

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 2500391-21340 CC2724 CP Granville

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

Pages or sheets covered by this seal: I71010828 thru I71010847

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

January 27,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	A1	Piggyback Base	6	1	Job Reference (optional)	171010828

Run; 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:14 ID:IXkJGMar_eVa?96nuuVTqfzrCtF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	12-1-12	14-0-0 18-11-7	26-0-0	27-9-10	34-7-5	39-10-4 40-0-0	48-10-4	54-0-0
	12-1-12	1-10-4 4-11-7	7-0-9	1-9-10	6-9-11	5-2-15 0-1-12	8-10-4	5-1-12
Scale = 1:96.8								

Plate Offsets ((X, Y): [2:0-8	8-0,0-0-8],	[6:0-4-9,0-4-7], [7:0-	-3-8,0-3-	0], [10:0-3-8,0-2	-12], [12:0-3-4,Ed	ge], [14:()-3-8,0-2-0], [[15:0-5-0),0-4-8], [17:0-3-0),0-2-0], [18:0-6-0,0-3	0], [19:0-1-1	2,0-2-8]
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	12	(psf) 20.0 .7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	15/TPI2014	CSI TC BC WB Matrix-MS	0.89 0.61 0.78	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.37 -0.79 0.09 -0.19	(loc) 16-17 16-17 14 17-19	l/defl >999 >556 n/a >561	L/d 240 180 n/a 360	PLATES MT20 M18AHS Weight: 396 It	GRIP 244/190 186/179	%
LUMBER TOP CHORD BOT CHORD WEBS	2x6 SP No 2x6 SP DS 2x4 SP No 5-21,16-8,7	.2 S *Except .2 *Excep 16-9,10-15	t* 19-17:2x6 SP No.: t* 5,11-14,9-15:2x4 SP	2 ' No.3	NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m II; Exp B; Er	roof live loads hav 7-10; Vult=130mp ph; TCDL=6.0psf; iclosed; MWFRS (ve been oh (3-seo BCDL=3 envelope	considered fo cond gust) 3.0psf; h=25ft e) exterior zo	or ;; Cat. ne	14) Pro bea 2, 6 Ib u 15) Gra or ti	vide mee ring plat 10 lb up plift at jo phical p ne orient	chanica e capa lift at jo int 14. urlin re ation o	al connection (b able of withstand bint 12, 206 lb u epresentation do of the purlin alou	y others) of ling 109 lb u plift at joint : bes not depir ng the top ar	truss to uplift at joint 21 and 299 ct the size nd/or
BRACING TOP CHORD	Structural 2-2-0 oc pu 2-0-0 oc pu	wood shea urlins, exc urlins (2-1)	athing directly applie ept 0-13 max.): 6-7.	ed or	and C-C Ext 18-9-11, Ext to 27-11-6, I 33-4-3 to 54	erior (2) -0-8-5 to 4 erior (2) 18-9-11 to Exterior (2) 27-11-6 -6-7 zone;C-C for	4-8-8, Int 5 24-2-8, 5 to 33-4 member	terior (1) 4-8- , Interior (1) 2 -3, Interior (1 s and forces	8 to 24-2-8) &	bott 16) Attio LOAD (om chor c room c CASE(S)	d. hecke Stai	d for L/360 defle ndard	ection.	
BOT CHORD	Rigid ceilin bracing, E	ig directly Except:	applied or 10-0-0 oc	;	MWFRS for grip DOL=1. 3) TCLL: ASCE	reactions shown; 60 E 7-10; Pr=20.0 ps	Lumber I f (roof Ll	DOL=1.60 pla _: Lum DOL=	ate 1.15						
WEBS REACTIONS	1 Row at n (size) Max Horiz Max Uplift Max Grav	nidpt 2=0-3-8, 1 21=0-3-8 2=166 (LC 2=-109 (L 14=-299 (l 2=1551 (L 14-3132 (8-17, 10-14 12=0-3-8, 14=0-3-8, 2 20) C 17), 12=-610 (LC 1 LC 17), 21=-206 (LC C 3), 12=-7 (LC 17), (LC 62) 21=1204 (U (C 62) 21=1204 (U	62), ; 16) ;	 Plate DOL=1.15); Pg=10.0 psf (ground snow); Pf=12.7 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads. 										
FORCES	(lb) - Maxir	num Com	pression/Maximum	001)	Building Des verifying Rai	signer/Project engi in Load = 5.0 (psf)	neer res covers r	ponsible for ain loading					WHY C	APO	
TOP CHORD	1-2=0/19, 2 5-6=-2890/ 7-8=-2922/ 9-10=-3472	2-3=-2869 /133, 6-7= /115, 8-9= 2/205, 10- 7/2637, 12	//273, 3-5=-2541/229 2544/153, 3627/187, -11=-132/2583, -2-13=0/8	9, -	requirement 7) Provide ade 3) All plates ard 6) This truss ha chord live lo	s specific to the us quate drainage to e MT20 plates unle as been designed ad nonconcurrent	e of this prevent ess other for a 10.0 with any	truss compo water pondin rwise indicate 0 psf bottom other live loa	nent. g. ed. ads.		4	and the second sec	ORICEES		
BOT CHORD	2-21=-157/ 17-19=0/25	/2555, 19- 544, 16-17 6/3427 12	-21=0/2239, 7=-15/3211, 2-14=-2508/199		10) * This truss on the botto 3-06-00 tall	has been designed m chord in all area by 2-00-00 wide w	d for a liv is where ill fit betw	re load of 20. a rectangle veen the bott	0psf om		11111		SE/ 0363	4L 322	
WEBS	6-19=-143/ 8-17=-965/ 5-21=-922/ 9-16=-347/ 10-14=-499 9-15=-842/	/801, 7-17 /324, 3-21 /138, 5-19 /154, 10-1 53/359, 11 /52	=-89/890, =-487/234, =0/614, 8-16=-81/57 5=0/1709, 1-14=-479/148,	78,	chord and a (1) Ceiling dead dead load (1 (2) Bottom chor chord dead (3) Bearings are SP No.2, Jo	ny other members I load (5.0 psf) on 0.0psf) on member d live load (40.0 psf) oad (5.0 psf) applie assumed to be: J oint 14 SP DSS, J	, with BC member er(s).6-19 sf) and a ied only loint 2 Sl oint 12 S	(b) L = 10.0ps (s). 6-7; Wall 0, 7-17 (dditional bott to room. 17-1 P No.2 , Joint (P No.2 .	r. I om 9 t 21						

SP No.2, Joint 14 SP DSS, Joint 12 SP No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 27,2025

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	A1E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171010829

Scale - 1.96.8

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:16 ID:p7rDqyikhQSCPZhJM?7R8ZzrCnw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

54-0-0

00010 = 1.00.0														
Plate Offsets (X, Y): [24:	0-1-9,0-3-1	2]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 2.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.18 0.19 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 29	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 456	GRIP 244/190 b FT = 20	%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x6 SP N 2x6 SP N 2x4 SP N 45-15,44 47-13,48 Structura 6-0-0 oc 2-0-0 oc Rigid ceil bracing. 1 Row at (size)	lo.2 lo.3 *Excep -16,43-17,4 -11,49-10,5 il wood shea purlins, exc purlins (6-0 ling directly midpt 2=54-0-0,	t* 1-19,40-20,39-21,46 1-9:2x4 SP No.2 athing directly applie ept -0 max.): 12-18. applied or 10-0-0 oc 15-45, 16-44, 17-43 19-41, 14-46, 13-47 11-48 29=54-0-0, 31=54-0	-14, d or ; ; ; FORCES ;-0, TOP CHORD	Max Grav 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5 (lb) - Maxim Tension 1-2=0/19, 2	=164 (LC 58), 2 1=584 (LC 59), 3=211 (LC 59), 6=154 (LC 2), 3 8=167 (LC 41), 0=170 (LC 41), 3=158 (LC 59), 5=169 (LC 40), 7=164 (LC 33), 9=170 (LC 41), 2=169 (LC 41), 4=168 (LC 2), 5 6=264 (LC 2), num Compression -3=-199/90, 3-4	29=252 (LC 2 32=19 (LC 3 35=143 (LC 37=177 (LC 2 39=168 (LC 41=161 (LC 44=170 (LC 44=170 (LC 46=170 (LC 51=168 (LC 53=159 (LC 53=159 (LC 55=123 (LC 3 55=123 (LC 3) 55=123 (LC 3)	2), 17), 2), 2), 41), 41), 40), 40), 40), 41), 58), 58),	BOT CH	IORD	2-56= 54-55 52-53 49-51 47-48 43-44 43-44 43-44 38-39 36-37 33-35 31-32	-44/161, 55-56 =-44/161, 53-5 =-44/161, 51-5 =-44/161, 48-4 =-44/161, 44-4 =-44/161, 44-4 =-44/161, 39-4 =-44/161, 37-3 =-44/161, 37-3 =-39/155, 32-3 =-39/155, 29-3	=-44/161, 4=-44/161, 2=-44/161, 7=-44/161, 5=-44/161, 3=-44/161, 0=-44/161, 0=-44/161, 6=-39/155, 3=-39/155, 1=-39/163	
	Max Horiz Max Uplift	32=54-0-C 36=54-0-C 43=54-0-C 43=54-0-C 49=54-0-C 53=54-0-C 53=54-0-C 2=166 (LC 2=-26 (LC 31=-168 (I 33=-61 (L1 33=-61 (L1 33=-61 (L1 33=-61 (L1 33=-61 (L1 33=-61 (L1 40=-69 (L1 44=-43 (L1 49=-67 (L1 52=-60 (L1 53=-51))))))))))))))))))))))))))))))))))))	$\begin{array}{l} 0, 33 = 54 - 0.0, 35 = 54 \\ 0, 37 = 54 - 0.0, 38 = 54 \\ 0, 40 = 54 - 0.0, 41 = 54 \\ 0, 44 = 54 - 0.0, 45 = 54 \\ 0, 44 = 54 - 0.0, 52 = 54 \\ 0, 51 = 54 - 0.0, 52 = 54 \\ 0, 54 = 54 - 0.0, 55 = 54 \\ 0, 54 = 54 - 0.0, 55 = 54 \\ 0, 52 = 0.0 \\ 17), 32 = -71 (LC \\ C 17), 32 = -71 (LC \\ C 17), 33 = -42 (LC 1) \\ C 17), 39 = -62 (LC 1) \\ C 17), 39 = -64 (LC 1) \\ C 17), 41 = -19 (LC 1) \\ C 12), 45 = -34 (LC 1) \\ C 12), 45 = -34 (LC 1) \\ C 16), 51 = -61 (LC 1) \\ C 16), 55 = -45 (LC 1) \\ LC 16) \\ \end{array}$	0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 3), 59), 3), 7), 7), 7), 2), 6), 6), 6),	4-5=-109/10 8-9=-63/202 11-12=-107, 13-14=-97/2 15-16=-97/2 17-18=-97/2 19-20=-98/2 21-22=-63/1 23-24=-40/8 26-27=-54/2 29-30=0/8	55, 5-7=-81/128 2, 9-10=-80/251 (323, 12-13=-97) 315, 14-15=-97/ 315, 16-17=-97/ 315, 18-19=-107 282, 20-21=-80/ 82, 22-23=-48/ 36, 24-25=-33/6 32, 27-28=-78/1	, 7-8=-58/15 , 10-11=-98/ 7(315, 315, 315, 7(316, 230, 135, 5, 25-26=-44 7, 28-29=-1{	5, (302, 4/47, 84/57,		M. HILLING		SE 036	AROL AL 322 GILBER	

