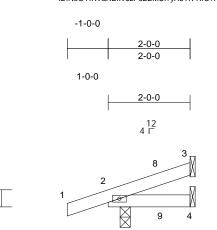


RE: 2501-0734-A - The Farm at Neills Creek Lot 00 Site Information:	818 Soundside Rd
Project Customer: DRB Raleigh Project Name: The	Edenton, NC 27932 Farm at Neills Creek Lot 00 0064
, ,	on: The Farm at Neills Creek
Model: Millhaven	
Address: 401 Winding Creek Dr	
City: Lillington State: NC	
General Truss Engineering Criteria & Design Loads	s (Individual Truss Design
Drawings Show Special Loading Conditions):	
Design Code: IRC2021/TPI2014	Design Program: MiTek 20/20 8.8
Wind Code: ASCE 7-16	Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16
Wind Speed: 120 mph	Floor Load: N/A psf
Roof Load: 40.0 psf	-
Mean Roof Height (feet): 25	Exposure Category: B
No. Seal# Truss Name Date	
1 I70930944 P2 1/23/25	

1	170930944	P2	1/23/25
2	170930945	P2A	1/23/25
3	170930946	P1G	1/23/25
2 3 4	170930947	P1	1/23/25
5	170930948	CIG	1/23/25
6	170930949	Č1	1/23/25
6 7	170930950	B1G	1/23/25
8	170930951	B1	1/23/25
9	170930952	A1	1/23/25
10	170930953	A1P	1/23/25
11	170930954	AIG	1/23/25
12	170930955	AISG	1/23/25

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(e) idea the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

January 23,2025

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof
2501-0734-A	P2	Jack-Open	1	1	I70930944 Job Reference (optional)

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:48 ID:N0OYfKVaREkVJzPo2EMUi?yAeTK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

1-3-11

0-2-0

0-3-8

Scale = 1:18.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MP	0.19 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 4-7 4-7 2 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2-0-0 oc purlins. Rigid ceiling direct bracing.	eathing directly applied y applied or 10-0-0 oc 3= Mechanical, 4=	5) 6) l or 7) 8)	about its cen This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearings are	s been designed for ad nonconcurrent we has been designed in chord in all areas by 2-00-00 wide will by other members. assumed to be:,	or a 10.0 vith any for a liv s where Il fit betv Joint 2 \$	D psf bottom other live loa e load of 20.1 a rectangle ween the botto SP No.2.	ids. Opsf					
	Mechan Max Horiz 2=25 (Lt Max Uplift 2=-35 (L (LC 13)	cal	=-4) Provide mecl bearing plate and 8 lb uplif) One H2.5A S	er(s) for truss to tr hanical connection capable of withsta t at joint 3. Simpson Strong-Tie to connect truss	i (by oth anding 4 e conne	ers) of truss t Ib uplift at jo ctors	int 4					

4=270 (LC 49) **FORCES** (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/26, 2-3=-98/47 BOT CHORD 2-4=-46/88

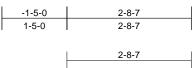
NOTES

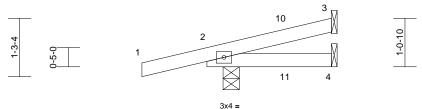
 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

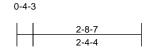
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof	
2501-0734-A	P2A	Jack-Open	1	1	I70930945 Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:49 ID:QvoDoSh_urdNcG3gRu7?p9yAeT5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-4-3

Scale = 1:17.2

FORCES

NOTES

3)

4)

design.

TOP CHORD

BOT CHORD

Max Uplift 2=-58 (LC 12), 3=-7 (LC 16), 4=-5

2=394 (LC 41), 3=269 (LC 47),

(LC 22)

1-2=0/26, 2-3=-235/304

1) Wind: ASCE 7-16; Vult=120mph (3-second gust)

Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4=269 (LC 54)

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3) zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C

for members and forces & MWFRS for reactions shown;

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

(lb) - Maximum Compression/Maximum

Max Grav

Tension

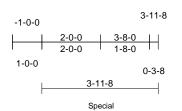
2-4=-309/268

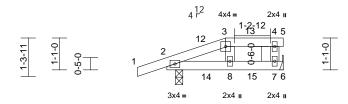
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.24	Vert(LL)	-0.01	4-9	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.01	4-9	>999	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MP		Wind(LL)	0.00	5	>999	240		
BCDL	10.0											Weight: 10 lb	FT = 20%
BOT CHORD BRACING TOP CHORD			6) d or 7)	chord live loa * This truss l	as been designed ad nonconcurren nas been designe n chord in all are	it with any ed for a liv	other live loa e load of 20.0						

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 3 and 5 lb uplift at joint 4.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces.
- 12) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek At 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof	
2501-0734-A	P1G	Half Hip Girder	1	1	I70930 Job Reference (optional)	0946

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:48 ID:JUd0LGLUxkZaijmF9xcvYmyAeSE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-3-8

