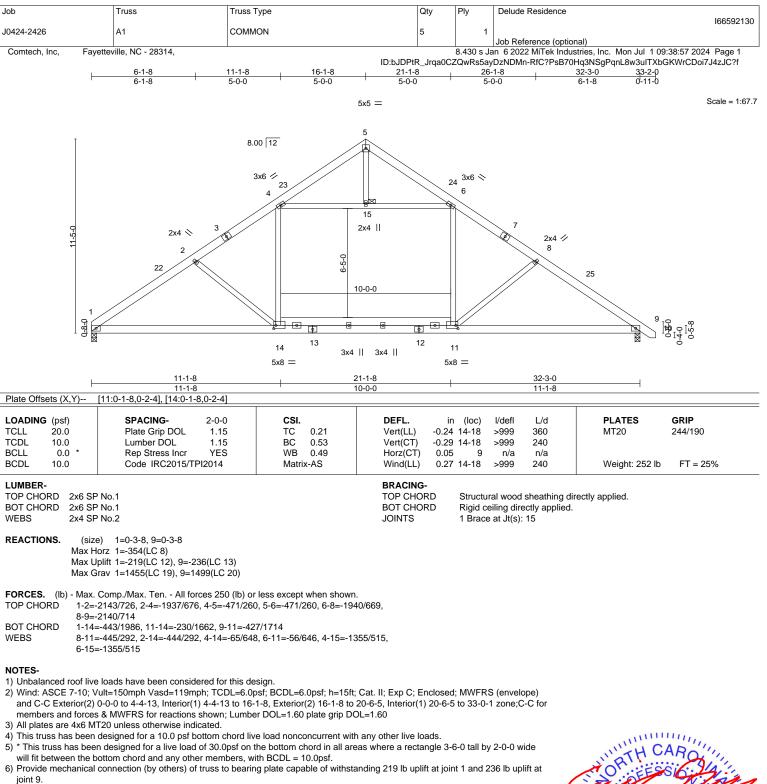
Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0424-2426 Delude Residence

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I66592130 thru I66592156

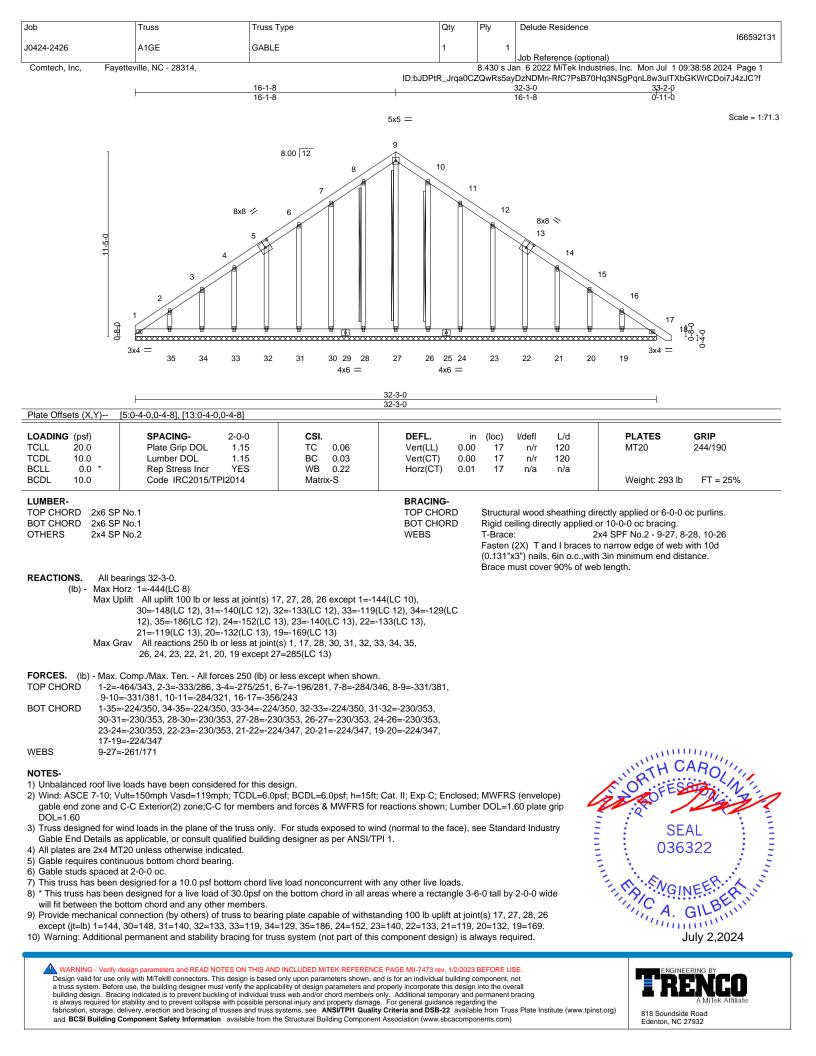
My license renewal date for the state of North Carolina is December 31, 2024.

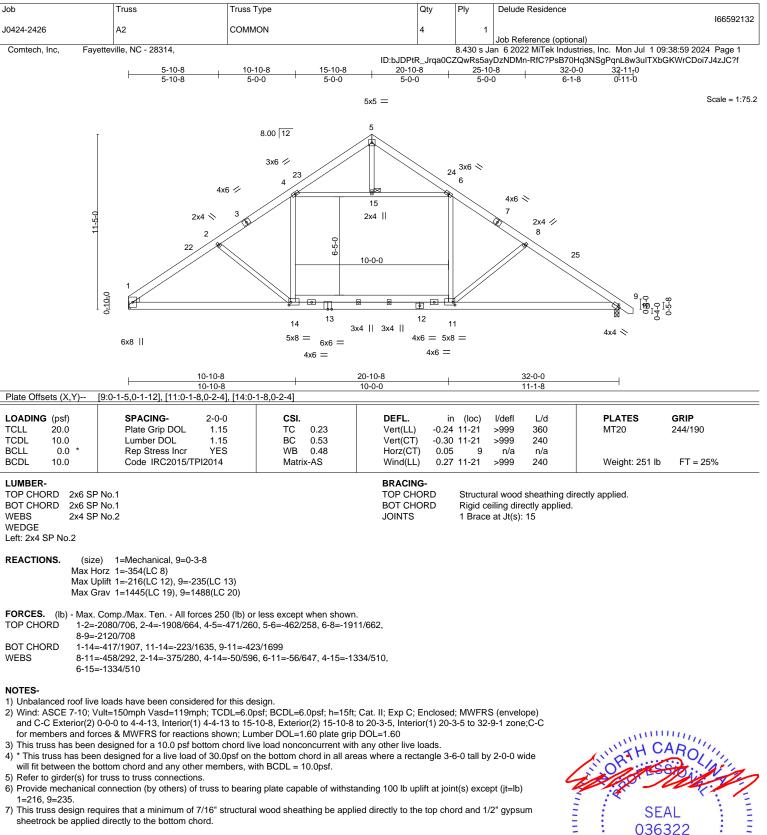

North Carolina COA: C-0844

July 2,2024

Gilbert, Eric

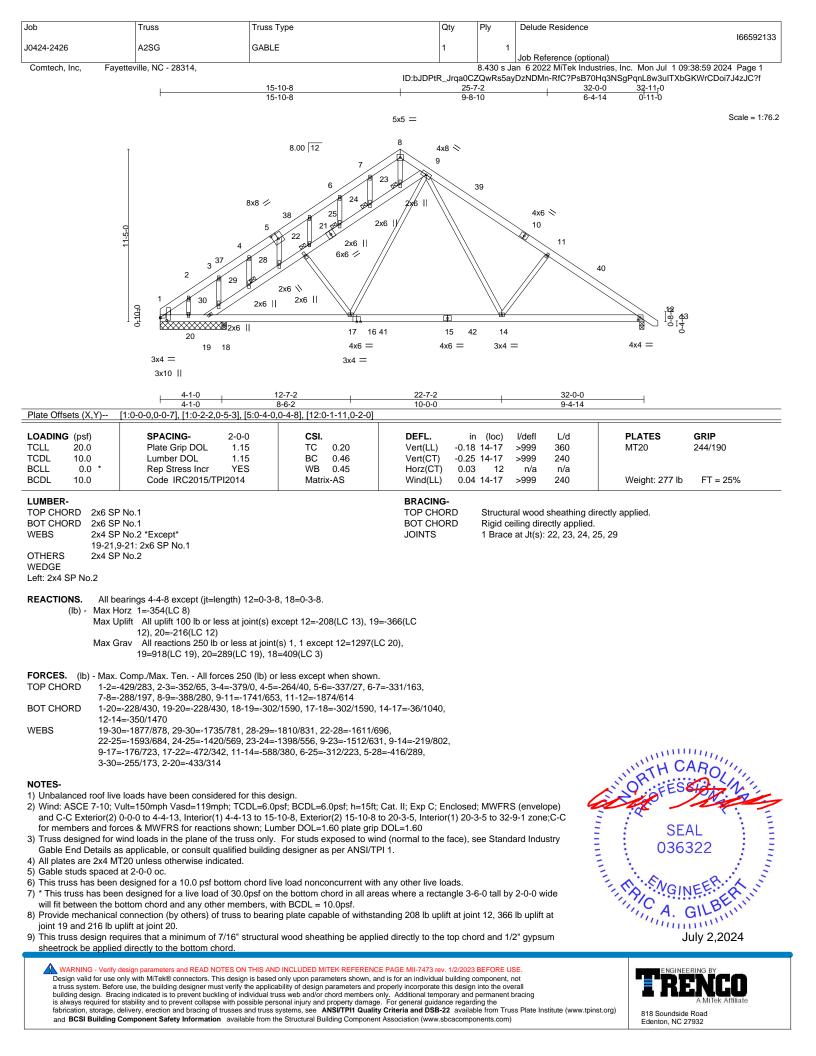
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