January 27,2025

Page: 1

Continued on page 2. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Paracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	A1E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	171010829

Run: 8.83 S. Jan 17 2025 Print: 8.830 S. Jan 17 2025 MiTek Industries. Inc. Mon. Jan 27 08:50:16

ID:p7rDqyikhQSCPZhJM?7R8ZzrCnw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

WEBS 15-45=-129/63, 16-44=-130/55, 17-43=-118/0, 19-41=-121/86, 20-40=-130/158, 21-39=-128/116, 22-38=-127/80, 23-37=-138/94, 24-36=-112/83, 25-35=-111/59, 26-33=-142/83, 27-32=-22/31, 28-31=-365/247, 14-46=-130/55, 13-47=-124/0, 11-48=-121/88, 10-49=-130/158, 9-51=-128/116, 8-52=-129/82, 7-53=-120/83, 5-54=-122/84, 4-55=-103/80, 3-56=-173/194

NOTES

 Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -0-8-5 to 4-8-8, Exterior (2) 4-8-8 to 18-9-11, Corner (3) 18-9-11 to 24-2-8, Exterior (2) 24-2-8 to 27-11-6, Corner (3) 27-11-6 to 33-4-9, Exterior (2) 33-4-9 to 54-6-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=10.0 psf (ground snow); Pf=12.7 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10, Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- Provide adequate drainage to prevent water ponding.
 All plates are 2x4 (||) MT20 unless otherwise indicated.
- 10) Gable requires continuous bottom chord bearing.
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) All bearings are assumed to be SP No.2 .
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 2, 66 lb uplift at joint 29, 46 lb uplift at joint 45, 43 lb uplift at joint 44, 19 lb uplift at joint 41, 69 lb uplift at joint 40, 62 lb uplift at joint 39, 59 lb uplift at joint 38, 69 lb uplift at joint 37, 52 lb uplift at joint 36, 42 lb uplift at joint 35, 61 lb uplift at joint 33, 71 lb uplift at joint 32, 168 lb uplift at joint 48, 67 lb uplift at joint 55, 104 lb uplift at joint 56, 26 lb uplift at joint 54, 45 lb uplift at joint 55, 104 lb uplift at joint 56, 26 lb uplift at joint 59, 201 lb uplift at joint 50, 201 lb uplift at joint 55, 26 lb uplift at joint 57, 45 lb uplift at joint 55, 104 lb uplift at joint 56, 26 lb uplift at joint 29.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	B1	Common	1	1	Job Reference (optional)	171010830

Run; 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:16 ID:dh7hirjpfs0_NeHPgVDAfjzrDSW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

		6-10-0		14-6-0		24-6-0		32-	2-0		39-0	-0	
Scale = 1:89.3	1	6-10-0		7-8-0		10-0-0		7-8	3-0		6-10	-0	
Plate Offsets	(X, Y): [2:Edge,0-0-12]], [4:0-4-0,0-3-0], [6:0-4	4-0,0-3-0)], [8:Edge,0-0	-12]								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015	5/TPI2014	CSI TC BC WB Matrix-MS	0.56 0.46 0.55	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.57 0.10	(loc) 12-13 12-13 8	l/defl >999 >823 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 210 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP DSS 2x4 SP DSS 2x4 SP No.2 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 3-8-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, & Max Horiz 2=170 (LC Max Uplift 2=-319 (L Max Grav 2=1613 (L	t* 15-3,7-10:2x4 SP N athing directly applied applied or 9-1-12 oc 3=0-3-8 C 16) C 16), 8=-319 (LC 17) .C 2), 8=1613 (LC 2)	3) o.3 4) 5) or 6) 7) 8)	TCLL: ASCE Plate DOL=1 psf (flat roof Category II; Unbalanced design. This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements This truss ha chord live loz * This truss h on the bottor	57-10; Pr=20.0 1.15); Pg=10.0 snow: Lum DC Exp B; Partially snow loads ha as been design psf or 1.00 tim on-concurrent igner/Project e n Load = 5.0 (s specific to the sbeen design ad nonconcurr has been design an chord in all a) psf (roof LL psf (ground)L=1.15 Plat y Exp.; Ct=1 we been cor ed for great es flat roof lo with other lin engineer resp psf) covers r e use of this used for a 10.0 ent with any gned for a liv areas where	: Lum DOL= snow); Pf=7 e DOL=1.15 .10 isidered for t er of min roo bad of 7.7 ps re loads. bonsible for ain loading truss compc 0 psf bottom other live loa e load of 20. a rectangle	=1.15 ?.7 this if live of on onent. ads. .0psf					
TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/23, 2-3=-2860 5-7=-2731/586, 7-8= 2-15=-568/2472, 13-	pression/Maximum //542, 3-5=-2731/585, 2860/543, 8-9=0/23 15=-435/2210,	9) 10	3-06-00 tall t chord and ar All bearings) Provide mec bearing plate	by 2-00-00 wid ny other memb are assumed t hanical conne capable of wi	e will fit betw ers, with BC o be SP No. ction (by oth thstanding 3	veen the both DL = 10.0ps 2 . ers) of truss 19 lb uplift a	tom sf. to at joint					
WEBS	12-13=-175/1574, 10 8-10=-399/2472 3-15=-220/153, 4-15 4-13=-610/315, 5-13 5-12=-249/903, 6-12	D-12=-301/2210, i=-125/388, i=-249/903, i=-610/315,	LC	2 and 319 lb AD CASE(S)	uplift at joint 8 Standard	ι.					A.L.	ORTH CA	ROJ
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 II; Exp B; and C-C 19-6-0, E 23-4-13 tt MWFRS : grip DOL:	c-126/388, 7-10 eed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B(Enclosed; MWFRS (en Exterior (2) -0-10-8 to 3 xterior (2) 19-6-0 to 23- o 39-10-8 zone;C-C for for reactions shown; Lu =1.60	=-220/153 been considered for (3-second gust) CDL=3.0psf; h=25ft; C ivelope) exterior zone -0-5, Interior (1) 3-0-5 4-13, Interior (1) members and forces & mber DOL=1.60 plate	at. to &									SEA 0363 MGINI January	ER. K

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	B1E	Common Supported Gable	1	1	Job Reference (optional)	171010831

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:17 ID:t2Ke?o3RWy?EBhGkgJiCf7zrDQn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1.86.8		 		39	9-0-0							
Plate Offsets	(X, Y): [7:0-3-0,0-3-0]	, [15:0-3-0,0-3-0]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI20	CSI TC BC WB Matrix-MS	0.31 Vert(Ll 0.25 Vert(C 0.16 Horz(C	in .) n/a T) n/a T) -0.01	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 265 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep 31-11,32-10,33-9,34 SP No.2 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=39-0-0 26=39-0- 30=39-0- 33=39-0- 40=39-0- 4	ot* I-8,30-12,29-13,28- eathing directly applie applied or 6-0-0 oc 11-31, 10-32, 12-3 , 20=39-0-0, 22=39- 0, 24=39-0-0, 25=30 0, 28=39-0-0, 29=30 0, 31=39-0-0, 32=33 0, 38=39-0-0, 39=30 0, 217, 24=-66 (LC C 17), 32=-56 (LC C 17), 32=-56 (LC C 16), 37=-54 (LC C 16), 37=-54 (LC C 16), 37=-54 (LC C 16), 31=390 (LC C 2), 26=156 (LC 3 LC 34), 38=176 (LC LC 34), 38=176 (LC C 34), 40=304 (LC C 34)	FORCES TOP CHC 14:2x4 ed or 0 0-0, 3-0, 3	 (ib) - Maximum Comp Tension 1-2=0/23, 2-3=-262/3 4-5=-145/312, 5-6=-9 8-9=0/348, 9-10=0/34 11-12=-6/350, 12-13: 14-16=0/309, 16-17= 18-19=-115/275, 19-2 0RD 2-40=-248/284, 39-44 38-39=-248/284, 39-44 38-39=-248/284, 39-44 38-39=-248/284, 39-44 38-39=-248/284, 39-44 38-37=-249/286, 30-2 29-30=-249/286, 28-2 22-28=-249/286, 28-2 22-28=-249/286, 28-2 22-28=-249/286, 28-2 22-28=-249/286, 28-2 22-28=-249/286, 28-2 22-28=-249/286, 28-2 22-23=-246/248, 29-2 21-32=-246/248, 29-2 21-33=-115/116, 8-34: 6-37=-111/76, 5-38=: 3-40=-204/182, 128-3 3-4	Dression/Maxim 27, 3-4=-183/ 27, 3-4=-183/ 20/318, 6-8=-5 50, 10-11=-6/3 =0/339, 13-14: -39/301, 17-11 20=-228/335, 1 20=-248/284, 38=-248/284, 38=-248/284, 29=-249/286, 29=-249/286, 29=-249/286, 29=-249/286, 20=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 24=-246/284, 25=-131/188, 5=-114/77, 3=-48/63, been consider (3-second gus 2DL=3.0psf; h= velope) exterior 2-5, Exterior (2) s and forces & _=1.60 plate g	num 292, 0/341, 56, =0/312, 3=-92/308, 20-21=0/23 =-121/84, -91/60, ed for t) =25ft; Cat. or zone) 3-0-5 to 23-6-0 MWFRS rip	 Tru only see or c Tcu Plai psf Cat Unts loac Unts loac This loac This loac To Veri req All µ Gat To Gat This choice 	ss desig 2. For st Standa onsult q L: ASC ie DOL= (flat root egory II; alancec ign. s truss h d of 12.0 rhangs I ding De fying Ra uiremen plates ar ple requi ble studs s truss h rd live k	ned fo ruds ex rd Indu ualifier F 7-10 1.15); f snow Exp B d snow as beee psf or non-co signer, iin Loa ts spece e 2x4 res coult as beee aad nor	r wind loads in ti goosed to wind (i istry Gable End d building desigr ; Pr=20.0 psf (rr Pg=10.0 psf (gr ; Pr=20.0 psf (rr Pg=10.0 psf (gr ; Pr=20.0 psf (rr Pg=10.0 psf (gr ; Pr=20.0 psf (rc ; Partially Exp.; loads have bee en designed for g 1.00 times flat r hourrent with ott //roject engineed d = 5.0 (psf) cov cific to the use o (II) MT20 unless intinuous bottom ed at 2-0-0 oc. an designed for a nooncurrent with CA SEA 0363	he plane of the hormal to the fa Details as appl her as per ANS of LL: Lum DO bund snow); Pf Plate DOL=1. Ct=1.10 in considered for greater of min r oof load of 7.7 her live loads. r responsible for rers rain loading f this truss com s otherwise ind chord bearing.	truss ice), icable, /TPI 1. L=1.15 =7.7 15); rr this pof live psf on rr ponent. icated. m loads.