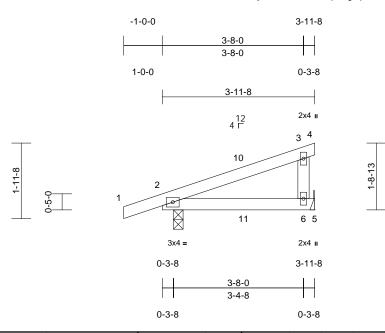
0-3-8

Scale = 1:22

Loading TCLL (root) (psf) 20.4/20.0 TCDL Spacing 20.4/20.0 TCDL 20.0 Plate Grip DOL CSI 1.15 DEFL TC in (loc) //deft L/d PLATES GRIP Snow (Pf/Pg) 20.4/20.0 TCDL 1.15 TC 0.31 Vert(LL) -0.06 8-11 >903 368 244 MT20 244/190 BCL 0.0° Code IRC2021/TPI2014 BC 0.06 Bot C(T) 0.00 2 n/a N/a BCDL 10.0 Code IRC2021/TPI2014 Matrix-MP Matrix-MP Wind(LL) 0.01 8-11 >999 240 Weight: 15 ib FT = 20% LUMBER TOP CHORD 2x4 SP No.2 This truss has been designed for a 10.0 psf bottom shout its center. This truss has been designed for a 10.0 psf bottom chord in all areassumed to be. Joint 2 SP No.2. This truss has been designed for a 10.0 psf bottom chord in all areas sumed to be. Joint 2 SP No.2. This truss has been designed for a moving concentrus the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. PLATES Matrix Hore SC BOT CHORD Max Graz = 2-349 (LC 71) TA T-336 (LC 71)	Scale = 1:22						0	-3-0						
TOP CHORD BOT CHORD2x4 SP No.2about its center.BOT CHORD WEBS CAL2x4 SP No.38)This truss has been designed for a 10.0 psf bottom chord live load onoconcurrent with any other live loads.BRACING TOP CHORDStructural wood sheathing directly applied or 3-11-8 oc purlins; except 2-0-0 oc purlins; 3-5.9)* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 col all by 2-00-00 wide will fit between the bottom chord and any other imembers.BOT CHORDRigid ceiling directly applied or 10-0-0 oc bracing.10)Bearings are assumed to be: Joint 2 SP No.2.REACTIONS(size) 2=0-3-0, 7= Mechanical Max Horiz 2=45 (LC 81), 7=-336 (LC 57)10)Bearing are assumed to be: Joint 2 SP No.2.FORCES(b) - Maximum Compression/Maximum Tension7.TOP CHORD1-2=0/26, 2-3=-145/35, 3-4=0/0, 4-5=0/014)BOT CHORD2-8=-39/113, 7-8=0/0, 6-7=0/014)WEBS3-8=-336/20, 4-7=-276/1014)NOTES55	TCLL (roof) Snow (Pf/Pg) TCDL BCLL	20.0 20.4/20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 NO	TC BC WB	0.65	Vert(LL) Vert(CT) Horz(CT)	-0.05 -0.06 0.00	8-11 8-11 2	>903 >688 n/a	360 240 n/a	MT20	244/190	
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL= 1.15 Plate DOL=1.10; Cs=-1.00; Cs=-1.00; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=-1.15 Droide adequate drainage to prevent water ponding. 	LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=95r II; Exp B; and right a porch left grip DOL= 3) TCLL: ASI Plate DOU 1.15 Plate Exp.; Ce= 4) Unbalanc this design. 5) This truss load of 12	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-8 oc purlins; ex 2-0-0 oc purlins; 3-5 Rigid ceiling directly bracing. (size) 2=0-3-0, 7 Max Horiz 2=25 (LC Max Uplift 2=-45 (LC Max Grav 2=349 (LC (Ib) - Maximum Com Tension 1-2=0/26, 2-3=-145/ 2-8=-39/113, 7-8=0/ 3-8=-336/20, 4-7=-2 Ced roof live loads have gn. SCE 7-16; Vult=120mph mph; TCDL=6.0psf; BC exposed ; end vertical I t and right exposed; Lur =1.60 SCE 7-16; Pr=20.0 psf, F e DOL = 1.15); Is=1.0; I =1.0; Cs=1.00; Ct=1.10 xed snow loads have be s has been designed foi 2.0 psf or 2.00 times flat 	Accept applied or 10-0-0 oc 7= Mechanical 71) 2 8), 7=-21 (LC 9) 2 51), 7=336 (LC 57) apression/Maximum 35, 3-4=0/0, 4-5=0/0 0, 6-7=0/0 76/10 been considered for (3-second gust) DL=6.0psf; h=25ft; C: avelope); cantilever le left and right exposed mber DOL=1.60 plate roof LL: Lum DOL=1. 2f=20.4 psf (Lum DOL Rough Cat B; Partially , Lu=50-0-0 been considered for this r greater of min roof li t roof load of 15.4 psf	about 8) This t chord 9) * This on the 3-06-1 chord 10) Bearin 7. 13) One H recon UPLIf does 14) This t load c panel Botton 15) Graph or the botton at. 16) Hang ft provic ft graph or the botton at. 16) Hang ft provic ft graph or the botton the provic ft graph or the ft graph of the chord down down down down down down down down the provic ft graph of the provic ft graph of the ft graph ft graph	its center. russ has been designed live load nonconcurren truss has been designed a bottom chord in all are bottom chord in all are fill and the connection russ has been designed of 250.01b live and 3.01b s and at all panel points m Chord, nonconcurren nical purlin representation or entration of the purlin n chord. er(s) or other connection ted sufficient to support and 29 lb up at 2-0-0 co and 28 lb up at 2-0-0 co n/selection of such com russ are noted as from ISE(S) Standard d + Snow (balanced): Lu base=1.15 orm Loads (lb/ft) ert: 1-3=-51, 3-5=-61, 6-	d for a 10.1 t with any ed for a liv- as where will fit betw s. Joint 2 SI truss conne truss conne truss conne ss to bear truss to bear to a mor dead loca along the t with any on does nu along the n device(s concentra on top cho on bottom hection de n, loads a t (F) or ba	D psf bottom other live load e load of 20. a rectangle ween the bott P No.2 . hections. ers) of truss is the public at j ctors ing walls due r uplift only at ving concentritied at all mice a other live load other load other load other live load other load	ads. Opsf om to joint e to nd farated d and ds. size 25 lb face				SEA 0363	L EEFRER	Manunna