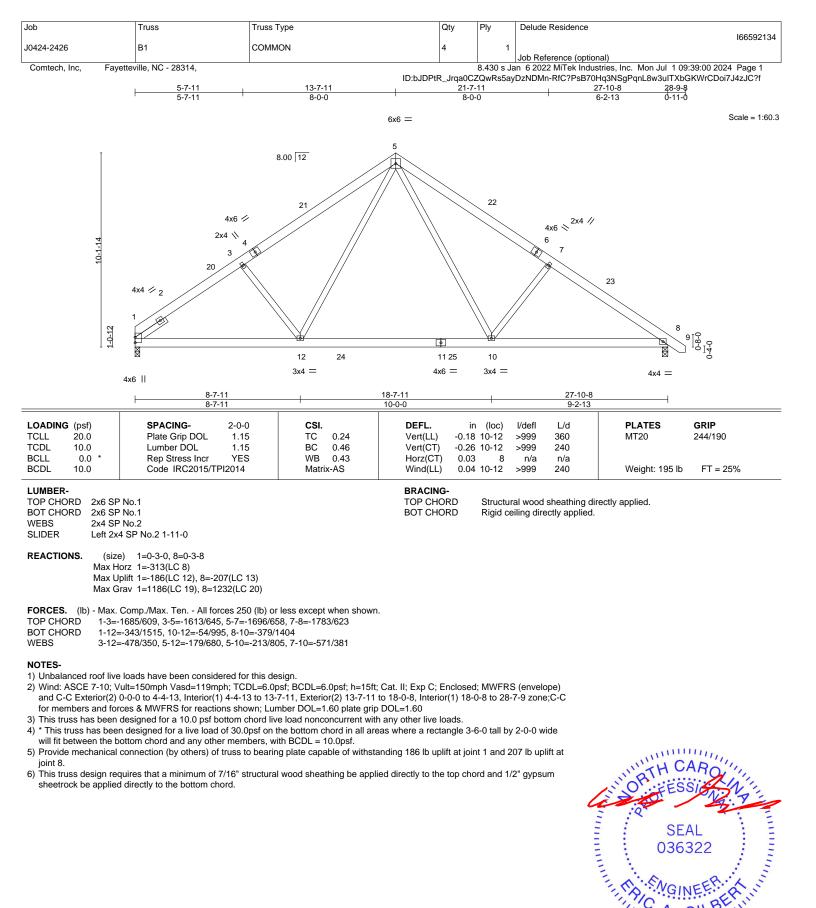

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

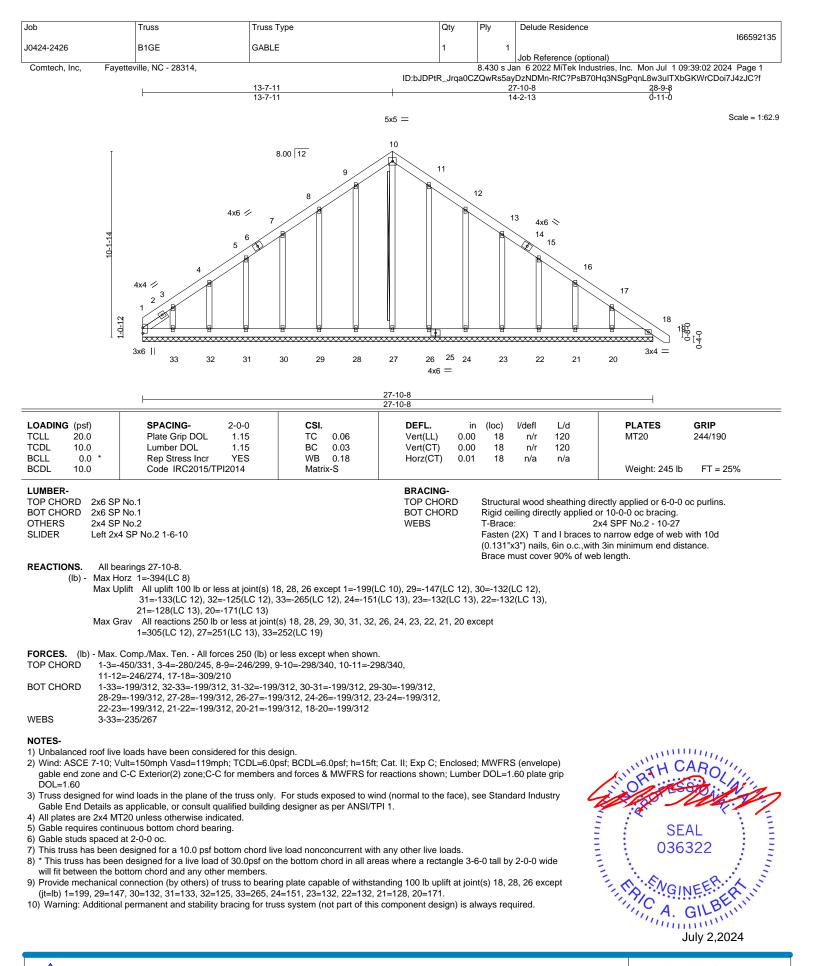
818 Soundside Road



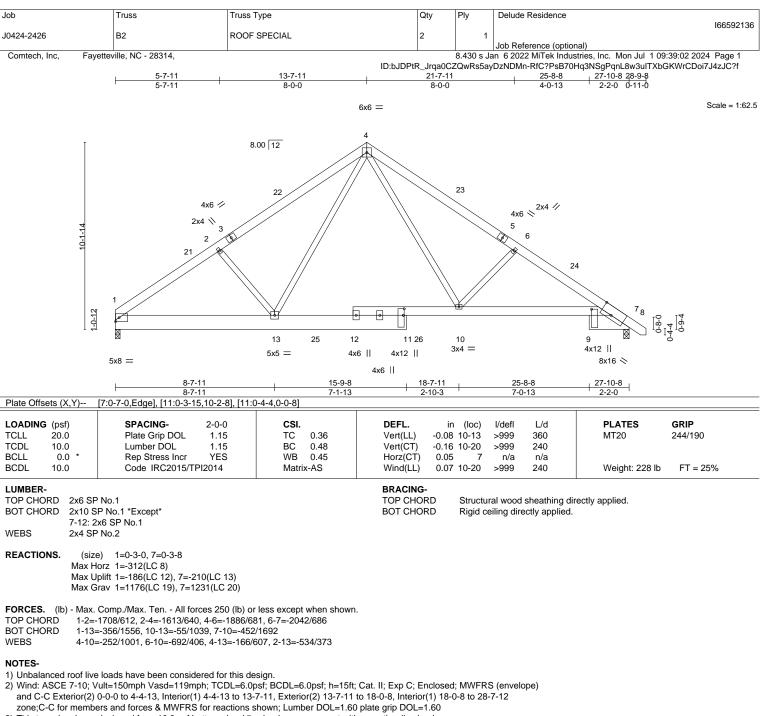


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

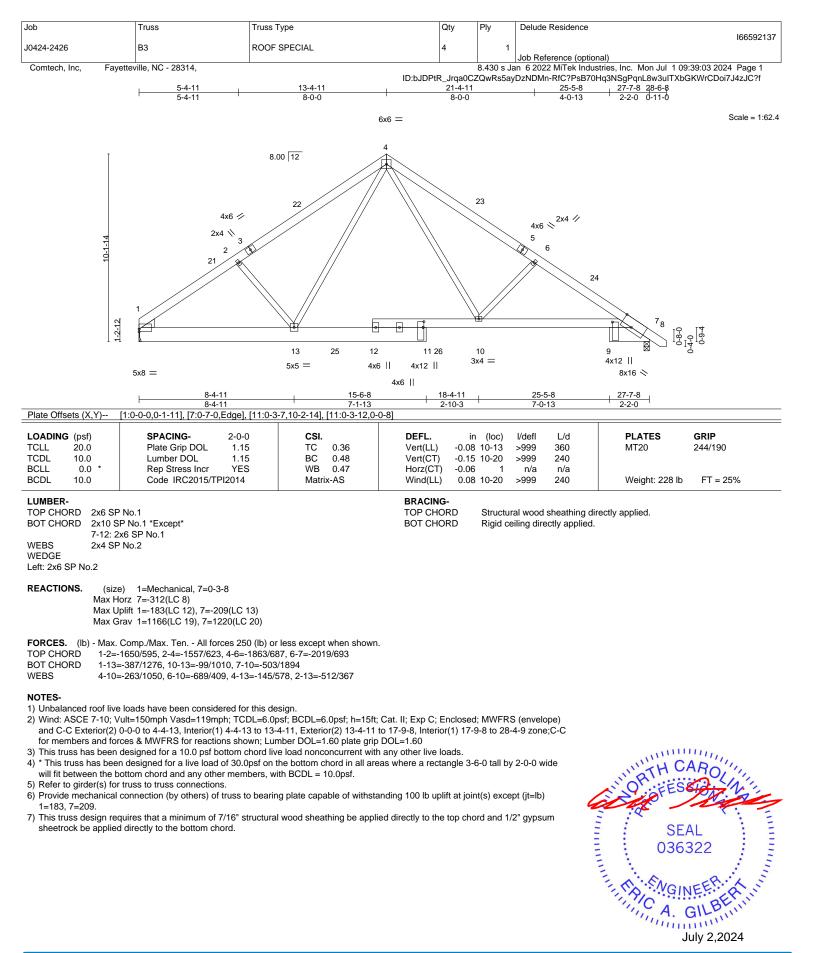


GIL July 2,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

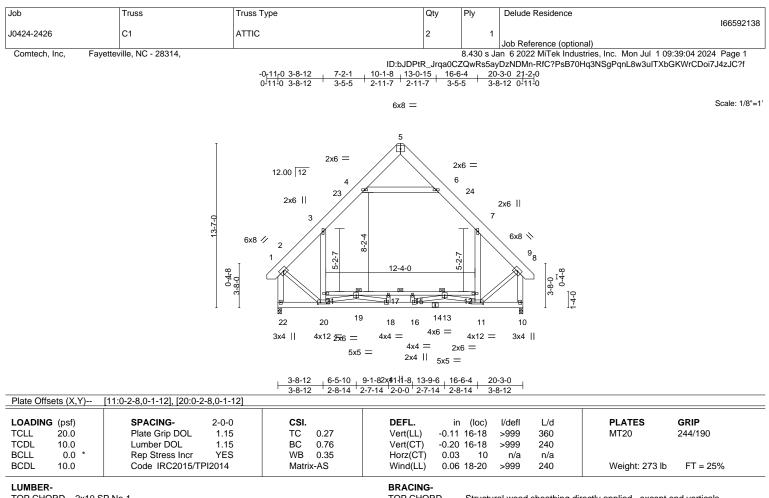
A MiTek At 818 Soundside Road

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=186, 7=210.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

LUMBER-		BRACING-	
TOP CHORD	2x10 SP No.1	TOP CHORD	Structural wood sheathing directly applied, except end verticals.
BOT CHORD	2x6 SP No.1 *Except*	BOT CHORD	Rigid ceiling directly applied. Except:
	12-21: 2x4 SP No.1		4-0-0 oc bracing: 13-19
WEBS	2x4 SP No.2 *Except*		10-0-0 oc bracing: 19-21, 12-13
	7-11,3-20,4-6,2-22,8-10: 2x6 SP No.1	JOINTS	1 Brace at Jt(s): 19, 13

REACTIONS. (size) 22=0-3-8, 10=0-3-8 Max Horz 22=338(LC 11) Max Grav 22=1608(LC 21), 10=1608(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1210/80, 3-4=-918/271, 6-7=-919/271, 7-8=-1210/80, 2-22=-1666/68,

8-10=-1669/68

- BOT CHORD
 20-22=-332/376, 18-20=0/2262, 16-18=0/2894, 11-16=0/2193, 19-21=-152/397, 17-19=-2265/0, 15-17=-2265/0, 13-15=-2265/0, 12-13=-168/410

 WEBS
 11-12=-67/365, 7-12=-28/535, 20-21=-67/365, 3-21=-28/535, 4-6=-960/290,
- 2-20=0/1027, 8-11=0/1030, 15-16=-261/0, 17-18=-261/0, 19-20=-1933/0, 18-19=0/766, 13-16=0/764, 11-13=-1933/0

NOTES-

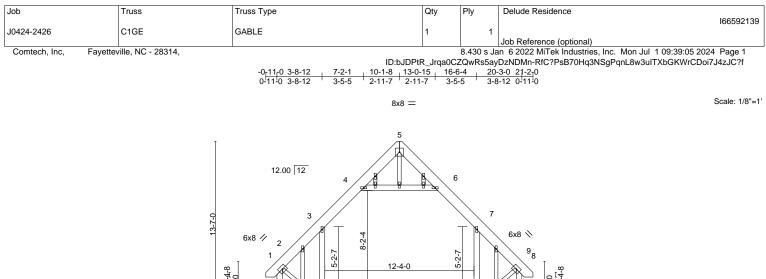
1) Unbalanced roof live loads have been considered for this design.

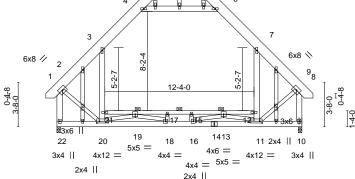
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-6-11 to 3-8-4, Interior(1) 3-8-4 to 10-1-8, Exterior(2) 10-1-8 to 14-6-5, Interior(1) 14-6-5 to 20-9-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).7-12, 3-21


6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 19-21, 17-19, 15-17, 13-15, 12-13


7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

6-5-10 9-1-82x**4**1-1-8 13-9-6 16-6-4 2-8-14 2-7-14 2-0-0 2-7-14 2-8-14 3-8-12 20-3-0 3-8-12 3-8-12

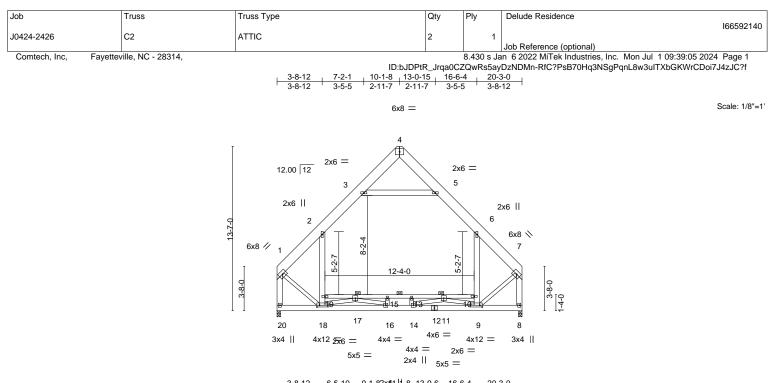
Plate Offsets (X,Y)	[11:0-2-8,0-1-12], [20:0-2-8,0-1-12]								
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.76 WB 0.35 Matrix-AS	Vert(LL) -0.11 Vert(CT) -0.20 Horz(CT) 0.03	(loc) I/defl L/d 16-18 >999 360 16-18 >999 240 10 n/a n/a 18-20 >999 240	PLATES MT20 Weight: 293 lb	GRIP 244/190 FT = 25%			
BOT CHORD 2x6 S 12-21 WEBS 2x4 S	SP No.1 P No.1 *Except* : 2x4 SP No.1 P No.2 *Except* 3-20.4-6.2-22.8-10: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD JOINTS	TOP CHORD Structural wood sheathing directly applied, except end vertical BOT CHORD Rigid ceiling directly applied. Except: 4-0-0 oc bracing: 13-19 10-0-0 oc bracing: 19-21, 12-13					
OTHERS 2x4 S REACTIONS. (siz	P No.2		contro	- Diado at 6(0). 10, 10					
Max	Grav 22=1608(LC 21), 10=1608(LC 20)								
TOP CHORD 2-3=	:. Comp./Max. Ten All forces 250 (lb) or 1210/106, 3-4=-918/311, 6-7=-919/311;)=-1669/102								
17-1	8-10=-1669/102 3OT CHORD 20-22=-332/376, 18-20=0/2262, 16-18=0/2894, 11-16=0/2193, 19-21=-152/397, 17-19=-2265/0, 15-17=-2265/0, 13-15=-2265/0, 12-13=-168/410								
)=0/1027, 8-11=0/1030, 15-16=-261/0, 17								

13-16=0/764, 11-13=-1933/0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Corner(3) -0-6-11 to 3-8-4, Exterior(2) 3-8-4 to 10-1-8, Corner(3) 10-1-8 to 14-6-5, Exterior(2) 14-6-5 to 20-9-11 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) All plates are 2x6 MT20 unless otherwise indicated.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 7) will fit between the bottom chord and any other members.
 - 8) Ceiling dead load (10.0 psf) on member(s). 3-4, 6-7, 4-6; Wall dead load (5.0psf) on member(s).7-12, 3-21
 - 9) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 19-21, 17-19, 15-17, 13-15, 12-13

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ī	3-8-12	6-5-10	9-1-82x	41-11- 8	13-9-6	16-6-4	20-3-0	
Г	3-8-12	2-8-14	2-7-14	2-0-0	2-7-14	2-8-14	3-8-12	

		3-8-12 2-8-14 2-1	7-14 2-0-0 2-7-14 2	-6-14 3-6-12			
Plate Offsets (X,Y)	[9:0-2-8,0-1-12], [18:0-2-8,0-1-12]						
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.27 BC 0.76 WB 0.35 Matrix-AS	Vert(CT) -0. Horz(CT) 0.	in (loc) l/def 11 14-16 >999 20 14-16 >999 03 8 n/3 07 16-18 >999	9 360 9 240 a n/a	PLATES MT20 Weight: 267 lb	GRIP 244/190 FT = 25%
BOT CHORD 2x6 3 10-19 WEBS 2x4 5	SP No.1 SP No.1 *Except* 9: 2x4 SP No.1 SP No.2 *Except* -18,3-5,1-20,7-8: 2x6 SP No.1		BRACING- TOP CHORD BOT CHORD JOINTS	Rigid ceiling 4-0-0 oc brac	directly applied. cing: 11-17 acing: 17-19, 10-		and verticals.
Max	ize) 20=0-3-8, 8=0-3-8 Horz 20=-391(LC 8) Grav 20=1580(LC 21), 8=1580(LC 20)						
TOP CHORD 1-2	x. Comp./Max. Ten All forces 250 (lb) or =-1221/64, 2-3=-932/298, 5-6=-933/298, 6 =-1650/46						
BOT CHORD 18-	20=-406/432, 16-18=0/2302, 14-16=0/289	5, 9-14=0/2194, 17-19=-20	08/436,				

 15-17=-2265/0, 13-15=-2265/0, 11-13=-2265/0, 10-11=-228/451

 WEBS
 9-10=-70/363, 6-10=-31/533, 18-19=-70/363, 2-19=-31/533, 3-5=-961/340, 1-18=-19/1049, 7-9=-21/1052, 13-14=-266/13, 15-16=-265/10, 17-18=-1933/0, 16-17=0/791, 11-14=0/789, 9-11=-1933/0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

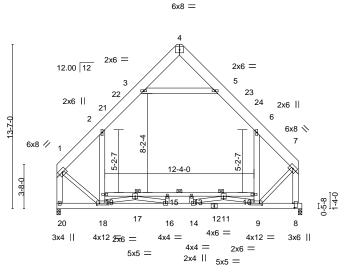
4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).6-10, 2-19

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 17-19, 15-17, 13-15, 11-13, 10-11

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Attic room checked for L/360 deflection.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	(Qty	Ply	Delude Residence
						166592141
J0424-2426	C3	ATTIC	3	3	1	
						Job Reference (optional)
Comtech, Inc, Fayettev	ille, NC - 28314,				8.430 s Ja	n 6 2022 MiTek Industries, Inc. Mon Jul 1 09:39:06 2024 Page 1
			ID:bJDPtR_	_Jrqa0CZ	QwRs5ay	DzNDMn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
				_ `		

Scale: 1/8"=1

<u>3-8-12</u> 6-5-10 9-1-82**x4**1-**1**-8 13-9-6 16-6-4 20-3-0 3-8-12 2-8-14 2-7-14 2-0-0 2-7-14 2-8-14 3-8-12

OADING (psf) SPACING- 2-0-0	CSI.	DEFL.	in (loc) l/defl	L/d	PLATES	GRIP
CLL 20.0 Plate Grip DOL 1.15	TC 0.28		1 14-16 >999	360	MT20	244/190
		()			WI120	244/190
		- (-) -	9 14-16 >999	240		
CLL 0.0 * Rep Stress Incr YES	WB 0.35	Horz(CT) 0.0		n/a		
CDL 10.0 Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.0	6 16-18 >999	240	Weight: 266 lb	FT = 25%
OP CHORD 2x10 SP No.1 OT CHORD 2x6 SP No.1 *Except* 10-19: 2x4 SP No.1		TOP CHORD BOT CHORD	Structural wood Rigid ceiling dire 4-0-0 oc bracing	ectly applied.	ectly applied, except e Except:	end verticals.
/EBS 2x4 SP No.2 *Except*			6-0-0 oc bracing	: 17-19		
6-9,2-18,3-5,1-20,7-8: 2x6 SP No.1			10-0-0 oc bracin	g: 10-11		
		JOINTS	1 Brace at Jt(s):	17 11		

Max Horz 20=312(LC 9) Max Grav 20=1556(LC 21), 8=1584(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

- TOP CHORD 1-2=-1193/39, 2-3=-891/262, 5-6=-909/264, 6-7=-1139/44, 1-20=-1605/12, 7-8=-1667/6 BOT CHORD 18-20=-322/348 16-18=0/2245 14-16=0/2865 9-14=0/2143 17-19=-161/349
- BOT CHORD 18-20=-322/348, 16-18=0/2245, 14-16=0/2865, 9-14=0/2143, 17-19=-161/349, 15-17=-2258/0, 13-15=-2258/0, 11-13=-2258/0, 10-11=-157/444
- WEBS 9-10=-121/311, 6-10=-2258/0, 11-13=-2258/0, 10-11=-157/444 9-10=-121/311, 6-10=-84/480, 18-19=-71/361, 2-19=-29/534, 3-5=-919/272, 1-18=0/985, 7-9=0/1068, 13-14=-270/0, 15-16=-252/0, 17-18=-1914/0, 16-17=0/732, 11-14=0/786, 9-11=-1941/0

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-2-12 to 4-7-9, Interior(1) 4-7-9 to 10-1-8, Exterior(2) 10-1-8 to 14-6-5, Interior(1) 14-6-5 to 19-8-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Ceiling dead load (10.0 psf) on member(s). 2-3, 5-6, 3-5; Wall dead load (5.0psf) on member(s).6-10, 2-19

6) Bottom chord live load (40.0 psf) and additional bottom chord dead load (10.0 psf) applied only to room. 17-19, 15-17, 13-15, 11-13, 10-11