January 27,2025

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TP1** Quality **Criteria and DSB-22** available form Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	B1E	Common Supported Gable	1	1	Job Reference (optional)	1/1010831

12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) All bearings are assumed to be SP No.2 .

14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 68 lb uplift at joint 2, 56 lb uplift at joint 32, 63 lb uplift at joint 33, 63 lb uplift at joint 34, 61 lb uplift at joint 36, 54 lb uplift at joint 37, 68 lb uplift at joint 38, 33 lb uplift at joint 39, 129 lb uplift at joint 40, 52 lb uplift at joint 30, 65 lb uplift at joint 29, 63 lb uplift at joint 28, 61 lb uplift at joint 26, 55 lb uplift at joint 25, 66 lb uplift at joint 24, 44 lb uplift at joint 23, 111 lb uplift at joint 22 and 68 lb uplift at joint 2.

LOAD CASE(S) Standard

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:17 ID:t2Ke?o3RWy?EBhGkgJiCf7zrDQn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	B1M	Common	7	1	Job Reference (optional)	171010832

Run; 8,83 S Jan 17 2025 Print: 8,830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:17 ID:p1izvsqCVKmB4OzeJmIqAQzrDKc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:96.8

	(, .). [=.=.90;00];	[,=-:3-],[-:], [· • · = • g • , • · •]									
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TH	PI2014	CSI TC BC WB Matrix-MS	0.37 0.79 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.32 -0.51 0.13	(loc) 12-14 12-14 10	l/defl >999 >909 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 235 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEDS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP DSS 2x4 SP DSS *Except 2x4 SP No.3 *Except 2x4 SP No.3 *Except 23-4,21-4,21-5,14-7, Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheat 3-5-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 1 Max Horiz 2=170 (LC Max Uplift 2=-290 (LC	t* 20-16:2x4 SP No.2 t* 14-8,12-8:2x4 SP No athing directly applied applied or 5-4-6 oc 10=0-3-8 C 16) C 16), 10=-290 (LC 1	2) W V. 2. II; 2.2 19 2.2 M M gr 2.3 M M gr 2.3 P P C C 4) U dr 7) 5) Tī Io	/ind: ASCE asd=103mp ; Exp B; Enc nd C-C Exte 9-6-0, Exter 9-6-0, Exter 9-6-0, Exter 7-10 C-C Exter 9-6-0, Exter 9-6-0, Exter 10 DCL=1.6 CLL: ASCE 10 DCL=1.6 CLL: ASCE 10 CL:	7-10; Vult=130m; h; TCDL=6.0psf; closed; MWFRS (rrior (2) -0-10-8 to ior (2) 19-6-0 to 2 -10-8 zone;C-C fi eactions shown; I io 7-10; Pr=20.0 ps .15); Pg=10.0 ps .15); Pg=10.0 ps snow: Lum DOL= Exp B; Partially Ex snow loads have s been designed 1 s for 1.00 times f	oh (3-sec BCDL=3 envelope o 3-0-5, Ir (3-4-13, I or memb Lumber I f (roof LL (ground 1.15 Plat (p.; Ct=1 been cor for greate lat roof lo	ond gust) .0psf; h=25ff e) exterior zo tterior (1) 3-(nterior (1) ers and force DOL=1.60 pla .: Lum DOL= snow); Pf=7 e DOL=1.15; .10 isidered for t er of min rooi ad of 7.7 ps	; Cat. ne)-5 to es & ate 1.15 .7 ; his f live f on						
FORCES TOP CHORD	Max Grav 2=1781 (L (lb) - Maximum Com Tension 1-2=0/23, 2-3=-3281 5-6=-91/61, 6-7=-91/	.C 3), 10=1781 (LC 3 pression/Maximum /488, 3-5=-3160/532 /61, 7-9=-3160/533.) 01 6) B ve , re 7) T	verhangs no uilding Desi erifying Rair equirements his truss has	on-concurrent with gner/Project engi h Load = 5.0 (psf) specific to the us	n other liv neer resp covers r se of this for a 10 (ve loads. consible for ain loading truss compo	nent.						
BOT CHORD WEBS	9-10=-3281/489, 10- 2-23=-521/2856, 21- 19-21=-53/2906, 15- 14-15=-53/2906, 12- 10-12=-352/2856, 18 17-18=-1055/0, 16-1 3-23=-234/163, 4-23 4-21=-610/307, 20-2 5-20=-172/1007, 7-1 14-16=-152/940, 8-1	11=0/23 23=-372/2578, 19=-53/2906, 14=-237/2578, 3-20=-167/72, 7=-167/72 =-145/418, 1=-152/940, 6=-172/1007, 4=-610/307,	9) A 10) P 2 11) A	 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) All bearings are assumed to be SP No.2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 290 lb uplift at joint 2 and 290 lb uplift at joint 10. 11) ATTIC SPACE SHOWN IS DESIGNED AS 								Mann		
NOTES 1) Unbalance this design	8-12=-146/418, 9-12 5-7=-2033/451, 18-1 15-17=0/100, 14-17= ed roof live loads have n.	2=-234/163, 9=0/100, 18-21=-104 =-1042/0 been considered for	12/0, LOAE	NINHABITA D CASE(S)	BLE. Standard					111.		January	E.R ILBER 27,2025	nnne.
WARN	NING - Verify design paramete	rs and READ NOTES ON 1			FERENCE PAGE MIL	7473 rev 1	/2/2023 BEFORE	USE				ENGINEERI		

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	B2	Common	6	1	Job Reference (optional)	171010833

38-8-8

19-6-0

8-0-0

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-0-10-8

 \vdash

0-10-8

5-8-0

5-8-0

11-6-0

5-10-0

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:17 ID:?2Z6BJPltG8lgNvdw3dJRqzrDIa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

<u>33-4-0</u> 5-10-0

38-8-8

5-4-8

-

27-6-0

8-0-0

Page: 1

					5x6=						
	10-6-3 □ 10-3-6 □ 10-3-6 □ 10-3-6 □ 10-3-10 □ 10-3-10 □ 10-3-10 □ 10-3-10 □ 10-3-10 □ 10-3-10 □ 10-3-10 □ 10-6-3 □ 10-6-10 □ 10-6-	2x 3 23 2 4x6=	6 ¹² 4 15 3x6=	2 5x8 = 4 14 14 29 3x6=	25 4 30	26 31 12 3x	5x 2 32 6= 11 3x6	<pre> 48.2 6 6 33 =</pre>	2x0 10 3x6=	4 # 7 27 3x6 _{\$} 8 5x	9 ∾ ∞⊥ 8 ⊪
		6-10-0	14-	6-0	24-6-0		3	32-2-0		38-8-8	ł
Scale = 1:77.	3	6-10-0	7-8	3-0	10-0-0			7-8-0		6-6-8	-
Plate Offsets Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0) 7.7/10.0 10.0 0.0* 10.0	2], [4:0-4-0,0-3-0], [6:0 Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2	-4-4,Edge] CSI TC BC WB Matrix	0.56 0.46 0.55 -MS	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 1 -0.56 1 0.10	(loc) l/c 2-13 >9 2-13 >8 9 I	lefl L/d 199 240 130 180 n/a n/a	PLATES MT20	GRIP 244/190 ET = 20%
BOT CHORE WEBS SLIDER BRACING TOP CHORE BOT CHORE REACTIONS FORCES TOP CHORE BOT CHORE BOT CHORE WEBS	 2x4 SP DSS 2x4 SP No.2 *Excep Left: 2x4 SP No.3 - Right 2x4 SP No.3 - Structural wood she 3-7-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=180 (LI Max Uplift 2=-317 (L Max Grav 2=1601 (I (Ib) - Maximum Con Tension 1-2=0/23, 2-3=-2837 5-7=-2591/570, 7-9- 2:15=-576/2452, 13 12-13=-183/1553, 1 9-10=-396/2331 3-15=-220/153, 4-11 4-13=-610/315, 5-11 5-12=-243/877, 6-12 6-10=-105/295, 7-10 	bt* 3-15,7-10:2x4 SP I - 1-6-0 eathing directly applied v applied or 9-0-15 oc 9= Mechanical C 16) .C 16), 9=-296 (LC 17 LC 2), 9=1548 (LC 2) hpression/Maximum 7/539, 3-5=-2708/583 =-2697/530 -15=-443/2189, 0-12=-308/2160, 5=-125/389, 3=-249/902, 2=-580/309, 0=-160/136	<pre>psf (i No.3 Cate 4) Unba 5) This d or load overi 6) Build verify requ 7) This chorr 7) 8) * Thi on th 3-06 chorr 10) Refe 11) Prov bear 2 anc LOAD C</pre>	ilat roof snow: Li gory II; Exp B; P alanced snow log rh. truss has been of of 12.0 psf or 1. hangs non-conci- ling Designer/Pr ring Rain Load = irrements specific truss has been of d live load nonoco s truss has been of d live load nonoco d and any other earings are assu to girder(s) for ide mechanical of ing plate capable d 296 lb uplift at ASE(S) Standa	um DOL=1.15 Plat Partially Exp.; Ct=1 ads have been cor designed for great 00 times flat roof I urrent with other Ii oject engineer res = 5.0 (psf) covers r to to the use of this designed for a 10. oncurrent with any n designed for a liv in all areas where 00 wide will fit betw members, with BC urned to be SP No. truss to truss com connection (by oth e of withstanding 3 joint 9. ard	e DOL=1.15); .10 nsidered for th er of min roof bad of 7.7 psf ve loads. ponsible for ain loading truss compon 0 psf bottom other live load e load of 20.0 a rectangle veen the bottc DL = 10.0psf. 2 . nections. ers) of truss tt 17 lb uplift at	; live on nent. ds.)psf om joint			CRTH CA	ROUTIN
 Unbalan, this desi; Wind: AS Vasd=10 II; Exp B and C-C 2-11-15; (1) 23-4- MWFRS grip DOL 	ced roof live loads have gn. SCE 7-10; Vult=130mph J3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Exterior (2) -0-10-8 to 2 to 19-6-0, Exterior (2) 1 7 to 38-8-8 zone;C-C fc for reactions shown; Lu =1.60	been considered for n (3-second gust) CDL=3.0psf; h=25ft; (nvelope) exterior zone 2-11-15, Interior (1) 9-6-0 to 23-4-7, Interior or members and force umber DOL=1.60 plate	Cat. e or s & e						THE ADDRESS OF THE AD	SEA 0363	EER. H.
WAP Desigr a truss buildin is alwa fabrica and B	RNING - Verify design parameter valid for use only with MTeks s system. Before use, the build g design. Bracing indicated is gys required for stability and to tation, storage, delivery, erection ICSI Building Component Sa	ers and READ NOTES ON T © connectors. This design i ting designer must verify th is to prevent buckling of indi- prevent tollapse with poss in and bracing of trusses an afety Information availabl	THIS AND INCLUDED is based only upon p e applicability of desi vidual truss web and/ sible personal injury <i>a</i> hd truss systems, see e from the Structural	MITEK REFERENC arameters shown, ar gn parameters and p or chord members o and property damage ANSI/TP11 Quality Building Component	E PAGE MII-7473 rev. 1 d is for an individual bu oroperly incorporate this nly. Additional tempora. For general guidance y Criteria and DSB-22 t Association (www.sbc	/2/2023 BEFORE uilding component design into the o ary and permaner regarding the available from Tr acomponents.cor	USE. t, not overall nt bracing russ Plate Ins n)	stitute (www.	tpinst.org)	**************************************	ING BY NCCO A MITek Affiliate oad 32