January 23,2025

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

	Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof	
1	2501-0734-A	P1	Monopitch	4	1	Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:48 ID:rI0n?IwXB_9Y0LaWc5UhdNyAeSn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

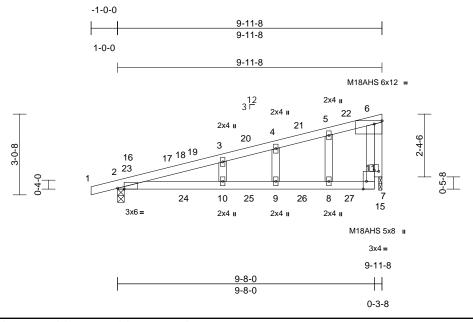
Scale = 1:21.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	I/TPI2014	CSI TC BC WB Matrix-MP	0.46 0.48 0.05	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.05 0.00 0.01	(loc) 6-9 6-9 2 6-9	l/defl >999 >928 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 3-11-8 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0.6		8)	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird) Provide mec	s been designed ad nonconcurrent has been designer n chord in all area y 2-00-00 wide w y other members assumed to be: , er(s) for truss to tr hanical connectio e capable of withs	with any d for a liv as where rill fit betv Joint 2 SI russ conr n (by oth	other live loa e load of 20. a rectangle veen the bott P No.2 . nections. ers) of truss	ads. Opsf tom					
	Max Horiz 2=39 (LC Max Uplift 2=-40 (LC Max Grav 2=349 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-3=-130/- 2-6=-36/116, 5-6=0/- 3-6=-294/89	12) : 12), 6=-24 (LC 12) C 40), 6=336 (LC 44) pression/Maximum 45, 3-4=-7/0)	vector of the second se	Simpson Strong-T ed to connect trus s) 2. This connec sider lateral force s been designed lb live and 3.0lb of t all panel points d, nonconcurrent	s to bear tion is for s. for a mov dead loca along the	ing walls due uplift only a ving concent ted at all mic Top Chord	nd rated d and					

NOTES

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.

ttom Chord, nonconcurrent with any other live loads. LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof
2501-0734-A	C1G	Monopitch Supported Gable	2	1	Job Reference (optional)

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:48 ID:UPSSQzdvpC1UZzF5KaRgLCyAeMj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:37.4

Plate Offsets (X, Y): [2:0-2-15,Edge], [6:Edge,0-1-8], [7:0-3-8,Edge], [11:0-2-0,0-0-8]

	(7, 1). [2:0 2 :0,2030], [o:=ago,o : o], [:		5], [2 0,0	5 0]								-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.89	Vert(LL)	-0.25	9-1Ó	>483	360	M18AHS	186/179
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.47	Vert(CT)	-0.46	9-10	>257	240	MT20	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.06	Horz(CT)	0.01	2	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.26	9-10	>465	240		
BCDL	10.0										-	Weight: 43 lb	FT = 20%
LUMBER		•	3)		E 7-16; Pr=20.0 p				LOAD	CASE(S)	Sta	ndard	
TOP CHORD					1.15); Pg=20.0 p								
BOT CHORD					OL = 1.15); Is=1		Cat B; Partia	ally					
WEBS	2x4 SP No.2		4)		0; Cs=1.00; Ct=1			h:a					
OTHERS	2x4 SP No.3		4)		snow loads have	e been cor	isidered for t	nis					
BRACING			5)	design.	as been designed	d for groat	or of min root	Elivo					
TOP CHORD	Structural wood she except end verticals		ed, ³⁾	load of 12.0	psf or 2.00 times	s flat roof l	oad of 15.4 p						
BOT CHORD	Rigid ceiling directly	applied.	0		on-concurrent w e MT20 plates ur								
REACTIONS	(size) 2=0-3-0, *	15=0-1-8	6) 7)		ked for a plus or								
	Max Horiz 2=56 (LC	12)	()	about its cer		minus 5 u	egree rotation						
	Max Uplift 2=-77 (LC				spaced at 2-0-0	00							
	Max Grav 2=472 (L0	C 57), 15=426 (LC 4	6) 9)		as been designed) psf bottom						
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10	chord live loa	ad nonconcurren	nt with any	other live loa						
TOP CHORD		138 3-4=-409/152	i C		m chord in all are			opsi					
	4-5=-396/166, 5-6=-	, ,	/359.		by 2-00-00 wide			om					
	6-11=-110/359		,		ny other member			om					
BOT CHORD	2-10=-206/393, 9-10)=-206/393,	11		assumed to be:		SS . Joint 1	5 SP					
	8-9=-206/393, 7-8=-	206/393		No.3 .			,						
WEBS	5-8=-103/146, 4-9=-	157/93, 3-10=-143/	108, 12) Bearing at jo	oint(s) 15 conside	ers paralle	to grain valu	le					1111
	6-15=-438/212			using ANSI/	TPI 1 angle to gr	ain formul	a. Building					N''LL CI	ND "IL
NOTES				designer sho	ould verify capac	ity of bear	ng surface.				1	THUT	NON
1) Wind: AS	CE 7-16; Vult=120mph	(3-second gust)	13	 Provide med 	hanical connecti	ion (by oth	ers) of truss	to			5	01.2299	in the
	nph; TCDL=6.0psf; BC		Cat.		e at joint(s) 15.					/		OFLOG	A STA
	Enclosed; MWFRS (er				Simpson Strong-					4			/ n/ F
	E) -1-0-0 to 2-0-0, Inte				ed to connect tru								. T. E
	tilever left and right exp				(s) 2 and 15. Thi		on is for uplif	t only		=	:	SEA	∖L : =
	exposed; porch left and				t consider lateral as been designed		ing concept	اممده		=	:	0262	• •
	and forces & MWFRS		; 10		Olb live and 3.0lb					1		0363	22 : 2
	OL=1.60 plate grip DC										8		
	igned for wind loads in studs exposed to wind			 UPLIFT at jt(s) 2 and 15. This connection is for uplift only and does not consider lateral forces. 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to 								all S	
	lard Industry Gable En				esign requires the						20	NGIN	FEILAS
	qualified building desi		,		ood sheathing be			top			11,	7/0	SET N
or consult	quanted building desi	giici as pei Aivol/11			2" gypsum shee							IL A C	HLD
				the bottom c								A. C	11111
												lanuar	y 23,2025
												Janual	y 20,2020