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Attic room checked for L/360 deflection.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affili 818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Delude Residence		
J0424-2426	C3-GR	Attic Girder	1	2			I66592142
Comtech, Inc, Fay	etteville, NC - 28314,			8.430 s J		tries, Inc. Mon Jul 1 09	
		3-8-12 5-10-4 7-2-15	16-	5-4	yDzNDMn-RfC?PsB70ł - <u>8 20t</u> 3-0	Hq3NSgPqnL8w3ulTXb	GKWrCDoi7J4zJC?f
		3-8-12 2-1-8 1-4-11	2-10-9 2-10-9 1-4-11 2-1	-8 3-5-4	1 0-3-8		0
			8x8 =				Scale = 1:93.2
		$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	7 8 29 3017 31 3x10 5 7 0 12-4-0 12-1				
			2x6	0x10 =			
	10-0 0 4 0 4 01 140 0 0 0 1 5 T	3-8-12 3-8-12	16-6-4 12-9-8	19-11	-8 2013-0 4 0-3-8		
], [13:0-5-0,0-2-4], [15:0-5-0,0-3-0				B	
LOADING (psf) TCLL 20.0	Plate Grip DOL 1.	-0 CSI. 15 TC 0.38		n (loc) 9 13-15	l/defl L/d >999 360	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 *		15 BC 0.43 IO WB 0.98	Vert(CT) -0.26 Horz(CT) 0.02	6 13-15 2 12	>891 240 n/a n/a	M18AHS	186/179
BCDL 10.0	Code IRC2015/TPI201			4 13-15	>999 240	Weight: 699 lb	FT = 25%
BOT CHORD 2x10 S 13-15: WEBS 2x4 SP 1-16,11 REACTIONS. (size Max H Max U Max G FORCES. (lb) - Max. TOP CHORD 1-16= 5-6=- 10-11 BOT CHORD 15-16 WEBS 1-4=- 9-13=	1388/632, 1-2=-1313/795, 2- 3615/644, 6-7=-3567/523, 7-8 =-800/995, 11-12=-1790/720 5=-456/4676, 13-15=-471/4614 941/1487, 4-15=0/3402, 2-4=-	=0-3-8 (req. 0-4-3) 5(LC 8) -(LC 2) 50 (Ib) or less except when show 3=-1103/909, 3-4=-6529/985, 3-5 =-6488/833, 8-9=-6783/984, 8-10	07 W AR OI =-5887/748, =-699/1127, =-2301/165,	8-11. Rigid ce 1 Row a 1 Brace UPPLEMEN THER MEA IDTH (SUC RE THE RE	eiling directly applied of at midpt 1 at Jt(s): 1, 4, 9, 11, 1 ITARY BEARING PLATE NS TO ALLOW FOR TH H AS COLUMN CAPS, 5	-16, 11-12, 4-16, 9-12	GE, OR SUPPORT -)
Top chords connected Bottom chords conn- Webs connected as 2) All loads are conside ply connections have 3) Unbalanced roof live 4) Wind: ASCE 7-10; V Lumber DOL=1.60 p 5) Provide adequate dr 6) All plates are MT20 7) This truss has been will fit between the b 9) Ceiling dead load (1 9-10 10) Bottom chord live le 11) WARNING: Requir	ected as follows: 2x10 - 2 row: follows: 2x4 - 1 row at 0-9-0 o ered equally applied to all plies e been provided to distribute o loads have been considered (ult=150mph Vasd=119mph; T late grip DOL=1.60 ainage to prevent water pondi plates unless otherwise indica designed for a 10.0 psf bottom n designed for a live load of 30 ottom chord and any other me 0.0 psf) on member(s). 2-3, 3- oad (40.0 psf) and additional b	ggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 oc. , 2x6 - 2 rows staggered at 0-9-0 , except if noted as front (F) or ba ly loads noted as (F) or (B), unle or this design. CDL=6.0psf; BCDL=6.0psf; h=15f ng. ed. chord live load nonconcurrent wi .0psf on the bottom chord in all a) oc, 2x8 - 3 rows stagger lock (B) face in the LOAD (lss otherwise indicated. ft; Cat. II; Exp C; Enclose ith any other live loads. reas where a rectangle 3- ind load (5.0psf) on membra	CASE(S) s d; MWFR -6-0 tall by er(s).4-15,	S (envelope);	SE 036	322 VEERER III
Design valid for use of a truss system. Befor building design. Brack is always required for	only with MiTek® connectors. This des e use, the building designer must verif cing indicated is to prevent buckling of stability and to prevent collapse with p	N THIS AND INCLUDED MITEK REFEREN gn is based only upon parameters shown, the applicability of design parameters and dividual truss web and/or chord members ossible personal injury and property dama and truss systems, see ANSVTP11 Qual	and is for an individual building d properly incorporate this desig s only. Additional temporary and ge. For general guidance regar	component, n into the ove permanent ding the	not erall bracing	st.org) 818 Soundsid	ERING BY

is always required for stability and to prevent coulapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Delude Residence
					166592142
J0424-2426	C3-GR	Attic Girder	1	2	
				_	Job Reference (optional)
Comtech, Inc, Fay	etteville, NC - 28314,			8.430 s Ja	an 6 2022 MiTek Industries, Inc. Mon Jul 1 09:39:08 2024 Page 2

ID:bJDPtR_Jrga0CZQwRs5ayDzNDMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

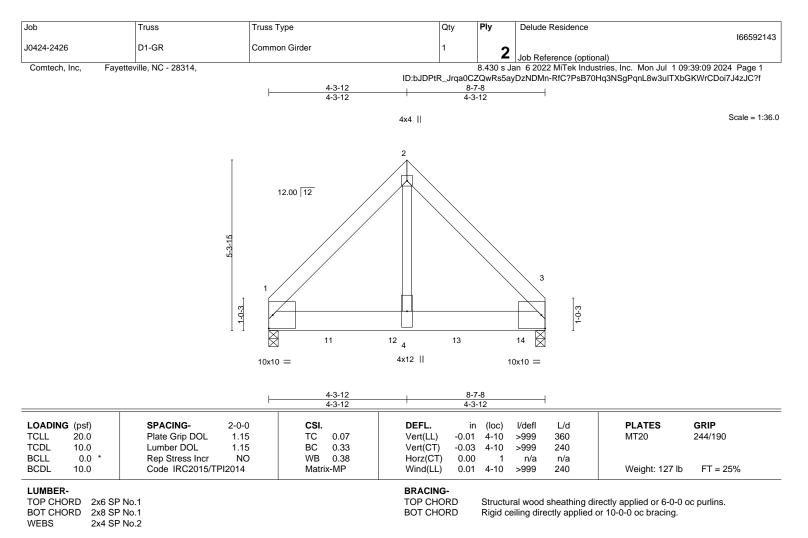
NOTES-

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 16=1108, 12=1045.
 Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 14) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 329 lb down and 226 lb up at 0-2-12, 1074 lb down and 216 lb up at 1-8-12, 1068 lb down and 216 lb up at 3-8-12, 1068 lb down and 223 lb up at 6-1-8, 1074 lb down and 216 lb up at 15-8-12, and 1074 lb down and 216 lb up at 17-8-12, and 1092 lb down and 203 lb up at 19-8-12 on top chord, and 633 lb down at 0-9-4, 629 lb down at 2-9-4, 629 lb down at 4-9-4, 336 lb down and 109 lb up at 6-9-4, 336 lb down and 109 lb up at 8-9-4, 336 lb down and 109 lb up at 10-9-4, 336 lb down and 109 lb up at 12-9-4, 336 lb down and 109 lb up at 14-5-4, and 336 lb down and 109 lb up at 16-5-4, and 336 lb down and 109 lb up at 18-5-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)


Vert: 1-2=-60, 2-3=-80, 3-5=-80, 5-6=-60, 6-7=-60, 7-8=-80, 8-10=-80, 10-11=-60, 15-16=-20, 13-15=-40, 12-13=-20, 5-7=-20 Drag: 2-15=-10, 10-13=-10

Concentrated Loads (lb)

Vert: 1=-42 3=-1028(F) 2=-1028(F) 13=-38(B) 7=-1166(F) 10=-1034(F) 11=-1072(F) 18=-1034(F) 19=-1034(F) 20=-146(B) 21=-141(B) 22=-141(B) 23=-38(B) 24=-38(B) 25=-38(B) 26=-38(B) 27=-38(B) 28=-38(B) 29=-1166(F) 30=-1166(F) 31=-1166(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. (size) 1=0-3-8, 3=0-3-8 Max Horz 1=-138(LC 4) Max Uplift 1=-446(LC 9), 3=-568(LC 8) Max Grav 1=2607(LC 2), 3=3331(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-2399/465, 2-3=-2390/463

BOT CHORD 1-4=-278/1654, 3-4=-278/1654

WEBS 2-4=-524/3098

NOTES-

 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x8 - 2 rows staggered at 0-5-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

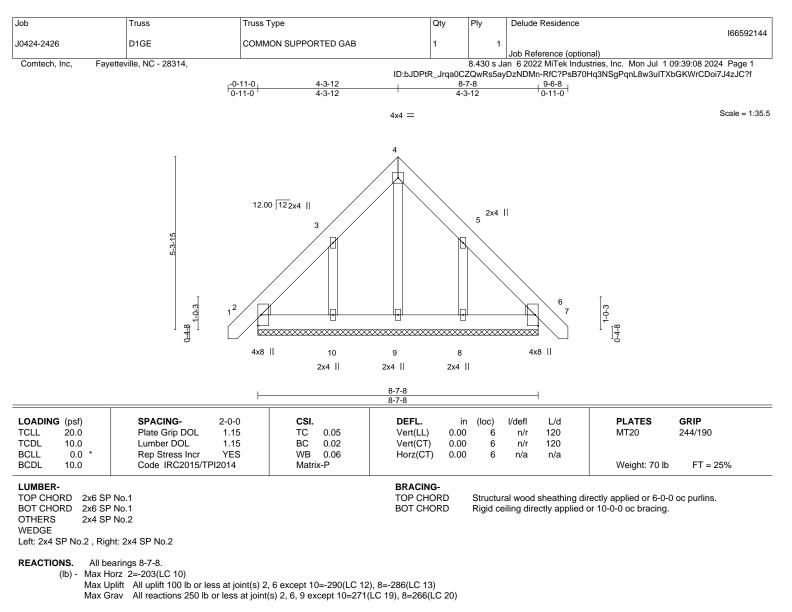
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 1=446, 3=568.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1333 lb down and 236 lb up at 1-10-12, 1333 lb down and 236 lb up at 3-10-12, and 1333 lb down and 236 lb up at 5-10-12, and 1336 lb down and 233 lb up at 7-10-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 5-8=-20 Concentrated Loads (lb) Vert: 11=-1259(B) 12=-1259(B) 13=-1259(B) 14=-1262(B)



RENCO AMITEK Affiliate

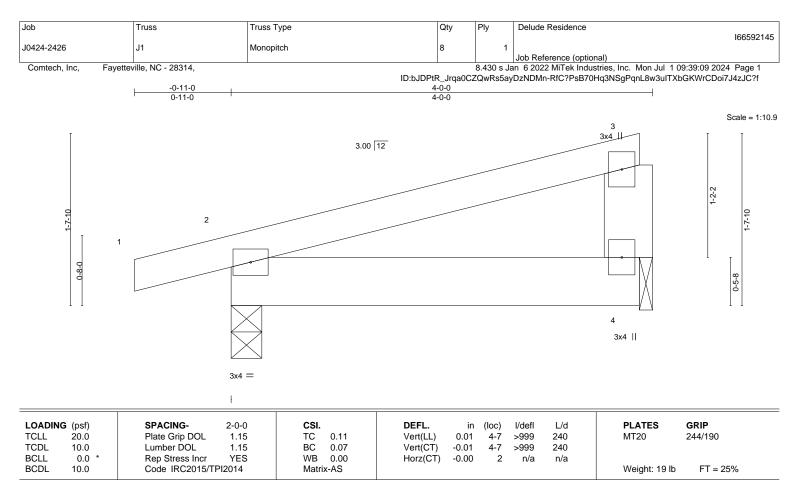
818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

WEBS 3-10=-350/325, 5-8=-351/326


NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
 8) Browide mechanism (by charge of the bottom) of trust to become plate equable of with the distance disc 400 lb will be trusted to be a second plate.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 6 except (jt=lb) 10=290, 8=286.
- 9) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

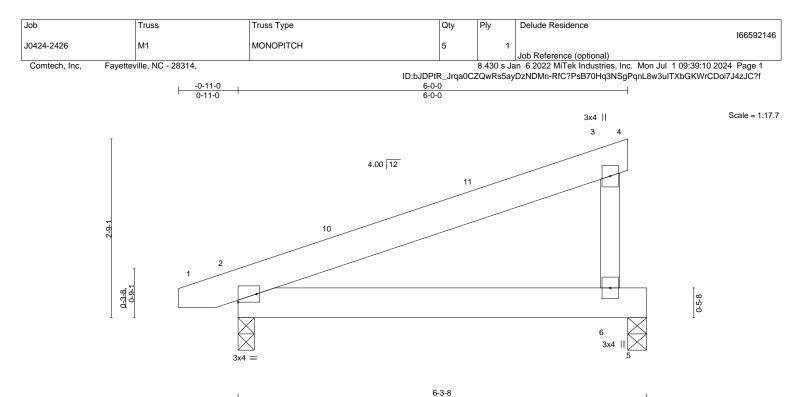
LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x6 SP No.1

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 2=0-3-8, 4=0-1-8 Max Horz 2=78(LC 8) Max Uplift 2=-133(LC 8), 4=-80(LC 12) Max Grav 2=213(LC 1), 4=144(LC 1)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4 except (jt=lb) 2=133.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Plate Offsets (X,Y)	[2:Edge,0-1-8]				1					1	
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	0.07	6-9	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.23	Vert(CT)	-0.03	6-9	>999	240		
BCLL 0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a		
3CDL 10.0	Code IRC2015/T	PI2014	Matri	x-AS						Weight: 35 lb	FT = 25%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 5=0-3-8 Max Horz 2=99(LC 8) Max Uplift 2=-167(LC 8), 5=-160(LC 8)

Max Grav 2=285(LC 1), 5=225(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-165/283

NOTES-

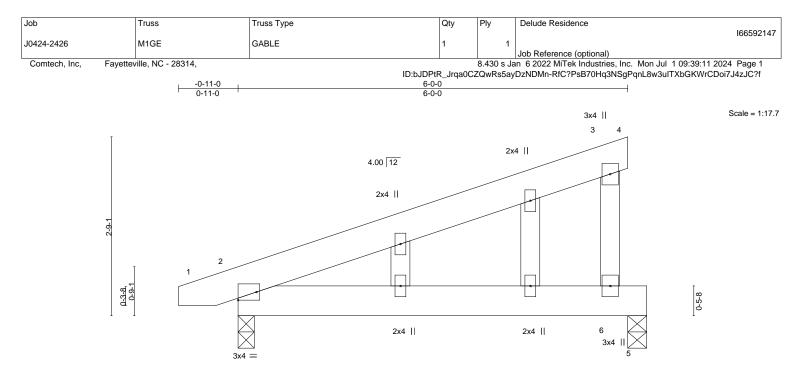
 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 6-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=167, 5=160.

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.



Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Plate Offsets (X,Y	- [2:Edge,0-1-8]				6-3-	3				1	
OADING (psf)	SPACING-	2-0-0	CSI.		DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL 20.0	Plate Grip DOL	1.15	TC	0.21	Vert(LL)	0.07	ò-13	>999	240	MT20	244/190
CDL 10.0	Lumber DOL	1.15	BC	0.24	Vert(CT)	-0.03	6-13	>999	240		
BCLL 0.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.01	2	n/a	n/a		
3CDL 10.0	Code IRC2015/TF	PI2014	Matrix	<-AS						Weight: 38 lb	FT = 25%

LUMBER-

REACTIONS.

 TOP CHORD
 2x6 SP No.1

 BOT CHORD
 2x6 SP No.1

 WEBS
 2x4 SP No.2

 OTHERS
 2x4 SP No.2

(size) 2=0-3-0, 5=0-3-8 Max Horz 2=141(LC 8)

Max Uplift 2=-230(LC 8), 5=-223(LC 8) Max Grav 2=285(LC 1), 5=225(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-6=-165/288

NOTES-

 Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

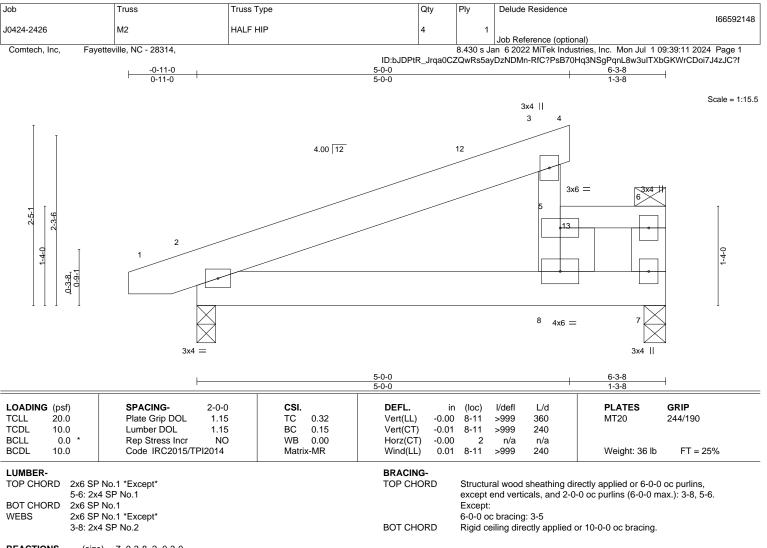
3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=230, 5=223.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

BRACING-TOP CHORD BOT CHORD

6-3-8

Structural wood sheathing directly applied, except end verticals. Rigid ceiling directly applied.

REACTIONS. (size) 7=0-3-8, 2=0-3-0 Max Horz 2=126(LC 12) Max Uplift 7=-111(LC 12), 2=-89(LC 8) Max Grav 7=420(LC 1), 2=318(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-321/182, 5-6=-260/237

BOT CHORD 2-8=-307/322, 7-8=-237/260

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -0-7-9 to 3-9-4, Interior(1) 3-9-4 to 6-0-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2 except (jt=lb) 7=111.