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	B2E	Common Supported Gable	1	1	Job Reference (optional)	171010834

Run; 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:18 ID:XO2b6bpS6PI37SwzMVj3HozrDI3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.2 Plate Offsets (X, Y): [7:0-3-0,0-3-0], [15:0-3-0,0-3-0], [21:0-4-4,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL		(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	4	CSI TC BC WB Matrix-MS	0.11 0.12 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loo 2	c) l/defl - n/a - n/a 1 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 265 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x4 SP N 31-11,32- SP No.2 Right 2x4 Structura 6-0-0 oc J	o.2 o.3 *Excep 10,33-9,34 SP No.3 I wood shea purlins.	t* -8,30-12,29-13,28-14 · 1-6-0 athing directly applie	4:2x4 d or	M	Max Grav 2=197 (LC 2), 21=129 (LC 2), 1) Unbalanced roof live loads have been this design. 22=256 (LC 35), 23=125 (LC 2), 24=170 (LC 35), 25=151 (LC 2), 24=170 (LC 35), 25=151 (LC 2), 24=170 (LC 35), 25=151 (LC 2), 29=158 (LC 2), 30=167 (LC 35), 31=186 (LC 33), 32=167 (LC 34), 33=158 (LC 2), 34=166 (LC 2), 33=158 (LC 2), 34=166 (LC 2), 33=158 (LC 2), 34=166 (LC 2), 36=160 (LC 34), 37=151 (LC 2), 2-11-15 to 19-6-0, Corner (3) 19-6-0 t 38=172 (LC 34), 39=118 (LC 2), 40=268 (LC 34) WFRS for reactions shown; Lumber grip DOL=1.60 (h) - Maximum Compression/Maximum 31 Truss designed for wind loads in the total structure for wind loads in								een considered for 3-second gust) DL=3.0psf; h=25ft; Cat. elope) exterior zone 1-15, Exterior (2) -0 to 23-6-0, Exterior nembers and forces & iber DOL=1.60 plate
BOT CHORD WEBS REACTIONS	Rigid ceil bracing. 1 Row at (size) Max Horiz Max Uplift	midpt 2=38-8-8, 33=38-8-5 30=38-8-5 37=38-8-5 37=38-8-5 37=38-8-5 2=180 (LC 2=-31 (LC 23=-35 (L) 25=-54 (L) 30=-54 (L) 33=-63 (L) 38=-68 (L) 40=-129 (applied or 10-00 oc 11-31, 10-32, 12-30 21=38-8-8, 22=38-8 3, 24=38-8-8, 25=38-8 3, 28=38-8-8, 29=38-8 3, 31=38-8-8, 32=38-8 3, 34=38-8-8, 36=38-8 3, 38=38-8-8, 39=38-8 2, 16) 17), 22=-128 (LC 17 C 17), 24=-68 (LC 17 C 17), 22=-64 (LC 17 C 17), 22=-67 (LC 16 C 17), 32=-57 (LC 16 C 16), 37=-54 (LC 16 C 16), 37=-54 (LC 16 C 16), 39=-33 (LC 16 LC 16)	FORCES TOP CHOR 8-8, 8-8, 8-8, 8-8, 8-8, 8-8, 8-8, 8-8	RD	(lb) - Maximum C Tension 1-2=0/23, 2-3=-15 4-5=-118/109, 5-6 8-9=-103/255, 9-1 10-11=-136/347, 12-13=-120/310, 14-16=-86/210, 1 17-18=-69/69, 18 2-40=-128/135, 3 38-39=-21/135, 3 33-34=-23/136, 3 29-30=-23/136, 2 26-28=-23/136, 2 24-25=-21/134, 2 21-32=-21/134, 2 21-32=-21/134, 2 21-33=-118/119, 8 6-37=-112/77, 5- 3-40=-118/1419, 1 5-26=-119/83, 1 17-24=-126/90, 1 19-22=-175/206	ompressi 04/77, 3-4 =-96/134 10=-120/3 11-12=-1: 13-14=-11 6-17=-69, 19=-94/3 9-40=-21, 7-38=-21, 4-36=-23, 2-33=-23, 0-31=-23, 3-24=-21, 1-22=-21, 0-32=-12 -34=-126, 8=-127/5 2-30=-12 14-28=-1: 6-25=-11: 8-23=-10	on/Maximum I=-145/87, , 6-8=-86/206 305, 36/351, 03/259, /120, 133, 19-21=-122 (135, /136, /136, /136, /136, /136, /136, /134, /134, 7/140, /86, 7-36=-115 1, 4-39=-95/6 7/140, 26/85, 2/77, 1/66,	, 2/28 9/83, 4,	3) 1 c s c s s c (4) 1 F F C (5) L c	russ desig only. For sti see Standa or consult q FCLL: ASC Plate DOL= osf (flat root Category II; Jnbalancec design.	ned for d Indu aulifie E 7-10 1.1.15); i snow E xp E E snow	r wind loads in th goosed to wind (r ustry Gable End d building design ; Pr=20.0 psf (ro Pg=10.0 psf (gro r = 1.0 psf (gro S; Partially Exp.; loads have beer VGIN SEA 0363	The plane of the truss normal to the face), Details as applicable, ler as per ANSI/TPI 1. of LL: Lum DOL=1.15 plate DOL=1.15); Ct=1.10 n considered for this Ct=1.10 NOV NOV NOV NOV NOV NOV NOV NOV
				NOTES									Thinn .	1111111

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Sectional temporation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 27,2025

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	B2E	Common Supported Gable	1	1	Job Reference (optional)	171010834

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 7.7 psf on overhangs non-concurrent with other live loads.
- Building Designer/Project engineer responsible for verifying Rain Load = 5.0 (psf) covers rain loading requirements specific to the use of this truss component.
- All plates are 2x4 (||) MT20 unless otherwise indicated.
 Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2 .
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 2, 57 lb uplift at joint 32, 63 lb uplift at joint 33, 63 lb uplift at joint 34, 61 lb uplift at joint 36, 54 lb uplift at joint 37, 68 lb uplift at joint 38, 33 lb uplift at joint 39, 129 lb uplift at joint 40, 54 lb uplift at joint 30, 64 lb uplift at joint 29, 63 lb uplift at joint 28, 61 lb uplift at joint 26, 54 lb uplift at joint 25, 68 lb uplift at joint 24, 35 lb uplift at joint 23, 128 lb uplift at joint 22 and 31 lb uplift at joint 2.

LOAD CASE(S) Standard

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:18 ID:XO2b6bpS6PI37SwzMVj3HozrDI3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	C1	Common	1	1	Job Reference (optional)	171010835

Run; 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:18 ID:uNuMAfykcvFxz7nCcNDsBXzrDcX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.4	<u>7-11-12</u> 7-11-12	14-0-4 6-0-8	22-0-0 7-11-12	
Plate Offsets (X_Y): [9:0-3-0 0-3-0]				

	,, ,, ,, [0:0 0 0,0 0 0]													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201 4)	5/TPI2014 This truss ha	CSI TC BC WB Matrix-MS as been designed psf or 1.00 times	0.51 0.53 0.61 for great	DEFL Vert(LL) Vert(CT) Horz(CT) er of min roo	in -0.10 -0.21 0.02 f live	(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 144 lb	GRIP 244/190 FT = 20%	. <u> </u>
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 5-0-2 oc purlins, ex Rigid ceiling directly bracing. (size) 8=0-3-8, 1	t* 9-4,10-4:2x4 SP N athing directly applie cept end verticals. applied or 10-0-0 or 11=0-3-8	No.2 5) ed or 6) ^c 7)	overhangs n Building Des verifying Rai requirement This truss ha chord live lo * This truss on the botto	on-concurrent wit signer/Project eng n Load = 5.0 (psf s specific to the us as been designed ad nonconcurrent has been designe m chord in all area we 2.0.0 wide us	h other li ineer res) covers r se of this for a 10. with any d for a liv as where	ve loads. ponsible for ain loading truss compo 0 psf bottom other live loa e load of 20. a rectangle	onent. ads. Opsf						
FORCES	Max Horiz 11=273 (L Max Uplift 8=-164 (L Max Grav 8=930 (LC (Ib) - Maximum Com Tension 1-2=0/39, 2-3=-284/	LC 13) C 15), 11=-164 (LC C 2), 11=930 (LC 2) upression/Maximum 110, 3-4=-885/283, 284/110, 6 7-0/20	14) 8) 9) L(3-06-00 tail chord and a All bearings Provide med bearing plate 11 and 164 I DAD CASE(S)	by 2-00-00 wide w ny other members are assumed to b chanical connection the capable of withs b uplift at joint 8. Standard	with BC s, with BC e SP No. on (by oth tanding 1	veen the bott EDL = 10.0ps 2 . ers) of truss 64 lb uplift a	tom sf. to it joint						
BOT CHORD WEBS NOTES 1) Unbalance	2-11=-298/142, 6-8= 10-11=-206/850, 8-1 4-9=-163/413, 5-9=- 3-10=-275/253, 3-11	298/142 0=-76/702 275/253, 4-10=-163, =-809/123, 5-8=-800	/413, 8/123 r									TH CA	Ro	<i>v.</i>
 this design Wind: ASC Vasd=103 II; Exp B; I and C-C E 11-0-0, Ex 22-10-8 zc members a Lumber D0 	A. CE 7-10; Vult=130mph mph; TCDL=6.0psf; B: Enclosed; MWFRS (en- ixterior (2) -0-10-8 to 2 terior (2) 11-0-0 to 14- one; end vertical left ar and forces & MWFRS DL=1.60 plate grip DO	(3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zon -1-8, Interior (1) 2-1- 0-0, Interior (1) 14-0 nd right exposed;C-C for reactions shown L=1.60	Cat. ne -8 to)-0 to C for ;							Within		SEA 0363	L 22	
 TCLL: ASO Plate DOL psf (flat roo Category I 	CE 7-10; Pr=20.0 psf (=1.15); Pg=10.0 psf (g of snow: Lum DOL=1. I; Exp B; Partially Exp.	roof LL: Lum DOL=1 ground snow); Pf=7.3 15 Plate DOL=1.15); .; Ct=1.10	1.15 7 ;									A. G. January	27,202	5

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durant description (thrus phoneparate) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	C1E	Common Supported Gable	1	1	Job Reference (optional)	171010836