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof	
2501-0734-A	C1	Monopitch	5	1	I70930949 Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:47

0-3-8

Page: 1

Structural, LLC, Thurmont, MD - 21788.

ID:ysYGC7rCaklxjkdYOMmv4?yAeMR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 5-4-3 9-11-8 5-4-3 4-7-5 1-0-0 9-11-8 4x6 = 312 31 4 14 2x4 = 3 2-4-6 3-0-8 13 11 12 2¹⁵ ___8 Ř 16 5 10 3x6 = 6x8 = 3x4 = 9-11-8 9-8-0 +9-8-0

Scale = 1:37.4

Plate Offsets (X, Y): [2:0-0-15,Edge]

Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on

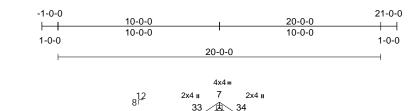
overhangs non-concurrent with other live loads.

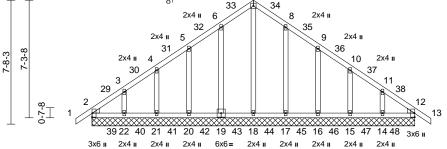
2)

3)

4)

design.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof	
2501-0734-A	B1G	Common Supported Gable	1	1	I70930950 Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:47 ID:J9xP5XrVhQJanfXaCwTNXHyAe0U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