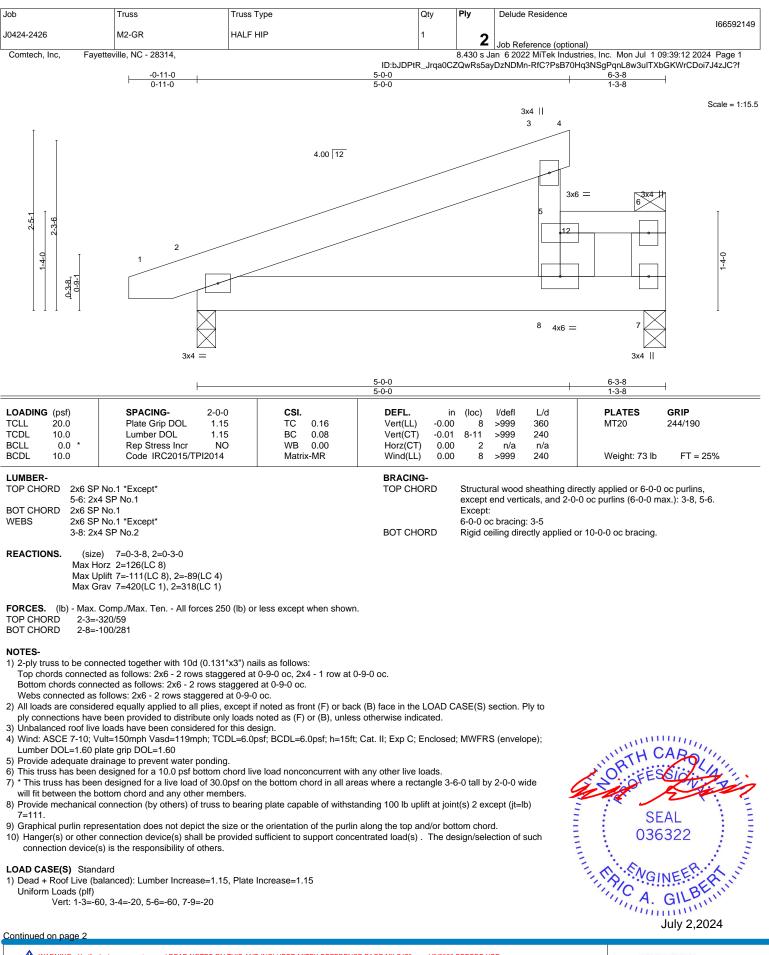
7) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others.

9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 5-6=-60, 7-9=-20


Concentrated Loads (lb) Vert: 13=-210(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MITEK Affiliate

818 Soundside Road

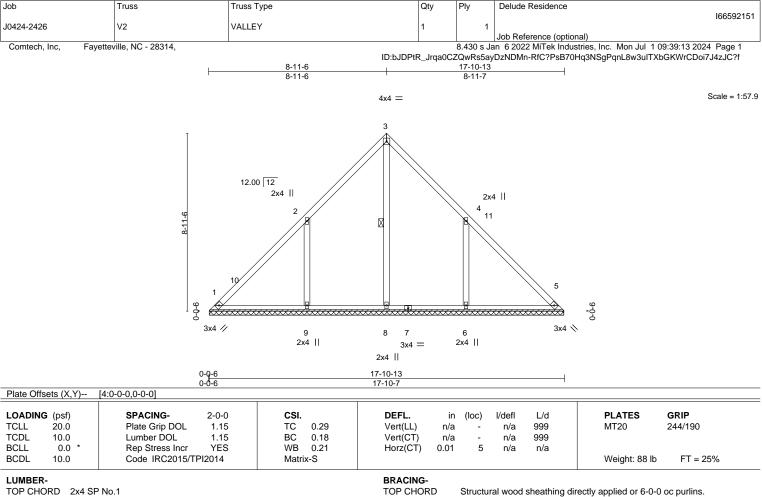
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPII Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	Job	Truss	Truss Type	Qty	Ply	Delude Residence
						166592149
	J0424-2426	M2-GR	HALF HIP	1	2	
					2	Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Mon Jul 1 09:39:12 2024 Page 2

ID:bJDPtR_Jrqa0CZQwRs5ayDzNDMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 12=-210(F)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Delude Residence	
J0424-2426	V1GE	GABLE	1	1		l66592150
Comtech, Inc, Fay	retteville, NC - 28314,			8.430 s J	Job Reference (op lan 6 2022 MiTek In	otional) dustries, Inc. Mon Jul 1 09:39:12 2024 Page 1
· · ·		5-7-11	ID:bJDPtR_Jrqa0C 15-11-1	ZQwRs5a	yDzNDMn-RfC?PsB	370Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f
		5-7-11	10-3-6		1	
		5x5 =	:			Scale = 1:61.6
	I	4				
		12.00 12	\backslash			
		3	5			
		A	B			
		2	6			
	10-3-6					
	1			7		
				\mathbb{N}		
	-7-11	4x6 =			8	
	4			1	9	
		12.00 12 16				
		******	*****	<u> </u>	3x4 🚫	4-7-11
		4x6 = 15 14	13 12 1	1 1	0	
		4-7-11 4-7-11	<u>15-11-1</u> 11-3-6			
Plate Offsets (X,Y)	[1:0-2-0,Edge], [15:0-4-2,0-2-0		1			
LOADING (psf)	SPACING- 2-0		DEFL. ir	. ,	l/defl L/d	PLATES GRIP
TCLL 20.0 TCDL 10.0		15 TC 0.05 15 BC 0.04	Vert(LL) n/a Vert(CT) n/a		n/a 999 n/a 999	MT20 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr Y Code IRC2015/TPI201	ES WB 0.19 4 Matrix-S	Horz(CT) 0.01	9	n/a n/a	Weight: 145 lb FT = 25%
						Weight. 140 ID 11 - 2070
LUMBER- TOP CHORD 2x6 SP	' No.1		BRACING- TOP CHORD	Structu	ral wood sheathing	directly applied or 6-0-0 oc purlins.
BOT CHORD 2x6 SP OTHERS 2x4 SP			BOT CHORD WEBS		eiling directly applie at midpt	ed or 10-0-0 oc bracing. 4-14
	earings 15-11-1.					
(lb) - Max H	lorz 1=-418(LC 13)					
Max U		joint(s) 9, 14 except 15=-348(LC (LC 13), 11=-197(LC 13), 10=-206		-206(LC	12),	
Max G	Frav All reactions 250 lb or le 9=299(LC 13)	ss at joint(s) 15, 14, 16, 17, 13, 12	, 11, 10 except 1=303(LC	; 13),		
TOP CHORD 3-4=-	234/268, 4-5=-238/253, 7-8=-2					
		5-16=-365/524, 14-15=-258/369, 1 0-11=-256/367, 9-10=-254/365	3-14=-258/369,			
	=-254/246					
NOTES-						
	e loads have been considered /ult=150mph Vasd=119mph; T	for this design. CDL=6.0psf; BCDL=6.0psf; h=15f	t; Cat. II; Exp C; Enclosed	d; MWFR	S (envelope)	
gable end zone and DOL=1.60	C-C Exterior(2) zone;C-C for	members and forces & MWFRS fo	r reactions shown; Lumb	er DOL=1	.60 plate grip	
3) Truss designed for v		russ only. For studs exposed to w		see Stand	dard Industry	A MALLING AND AND A MALLING AND
4) All plates are 2x4 M	T20 unless otherwise indicated	ed building designer as per ANSI/ī d.	PI1.			TH CARO
 Gable requires conti Gable studs spaced 	inuous bottom chord bearing. at 2-0-0 oc.					FES
7) This truss has been	designed for a 10.0 psf bottom	h chord live load nonconcurrent with				all star
will fit between the b	oottom chord and any other me		Ū		y 2-0-0 wide	SEAL
 Bearing at joint(s) 1, verify capacity of bearing 		ain value using ANSI/TPI 1 angle	to grain formula. Building	g designe	r should	036322
10) Provide mechanica		ss to bearing plate capable of with	standing 100 lb uplift at jo	pint(s) 9, ⁻	14 except	
		ring surface with truss chord at joi	nt(s) 1, 16, 17.			SEAL 036322
						A C A BEAN
						A. GILLIN
						July 2,2024
						- '

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MITEK Affiliat

BOT CHORD

WEBS

Rigid ceiling directly applied or 10-0-0 oc bracing.

3-8

1 Row at midpt

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

REACTIONS. All bearings 17-10-1.

(lb) - Max Horz 1=-274(LC 8)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 9=-331(LC 12), 6=-331(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 8=426(LC 22), 9=600(LC 19), 6=599(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-257/246, 3-4=-257/246

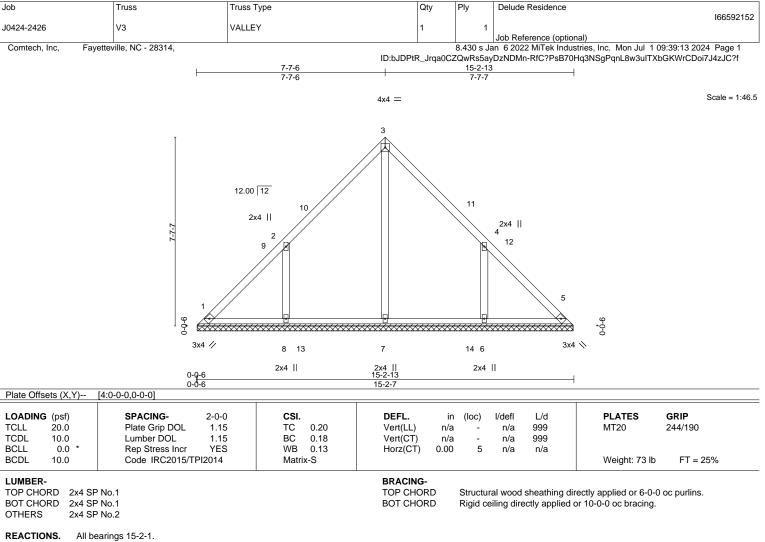
WEBS 2-9=-589/479, 4-6=-589/479

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-11-6, Interior(1) 4-11-6 to 8-11-6, Exterior(2) 8-11-6 to 13-4-3, Interior(1) 13-4-3 to 17-6-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 9=331, 6=331.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

(lb) - Max Horz 1=232(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 1, 5 except 8=-276(LC 12), 6=-275(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 5 except 7=421(LC 22), 8=488(LC 19), 6=488(LC 20)

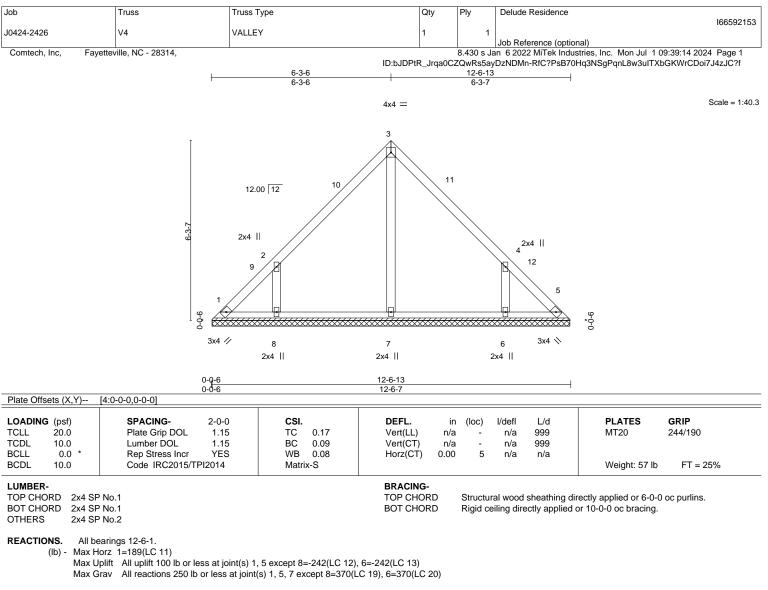
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.
- WEBS 2-8=-497/423, 4-6=-497/423

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 7-7-6, Exterior(2) 7-7-6 to 12-0-3, Interior(1) 12-0-3 to 14-10-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=276, 6=275.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

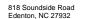
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- WEBS 2-8=-448/403, 4-6=-448/403

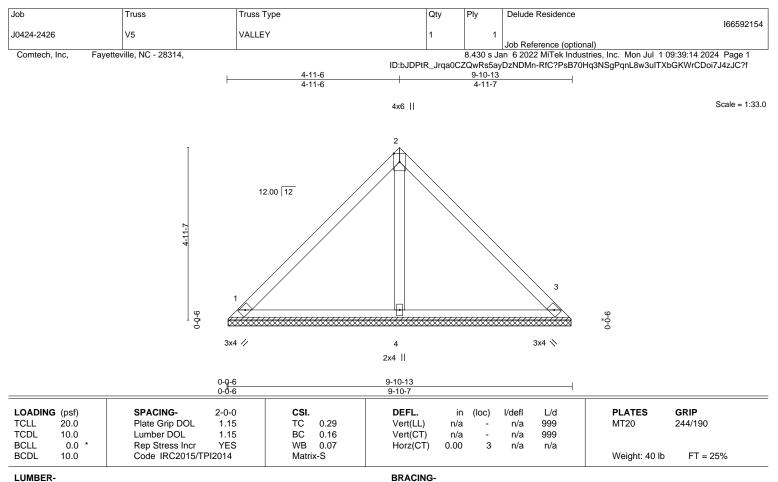
NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-4-4 to 4-9-0, Interior(1) 4-9-0 to 6-3-6, Exterior(2) 6-3-6 to 10-8-3, Interior(1) 10-8-3 to 12-2-9 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (jt=lb) 8=242, 6=242.

6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TOP CHORD

BOT CHORD

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD OTHERS

2x4 SP No.1 2x4 SP No.2

REACTIONS. 1=9-10-1, 3=9-10-1, 4=9-10-1 (size) Max Horz 1=-147(LC 8) Max Uplift 1=-55(LC 13), 3=-55(LC 13), 4=-19(LC 12) Max Grav 1=209(LC 1), 3=209(LC 1), 4=319(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

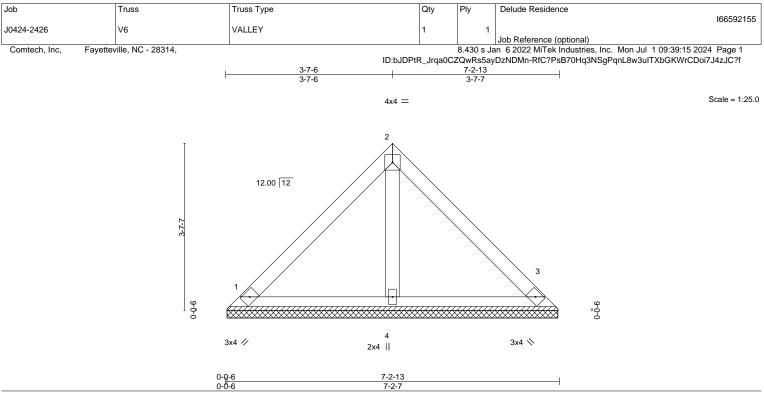
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4. Non Standard bearing condition. Review required.



Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	0-0-6		1-2-1			
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL.	in (loc)	l/defl L/d	PLATES GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.23	Vert(LL)	n/a -	n/a 999	MT20 244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.08	Vert(CT)	n/a -	n/a 999	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.02	Horz(CT)	0.00 3	n/a n/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-P				Weight: 29 lb FT = 25%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

2x4 SP No.1 TOP CHORD BOT CHORD

2x4 SP No.1

OTHERS 2x4 SP No.2

REACTIONS. 1=7-2-1, 3=7-2-1, 4=7-2-1 (size) Max Horz 1=-104(LC 8) Max Uplift 1=-52(LC 13), 3=-52(LC 13) Max Grav 1=159(LC 1), 3=159(LC 1), 4=204(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

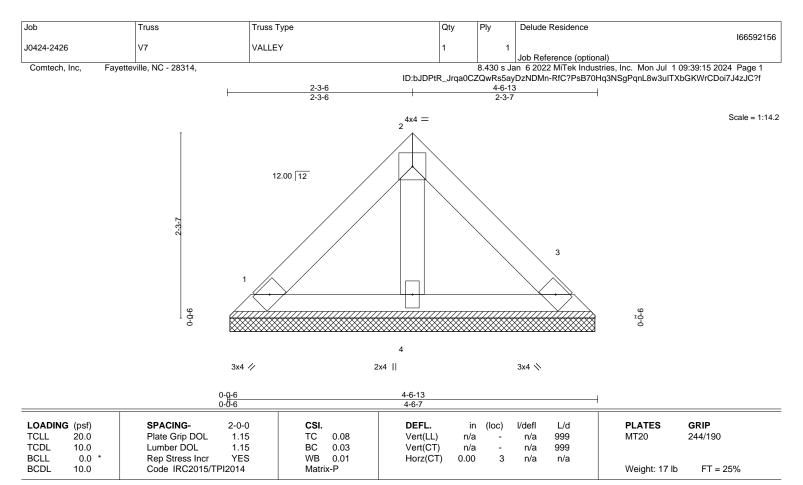
2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.