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:18

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

ID:BGtsngSSyVQ7OQQ4WUSTLBzrDbu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 22-10-8 11-0-0 22-0-0 \vdash + - 1 11-0-0 11-0-0 0-10-8 0-10-8 22-0-0 4x6= 8 ₽ 7 9 10¹² 6 10 10-3-5 10-2-1 5 11 12 13 14 15 hà 28 27 26 25 24 23 22 21 20 19 18 17

3x6=

22-0-0

Scale = 1:74.3					r												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	7.	(psf) 20.0 .7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MR	0.20 0.11 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 164 lb	GRIP 244/190 FT = 20%			
LUMBER TOP CHORD 2x4 SP No.2 3OT CHORD 2x4 SP No.3 3OT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 *Except* 23-8,24-7,25-6,22-9,20-10:2x4 SP BRACING TOP CHORD Structural wood sheathing directly 6-0-0 oc purlins, except end vertic BOT CHORD Structural wood sheathing directly 6-0-0 oc purlins, except end vertic BOT CHORD Rigid ceiling directly applied or 6-0 bracing. WEBS 1 Row at midpt 8-23, 7-24, 9- 19=22-0-0, 20=22-0-0, 2 23=22-0-0, 24=22-0-0, 2 29=22-0-0, 24=22-0-0, 2 29=22-0-0, 24=22-0-0, 2 29=22-0-0 Max Horiz 29=273 (LC 13) Max Uplift 16=-139 (LC 11), 17=-2 20, 27, 02, 102, 102, 02		t* 20-10:2x4 SP No.2 athing directly applie cept end verticals. applied or 6-0-0 oc 8-23, 7-24, 9-22 0, 17=22-0-0, 18=22- 0, 20=22-0-0, 28=22- 0, 27=22-0-0, 28=22- 0, 27=22-0-0, 28=22-	d or 0-0, 0-0, 0-0, 0-0,	BOT CHORD	2-29=-198/145, 3-4=-155/155, 4 6-7=-189/226, 7 9-10=-189/226, 11-12=-90/101, 13-14=-204/158 14-16=-162/100 28-29=-124/150 22-23=-124/150 22-23=-124/150 19-20=-124/150 19-20=-124/150 8-23=-312/199, 6-25=-148/112, 4-27=-142/107, 9-22=-142/197, 11-19=-141/106	$\begin{array}{l} 2-29=-198/145, 1-2=0/39, 2-3=-242/216,\\ 3-4=-155/155, 4-5=-134/138, 5-6=-120/171,\\ 3-7=-189/226, 7-8=-250/297, 8-9=-250/297,\\ 9-10=-189/226, 10-11=-120/147,\\ 11-12=-90/101, 12-13=-112/110,\\ 13-14=-204/158, 14-15=0/39,\\ 14-16=-162/100\\ 82-29=-124/150, 27-28=-124/150,\\ 26-27=-124/150, 25-26=-124/150,\\ 24-25=-124/150, 23-24=-124/150,\\ 24-25=-124/150, 20-22=-124/150,\\ 19-20=-124/150, 18-19=-124/150,\\ 17-18=-124/150, 16-17=-124/150,\\ 12-3=-312/199, 7-24=-144/99,\\ 3-23=-312/199, 7-24=-144/190,\\ 3-22=-148/112, 5-26=-141/106,\\ 12-7=-146/107, 3-28=-150/160,\\ 3-22=-142/98, 10-20=-148/113,\\ 11-19=-141/106, 12-18=-147/107,\\ 10-32=-160/160,\\ 10-32=-1$					 b) This truss has been designed for greater of film 0 for the second s						
FORCES	Max Uplift Max Grav (Ib) - Maxir Tension	23=273 (L 18=-87 (L) 20=-100 (24=-87 (L) 26=-96 (L) 28=-241 (16=221 (L 18=177 (L 20=175 (L 23=282 (L) 23=282 (L) 23=284 (L) num Com	LC 11), 17=-221 (LC C 15), 19=-96 (LC 15), 22=-86 (LC 15), 22=-86 (LC 15), 22=-86 (LC 16), 27=-86 (LC 14), 27=-86 (LC 14), 27=-86 (LC 14), 29=-205 (LC 16), 17=209 (LC 16), 17=209 (LC 16), 17=209 (LC 16), 27), 22=183 (LC 26), 24=185 (LC 26), 26=176 (LC 26), 26=176 (LC 26), 28=248 (LC 16), 28=248 (LC 16	: 15), 5), 15), 14), : 12) 13), 27), 27), 26), 26), 12),	NOTES 1) Unbalancee this design. 2) Wind: ASC Vasd=103n II; Exp B; E and C-C CC 11-0-0, Cor 22-10-8 zor members a Lumber DC 3) Truss desig only. For s see Standa or consult c 4) TCLL: ASC Plate DOL= psf (flat roo Category II	13-17=-156/150 13-17=-156/150 1 roof live loads have been considered for E 7-10; Vult=130mph (3-second gust) hph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. nclosed; MWFRS (envelope) exterior zone orner (3) -0-10-8 to 2-1-8, Exterior (2) 2-1-8 to ner (3) 11-0-0 to 14-0-0, Exterior (2) 14-0-0 to ne; end vertical left and right exposed;C-C for nd forces & MWFRS for reactions shown; L=1.60 plate grip DOL=1.60 ned for wind loads in the plane of the truss tuds exposed to wind (normal to the face), rd Industry Gable End Details as applicable, ualified building designer as per ANSI/TPI 1. E 7-10; Pr=20.0 psf (ground snow); Pf=7.7 f snow: Lum DOL=1.15 Plate DOL=1.15); Exp B; Partially Exp.; Ct=1.10					A contraction		SEA 0363	L L L L BER L BER L			

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 27,2025

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	C1E	Common Supported Gable	1	1	Job Reference (optional)	171010836

14) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 205 lb uplift at joint 29, 139 lb uplift at joint 16, 87 lb uplift at joint 24, 100 lb uplift at joint 25, 96 lb uplift at joint 26, 86 lb uplift at joint 27, 241 lb uplift at joint 28, 86 lb uplift at joint 22, 100 lb uplift at joint 20, 06 lb uplift at joint 20, 07 lb uplift at joint 20.

uplift at joint 20, 96 lb uplift at joint 19, 87 lb uplift at joint 18 and 221 lb uplift at joint 17.

LOAD CASE(S) Standard

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:18 ID:BGtsngSSyVQ7OQQ4WUSTLBzrDbu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	C2	Common	5	1	Job Reference (optional)	171010837

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:19 ID:cf8G686KF5DSskYThqQ8XazrDb2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1	7-11-12	14-0-4	22-0-0	
Scale = 1:76.4	7-11-12	6-0-8	7-11-12	
Plate Offsets (X, Y): [8:0-3-0,0-3-0]				

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	115/TPI2014 4) This truss ha	CSI TC BC WB Matrix-MS	0.51 0.53 0.62 for greate	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.21 0.02	(loc) 7-8 7-8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 143 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 5-0-0 oc purlins, exi Rigid ceiling directly bracing. (size) 7=0-3-8, 1 Max Horiz 10=254 (L Max Uplift 7=-142 (L Max Grav 7=867 (LC	t* 8-4,9-4:2x4 SP No athing directly applie cept end verticals. applied or 10-0-0 oc 10=0-3-8 _C 11) C 15), 10=-164 (LC C 2), 10=931 (LC 2)	0.2 ed or c 14)	 load of 12.0 overhangs n Building Desverifying Rairequirements This truss hacher dive load * This truss is on the botton 3-06-00 tall lechord and an All bearings Provide mecovide 	pst or 1.00 times on-concurrent wit signer/Project eng n Load = 5.0 (psf) s specific to the us as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w ny other members are assumed to b hanical connectio	that roof lo h other liv ineer res se of this for a 10.0 with any d for a liv as where will fit betw s, with BC is SP No. on (by oth	ad of 7.7 ps ve loads. ponsible for ain loading truss compc 0 psf bottom other live loa e load of 20. a rectangle veen the bott CDL = 10.0ps 2.	onent. ads. Opsf tom to					
FORCES	(lb) - Maximum Com Tension 1-2=0/39, 2-3=-283/ 4-5=-889/288, 5-6=- 6-7=-221/90	pression/Maximum 110, 3-4=-887/282, 246/99, 2-10=-298/1	42,	bearing plate 10 and 142 I LOAD CASE(S)	e capable of withs b uplift at joint 7. Standard	tanding 1	64 lb uplift a	it joint					
BOT CHORD WEBS	9-10=-235/835, 7-9= 4-8=-164/417, 5-8=- 3-9=-275/253, 3-10=	=-105/709 278/255, 4-9=-163/4 =-810/124, 5-7=-816/	13, /151										900.
NOTES												IN'TH CA	ROUL
1) Unbalance	ed roof live loads have	been considered for	r								S	R	ALI'L
 this design Wind: ASC Vasd=103 II; Exp B; I and C-C E 11-0-0, Ex 21-10-4 zc members : Lumber D0 TCLL: ASC Plate DOL psf (flat roo Category I 	h. DE 7-10; Vult=130mph mph; TCDL=6.0psf; Bd Enclosed; MWFRS (er ixterior (2) -0-10-8 to 2 terior (2) 11-0-0 to 14- one; end vertical left ex- and forces & MWFRS DL=1.60 plate grip DO CE 7-10; Pr=20.0 psf (co of snow: Lum DOL=1.1; I; Exp B; Partially Exp.	(3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zon 2-1-8, Interior (1) 2-1- 0-0, Interior (1) 14-0 cposed;C-C for for reactions shown; JL=1.60 roof LL: Lum DOL=1 ground snow); Pf=7.7 15 Plate DOL=1.15); .; Ct=1.10	Cat. ne -8 to -0 to ; 1.15 7							Mannan .		SEA 0363	L 22 ILBERTINI 27,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	C2G	Common Girder	1	2	Job Reference (optional)	171010838

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:19 ID:sHtfzvfc5QLIDOK3Bij9jZzrDZ2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-11-12	14-0-4	22-0-0	
Scale = 1:76.4	7-11-12	6-0-8	7-11-12	