20-0-0

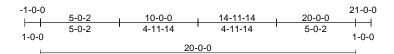
H

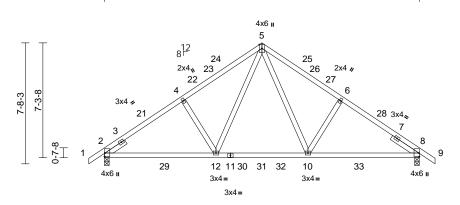
Scale = 1:64.2

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.19 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 121 lb	GRIP 244/190 FT = 20%
	Rigid ceiling directly (size) 2=20-0-0, 15=20-0-0 21=20-0-0 Max Horiz 2=-117 (L Max Uplift 2=-18 (LC 15=-11 (L 20=-17 (L 22=-33 (L 14=334 (L 18=321 (L	12=20-0-0, 14=20-0- 0, 16=20-0-0, 17=20-(0, 19=20-0-0, 20=20-(0, 22=20-0-0 C 14) 12), 14=-29 (LC 17), C 17), 16=-17 (LC 17 C 17), 19=-13 (LC 16 C 16), 21=-10 (LC 16 C 16) C 9), 12=317 (LC 93 .C 91), 15=333 (LC 9 .C 89), 17=334 (LC 8 .C 87), 19=334 (LC 8	1) 2) 0, 0, 0, 3), 3), 3), 6)	this design. Wind: ASCE Vasd=95mph II; Exp B; Eni (3E) -1-0-0 tr zone; cantile: and right exp MWFRS for i grip DOL=1.6 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha	ed for wind loads ds exposed to wird d Industry Gable E alified building de 7-16; Pr=20.0 ps; .15); Pg=20.0 psf; DL = 1.15); Is=1.0 ; Cs=1.00; Ct=1.1 snow loads have I s been designed f	oh (3-sec ICDL=6. ICDL	cond gust) Opsf; h=25ft; C a) and C-C Coi to 10-0-0, Cor 0-0 to 21-0-0 ; end vertical la d forces & DOL=1.60 plat ane of the trus al to the face), ils as applicab s per ANSI/TP : Lum DOL=1 4 psf (Lum DOI Cat B; Partiall insidered for thi er of min roof I	at. mer eft e s le, 15 L = y s ive	bea 2, 1 at jo 17 l join 14) This load pan Bot 15) This stru cho	ring pla 3 lb upli bint 21, 5 b uplift a t 14 and s truss h d of 250 els and tom Cho s truss d ctural w rd and 1 bottom	e capa ft at joi 33 lb u at joint 18 lb as bee 0lb live at all p ord, nor esign i ood sh /2" gy chord.	able of withstandi nt 19, 17 lb uplift plift at joint 22, 11 16, 11 lb uplift at uplift at joint 2. en designed for a e and 3.0lb dead vanel points along nconcurrent with requires that a m eathing be applied box and sources the sources the sources the sources the	vothers) of truss to ing 18 lb uplift at joint at joint 20, 10 lb uplift 2 lb uplift at joint 17, joint 15, 29 lb uplift at moving concentrated located at all mid g the Top Chord and any other live loads. inimum of 7/16" ed directly to the top be applied directly to
FORCES TOP CHORD BOT CHORD WEBS	20=333 (L 22=334 (L (lb) - Maximum Com Tension 1-2=0/45, 2-3=-101// 4-5=-93/70, 5-6=-87, 7-8=-118/156, 8-9=- 10-11=-88/75, 11-12 2-22=-65/115, 21-22 18-20=-41/115, 12-1 16-17=-41/115, 12-1 7-18=-224/31, 6-19=	C 85), 21=333 (LC 8 C 83) pression/Maximum 86, 3-4=-93/75, (107, 6-7=-118/156, 87/107, 9-10=-93/70, (=-92/65, 12-13=0/45) =-41/115, 20-21=-41/ 8=-41/115,	4), 7) 8) 9) 10 115, 11 115, 12 4,	overhangs no Plates check about its cen Gable requir Gable studs)) This truss ha chord live loa)) * This truss h on the botton 3-06-00 tall b chord and an	osf or 2.00 times f on-concurrent with ed for a plus or m ter. es continuous bott spaced at 2-0-0 o s been designed f d nonconcurrent t tas been designed n chord in all area by 2-00-00 wide with yo other members. are assumed to be	n other li inus 5 de com chor c. ior a 10. with any d for a liv s where ill fit betw	ve loads. egree rotation d bearing. 0 psf bottom other live load e load of 20.0p a rectangle veen the botton	s. osf		CV THINK		SEA 0363	• -

4-21=-285/70, 3-22=-287/78, 8-17=-280/65, 9-16=-281/74, 10-15=-285/70, 11-14=-287/77

A. GILBERN January 23,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof
2501-0734-A	B1	Common	1	1	I70930951 Job Reference (optional)

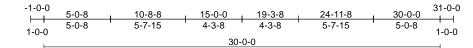
Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:47 ID:EPwAdwLT8Puqchnht4bEWXyAdrV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

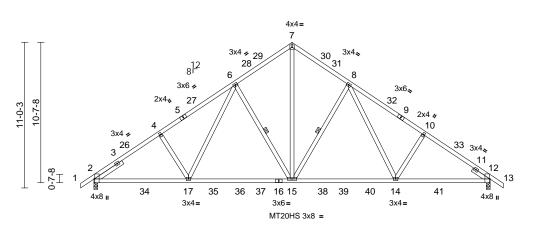
L	7-0-15	12-11-1	20-0-0	
Г Scale = 1:66	7-0-15	5-10-2	7-0-15	

Plate Offsets (X, Y): [2:Edge,0-0-5],	[8:Edge,0-0-5]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-AS	0.61 0.90 0.18	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)		(loc) 12-15 12-15 8 10-12	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 108 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(21 Exterior(21 Exterior(21 Exterior(21 Exterior(21 Casterior) 21-0-0 zor vertical lef forces & M DOL=1.60 3) TCLL: ASC Plate DOL 1.15 Plate Exp.; Ce=	Max Horiz 2=117 (LC Max Grav 2=946 (LC (Ib) - Maximum Com Tension 1-2=0/52, 2-4=-1266 5-6=-1173/99, 6-8=- 2-12=0/991, 10-12=(4-12=-263/102, 5-12 6-10=-262/102 ed roof live loads have	athing directly applie applied. 3=0-3-8 2 15) 2 34), 8=946 (LC 35) pression/Maximum //61, 4-5=-1172/99, 1256/61, 8-9=0/52 0/675, 8-10=0/993 :=-14/488, 5-10=-15/- been considered for (3-second gust) DL=6.0psf; h=25ft; C tivelope) and C-C tior (1) 2-0-0 to 10-0- terior (1) 2-0-0-0- terior (1) 2-0-0-0-0- terior (1) 2-0-0-0-0- terio	d. 490, Cat. -0, L = y	 load of 12.0 overhangs n Plates check about its cer This truss ha chord live lo * This truss lo on the botton 3-06-00 tall 1 chord and at All bearings This truss ha load of 250.0 panels and a Bottom Choi This truss de structural work 	as been designed ad nonconcurrent has been designe m chord in all area by 2-00-00 wide w hy other members are assumed to b as been designed Jb live and 3.0lb at all panel points rd, nonconcurrent seign requires tha bod sheathing be 2" gypsum sheet hord.	flat roof lift th other lift ninus 5 de for a 10.1 with any d for a live as where vill fit betv s, with BC with Core for a more dead loca along the with any t a minim applied d	bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa ve load of 20. a rectangle veen the bott CDL = 10.0ps 2. ving concent ated at all mit e Top Chord other live loa um of 7/16" irectly to the	osf on n ads. Opsf rom rated d and ads. top				SEA 0363	22 EER. KUU