1111111 CAR ATTIC COMPANY SEAL 036322 G mm July 2,2024

Structural wood sheathing directly applied or 6-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1OTHERS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 4-6-13 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 1=4-6-1, 3=4-6-1, 4=4-6-1 Max Horz 1=-62(LC 8) Max Uplift 1=-31(LC 13), 3=-30(LC 13) Max Grav 1=94(LC 1), 3=94(LC 1), 4=121(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

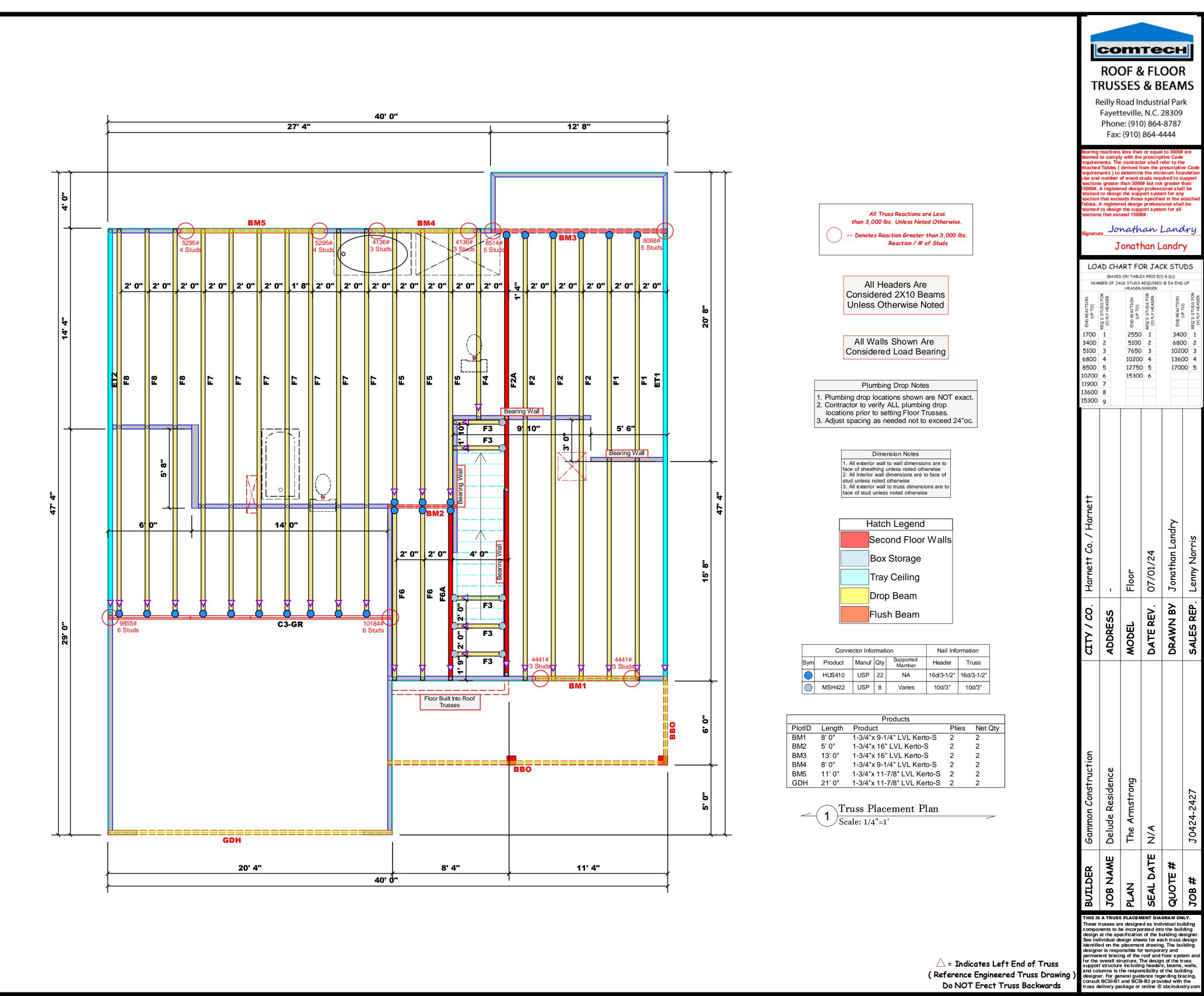
1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=150mph Vasd=119mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.


5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

⁸¹⁸ Soundside Road Edenton, NC 27932

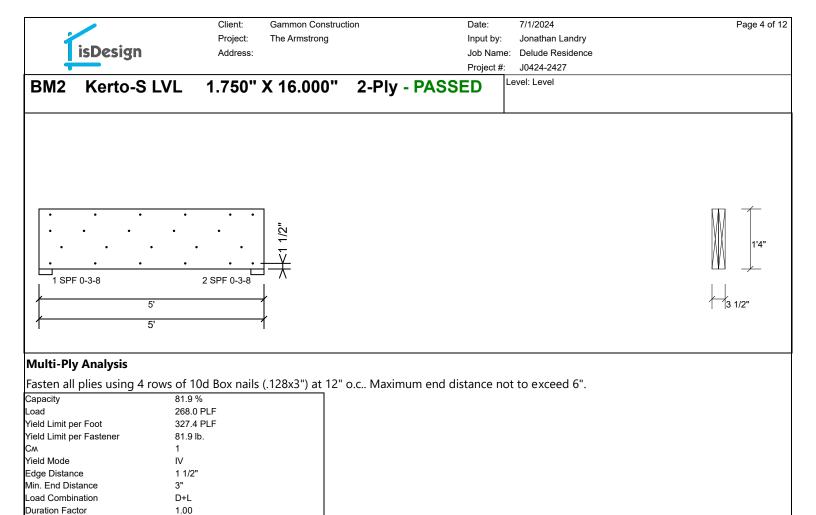
 \triangle = Indicates Left End of Truss (Reference Engineered Truss Drawing) Do NOT Erect Truss Backwards

EQ.

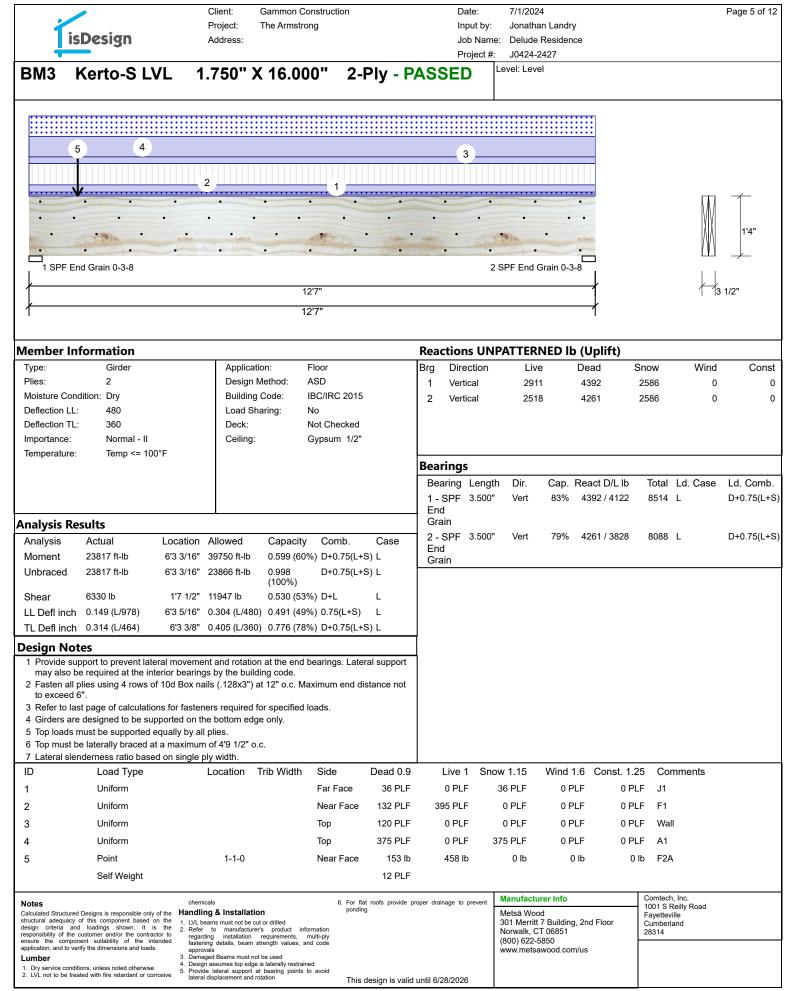
Lenny Norris

J0424-2427

#

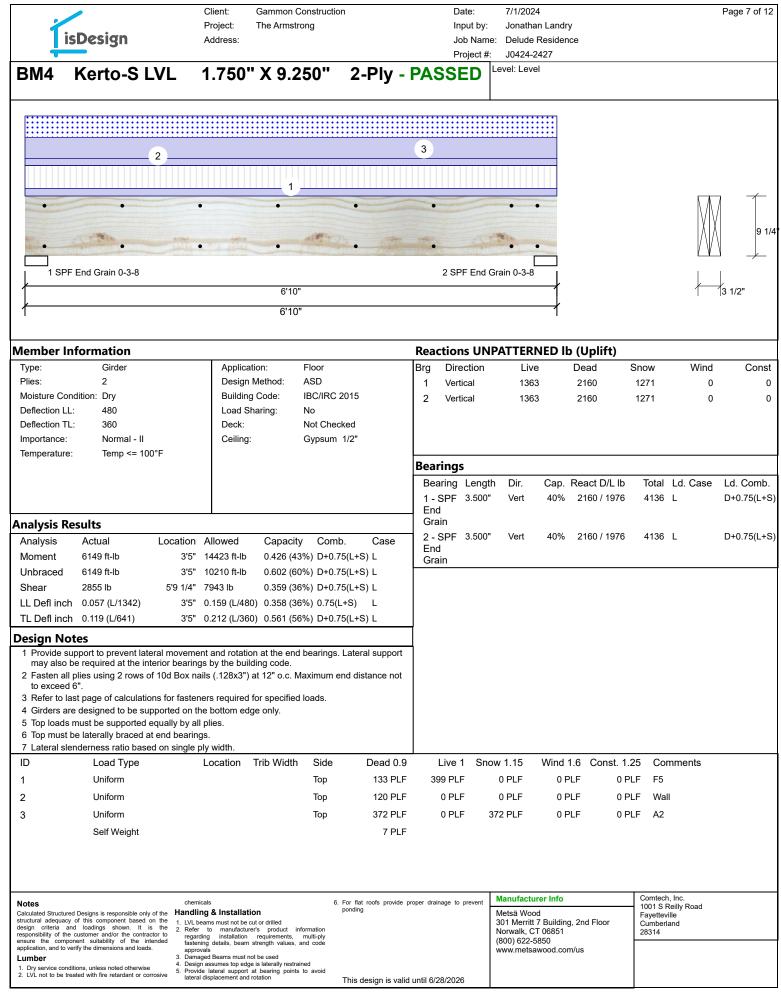

JOB

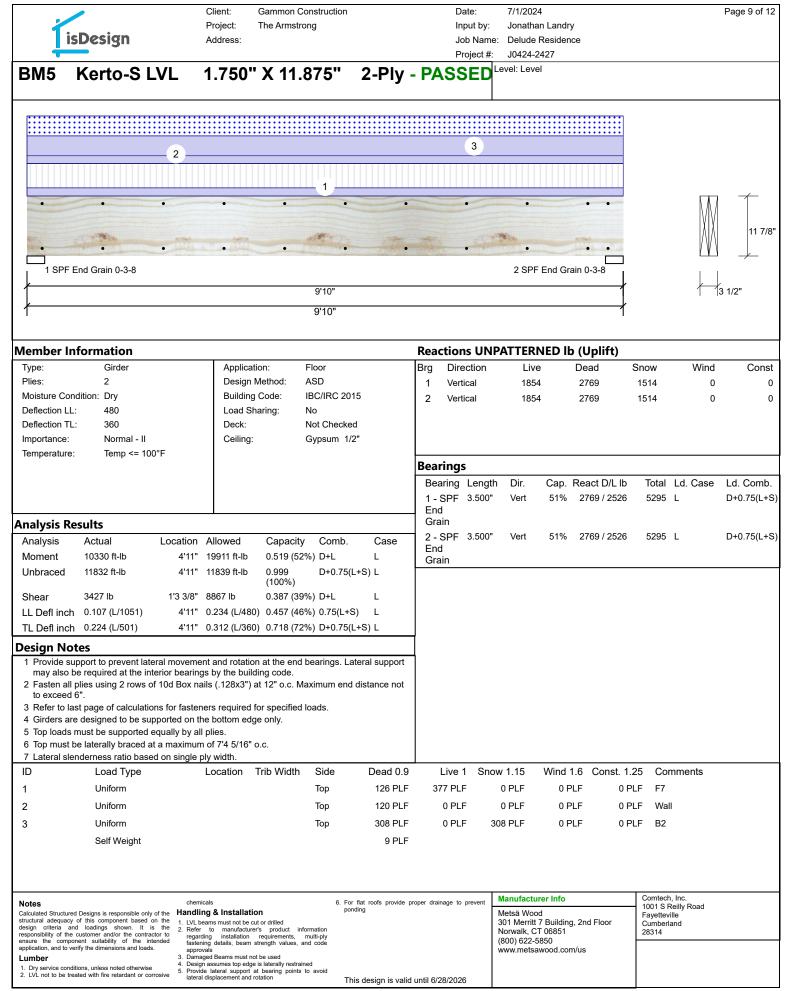
Ţ	sDesign	Client: Gammon Construc Project: The Armstrong Address:	tion	Date: Input by: Job Name Project #:	7/1/2024 Jonathan Landr Delude Residen J0424-2427			Page 1 of 1
BM1	Kerto-S LVL	1.750" X 9.250"	2-Ply - F	PASSED	evel: Level			
	2_			3				
	End Grain 0-3-8	• • •	2. 10-	2 SPF End G	rain 0-3-8			9 1
		6'10"					<u>}</u>	3 1/2"
ł		6'10"			{			
Momborl	nformation			Reactions UNF		(Unlift)		
Туре:	Girder	Application: Floor		Brg Direction	Live	-	Snow Wind	Cons
Plies: Moisture Co Deflection L Deflection T Importance:	L: 480 L: 360	Design Method: ASD Building Code: IBC/IR Load Sharing: No Deck: Not Ch Ceiling: Gypsu	C 2015 ecked	1 Vertical 2 Vertical	1155 1155	2614 2614	1281 0 1281 0	
Temperature	e: Temp <= 100°F		-	Bearings				
			-	Bearing Length 1 - SPF 3.500" End		React D/L lb 2614 / 1827	Total Ld. Case 4441 L	Ld. Com D+0.75(L·
Analysis R	esults			Grain				
	6604 ft-lb 3'5 6604 ft-lb 3'5 3066 lb 1' 3/4 n 0.053 (L/1451) 3'5	()).75(L+S) L).75(L+S) L).75(L+S) L 5(L+S) L	2 - SPF 3.500" End Grain	Vert 43%	2614 / 1827	4441 L	D+0.75(L
Design No	. ,	0.2.12 (2.000) 0.000 (00.0) 2 .						
 Provide s may also Fasten al to exceed Refer to b Girders a Top loads Top must 	upport to prevent lateral mover be required at the interior bear plies using 2 rows of 10d Box 6".	nails (.128x3") at 12" o.c. Maximun eners required for specified loads. the bottom edge only. all plies. ings.						
ID	Load Type	Location Trib Width Side		Live 1 Snow		1.6 Const. 1.2		
1	Uniform	Тор	113 PLF	338 PLF	0 PLF 0 P			
2 3	Uniform Uniform	Тор	120 PLF 375 PLF	0 PLF 0 PLF 3	0 PLF 0 P 75 PLF 0 P			
4	Uniform Self Weight	Тор	150 PLF 7 PLF	0 PLF	0 PLF 0 P			
structural adequac design criteria a responsibility of th ensure the comp application, and to Lumber 1. Dry service con	ed Designs is responsible only of the Hann y of this component based on the 1. LV and loadings shown. It is the 2. Re- re- ceustomer and/or the contractor to onent suitability of the intended applications, unless noted otherwise	emicals L beams must not be cut or drilled for to manufacturer's product information garding installation requirements, multi-ply tening details, beam strength values, and code provals maged Beams must not be used sign assumes top edge is laterally restrained ovide lateral support at bearing points to avoid	 For flat roofs provide proponding 	per dramage to prevent	Manufacturer Info Metsä Wood 301 Merritt 7 Building Norwalk, CT 06851 (800) 622-5850 www.metsawood.cor	-	Comtech, Inc. 1001 S Reilly Road Fayetteville Cumberland 28314	
		eral displacement and rotation	This design is valid u	until 6/28/2026				