-0-10-8

	[0:0 4 4 0 0 0] [0:0	4 4 0 0 01 10 0 0 0 0 0 0
Plate Offsets (X, Y):	[2:0-4-4,0-0-9], [8:0	-4-4,0-0-9], [9:0-6-0,0-6-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2015/TI	PI2014	CSI TC BC WB Matrix-MS	0.32 0.24 0.16	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.07 0.00	(loc) 9-13 9-13 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 322 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss (0.131"x3' Top chord oc. Bottom ch	2x4 SP No.2 2x8 SP DSS 2x4 SP No.3 *Excep Left 2x4 SP No.3 1-6-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, Max Horiz 2=239 (L Max Uplift 2=-232 (I Max Grav 2=1196 ((lb) - Maximum Con Tension 1-2=0/34, 2-4=-135, 5-6=-1701/467, 6-8 2-10=-305/1158, 8- 4-10=-306/256, 5-11 5-9=-410/1389, 6-9 ct ob e connected toge) nails as follows: s connected as follow	Dt* 10-5,9-5:2x4 SP N 1-6-0, Right 2x4 SP N eathing directly applie y applied or 10-0-0 oc 8=0-3-8 C 7) LC 10), 8=-345 (LC 1* LC 2), 8=1650 (LC 2) npression/Maximum 2/300, 4-5=-1258/352 =-1711/413 10=-266/1380 0=-115/235, =-322/260 ether with 10d s: 2x4 - 1 row at 0-9-0 lows: 2x8 - 2 rows	4) W V lo.2 Li No.3 5) T P d or 6) T lo 7) B 7) B 7) B 7) B 7) B 7) B 7) C 10) A 11) P 8) T cl 10) A 11) P 8) 12) H 12) H p b 6 12) H p f f f f f f f f f f f f f f f f f f	Vind: ASCE iasd=103mp ; Exp B; End umber DOL: CLL: ASCE late DOL=1 sf (flat roof s iategory II; E his truss have oad of 12.0 p verhangs no uilding Desi his truss have hord live loa This truss have hord live loa and 232 lb langer(s) or rovided suffi o down and 2 o down and 2	7-10; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e =1.60 plate grip DV 7-10; Pr=20.0 psf into: Psf into	h (3-sec BCDL=3 BCDL=3 envelope OL=1.6C (roof LL (ground .15 Plat p.; Ct=1 or greatt at roof lc other lin beer resp covers r. e of this or a 10.0 vith any for a liv s where I fit betw with BC SP No. (by oth anding 3 device(s on on bot ction device)	ond gust) .0psf; h=25ft;) exterior zor : Lum DOL=: snow); Pf=7. e DOL=1.15) 10 er of min roof pad of 7.7 psf re loads. ponsible for ain loading truss compor 0 psf bottom other live load a rectangle reen the bottt DL = 10.0psf 2. ers) of truss t 45 lb uplift at tom chord. T vice(s) is the	Cat. ne; 1.15 7 ; live on nent. ds.)psf om ; o joint 040 The			the second se	UNTH CA	RO	
staggered Web conn 2) All loads a except if n CASE(S) : provided t unless oth 3) Unbalance this design	ed at 0-9-0 cc. Image: Considered equally applied to all plies, nnected as follows: 2x4 - 1 row at 0-9-0 oc. 1) Dead + Sr s are considered equally applied to all plies, Increase= f noted as front (F) or back (B) face in the LOAD Uniform Lu S) section. Ply to ply connections have been Vert: 1- d to distribute only loads noted as (F) or (B), Concentra otherwise indicated. Vert: 21 nced roof live loads have been considered for Vert: 21				0 36322 now (balanced): Lumber Increase=1.15, Plate 1.15 oads (lb/ft) 5=-35, 5-8=-35, 11-15=-20 ated Loads (lb) 1=-716 (F) January 27 20							ER	unnin.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	D1E	Common Supported Gable	1	1	Job Reference (optional)	171010839

Run; 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:19 ID:NVG01FdAwv9k06PPeBovg2zrDi7-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

				L		13-0	-0						
Scale = 1:48				1						1			
Plate Offsets ((X, Y): [2:0-1-12,0-0-	3], [10:0-3-9,0-0-3]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 7.7/10.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	5/TPI2014	CSI TC BC WB Matrix-MS	0.06 0.06 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190 ET = 20%
BCDL	10.0											Weight. 65 lb	FT = 2070
LUMBER TOP CHORD BOT CHORD JTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x6 SP No.2 2-0-0 Structural wood she 6-0-0 oc purlins. Rigid ceiling directh bracing. (size) 2=13-0-0 16=13-0- Max Horiz 2=-152 (I Max Uplift 2=-38 (Li 12=-149 15=-80 (I Max Grav 2=196 (Li 12=219 (14=143 (16=226 (2-0-0, Right 2x6 SP I eathing directly applie y applied or 10-0-0 oc 0, 10=13-0-0, 12=13-0 0, 14=13-0-0, 15=13-0 LC 12) C 10), 10=-9 (LC 11), (LC 15), 13=-81 (LC LC 14), 16=-154 (LC C 27), 10=185 (LC 2) (LC 27), 13=169 (LC 2) (LC 29), 15=168 (LC 2) (LC 26)	2) No.2 ed or 3) c)-0, 4) (15), 5) (14) (27), 6) 26), 7)	Wind: ASCE Vasd=103mg II; Exp B; En and C-C Cor 6-6-0, Corne 13-10-8 zone for reactions DOL=1.60 Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 psf (flat roof Category II; I This truss ha load of 12.0 overhangs n Building Des verifying Rai requirements All plates are	7-10; Vult=130m sh; TCDL=6.0psf; closed; MWFRS i ner (3) -0-10-8 to r (3) 6-6-0 to 9-6- c;C-C for member shown; Lumber I ed for wind loads ds exposed to wid 1 Industry Gable I alified building de 7-10; Pr=20.0 ps 15); Pg=10.0 ps snow: Lum DOL= Exp B; Partially E s been designed sof or 1.00 times on-concurrent witt igner/Project eng n Load = 5.0 (psf; a specific to the u z 2x4 (II) MT20 u	ph (3-sec BCDL=3 (envelope 2-1-8, E 0, Exterior s and for DOL=1.60 in the pl nd (norm End Deta esigner a: of (roof LL f (ground f (ground f (ground f 1.15 Plat xp.; Ct=1 for great flat roof l h other li ineer res) covers this neess oth	xond gust) .0.0psf; h=25ft; .0.0psf; h=25ft; .0.0psf; h=25ft; .0.2psf; h=25ft;	; Cat. -8 to -8 to :S S S S S S S S S S S S S S S S S S S					
F ORCES TOP CHORD	(Ib) - Maximum Cor Tension 1-2=0/34, 2-4=-116 5-6=-165/159, 6-7=	npression/Maximum //96, 4-5=-119/101, ·-166/159, 7-8=-103/8	8) 9) 10	Gable requir Gable studs) This truss ha chord live loa	es continuous bo spaced at 2-0-0 c s been designed ad nonconcurrent	ttom chor oc. for a 10.0 with any	d bearing. D psf bottom other live loa	ds.		4	- AL	ORTHOA	PAN NIL
BOT CHORD	8-10=-86/54, 10-11 2-16=-45/109, 15-1 14-15=-45/109, 13- 12-13=-45/109, 10-	=0/34 6=-45/109, 14=-45/109, 12=-45/109	11) * This truss h on the bottor 3-06-00 tall b chord and ar	has been designe n chord in all area by 2-00-00 wide w	d for a liv as where vill fit betv	e load of 20.0 a rectangle veen the botto	Opsf om		1111		SEA	L
WEBS	6-14=-141/94, 5-15 4-16=-181/142, 7-1 8-12=-183/139	=-139/101, 3=-139/100,	12 13) All bearings) Provide mec bearing plate	are assumed to b hanical connection capable of withs	,. e SP No. n (by oth tanding 3	2 . ers) of truss t 88 lb uplift at j	o oint				0303	LL I I
NOTES 1) Unbalance	ed roof live loads have	e been considered for	r	2, 9 lb uplift a at joint 16 8	at joint 10, 80 lb u 1 lb uplift at joint 1	plift at joi 13, 149 lł	nt 15, 154 lb	uplift 12.			11	A GIN	EFER

at joint 16, 81 lb uplift at joint 13, 149 lb uplift at joint 12,

38 lb uplift at joint 2 and 9 lb uplift at joint 10.

NOTES

Unbalanced roof live loads have been considered for 1) this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

G mmm

January 27,2025

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	D1G	Common Girder	1	2	Job Reference (optional)	171010840

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:19 ID:rH15jcIAS?TFYIZsGcygRRzrDHQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

i F

Scale = 1:46.4

Plate Offsets (X, Y):	[1:Edge,0-4-10],	[3:Edge,0-4-10]
-----------------	--------	------------------	-----------------

Loading (psf) TCLL (roof) 20.0 Snow (Pf/Pg) 7.7/10.0 TCDL 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrN	-0-0 .15 .15 IO	CSI TC BC WB	0.26 0.40 0.77	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.02	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL 0.0* BCDL 10.0	Code IF	RC2015/TPI2014	Matrix-MS	-	- (-)		_			Weight: 179 lb	FT = 20%
LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP DSS WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood shea 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly is bracing. REACTIONS (size) 1=0-3-8, 3 Max Horiz 1=134 (LC Max Uplift 1=-1077 (L Max Grav 1=5532 (L) FORCES (lb) - Maximum Comp Tension TOP CHORD 1-5=-834/4327, 4-5= 3-4=-793/4251 WEBS 2-5=-759/3742, 2-4=- NOTES 1) 2-ply truss to be connected togetl (0.131"x3") nails as follows: Top chords connected as follows staggered at 0-9-0 oc. Bottom chords connected as follows staggered at 0-5-0 oc. Web connected as follows: 2x4 - 2) All loads are considered equally a except if noted as front (F) or bac CASE(S) section. Ply to ply conn provided to distribute only loads r unless otherwise indicated. 3) Unbalanced roof live loads have this design.	athing directly applied or applied or 10-0-0 oc =0-3-8 :70 .C 10), 3=-908 (LC 11) C 2), 3=4675 (LC 2) pression/Maximum =-5638/1134 -565/3010, -718/3530 her with 10d : 2x6 - 2 rows 1 row at 0-9-0 oc. applied to all plies, k (B) face in the LOAD ections have been toted as (F) or (B), been considered for	 4) Wind: AS Vasd=102 II; Exp B; Lumber D 5) TCLL: AS Plate DOI psf (flat rc category 6) Building D verifying F requireme 7) This truss chord live 8) * This trus on the bo 3-06-00 ta chord anc 9) All bearing P joint 1 and 10) Provide m bearing P joint 1 and 11) Use Simp Truss) or 0-11-4 fro to back fa 12) Fill all nai LOAD CASE(1) Dead + 3 Increase Uniform Vert: - Concent 	CE 7-10; Vult=130m; imph; TCDL=6.0psf; Enclosed; MWFRS ((OL=1.60 plate grip D CE 7-10; Pr=20.0 psi .=1.15); Pg=10.0 psi of snow: Lum DOL=' II; Exp B; Partially Ex besigner/Project engin Rain Load = 5.0 (psf) ints specific to the us has been designed load nonconcurrent is shas been designed tom chord in all area ill by 2-00-00 wide will any other members. gs are assumed to be techanical connection ate capable of withst 3008 lb uplift at joint son Strong-Tie HUS2 equivalent spaced at m the left end to 10-1 ce of bottom chord. holes where hanger S) Standard Snow (balanced): Lur =1.15 Loads (lb/ft) I-2=-35, 2-3=-35, 6-9 rated Loads (lb) I=-1052 (B), 12=-1052 (B)	wh (3-sec BCDL=3 BCDL=3 BCDL=3 envelope OL=1.6((ground 1.15 Plat p.; Ct=1 heer resp covers r e of this or a 10.0, with any for a liv s where Il fit betw s SP No. (by oth anding 1 3. 26 (14-16 2-0-0 oc 1-4 to c is in cor nber Inc =-20 2 (B), 13), 16=-10	orond gust) .0psf; h=25ft) exterior zor) : Lum DOL= snow); Pf=7. e DOL=1.15) .10 ponsible for ain loading truss compoid) psf bottom other live load e load of 20.0 a rectangle veen the bottom 2. ers) of truss t 077 lb uplift 4 Sd Girder, 4-1 : max. starting ponnect truss(ttact with lum rease=1.15, 1 3=-1052 (B), 052 (B)	; Cat. he; 1.15 7 ; hent. ds.)psf om o at 16d g at es) ber. Plate				SEA 0363	L L L L B L B L B L B L B L B L B L B L