January 23,2025

Page: 1


inst.org)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof	
2501-0734-A	A1	Common	15	1	Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:42 ID:i2NqhHsdDJPxQin4_JatTtyAdXT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	7-1-14	15-0-0	22-10-2	30-0-0	
Scale = 1:79.3	7-1-14	7-10-2	7-10-2	7-1-14	

Plate Offsets (X, Y): [2:0-3-8,Edge], [12:0-3-8,Edge]

	,, i): [2:0 0 0,20g0],	[:2:0 0 0;20g0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.70 0.56 0.48	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.38 0.06	(loc) 14-15 14-15 12 14-15	l/defl >999 >947 n/a >999	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 183 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING	1-6-0	2-6-0, Right 2x4 SP N	o.3 4) 5)	Plate DOL= ² 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps OL = 1.15); Is=1. 0; Cs=1.00; Ct=1. snow loads have	f; Pf=15.4 0; Rough 10 been cor for greate	e psf (Lum Do Cat B; Partiansidered for t per of min root	OL = ally his f live					
	Rigid ceiling directly	6-15, 8-15 12=0-3-8 C 15)	6) 7) 8)	overhangs n All plates are Plates check about its cer This truss ha	psf or 2.00 times on-concurrent wite MT20 plates unl ted for a plus or n tter. as been designed ad nonconcurrent	th other lives other him here a state of the here of t	ve loads. wise indicate egree rotation) psf bottom	ed. n					
FORCES	(lb) - Maximum Com Tension 1-2=0/52, 2-4=-2111 6-7=-1492/145, 7-8= 8-10=-2032/107, 10- 12-13=0/52	/64, 4-6=-2035/107, 1492/145,		* This truss I on the bottor 3-06-00 tall I chord and ar) All bearings	has been designe n chord in all are by 2-00-00 wide v ny other members are assumed to b as been designed	ed for a liv as where vill fit betv s, with BC be SP SS	e load of 20. a rectangle veen the bott DL = 10.0ps	Opsf tom if.					
BOT CHORD WEBS	12-14=0/1691	=0/1365, 14-15=0/136 '=-246/102, 6-17=0/49	65,	load of 250.0 panels and a	at all panel points of, nonconcurrent	dead loca along the	ted at all mic Top Chord a	d and					11111
NOTES	10-14=-251/102	5=-574/112, 8-14=0/48	36, 12) This truss de structural wo chord and 1/	esign requires that ood sheathing be 2" gypsum sheet	t a minim applied d	um of 7/16" rectly to the	top		6	AN AN	ORTHOA	TO III
this design 2) Wind: ASC Vasd=95m II; Exp B; I Exterior(21 31-0-0 zor vertical lef forces & M	ed roof live loads have 1. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -10-0 to 2-0-0, Inter R) 15-0-0 to 18-0-0, Int re; cantilever left and r t and right exposed;C- IWFRS for reactions s Valeta aris DOL 1 600	(3-second gust) DL=6.0psf; h=25ft; Ca ivelope) and C-C rior (1) 2-0-0 to 15-0-0 terior (1) 18-0-0 to ight exposed ; end C for members and	at.	the bottom c DAD CASE(S)								SEA 0363	• –

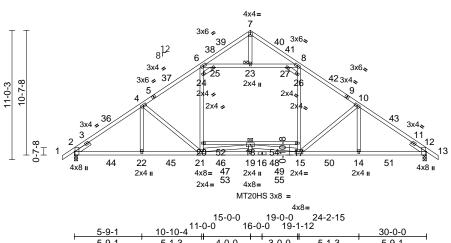
II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 15-0-0, Exterior(2R) 15-0-0 to 18-0-0, Interior (1) 18-0-0 to 31-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

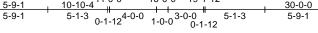
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

GI

A. GIL January 23,2025


Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof	
2501-0734-A	A1P	Attic	7	1	Job Reference (optional)	170930953


Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:45 ID:kBPxUjnE9Y56gLz9Pftc3_yAdSQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:81.2

Plate Offsets (X, Y): [2:0-3-8,Edge], [12:0-3-8,Edge]