Version 23.40.705 Powered by iStruct[™] Dataset: 24041701.1529

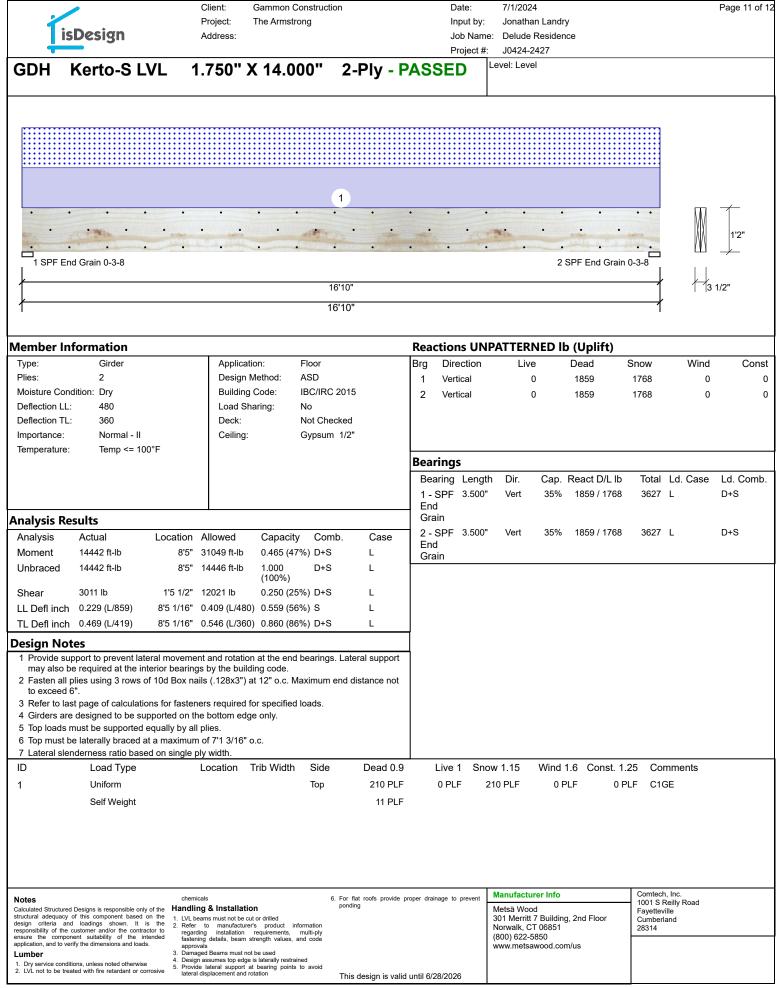
	Client: Gammon Construction	Date:	7/1/2024	Page 2 of 12
	Project: The Armstrong	Input by:	Jonathan Landry	
isDesign	Address:	Job Name:		
		Project #:	J0424-2427	
BM1 Kerto-S LVL	1.750" X 9.250"	2-Ply - PASSED ⁵	evel: Level	
	• •	• •	1/2"	
))
• •	• •	• •	• • + +	$\langle V \rangle$
1 SPF End Grain 0-3-8		2 SPF End G		
		2 SFF Ellu Gi		
	6'10"			1 1/2"
1	6'10"		1	
Multi-Ply Analysis				
Fasten all plies using 2 rows of 10d	Box nails (.128x3") at 12" o.c	Maximum end distance not	t to exceed 6".	
Capacity 0.0 %				
Load 0.0 PLF	_			
Yield Limit per Foot163.7 PLYield Limit per Fastener81.9 lb.	F			
См 1				
Yield Mode IV				
Edge Distance 1 1/2" Min. End Distance 3"				
Load Combination				
Duration Factor 1.00				
		I	Manufacturer Info	Comtech, Inc.
Notes cherr Calculated Structured Designs is responsible only of the Handli		ling	Manufacturer Info Metsä Wood	1001 S Reilly Road Fayetteville
structural adequacy of this component based on the 1 LVL to design criteria and loadings shown. It is the 2 Refe	beams must not be cut or drilled er to manufacturer's product information	:	301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	Cumberland 28314
responsibility of the customer and/or the contractor to ensure the component suitability of the intended faste	rding installation requirements, multi-ply ening details, beam strength values, and code		(800) 622-5850	20014
Lumber 3. Dam	ovals laged Beams must not be used ign assumes top edge is laterally restrained		www.metsawood.com/us	
1. Dry service conditions, unless noted otherwise 4. Design 5. Provide the service conditions of the service of		I		

2 2015	Brg Direction	Level: Level JNPATTERNED on Live 1625		Snow Win	1'4" 1'4" 3 1/2"
	Brg Direction	on Live		Snow Win	3 1/2"
	Brg Direction	on Live		Snow Win	3 1/2"
	Brg Direction	on Live		Snow Win	
	Brg Direction	on Live		Snow Win	
	Brg Direction	on Live		Snow Win	
	1 Vertical		Dead	Snow Win	·
ecked n 1/2"	2 Vertical	1625	576 576		d Const 0 0 0 0
	Bearings				
	Bearing Le 1 - SPF 3.5	00" Vert 42	% 576 / 1625	2201 L	e Ld. Comb. D+L D+L
		00 Vent 42	// 57071025	2201 L	D+L
L L L L s. Lateral suppor					
ace 135 Pl	LF 401 PLF				
F	L L L L Lateral suppo end distance no Dead C Face 83 P ice 135 P 12 P	1 - SPF 3.5 2 - SPF 3.5 b. Case L L L L L L L L State and distance not Live 1 Face 83 PLF 249 PLF Ice 135 PLF 401 PLF 12 PLF PLF PLF	Bearing Length Dir. Ca 1 - SPF 3.500" Vert 42 2 - SPF 3.500" Vert 42 b. Case L Dead 0.9 Live 1 Snow 1.15 Win For flat roofs provide proper drainage to prevent Metsä Wood 301 Merritt 7 Built Norwalk, CT 0683 (800) 622-5850 <td>Bearing Length Dir. Cap. React D/L lb 1 - SPF 3.500" Vert 42% 576 / 1625 2 - SPF 3.500" Vert 42% 576 / 1625 b. Case L L L L L L L State L L L L L State State State . Lateral support Eact and distance not State State State . Lateral support Eace 83 PLF 249 PLF 0 PLF 0 PLF 0 P face 83 PLF 249 PLF 0 PLF 0 PLF 0 P 12 PLF For flat roofs provide proper drainage to prevent Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 State State</td> <td>Bearing Length Dir. Cap. React D/L lb Total Ld. Case 1 - SPF 3.500" Vert 42% 576 / 1625 2201 L 2 - SPF 3.500" Vert 42% 576 / 1625 2201 L b. Case L<</td>	Bearing Length Dir. Cap. React D/L lb 1 - SPF 3.500" Vert 42% 576 / 1625 2 - SPF 3.500" Vert 42% 576 / 1625 b. Case L L L L L L L State L L L L L State State State . Lateral support Eact and distance not State State State . Lateral support Eace 83 PLF 249 PLF 0 PLF 0 PLF 0 P face 83 PLF 249 PLF 0 PLF 0 PLF 0 P 12 PLF For flat roofs provide proper drainage to prevent Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 State State	Bearing Length Dir. Cap. React D/L lb Total Ld. Case 1 - SPF 3.500" Vert 42% 576 / 1625 2201 L 2 - SPF 3.500" Vert 42% 576 / 1625 2201 L b. Case L<


Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc.
	LVL beams must not be cut or drilled Refer to manufacturer's product information regarding installation requirements multi-ply	ponding This design is valid until 6/28/2026	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	1001 S Reilly Road Fayetteville Cumberland 28314


Version 23.40.705 Powered by iStruct[™] Dataset: 24041701.1529

Í	isDesign	Client: Project: Address:	Gammon Construction The Armstrong	1	Date: Input by: Job Name: Project #:	7/1/2024 Jonathan Landry Delude Residence J0424-2427	Page 6 of 12
BM3	Kerto-S L	VL 1.750")	X 16.000"	2-Ply - PASS		evel: Level	
	· · ·	· · ·	· · ·		•		1'4"
	End Grain 0-3-8		12'7"		28	SPF End Grain 0-3-8	3 1/2"
/			12'7"			ł	
	y Analysis						
Fasten all Capacity	plies using 4 row	vs of 10d Box nails 80.5 %	(.128x3") at 12" o.o	Maximum end di	stance not	to exceed 6".	
Load		263.5 PLF					
Yield Limit pe Yield Limit pe		327.4 PLF 81.9 lb.					
CM	er Fastener	81.91D. 1					
Yield Mode		IV					
Edge Distand Min. End Dis		1 1/2" 3"					
Load Combir		5 D+L					
Duration Fac		1.00					
						Manufacturer Info	Comtech Inc


Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	Comtech, Inc. 1001 S Reilly Road
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the design criteria and loadings shown. It is the responsibility of the customer and/or the contractor to ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. LVL not to be treated with fire retardant or corrosive	I. LVL beams must not be cut or drilled Refer to manufacturer's product information respiring installation requirements, multi-ply respirous respiration strength values, and code sprovals Damaged Beams must not be used Design assumes top edge is laterally restring there are unor at therearing orbits to, avoid Browide Lateral surroom at the barries	ponding This design is valid until 6/28/2026	Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850 www.metsawood.com/us	Fayetteville Cumberland 28314

Year		Client: Gammon Constru	ction Date:	7/1/2024	Page 8 of 12
Note Operation Operation Operation Operation BM4 Kerto-S LVL 1.750" X 9.250" 2-Ply - PASSED Level Level Image: transmission of the second of the seco		Project: The Armstrong	Input by:		_
BM4 Kerto-S LVL 1.750" X 9.250" 2.Ply - PASSED Level Level Image: Second	isDesign	Address:			
Durit Netro-S LVL 1.7.50 X 3.2.50 2-Pry - PASSED Image: Second S			· · · · · · · · · · · · · · · · · · ·		
Note: Array of the second	BM4 Kerto-S L	.VL 1.750" X 9.250'	2-Ply - PASSED	Level: Level	
Image: Section 10.0.0 Image: Section 10			-		
Image: Section 10.0.0 Image: Section 10					
Image: Section 10.0.0 Image: Section 10					
Image: Section 10.0.0 Image: Section 10					
Image: Section 10.0.0 Image: Section 10					
Image: Section 10.0.0 Image: Section 10					
Image: Section 10.0.0 Image: Section 10					
Image: Serie and Gran 0-3.8 2 SPF End Gran 0-3.8 Image: Serie and Gran 0-3.8	• •	• •	• •	• • =	
Image: Serie and Gran 0-3.8 2 SPF End Gran 0-3.8 Image: Serie and Gran 0-3.8				12	
New New Pred Grain 0-3-8 2 SPF End Grain 0-3-8 Image: Company of the Box nails (128x3") at 12" o.c Maximum end distance not to exceed 6". Coperaty Coperaty Coperaty Coperaty Coperative Cope				$\overline{\mathbf{v}}$	9 1/4
Image: Control of the state of the stat	• •	• •	• •		
Image: Control of the state of the stat	1 SPE End Grain 0-3-8		2 SPE End	Grain 0-3-8	, i i
Multi-Ply Analysis Rester all plies using 2 rows of 10d Box nails (128x3") at 12" o.c. Maximum end distance not to exceed 6". Caperaty 0.0% Multi Ply Analysis Note 100		014.01			
Multi-Py Analysis Fasten all piles using 2 rows of 10d Box nails (.128x3") at 12" o.c. Maximum end distance not to exceed 6". Canady 00 % F Wet limit per Fost for the fasten of the fastener for					3 1/2"
Rate null plies using 2 rows of 10d Box nails (.128x3") at 12° o.c. Maximum end distance not to exceed 6". Capacity 0.0% Load 0.0% Viet Linit per Foot 18.37 PLF Planten in the period 10.7 Capacity 1.00	1	6'10"		1	
Rate null plies using 2 rows of 10d Box nails (.128x3") at 12° o.c. Maximum end distance not to exceed 6". Capacity 0.0% Load 0.0% Viet Linit per Foot 18.37 PLF Planten in the period 10.7 Capacity 1.00					
Rate null plies using 2 rows of 10d Box nails (.128x3") at 12° o.c. Maximum end distance not to exceed 6". Capacity 0.0% Load 0.0% Viet Linit per Foot 18.37 PLF Planten in the period 10.7 Capacity 1.00	Multi-Plv Analysis				
Capacity 0.0% Load 0.0% Weid Linit por Foot 183.7 FLF Weid Linit por Fastener 8.19 Jb. CA 1 Weid Motio W Edge Dilance 1.27 Min. End Dilance 1 Lead Combination 1 Duraton Factor 1.00		rs of 10d Box pails (129x2") at 12	o c Maximum and distance n	at to average 6"	
Land 0.0 PLF Weid Lung per fasteneer 819 b. Ga 11 27 Mis End Distance 9 Edge Distance 9			o.c Maximum end distance n	of to exceed 6.	
Yead Limit per Fastener 81.9 Ib. CM 1 Yead Mode V Yead Ottome 1.02 Min. End Distance 3* Load Combination 100	Load				
CM 1 Viola Mode N Edge Distance 11/2* Min. End Distance 3* Load Combination 100	Yield Limit per Foot				
Yead Mode V Seg DoBatone 11/2* Min. End Dobatone 3* Duration Factor 1.00	Yield Limit per Fastener				
Edge Diannee 1 1/2 ² Men End Diatance 3 ² Load Combination Duration Factor 100 Wardien Factor 100 Name of the state					
Load Combination Duration Factor 100 Network States of Brance Information States of States States and States Stat	Edge Distance				
Duration Factor 1.00 Notes Set mices Automation factor Set mices Notes Set mices Manufacturer Info Oppriorities	Min. End Distance	3"			
Notes Canada Success Canada Succes Canada Succes Canada Success Canada Sucees Canada Success Canada S		1.00			
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained		1.00			
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally prestrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally prestrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally prestrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Uny service conditions, unless noted otherwise 5. Provide, laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally most at loading points to avoid 4. Design assumes top edge is laterally most at loading points to avoid 4. Design assumes top edge is laterally restrained 5. Provide, laterally prestrained 5. Provide, laterally prestrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Notes Contentions Dot Setulty Road Calculated Structured Designs is responsible only of the structural adequacy of this component based on the responsibility of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 1. UL beams must not be cut or drilled 2. Number 3. Damaged Beams must not be used 3. Un pot the transformation 5. Provide, laterally restrained 5. Provide, laterally restrained 5. Provide, laterally restrained					
Calculated Structured Designs is responsible only of the structural adequacy of this component based on the structural adequacy of the customer and/or the contractor ensure the component sultability of the intended application, unless note otherwise Handling & Installation ponding Metsä Wood 301 Merritt 7 Building, 2nd Floor Fayetteville Cumber 1 1. UX beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation equivements, multiply fastening details, beam strength values, and code approvals 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 28314 2. UN not be tradet with fire related not correspond to the correspondence of the related and support at the aring points to avoid 3. Damaged Beams must not be used www.metsawood.com/us Fayetteville	Notes	chemicals	6. For flat roofs provide proper drainage to prevent	Manufacturer Info	
design criteria and loadings shown. It is the responsibility of the customer and/or the contractor ensure the component suitability of the intended application, and to verify the dimensions and loads. 2. Refer to manufacturer's product information regarding installation requirements, multi-ply fastening details, beam strength values, and code approvals Norwalk, CT 06851 (800) 622-5850 28314 Lumber 3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained 5. IVin to be trended with fire related on corrests. 0. Dealing assumes top edge is laterally restrained 4. Design assumes top edge is laterally restrained 5. Provide laterall support at bearing points to avoid 0. Dealing assumes top edge is laterally restrained 4. Design assumes top edge is laterally restrained 5. Provide laterall support at bearing points to avoid 0. Dealing assumes top edge is laterally restrained 5. Provide laterally restrained	Calculated Structured Designs is responsible only	of the Handling & Installation	ponding		Fayetteville
ensure the component suitability of the intended application, and to verify the dimensions and loads. Lumber 1. Dry service conditions, unless noted otherwise 2. Win othe trender with fire relardant or correstive 5. Provide, laterail support at loading points to avoid	design criteria and loadings shown. It is	s the 2. Refer to manufacturer's product information		Norwalk, CT 06851	
Lumber 3. Damaged Beams must not be used . 1. Dry service conditions, unless noted otherwise 4. Design assumes top edge is laterally restrained . 2. LVI, not be treated with fire retardant or correspondent or corresponden	ensure the component suitability of the in-	ended fastening details, beam strength values, and code		(800) 622-5850	
1. Urly service containons, unless noted otherwise 5. Provide lateral support at bearing points to avoid 5. Provide lateral support at bearing points to avoid	Lumber	 Damaged Beams must not be used Design assumes top edge is laterally restrained 			
		5. Provide lateral support at bearing points to avoid	This design is valid until 6/28/2026		