January 27,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	DV1	Valley	1	1	Job Reference (optional)	171010841

4-7-10

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:20 ID:fVYXfagFlyKof7SP4pOcWbzrDjL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 $\frac{10}{9}$

11-0-14

Scale =	1:38.8
---------	--------

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15		BC	0.33	Vert(TL)	n/a	-	n/a	999	-	
TCDL	10.0	Rep Stress Incr	YES		WB	0.26	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC201	5/TPI2014	Matrix-MS								
BCDL	10.0											Weight: 42 lb	FT = 20%
LUMBER			4	TCLL: ASCE	7-10; Pr=20.0	psf (roof Ll	.: Lum DOL=	1.15					
TOP CHORD	2x4 SP No.2			Plate DOL=1	1.15); Pg=10.0	osf (ground	snow); Pf=7	.7					
BOT CHORD	2x4 SP No.2			psf (flat roof	snow: Lum DO	L=1.15 Plat	te DOL=1.15));					
OTHERS	2x4 SP No.3			Category II;	Exp B; Partially	Exp.; Ct=1	.10						
BRACING			5)	Building Des	igner/Project ei	ngineer res	ponsible for						
TOP CHORD	Structural wood she	eathing directly applie	ed or	verifying Rai	n Load = 5.0 (p s specific to the	sf) covers r	ain loading	nent					
	10-0-0 oc purlins.		6	Gable requir	es continuous h	ottom chor	d hearing	nom.					
BOT CHORD	Rigid ceiling directly bracing.	y applied or 6-0-0 oc	7	Gable studs	spaced at 4-0-0) oc.	a boaring.						
REACTIONS	(size) 1=11-0-1	4. 3=11-0-14. 4=11-0)-14 ⁸⁾	This truss ha	as been designe	ed for a 10.	0 psf bottom						
	Max Horiz 1=-110 (LC 10)		chord live loa	ad nonconcurre	nt with any	other live loa	ids.					
	Max Uplift 1=-50 (L	C 30), 3=-50 (LC 29)	9	A I his truss i on the bottor	nas been desigi m chord in all ai	ned for a liv	e load of 20.	Upst					
	4=-231 (LC 14)		3-06-00 tall b	1 2-00-00 wide	will fit het	veen the hott	om					
	Max Grav 1=61 (LC	29), 3=61 (LC 30), 4	4=869	chord and ar	ny other member	ers.		om					
	(LC 2)		10) All bearings	are assumed to	be SP No.	2.						
FORCES	(lb) - Maximum Cor Tension	npression/Maximum	1	1) Provide mec	hanical connec	tion (by oth	ers) of truss t	to ioint					
TOP CHORD	1-2=-147/391, 2-3=	-146/391		1 50 lb unlift	t at joint 3 and 2	231 lh unlift	at ioint 4	John					
BOT CHORD	1-4=-317/184, 3-4=	-317/184			Standard		at joint 4.						
WEBS	2-4=-679/273		L.	DAD CASE(S)	Stanuaru								
NOTES													
1) Unbalance	ed roof live loads have	e been considered fo	r										1111
this desig	n.	(a										What CA	Dalle
 Wind: AS(CE 7-10; Vult=130mpl	n (3-second gust)										1 TH UT	10,1

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 5-6-12, Exterior (2) 5-6-12 to 8-6-12, Interior (1) 8-6-12 to 11-1-3 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 January 27,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	DV2	Valley	1	1	Job Reference (optional)	171010842

3-7-10

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:20 ID:uy3V_raEAUJxiurtc7FkBvzrDjT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

8-8-2 4-4-1 4-4-1 4-4-1 8-8-2 4x6 = 2 10 11 12 10 Г 9 12 3 4 2x4 🥠 2x4 💊 2x4 🛛

8-8-2

Scale = 1:23.4

		-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.25 0.23 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 33 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-8-2 oc purlins. Rigid ceiling directly bracing. (size) 1=8-8-2, 3 Max Horiz 1=-85 (LC Max Uplift 1=-25 (LC 4=-171 (L Max Grav 1=61 (LC	athing directly applie applied or 6-0-0 oc 3=8-8-2, 4=8-8-2 ; 10) ; 30), 3=-25 (LC 29), C 14) 29), 3=61 (LC 30), 4	4, 5; ed or 6; 7; 8; 9; 4=647	 Plate DOL=1 Plate DOL=1 psf (flat roof 1 Category II; I Building Desverifying Rain requirements Gable required Gable studs 1 This truss hat chord live loat * This truss hat on the bottom 3-06-00 tall bt chord and an 	7-10; PI=20.0 ps .15); Pg=10.0 ps snow: Lum DOL= Exp B; Partially E igner/Project eng 1 Load = 5.0 (psf specific to the uses continuous boid spaced at 4-0-0 c s been designed id nonconcurrent as been designed id nonconcurrent as been designed y 2-00-00 wide w y other members	(root L1 f (ground :1.15 Plat xp.; Ct=1 ineer res) covers r se of this ttom chor oc. for a 10. with any d for a liv as where vill fit betw s.	 Snow); Pf=7: e DOL=1.15) e DOL=1.15) ponsible for ain loading truss compor d bearing. D psf bottom other live loae e load of 20.0 a rectangle ween the bottom 	hent. ds. opsf					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I	(Ib) - Maximum Com Tension 1-2=-117/270, 2-3=- 1-4=-245/159, 3-4=- 2-4=-478/206 ed roof live loads have 1. CE 7-10; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er	pression/Maximum 116/270 245/159 been considered fo (3-second gust) CDL=3.0psf; h=25ft; ivelope) exterior zor	11 1 L Cat. e	 All bearings a 1) Provide mecl bearing plate 1, 25 lb uplift OAD CASE(S) 	are assumed to b nanical connectio capable of withs at joint 3 and 17 Standard	e SP No. on (by oth tanding 2 1 Ib uplift	2 . ers) of truss t 25 lb uplift at j at joint 4.	o pint			in the second se	NITH CA	ROLIN

- Vasa= I03mph, 10DL=0.0pst, BCDL=3.0pst, n=251, Ca
 II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-4-6, Exterior (2) 4-4-6 to 7-4-6, Interior (1) 7-4-6 to 8-8-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 3) Truss designed for wind loads in the plane of the truss
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 January 27,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	DV3	Valley	1	1	Job Reference (optional)	171010843

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:20

ID:7QaUI6UC31J4kgEK8S6ssDzrDjb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 3-1-10 6-3-5 3-1-10 3-1-10 6-3-5 4x6 = 2 2-7-10 12 10 ┌ 3 1 0-0-4 4 2x4 🍫 2x4 💊 2x4 🛚 6-3-5

Scale = 1:19.6

					-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 7.7/10.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.12 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 23 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-3-5 oc purlins. Rigid ceiling directly bracing. (size) 1=6-3-5, 3 Max Horiz 1=-60 (LC	athing directly applie applied or 6-0-0 oc 3=6-3-5, 4=6-3-5 : 12)	5) 6) 7) ed or 8) 9)	 Building Des verifying Rai requirements Gable requir Gable studs This truss ha chord live load * This truss ha on the bottor 3-06-00 tall b chord and ar All bearings 	igner/Project engin in Load = 5.0 (psf) is specific to the us es continuous bot spaced at 4-0-0 c is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members are assumed to b	ineer res covers r se of this tom chor oc. for a 10.0 with any d for a liv d f	ponsible for ain loading truss compoid bearing. Dipsf bottom other live load e load of 20.0 a rectangle veen the botto 2.	nent. Ids. Opsf om					
FORCES	Max Uplift 3=-7 (LC Max Grav 1=67 (LC (LC 2)	10), 4=-96 (LC 14) 29), 3=67 (LC 30), 4	1=407 ¹	 Provide mec bearing plate and 96 lb up 	hanical connectio capable of withs lift at joint 4.	n (by oth tanding 7	ers) of truss t ' Ib uplift at jo	to int 3					
FURGES	Tension	pression/waximum	L	OAD CASE(S)	Standard								
TOP CHORD	1-2=-56/147, 2-3=-5	6/144											
BOT CHORD	1-4=-134/98, 3-4=-1	34/98											
NOTES	2-4=-273/110												
 Unbalanci this desigi Wind: ASS Vasd=103 II; Exp B; and C-C E & MWFRS grip DOL= Truss dess only. For see Stand or consult TCLL: AS 	ed roof live loads have n. CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior (2) zone;C-C fs 5 for reactions shown; =1.60 signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi (CE 7-10; Pr=20.0 psf (=1.15): Pg=10.0 psf (=1.15): Pg=10.0 psf (been considered for (3-second gust) CDL=3.0psf; h=25ft; welope) exterior zom or members and forc Lumber DOL=1.60 p the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL=1 ground souv). PE-7	r Cat. ne es olate ss o, ole, Pl 1. I.15 z							Within		ORTH CA ORTFESS SEA 0363	

Plate DOL=1.15); Pg=10.0 psf (ground snow); Pf=7.7 psf (flat roof snow: Lum DOL=1.15 Plate DOL=1.15); Category II; Exp B; Partially Exp.; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB A. GILDIN January 27,2025

C

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	DV4	Valley	1	1	Job Reference (optional)	171010844

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:20 ID:JGDD22PSTBYw0lmAnB?SdyzrDjh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:15.8

Plate Offsets (X, Y): [2:0-3-0,Edge]