		[12.0 0 0,Edg0]			1		-						-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.18	14-15	>999	360	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)	-0.32	18-20	>999	240	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES		WB	0.69	Horz(CT)	0.09	12	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.09	21-22	>999	240		
BCDL	10.0					-						Weight: 202 lb	FT = 20%
LUMBER			2	Wind: ASCE	7-16; Vult=120m	ph (3-seo	cond gust)		14) This	s truss d	lesign i	requires that a m	inimum of 7/16"
TOP CHORD	2x4 SP No.2			Vasd=95mp	h; TCDL=6.0psf; I	BCDL=6.	0psf; h=25ft; C	Cat.	stru	ctural w	ood sh	eathing be appli	ed directly to the top
BOT CHORD	2x4 SP SS *Except*	20-17:2x4 SP No.2			closed; MWFRS							osum sheetrock l	be applied directly to
WEBS	2x4 SP No.3 *Excep	ot* 8-15,6-21:2x4 SP	9 No.2		-1-0-0 to 2-0-0, Ir			-0,		bottom			
SLIDER	Left 2x4 SP No.3 1	1-6-0, Right 2x4 SP	No.3		15-0-0 to 18-0-0,							d for L/360 defle	ction.
	1-6-0				; cantilever left an				LOAD	CASE(S) Sta	ndard	
BRACING					and right exposed								
TOP CHORD	Structural wood she		ed.		FRS for reaction		Lumber						
BOT CHORD	Rigid ceiling directly	applied.	2		late grip DOL=1.6 E 7-16; Pr=20.0 ps			45					
JOINTS	1 Brace at Jt(s): 23		3		1.15); Pg=20.0 ps								
REACTIONS	(size) 2=0-3-8, 1	12=0-3-8			IOL = 1.15); Is=1.0								
	Max Horiz 2=-171 (L	.C 14)			0: Cs=1.00; Ct=1.			· y					
	Max Grav 2=1618 (L	_C 35), 12=1618 (LC	C 36) 4		snow loads have		nsidered for th	is					
ORCES	(lb) - Maximum Com	pression/Maximum		design.		20011001							
	Tension		5		as been designed	for great	er of min roof	live					
TOP CHORD	1-2=0/52, 2-4=-2477	7/0, 4-6=-2292/0,	-		psf or 2.00 times								
	6-7=-347/59, 7-8=-3		Э,		on-concurrent wit								
	10-12=-2477/0, 12-1		6	200.0lb AC	unit load placed o	n the bot	om chord, 15-	-0-0					
BOT CHORD	2-22=0/1962, 21-22=				l, supported at two								
	15-19=0/2821, 14-15		1965, 7		e MT20 plates unl			d.					
	18-20=-103/323, 17-		8		ked for a plus or n	ninus 5 d	egree rotation					IIIIII	11111
WEBS	15-17=0/650, 17-26=	,		about its cer								WHY CA	Pall
	10-15=-268/118, 10-		9		as been designed						15	athor	01/10
	20-21=0/650, 20-24=				ad nonconcurrent						N	Oninse	the Aller
	4-21=-268/117, 4-22		40/0, 1		has been designe			pst		6	1	115 1	
	23-25=-1692/0, 23-2 8-27=-1646/0, 7-23=				m chord in all area					-			
	18-21=-1427/0, 15-1				by 2-00-00 wide w		veen the botto	0111		1	5 B		. <u>111</u> 2
	24-25=-255/174, 26-		4		ny other members d live load (20.0 p		dditional batta	m			:	SEA	L : =
NOTES	2120-200/114,20	21 - 200/114	I		load (20.0 psf) ap					=	:	0363	• -
	a soof live loods have	haan aanaldan - I f-	-	17-18	iuau (20.0 psi) ap	plied Offis	1010011. 10-2	20,		1		0303	22 : :
	ed roof live loads have			are assumed to b	e SP SS					e		1 - S	
this design					as been designed			ated				N. E.	airs

13) I his tru

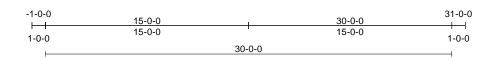
ss has been designed for a moving concentrate load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and

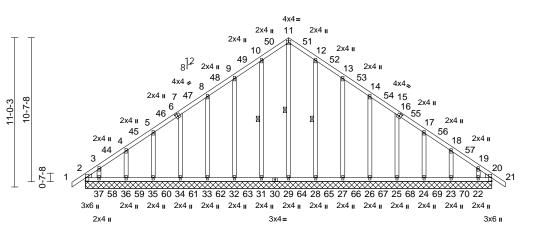
Bottom Chord, nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILBER


January 23,2025


A. GILD

C

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof			
2501-0734-A	A1G	Common Supported Gable	1	1	I70930954 Job Reference (optional)			

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:44 ID:4LnIwCvCqmcV2p8nBFbKv2yAe1h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

30-0-0

Scale = 1:77.1 Plate Offsets (X, Y): [7:0-2-0,0-2-4], [16:0-2-0,0-2-4]