1	isDesign	Client: Project: Address:	Gammon Construction The Armstrong		Date: Input by: Job Name Project #:	7/1/2024 Jonathan Landry Delude Residence J0424-2427	Page 10 of 1
BM5	Kerto-S L	VL 1.750	" X 11.875"	2-Ply	- PASSED		
	•	• •	• •	•	•	••••	
1 SF	PF End Grain 0-3-8					2 SPF End Grain 0-3-8	
			9'10" 9'10"				13 1/2"
			0.0			•	
-	er Foot er Fastener ice stance ination	s of 10d Box nails 0.0 % 0.0 PLF 163.7 PLF 81.9 lb. 1 IV 1 1/2" 3" 1.00	(.128x3") at 12" o.c	Maximum	end distance no	ot to exceed 6".	
							1
structural adequ design criteria responsibility of ensure the co	ctured Designs is responsible only o uacy of this component based or and loadings shown. It is f the customer and/or the contract omponent suitability of the inte	the 1. LVL beams must not be the 2. Refer to manufacturor to regarding installation	tion P	or flat roofs provide p onding	roper drainage to prevent	Manufacturer Info Metsä Wood 301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851 (800) 622-5850	Comtech, Inc. 1001 S Reilly Road Fayetteville Cumberland 28314
application, and Lumber 1. Dry service of	to verify the dimensions and loads. conditions, unless noted otherwise be treated with fire retardant or corr	approvals 3. Damaged Beams must 4. Design assumes top ec	not be used lge is laterally restrained t at bearing points to avoid	his design is valid	until 6/28/2026	www.metsawood.com/us	

is	Design	Client: Gammon Construc Project: The Armstrong Address:	Inp Job	te: 7/1/2024 ut by: Jonathan Landry o Name: Delude Residence oject #: J0424-2427	Page 12 of 1
GDH	Kerto-S LVL	1.750" X 14.000"		,	
· · ·	· · ·	· · · · ·		· · · · ·	
· ·	· · ·	· · · ·	· · ·	· · · · · ·	····
1 SPF En	d Grain 0-3-8		10/10/	2 SPF End Grain	
			16'10" 16'10"		1 3 1/2"
Multi-Ply A					
-asten all pl Capacity		¹ 10d Box nails (.128x3") at 12"	o.c Maximum end distan	ce not to exceed 6".	
oad ′ield Limit per F) PLF 5.6 PLF			
ield Limit per F	astener 81	.9 lb.			
м ield Mode	1 IV				
dge Distance		/2"			
lin. End Distan oad Combinati					
Ouration Factor	1.0	00			
				muntacturer Info	Comtech, Inc.
Notes Calculated Structured	Designs is responsible only of the		For flat roofs provide proper drainage to p ponding	Metsä Wood	1001 S Reilly Road Fayetteville
design criteria and responsibility of the	of this component based on the d loadings shown. It is the customer and/or the contractor to	1. LVL beams must not be cut or drilled 2. Refer to manufacturer's product information regarding installation requirements, multi-ply		301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	Cumberland 28314
ensure the comport application, and to ve	nent suitability of the intended rify the dimensions and loads.	fastening details, beam strength values, and code approvals		(800) 622-5850 www.metsawood.com/us	
Lumber 1. Dry service condit	tions, unless noted otherwise	 Damaged Beams must not be used Design assumes top edge is laterally restrained Provide lateral support at bearing points to avoid 			
2. LVL not to be treat	ated with fire retardant or corrosive	lateral displacement and rotation	This design is valid until 6/28/2026		

Version 23.40.705 Powered by iStruct™ Dataset: 24041701.1529

Trenco 818 Soundside Rd Edenton, NC 27932

Re: J0424-2427 Delude Residence

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: I66593256 thru I66593267

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

July 2,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job		Truss		Trus	s Type						Qty	Ply	/	Delude	Reside	nce					166593256
J0424-2427		ET1		GAB	LE						1		1								100595250
Comtech, Inc,	Fayette	/ille, NC - 2	28314,											an 6202	2 MiTek		es, Inc.				24 Page 1
0.4.8									ID	:bJDPt	R_Jrqa0)CZQw	/Rs5ay	'DzNDMı	n-RfC?P	sB70Hq	3NSgPc	nL8w3u	ITXbGk	WrCDo	7J4zJC?f
0-1-8 H																					0-1-8
																					Scale = 1:53.4
			3x4 =						3x6 F	P=						3x4 =	=				
1 2	3 4	5	6 7	8	9	10	11	12	1314	15	16	17	18	19	20	21	22	23	24	25	26
						-	-					8	-		8					-	55
1 101 10																					
53 52	51 5	0 49	48 47	46	45	44	43 42	2 41	40	39	38	37	3635	34	33	32	31	30	29	28	27
3x4 =			3x4 =	:		3x6 FF	P =					3x6	FP =		3x4	=					3x4 =

1-0-0, 2-4-0, 3-8-0, 5-0-0, 6-4-0, 7-8-0, 9-0-0, 10-4-0, 11-8-0, 13-0-0, 14-4-0, 15-8-0, 17-0-0, 18-4-0, 19-8-0, 21-0-0, 22-4-0, 23-8-0, 25-0-0, 26-4-0, 27-8-0, 29-0-0, 30-4-0, 31-11-8-1-0-0, 1-4-

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/T	2-0-0 1.00 1.00 YES PI2014	CSI. TC 0.08 BC 0.01 WB 0.04 Matrix-S	Vert(LL) n	in (loc) ′a - ′a - 0 33	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 142 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2 WEBS 2	 44 SP No.1(flat) 44 SP No.1(flat) 44 SP No.3(flat) 44 SP No.3(flat) 44 SP No.3(flat) 			BRACING- TOP CHORD BOT CHORD	excep	t end verf	icals.	rectly applied or 6-0-0 o	oc purlins,

REACTIONS. All bearings 31-11-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 53, 27, 52, 51, 50, 49, 48, 47, 46, 45, 44, 42, 41, 40, 39, 38, 37, 35, 34, 33, 32, 31, 30, 29, 28

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

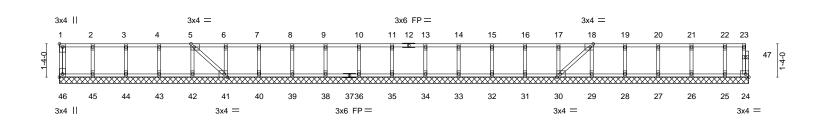
3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

[Job	Truss	Truss Type	Qty	Ply	Delude Residence
						166593257
	J0424-2427	ET2	GABLE	1	1	
						Job Reference (optional)
	Comtech, Inc, Fayettev	rille, NC - 28314,			8.430 s Ja	n 6 2022 MiTek Industries, Inc. Mon Jul 1 10:02:12 2024 Page 1

8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jul 1 10:02:12 2024 Page 1 ID:bJDPtR_Jrqa0CZQwRs5ayDzNDMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-<u>1</u>-8

Scale = 1:46.2

Plate Offsets (X,Y)--[1:Edge,0-1-8], [5:0-1-8,Edge], [18:0-1-8,Edge], [30:0-1-8,Edge], [41:0-1-8,Edge], [46:Edge,0-1-8]

LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. i Vert(LL) n/: Vert(CT) n/: Horz(CT) -0.00	a - n/a 999	PLATES MT20 Weight: 125 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SI WEBS 2x4 SI	P No.1(flat) P No.1(flat) P No.3(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing of except end verticals. Rigid ceiling directly applied	<i>,</i> , , ,	oc purlins,

REACTIONS. All bearings 27-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 46, 24, 45, 44, 43, 42, 41, 40, 39, 38, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

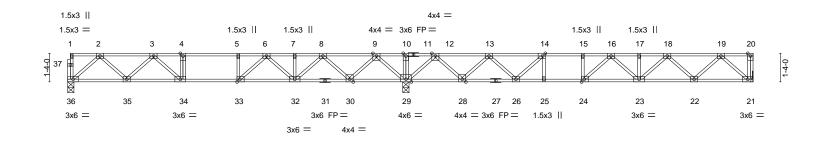
4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

[Job	Truss	Truss Type	Qty	Ply	Delude Residence
	J0424-2427	E1	Floor	2	1	166593258
	JU424-2427	FI	FIOOI	2		Job Reference (optional)
	Comtech, Inc, Fayettev	ille, NC - 28314,			8.430 s Ja	an 6 2022 MiTek Industries, Inc. Mon Jul 1 10:02:13 2024 Page 1
			ID:bJDPtF	R_Jrqa0CZ	ZQwRs5ay	DzNDMn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

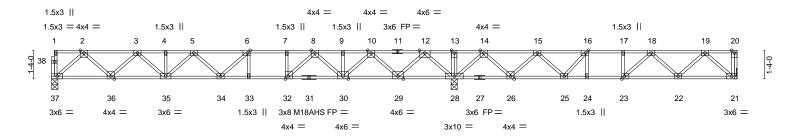
L		5-9-4		1				31-11-8		
		5-9-4		1				16-2-4		
Plate Offsets (X,	,Y) [14:0-1-8,Edge], [24:0-1-8	,Edge], [33:0-1-8,Edge]								
LOADING (psf) TCLL 40.0 TCDL 10.0	Plate Grip DOL Lumber DOL	2-0-0 CS 1.00 TC 1.00 BC	0.69 0.94	DEFL. Vert(LL) Vert(CT)	-0.18 -0.24	23-24	l/defl >999 >790	L/d 480 360	PLATES MT20	GRIP 244/190
BCLL 0.0 BCDL 5.0		YES WI I2014 Ma	B 0.53 atrix-S	Horz(CT)	0.04	21	n/a	n/a	Weight: 167 lb	FT = 20%F, 11%E
	2x4 SP No.1(flat) 2x4 SP No.1(flat)			BRACING- TOP CHOR	D		ral wood end verti	0	ectly applied or 6-0-0 o	oc purlins,
	2x4 SP No.1(liat) 2x4 SP No.3(flat)			BOT CHOR					r 2-2-0 oc bracing.	
REACTIONS.	(size) 36=0-3-8, 29=0-3-8, 2 Max Grav 36=734(LC 3), 29=208)							
FORCES. (lb) TOP CHORD	- Max. Comp./Max. Ten All forc 2-3=-1260/0, 3-4=-2013/0, 4-5= 8-9=-227/612, 9-10=0/2258, 10 14-15=-2218/57, 15-16=-2218/5	-2013/0, 5-6=-2013/0, (-12=0/2258, 12-13=-53	5-7=-1431/158, 7-8= 7/871, 13-14=-1681,	/364,						
BOT CHORD	35-36=0/786, 34-35=0/1711, 33 29-30=-1236/0, 28-29=-1166/0, 23-24=0/2324, 22-23=0/1881, 2	26-28=-607/1226, 25-2								
WEBS	2-36=-1044/0, 2-35=0/659, 3-35 8-30=-1046/0, 8-32=0/753, 6-32 12-28=0/1110, 13-28=-1061/0, 18-23=-15/400, 16-24=-504/8,	5=-627/0, 3-34=-67/403 2=-565/0, 6-33=0/656, 5 13-26=0/762, 19-21=-1	5-33=-339/0, 12-29= 118/0, 19-22=0/738,	-1503/0,),					

NOTES-

1) Unbalanced floor live loads have been considered for this design.

- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.


- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.

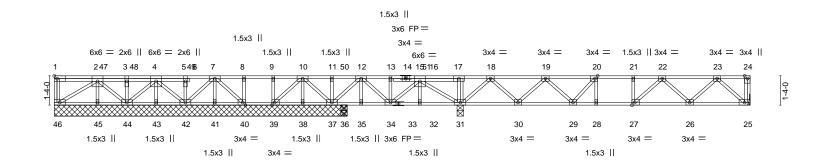
6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Delude Residence
					166593259
J0424-2427	F2	Floor	3	1	
					Job Reference (optional)
Comtech, Inc, Fayetter	/ille, NC - 28314,			8.430 s Ja	an 6 2022 MiTek Industries, Inc. Mon Jul 1 10:02:14 2024 Page 1
		ID:bJDPt	R_Jrqa0C	ZQwRs5ay	DzNDMn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f
0-1-8					
-1-3-0		1-7-12			1-0-0 1-6-12 Scale = 1:53.7

	<u> </u>							<u>-11-8</u> 3-2-4	
Plate Offsets (X,Y)	[6:0-1-8,Edge], [16:0-1-8,Edge], [23:0-1	-8,Edge], [32:0-1-8,Edge]					I	3-2-4	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.72 BC 0.71 WB 0.62 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.23 3 -0.32 3 0.04		l/defl >952 >705 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 168 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) 2 2400F 2.0E(flat) P No.3(flat)	11	BRACING- TOP CHOR BOT CHOR	D	except	end verti	cals.	ectly applied or 6-0-0 o	oc purlins,
FORCES. (lb) - Max. TOP CHORD 2-3=- 8-9=- 14-11 BOT CHORD 36-3 29-30 23-22 WEBS 2-37- 10-22 6-33- 18-23	Srav 37=900(LC 3), 21=611(LC 4), 28=2 Comp./Max. Ten All forces 250 (lb) or -1627/0, 3-4=-2648/0, 4-5=-2648/0, 5-6= -1837/0, 9-10=-1837/0, 10-12=-310/473, 5=-296/1130, 15-16=-1129/604, 16-17=- 7=0/973, 35-36=0/2249, 34-35=0/3002, 0=-205/1168, 28-29=-1062/0, 26-28=-14 4=-321/1379, 22-23=-108/1302, 21-22=(-1293/0, 2-36=0/910, 3-36=-865/0, 3-3; 9=-1241/0, 10-30=0/957, 8-30=-825/0, 8 =-325/0, 7-32=-370/0, 19-21=-853/0, 19- 3=-335/104, 14-28=-1316/0, 14-26=0/94 5=-728/0, 16-24=0/285	less except when shown. -3038/0, 6-7=-2935/0, 7-8 12-13=0/2326, 13-14=0/2 1379/321, 17-18=-1379/32 33-34=0/2935, 32-33=0/29 34/0, 25-26=-858/839, 24-)/641 5=0/543, 12-28=-1682/0, 1 -32=0/942, 5-35=-481/0, 6 22=-37/487, 18-22=-433/1	326, 21, 18-19=-991/14 35, 30-32=0/240 25=-321/1379, 2-29=0/1294, -34=-134/433, 31,						
 All plates are MT20 All plates are 3x4 M 	e loads have been considered for this de plates unless otherwise indicated. T20 unless otherwise indicated. a plus or minus 1 degree rotation about i	-						HUNTH CA	ROMA

5) Refer to girder(s) for truss to truss connections.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Delude Residence			
					166593260			
J0424-2427	F2A	Floor Girder	1	1				
					Job Reference (optional)			
Comtech, Inc, Fayetteville, NC - 28314, 8.430 s Jan 6 2022 MiTek Industries, Inc. Mon Jul 1 10:02:15 2024 Page 1								
· · · •		ID:bJDPt	R_Jrqa0C2	ZQwRs5ay	DzNDMn-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f			
1-7-14 1-2-8	<u>1</u> -	-2-8	14 1-3-	0 1-3-0	<u>1-3-0 1-3-0 1-0-0 1-6-12 1-3-0 </u>			
					Scale = 1:52.4			

L	13-0-8				1	18-4-0 18-	·5-12	-8-0	1		
		13-0-8				5-3-8 0-	1-12		13	-2-4	1
Plate Offsets (2	X,Y) [2	20:0-1-8,Edge], [27:0-1-8	3,Edge], [39:0-	1-8,Edge], [4	10:0-1-8,Edg	e]					
LOADING (ps TCLL 40. TCDL 10. BCLL 0. BCDL 5.	.0 .0 .0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TP	2-0-0 1.00 1.00 NO	CSI. TC BC WB Matrix	0.40 0.48 0.38	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.06 26-27 -0.09 26-27 0.01 25	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 190 lb	GRIP 244/190 FT = 20%F. 11%E
	.0		12014	Iviatio	x-3					Weight. 190 lb	FI = 20%F, 11%E
LUMBER-						BRACING					
TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)				TOP CHOP	TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.						
WEBS	2x4 SP	No.3(flat)				BOT CHOR	RD Rigid o	eiling dire	ectly applied	or 6-0-0 oc bracing.	

REACTIONS. All bearings 13-4-0 except (jt=length) 31=0-3-8, 25=Mechanical, 36=0-3-8.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 37, 38, 39, 36

Max Grav All reactions 250 lb or less at joint(s) 46, 45, 38, 39, 40, 41, 43, 36 except 31=1522(LC 5), 25=610(LC 7), 37=416(LC 16), 42=266(LC 3), 44=266(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 12-13=-189/291, 13-16=-189/294, 16-17=0/1223, 17-18=0/1246, 18-19=-288/0,

19-20=-1125/0, 20-21=-1374/0, 21-22=-1374/0, 22-23=-989/0

- BOT CHORD 32-34=-567/123, 31-32=-567/123, 30-31=-399/0, 29-30=0/833, 28-29=0/1374,
- WEBS 27-28=0/1374, 26-27=0/1300, 25-26=0/639 WEBS 18-31=-1234/0, 18-30=0/797, 19-30=-762/0, 19-29=0/411, 23-25=-851/0, 23-26=0/486, 22-26=-432/0, 22-27=-40/251, 20-29=-418/0, 16-31=-913/0, 16-34=0/396, 12-37=-339/146

NOTES-

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x6 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 37, 38, 39, 36.