			-		-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	7.7/10.0	Lumber DOL	1.15		BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horiz(IL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2015/TF	912014	Matrix-MP								FT 000/
BCDL	10.0											Weight: 12 lb	FT = 20%
LUMBER			7) G	able studs s	spaced at 4-0-0 oc.								
TOP CHORD	2x4 SP No.2		8) TI	his truss ha	s been designed fo	r a 10.0) psf bottom						
BOT CHORD	2x4 SP No.2		ch	nord live loa	d nonconcurrent w	ith any	other live loa	ds.					
BRACING			9) *	This truss h	as been designed	tor a liv	e load of 20.0)pst					
TOP CHORD	VP CHORD Structural wood sheathing directly applied or 3-10-8 oc purlins. Structural wood sheathing directly applied or 3-60-00 tall by 2-00-00 wide will fit between the bottom												
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	, cr 10) A	ll bearings a	are assumed to be	SP No.	2.						
REACTIONS	(size) 1=3-10-8,	, 3=3-10-8	11) P	rovide mech	anical connection	(by oth nding 2	ers) of truss t 7 lb unlift at i	0 oint					
	Max Horiz 1=-36 (LC	C 10)	1	and 27 lb u	plift at joint 3.		in in apine ary						
	Max Uplift 1=-27 (LC Max Grav 1=155 (LC	C 2), 3=-27 (LC 15) C 2), 3=155 (LC 2)	LOAD	CASE(S)	Standard								
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	I ension OP CHORD 1-2=-207/61. 2-3=-207/61												
BOT CHORD	1-3=-39/162												
NOTES	OTES												
1) Unbalance	ed roof live loads have	been considered for											
this design	۱.												
2) Wind: ASC	CE 7-10; Vult=130mph	(3-second gust)											
Vasd=103	mph; TCDL=6.0psf; B	CDL=3.0psf; h=25ft;	Cat.									minin	un,
II; Exp B; E	=nclosed; MWFRS (er	velope) exterior zon	e									"TH CA	Roill
	for reactions shown:	1 umber DOI = 1.60 p	es lato								N	R	in the second
arip DOL=	1.60		late								2.2	1000	IN SIA
 Truss desi 	gned for wind loads in	the plane of the trus	s							-			N.
only. For s	studs exposed to wind	(normal to the face)	,									. 4	
see Standa	ard Industry Gable En	d Details as applicab	ole,									SEA	1 1 2
or consult	qualified building desi	gner as per ANSI/TP	11.							=	1	0202	
4) TCLL: ASC	CE 7-10; Pr=20.0 psf (roof LL: Lum DOL=1	.15							1		0363	22 : 2
Plate DOL	=1.15); Pg=10.0 pst ((ground snow); Pt=7.7								-	8		1.5
Catagory I	I Show: Lum DOL=1.	15 Plate DOL=1.15);								5	5	·	airs
5) Building D	esigner/Project engine	., CI=1.10									25	GIN	EFICAN
verifvina R	ain Load = 5.0 (psf) c	overs rain loading									11	10	BEN
requireme	nts specific to the use	of this truss compon	ent.									11, A. G	ILLUIN
6) Gable requ	uires continuous botto	m chord bearing.										in min	mm,
												January	/ 27,2025
													ſ
A													er stellere i schell st

TRENGINEERING BY A MITCH Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	M1	Monopitch	3	1	Job Reference (optional)	171010845

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:20

Page: 1

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Scale = 1:35.4	 9-3-8	
Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge]		

	, i). [2.24g0,0 0 i i], [2:0 2 0,20g0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2015/TPI	12014	CSI TC BC WB Matrix-MS	0.53 0.53 0.29	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.22 0.01	(loc) 6-9 6-9 6	l/defl >999 >501 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 44 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; fi and C-C E 10-11-12 z for reaction DOL=1.60 3) TCLL: ASC Plate DOL psf (flat ron Category I 4) Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=115 (LC Max Uplift 2=-109 (LI Max Grav 2=410 (LC (lb) - Maximum Com Tension 1-2=0/13, 2-3=-649/ 4-5=-27/0, 4-6=-245/ 2-6=-212/630 3-6=-626/219 ed roof live loads have b E 7-10; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (en txerior (2) -0-10-8 to 2 cone;C-C for members ns shown; Lumber DO CE 7-10; Pr=20.0 psf (i =1.15); Pg=10.0 psf (g of snow: Lum DOL=1.1 I; Exp B; Partially Exp. dd snow loads have be	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-3-8 (212) C 12), 6=-154 (LC 10 (2), 6=484 (LC 2) pression/Maximum 145, 3-4=-78/7, (178) been considered for (3-second gust) CDL=3.0psf; h=25ft; velope) exterior zon -1-8, Interior (1) 2-1- and forces & MWFF L=1.60 plate grip roof LL: Lum DOL=1 fround snow); Pf=7.7 15 Plate DOL=1.15); (Ct=1.10 en considered for th	5) Thi loa ove 6) Bui ver d or 7) Thi cho 8) * Ti 8) * Ti 9) All 10) Pro 2 a LOAD Cat. e 8 to 2s 15	is truss ha id of 12.0 p erhangs no ilding Desi ifying Rair juirements is truss ha ord live loa his truss h the bottom 06-00 tall b ord and an bearings a ovide mect aring plate and 154 lb CASE(S)	s been designed f psf or 1.00 times fi n-concurrent with gner/Project engin o Load = 5.0 (psf) specific to the us s been designed fi d nonconcurrent v as been designed o chord in all area y 2-00-00 wide wi y other members. are assumed to be ranical connection capable of withst uplift at joint 6. Standard	for greatulat roof lo nother lineer responses of the second secon	er of min rool bad of 7.7 ps re loads. bonsible for ain loading truss compo) psf bottom other live load e load of 20. e load of 20. e rectangle veen the bott 2. ers) of truss i 09 lb uplift at	f live f on nent. dds. 0psf om t joint				SEA 0363	L 22 11.BER 27,2025	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	PB1	Piggyback	1	1	Job Reference (optional)	171010846

4-6-5

4-6-5

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

.

2-3-7

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:21 ID:Z05GRcRlxN9IDU0OK_w6vEzrD0T-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

9-0-11 4-6-5

5

9-0-11

Scale = 1:19.3							-								
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	-	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	015/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural 6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift Max Grav	0.2 0.2 0.3 I wood she burlins. ing directly 1=7-3-0, 2 6=7-3-0 1=-34 (LC 4=-94 (LC 6=-16 (LC 1=40 (LC 4=276 (LC 6=205 (LC	athing directly applie applied or 10-0-0 oc 2=7-3-0, 4=7-3-0, 5= 2 17) 2 34), 2=-98 (LC 16), 2 17), 5=-56 (LC 35), 2 16), 2 16), 2=291 (LC 34), 2 35), 5=26 (LC 17), 2 2)	ed or > 7-3-0,	 Truss desig only. For st see Standar or consult qi TCLL: ASCC Plate DOL= psf (flat roof Category II; Unbalanced design. Building Des verifying Ra requirement Gable studs This truss ha chord live lo 10, * This truss ha chord live botto 	ned for wind load uds exposed to w d Industry Gable ualified building of 7-10; Pr=20.0 p 1.15); Pg=10.0 p snow: Lum DOL Exp B; Partially I snow loads have signer/Project en in Load = 5.0 (ps s specific to the u res continuous spaced at 2-0-0 as been designer ad nonconcurren has been design	Is in the pl vind (norm End Deta lesigner a: st (roof LL st (roof	ane of the tru ane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= snow); Pf=7. e DOL=1.15) .10 isidered for the ponsible for ain loading truss composed bearing. D psf bottom other live load e load of 20.0.	ss), ble, PI 1. 1.15 7 ; nis nent. ds. 0psf				<u> </u>		
TOP CHORD	(lb) - Max Tension 1-2=-47/7	imum Com 1. 2-3=-75	pression/Maximum /69. 3-4=-76/71.		3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.										
 4-5=-17/54 3OT CHORD 2-6=-23/45, 4-6=-23/45 WEBS 3-6=-135/45 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-6-6 to 3-6-6, Interior (1) 3-6-6 to 4-6-13, Exterior (2) 4-6-13 to 7-3-6, Interior (1) 7-3-6 to 8-7-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 				 Provide mec bearing plat 1, 56 lb uplif joint 4, 16 lb lb uplift at jo See Standa Detail for Cc consult qual LOAD CASE(S) 	the assumed to chanical connective e capable of with ft at joint 5, 98 lb uplift at joint 6, 98 int 4. rd Industry Piggy onnection to base iffied building des Standard	on (by oth standing f uplift at joi 8 lb uplift back Trus 9 truss as a igner.	ers) of truss t 8 lb uplift at j nt 2, 94 lb up at joint 2 and s Connection applicable, or	o oint lift at 94		Contraction of the second seco		SEA 0363	L 22 EER. A		

- Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-6-6 to 3-6-6, Interior (1) 3-6-6 to 4-6-13, Exterior (2) 4-6-13 to 7-3-6, Interior (1) 7-3-6 to 8-7-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI 11111111 January 27,2025

Job	Truss	Truss Type	Qty	Ply	CC2724 CP Granville	
2500391-21340	PB2	Piggyback	6	1	Job Reference (optional)	171010847

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 08:50:21 ID:GPeBOP8ib?8iLoAmwxUUxAzrD0r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-5 9-0-11 4-6-5 4-6-5 9-0-11 4x6 = 12 6 ∟ 3 13 14 2-3-7 2 4 5 1 0 ø Ø. ė 6 3x6 = 3x6 = 2x4 II

Scale = 1:19.3													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 7.7/10.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-MS	0.07 0.07 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) $1=7-3-0$, 6=7-3-0 Max Horiz $1=-34$ (LC 4=-94 (LC 6=-16 (LC Max Grav $1=40$ (LC 4=276 (L 6=205 (L (lb) - Maximum Con Tension	eathing directly applied / applied or 10-0-0 oc 2=7-3-0, 4=7-3-0, 5=7 C 17) C 34), 2=-98 (LC 16), C 17), 5=-56 (LC 35), C 16) C 16) C 35), 5=26 (LC 17), C 2) npression/Maximum	3) 4) d or 5) 7-3-0, 6) 7) 8) 9) 1(Truss design only. For stusee Standard or consult qu TCLL: ASCE Plate DOL=1 psf (flat roof Category II; Unbalanced design. Building Desverifying Rai requirements Gable studs This truss hat chord live loa * This truss hat on the bottor 3-06-00 tall t chord and ar 	the d for wind loads ads exposed to wind a Industry Gable E alified building de 7-10; Pr=20.0 ps 1.15); Pg=10.0 ps snow: Lum DOL= Exp B; Partially E: snow loads have igner/Project engin n Load = 5.0 (psf) s specific to the us es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members	in the pla nd (norm End Deta signer as f (roof LL (ground L. 1.15 Plat kp.; Ct=1 been cor neer res covers r se of this tom chor c. for a 10.0 with any d for a liv as where ill fit betv.	ane of the true al to the face ils as applical s per ANSI/TF .: Lum DOL= .: Snow); Pf=7. e DOL=1.15) .10 nsidered for th ponsible for ain loading truss compor d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the bottom	ss ,, ble, l 1. l.15 7 ; inis nent. ds. psf					
TOP CHORD	1-2=-47/71, 2-3=-75	5/69, 3-4=-76/71,	11	1) All bearings	are assumed to be	e SP No.	2.						

- 4-5=-17/54 BOT CHORD 2-6=-23/45, 4-6=-23/45 WEBS 3-6=-135/45
- NOTES
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=3.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) 0-6-6 to 3-6-6, Interior (1) 3-6-6 to 4-6-13, Exterior (2) 4-6-13 to 7-3-6, Interior (1) 7-3-6 to 8-7-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 1, 56 lb uplift at joint 5, 98 lb uplift at joint 2, 94 lb uplift at joint 4, 16 lb uplift at joint 6, 98 lb uplift at joint 2 and 94 Ib uplift at joint 4.
- 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