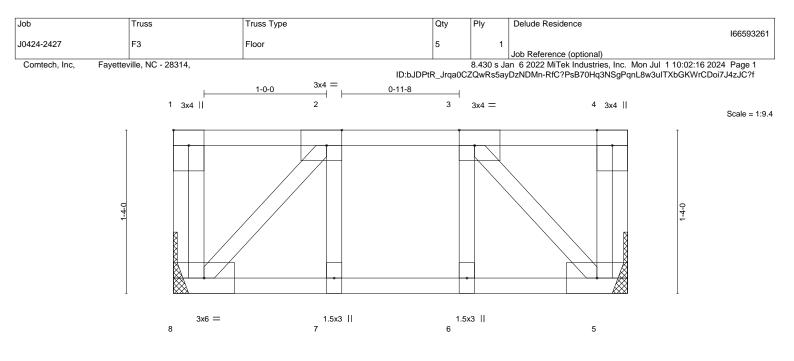
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.
- 8) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 170 lb down at 1-7-4, 170 lb down at 3-7-4, 170 lb down at 3-7-4, 170 lb down at 3-7-4, 170 lb down at 5-7-4, and 170 lb down at 16-3-12, and 170 lb down at 18-1-12 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf)

Vert: 25-46=-10, 1-24=-100 Concentrated Loads (Ib)


Vert: 17=-90(B) 47=-90(B) 48=-90(B) 49=-90(B) 51=-90(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affili 818 Soundside Road

Edenton, NC 27932

3x6 =

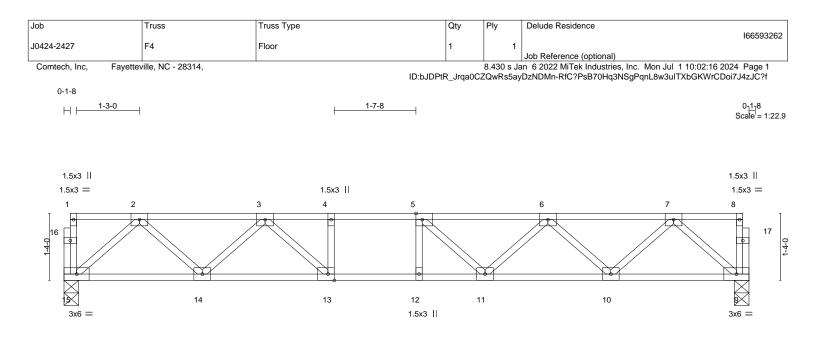
			<u>3-8-8</u> 3-8-8			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [2:0-1-8,Edge], [3:0-1-8	,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.06 BC 0.05 WB 0.04 Matrix-S	DEFL. in Vert(LL) -0.00 Vert(CT) -0.00 Horz(CT) 0.00	7 >999 480 7 >999 360	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%F, 11%E
BOT CHORD 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 3-8-8 oc purlins except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.			

REACTIONS. (size) 8=Mechanical, 5=Mechanical Max Grav 8=190(LC 1), 5=190(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced floor live loads have been considered for this design.


2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Refer to girder(s) for truss to truss connections.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

H			13-7-8			
			13-7-8			
Plate Offsets (X,Y)	[5:0-1-8,Edge], [13:0-1-8,Edge]			1		
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. in (le	oc) l/defl L/d	PLATES	GRIP
TCLL 40.0	Plate Grip DOL 1.00	TC 0.40	Vert(LL) -0.11 11-	12 >999 480	MT20	244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.66	Vert(CT) -0.14 11-	12 >999 360		
BCLL 0.0	Rep Stress Incr YES	WB 0.32	Horz(CT) 0.03	9 n/a n/a		
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 71 lb	FT = 20%F, 11%E
LUMBER-			BRACING-			
TOP CHORD 2x4 SP	No.1(flat)		TOP CHORD Str	uctural wood sheathing dire	ectly applied or 6-0-0	oc purlins,
BOT CHORD 2x4 SP	PNo.1(flat)		exe	cept end verticals.		
WEBS 2x4 SP	PNo.3(flat)		BOT CHORD Rig	gid ceiling directly applied o	r 10-0-0 oc bracing.	
PEACTIONS (cize						

REACTIONS.	(Size)	15=0-3-8, 9=0-3-8
	Max Grav	15=729(LC 1), 9=729(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1247/0, 3-4=-1999/0, 4-5=-1999/0, 5-6=-1892/0, 6-7=-1261/0

BOT CHORD 14-15=0/779, 13-14=0/1705, 12-13=0/1999, 11-12=0/1999, 10-11=0/1725, 9-10=0/772

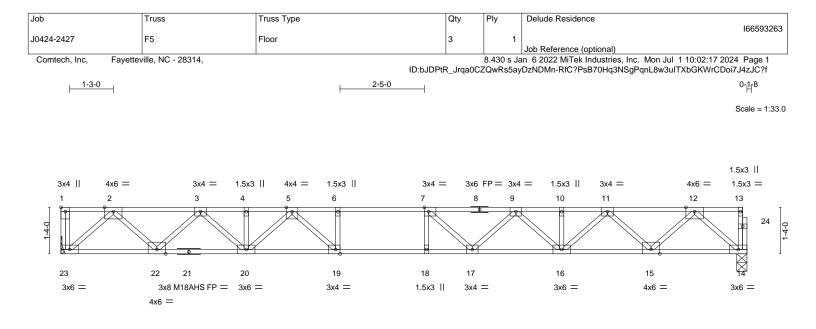
WEBS 7-9=-1025/0, 2-15=-1034/0, 7-10=0/680, 2-14=0/651, 6-10=-645/0, 3-14=-637/0,

6-11=0/306, 3-13=0/554, 5-11=-324/47

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.


3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)	[1:Edge,0-1-8], [7:0-1-8,Edge], [19:0-1-4	3,Edge]	19-8-0				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.53 BC 0.73 WB 0.54 Matrix-S	Vert(LL) -0.29	n (loc) l/defl 9 17-18 >804 0 17-18 >588 6 14 n/a	L/d 480 360 n/a	PLATES MT20 M18AHS Weight: 103 lb	GRIP 244/190 186/179 FT = 20%F, 11%E
BOT CHORD 2x4 SF WEBS 2x4 SF	2 2400F 2.0E(flat) 2 2400F 2.0E(flat) 2 No.3(flat)	BRACING- TOP CHORD BOT CHORD	except end vert	icals.	ectly applied or 6-0-0 o r 10-0-0 oc bracing.	oc purlins,	
FORCES. (Ib) - Max.	 e) 23=Mechanical, 14=0-3-8 brav 23=1068(LC 1), 14=1062(LC 1) Comp./Max. Ten All forces 250 (lb) or -1977/0, 3-4=-3351/0, 4-5=-3351/0, 5-6= 		4074/0,				

19-8-0

9-10=-3346/0, 10-11=-3346/0, 11-12=-1976/0 BOT CHORD 22-23=0/1158, 20-22=0/2760, 19-20=0/3815, 18-19=0/4227, 17-18=0/4227, 16-17=0/3853, 15-16=0/2765, 14-15=0/1156 WEBS 2-23=-1542/0, 2-22=0/1139, 3-22=-1089/0, 3-20=0/803, 12-14=-1536/0, 12-15=0/1141, 11-15=-1098/0, 11-16=0/790, 5-20=-632/0, 5-19=0/857, 9-16=-690/0, 9-17=0/475, 7-17=-563/148, 6-19=-398/0

NOTES-

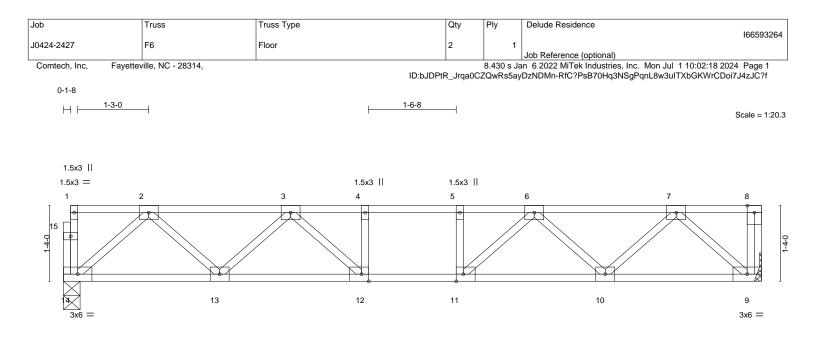
1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affi 818 Soundside Road Edenton, NC 27932

L			12-3-8			
			12-3-8			I
Plate Offsets (X,Y)	[11:0-1-8,Edge], [12:0-1-8,Edge]					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.26 BC 0.35 WB 0.26	Vert(LL) -0.06	n (loc) l/defl L/d 5 10-11 >999 480 3 10-11 >999 360 2 9 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 5.0	Code IRC2015/TPI2014	Matrix-S			Weight: 65 lb	FT = 20%F, 11%E
BOT CHORD 2x4 SP	No.1(flat) No.1(flat) No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	oc purlins,		

REACTIONS.	(size)	14=0-3-8, 9=Mechanical						
	Max Grav	14=656(LC 1), 9=662(LC 1)						

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1097/0, 3-4=-1627/0, 4-5=-1627/0, 5-6=-1627/0, 6-7=-1097/0

BOT CHORD 13-14=0/697, 12-13=0/1466, 11-12=0/1627, 10-11=0/1466, 9-10=0/698

WEBS 2-14=-926/0, 2-13=0/556, 3-13=-513/0, 7-9=-929/0, 7-10=0/556, 6-10=-513/0, 6-11=0/392, 3-12=0/392

NOTES-

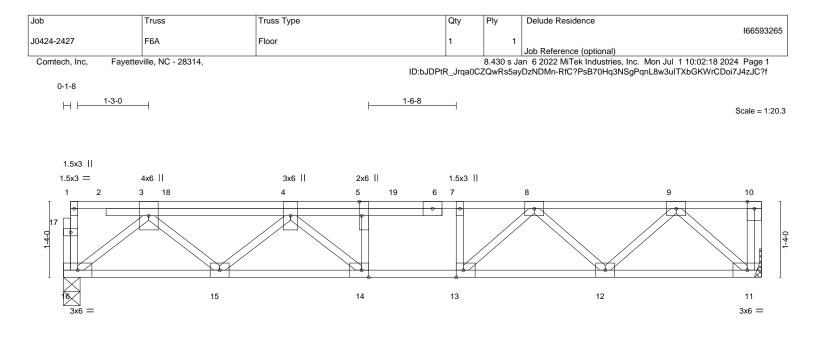
1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

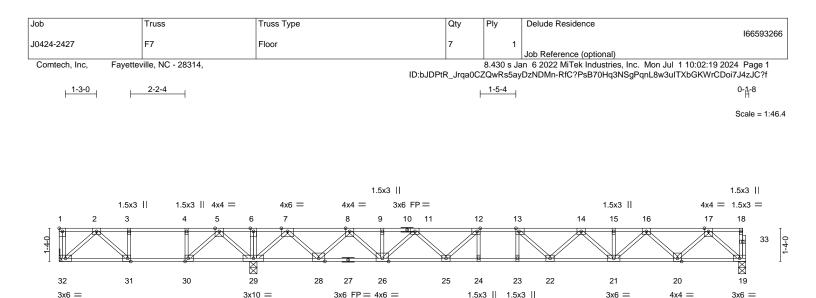
4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.


Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


 			<u>12-3-8</u> 12-3-8				
Plate Offsets (X,Y)	[5:0-3-0,Edge], [13:0-1-8,Edge], [14:0-	1-8,Edge]	12-3-0				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.40 BC 0.52 WB 0.35 Matrix-S	Vert(LL) -0.07	7 14-15 >999 4 0 14-15 >999 3	L/d 480 360 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%F, 11%
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sho except end vertical Rigid ceiling directly	s.	y applied or 6-0-0	,
	 b) 16=0-3-8, 11=Mechanical rav 16=841(LC 1), 11=748(LC 1) 						
TOP CHORD 3-4=- BOT CHORD 15-16 WEBS 3-16=	Comp./Max. Ten All forces 250 (lb) c 1505/0, 4-5=-2040/0, 5-7=-2042/0, 7-8 ≥0/959, 14-15=0/2005, 13-14=0/2040, -1246/0, 3-15=0/741, 4-15=-678/0, 9-1 =0/543, 7-13=-289/0	=-2040/0, 8-9=-1276/0 12-13=0/1741, 11-12=0/7	794				
 All plates are 3x4 M⁻ Plates checked for a Refer to girder(s) for Recommend 2x6 str Strongbacks to be ai CAUTION, Do not ei Hanger(s) or other c 170 lb down at 3-10 responsibility of othe 	onnection device(s) shall be provided s -12, and 107 lb down at 5-10-12 on to	its center. oc and fastened to each tr estrained by other means. sufficient to support concer p chord. The design/select	ntrated load(s) 170 lb do	own at 1-10-12, and	د	WHITH C	AROLA
LOAD CASE(S) Stand 1) Dead + Floor Live (b Uniform Loads (plf) Vert: 11-16= Concentrated Loads	dard alanced): Lumber Increase=1.00, Plate =-10, 1-10=-100					SE/ 0363	

Vert: 4=-90(F) 18=-90(F) 19=-90(F)

SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

4x6 =

		7-9-12	1					21-1-0				
I		7-9-12	I					19-9-12				
Plate Offse	ets (X,Y)	[1:Edge,0-1-8], [12:0-1-8	,Edge], [13:0-1	-8,Edge], [30	0:0-1-8,Edge	e], [31:0-1-8,Edge]						
LOADING TCLL TCDL BCLL BCDL	i (psf) 40.0 10.0 0.0 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TF	2-0-0 1.00 1.00 YES Pl2014	CSI. TC BC WB Matri	0.93 0.99 0.62 x-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.40 0.07	(loc) 23 23 19	l/defl >810 >592 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 145 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			TOP CHO	BRACING- TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing.								
REACTION	Max U	e) 32=Mechanical, 29= plift 32=-89(LC 4) rav 32=356(LC 3), 29=18	,									
FORCES. TOP CHOR	RD 2-3=- 8-9=-	Comp./Max. Ten All for 433/468, 3-4=-433/468, 4 2535/0, 9-11=-2535/0, 11	l-5=-433/468, -12=-3444/0,	5-6=0/1456, 12-13=-3802	6-7=0/1456,	7-8=-974/0,						

27-7-8

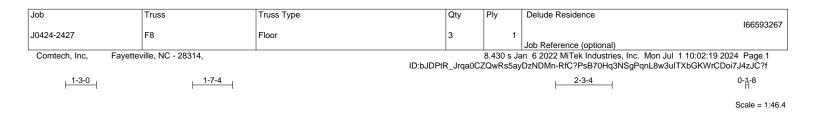
 14-15=-3095/0, 15-16=-3095/0, 16-17=-1849/0

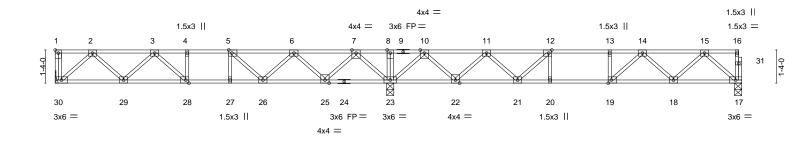
 BOT CHORD
 31-32=-136/322, 30-31=-468/433, 29-30=-957/53, 26-28=0/1856, 25-26=0/3115, 24-25=0/3802, 22-24=0/3802, 22-23=0/3802, 21-22=0/3538, 20-21=0/2578, 19-20=0/1090

 WEBS
 2-32=-428/181, 2-31=-451/151, 5-29=-833/0, 5-30=0/924, 4-30=-477/0, 17-19=-1448/0, 17-20=0/1056, 16-20=-1014/0, 16-21=0/704, 7-29=-1668/0, 7-28=0/1303, 8-28=-1253/0, 8-26=0/949, 11-26=-810/0, 11-25=0/549, 14-21=-601/0, 14-22=-8/362, 13-22=-421/200, 12-25=-691/0, 12-24=-112/250

NOTES-

1) Unbalanced floor live loads have been considered for this design.


7-9-12


2) All plates are 3x4 MT20 unless otherwise indicated.

- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 32.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

13-5-12 13-5-12			27-7-8 14-1-12						
Plate Offsets (X,Y)		8,Edge], [19:0-1-8,Edge],	28:0-1-8,Edge]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.50 BC 0.63 WB 0.43 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.11 18-19 -0.14 18-19 0.03 17	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 142 lb	GRIP 244/190 FT = 20%F, 11%E	
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) REACTIONS. (size) 30=Mechanical, 23=0-3-8, 17=0-3-8 Max Gray 30=649(LC 3), 23=1791(LC 1), 17=670(LC 4)			BRACING- TOP CHOR BOT CHOR	D Structu except	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.				
TOP CHORD 2	lax. Comp./Max. Ten All forces 250 (lb) o -3=-1068/0, 3-4=-1564/0, 4-5=-1564/0, 5-6: -10=0/1689, 10-11=-447/402, 11-12=-1357 4-15=-1130/0	1307/150, 6-7=-495/531, '34, 12-13=-1686/0, 13-14	7-8=0/1689, =-1686/0,						
WEBS 2	9-30=0/682, 28-29=0/1424, 27-28=0/1564, 3-25=-769/0, 22-23=-811/0, 21-22=-202/10 8-19=0/1510, 17-18=0/715 -30=-908/0, 2-29=0/536, 3-29=-495/4, 7-23 -26=0/486, 5-26=-576/0, 10-23=-1277/0, 10	34, 20-21=0/1686, 19-20= =-1243/0, 7-25=0/885, 6-2	0/1686, 5=-848/0,						

6-26=0/486, 5-26=-576/0, 10-23=-1277/0, 10-22=0/911, 11-22=-872/0, 11-21=0/527, 15-17=-949/0, 15-18=0/577, 14-18=-529/0, 14-19=-83/265, 12-21=-625/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.
- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