Plate Olisets (X, T): [7:0-2-0,0-2-4], [16:0-2-0,0-2-4]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr	2-0-0 1.15 1.15 YES RC2021/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.19 0.31	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 20	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 217 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she Rigid ceiling directly 1 Row at midpt (size) 2=30-0-0, 26=30-0-0 26=30-0-0 33=30-0-0 36=30-0-0 36=30-0-0 36=30-0-0 26=20-0-0 26=30-0-0 26=20-0-0 26=20-0-0 26=30-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 26=20-0-0 22=-14 (L 26=-14 (L 26=-13 (L 26=-13 (L 26=303 (L 26=300 (L	11-29, 10-31, 12-28 20=30-0-0, 22=30-0-0,), 24=30-0-0, 25=30-0-0,), 27=30-0-0, 28=30-0-0,), 31=30-0-0, 32=30-0-0,), 34=30-0-0, 35=30-0-0,), 37=30-0-0, 215) 12), 20=-17 (LC 13), C 17), 23=-13 (LC 17), C 17), 23=-13 (LC 17), C 17), 23=-13 (LC 17), C 17), 23=-13 (LC 17), C 17), 23=-14 (LC 16), C 16), 33=-14 (LC 16), C 16), 33=-15 (LC 16), C 16), 33=-15 (LC 16), C 16), 37=-53 (LC 16), C 16), 37=-53 (LC 16), C 16), 23=-333 (LC 11), C 111), 27=333 (LC 11), C 11), 27=333	 b), b), c), WEBS NOTES 1) Unbalance this design 2) Wind: ASC t), <lit),< li=""> <lit),< li=""> t), t),</lit),<></lit),<>	1-2=0/45, 2-3=-167 4-5=-119/109, 5-7= 8-9=-94/107, 9-10= 10-11=-127/197, 11 12-13=-108/157, 12 14-15=-88/74, 15-1 18-19=-100/71, 19- 2-37=-97/143, 36-3 35-36=-70/143, 32- 31-32=-70/143, 23- 28-29=-70/143, 23- 22-23=-70/143, 23- 23-70/143, 23- 24-25=-70/143, 24- 24-25=-70,	-109/12 -108/15 I-12=-1 3-14=-8 7=-88/7 20=-13 7=-70/1 35=-70 31=-70 22=-70 31=-70 22=-70 31=-27 =-277/6 =-288/6 27=-27 25=-28 23=-28 e been h (3-sec CDL=6 h velope J) 2-0-0	27, 7-8=-101/90 77, 27/197, 9/107, 27/197, 9/107, 74, 17-18=-89/7 9/85, 20-21=0/4 43, 1/144, 1/143, 1/144, 1/143, 1/144, 1/144, 1/144, 1/14), 45 (1, 51, 33, at. ner	Pla 1.1: Exp 5) Unb des 6) This load ove 7) Pla 8) Gal 9) Gal 9) Gal 10) This cho 11) * Th on the 3-0 cho	te DOL= 5 Plate E 5 Plate	1.15); DOL = = 0; CS= 1 snow as beec psf or non-coo ked fo nter. I'res coo s space as beec as beec as beec as beec as beec as a	; Pr=20.0 psf (roc Pg=20.0 psf; Pf= 1.15); Is=1.0; Ro 1.00; Ct=1.10 loads have been en designed for gg 2.00 times flat rc ncurrent with oth r a plus or minus ntinuous bottom of ed at 2-0-0 oc. en designed for a nconcurrent with sen designed for a nconcurrent with een designed for a ssumed to be SP	of LL: Lum DOL=1.15 15.4 psf (Lum DOL = ugh Cat B; Partially a considered for this reater of min roof live of load of 15.4 psf on er live loads. 5 degree rotation chord bearing. 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom No.2 .
FORCES	108), 31= (LC 106), 34=333 (L	.C 109), 29=324 (LC 334 (LC 107), 32=333 33=333 (LC 105), C. 104), 35=332 (LC 336 (LC 102), 37=308 pression/Maximum	 zone; cant and right e MWFRS fc grip DOL= 3) Truss desi only. For s see Standa 	ilever left and right ex xposed;C-C for mem or reactions shown; L	posed bers ar umber l n the pl d (norm nd Deta	; end vertical le d forces & DOL=1.60 plate ane of the truss al to the face), ils as applicable	e,		11115.0		0363	L 22 ILBERTUUT 23,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TP1 Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

Job	Truss	Truss Type Q Common Supported Gable 1		Ply	The Farm at Neills Creek Lot 00.0064 Roof		
2501-0734-A	A1G			1	Job Reference (optional)	170930954	
Structural, LLC, Thurmont, MD -	21788,	Run: 8.83 S Dec 4 2	Page: 2				

- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 2, 17 lb uplift at joint 20, 9 lb uplift at joint 31, 18 lb uplift at joint 32, 14 lb uplift at joint 33, 15 lb uplift at joint 34, 15 lb uplift at joint 35, 13 lb uplift at joint 36, 53 lb uplift at joint 37, 7 lb uplift at joint 28, 18 lb uplift at joint 27, 14 lb uplift at joint 26, 15 lb uplift at joint 25, 15 lb uplift at joint 24, 13 lb uplift at joint 23, 44 lb uplift at joint 22, 64 lb uplift at joint 2 and 17 lb uplift at joint 20.
- 14) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 20, 41.
- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard


Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Wed. Jan 22 08:39:44 ID:4LnIwCvCqmcV2p8nBFbKv2yAe1h-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 Roof
2501-0734-A	A1SG	Common Structural Gable	1	1	Job Reference (optional)

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 22 08:39:46 ID:mHMHEeQ?1Irl7MqneSQLmUzstdU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

$\begin{array}{c} 44 = \\ 24 + 24 + 9 \\ 34 + 8 \\ 48 \\ 49 \\ 12 \\ 24 + 10 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$												
		H	7-1-14 7-1-14	<u>15-0-0</u> 7-10-2	<u>19-10-4</u> 4-10-4	22-10-2 2-11-14	<u>30-0-0</u> 7-1-14		4			
Scale = 1:79.3 Plate Offsets ((X, Y): [2:Edge,0-0-5],	, [15:0-2-0,0-2-4]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	BC	0.61 Vert(LL) 0.83 Vert(CT) 0.32 Horz(CT) Wind(LL)	in (loa -0.23 28-3 -0.31 28-3 0.02 2 0.01 28-3	0 >999 0 >760 3 n/a	L/d 360 240 n/a 240	PLATES MT20 MT20HS Weight: 238 lb	GRIP 244/190 187/143 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	1-6-0 Structural wood she Rigid ceiling directly 1 Brace at Jt(s): 31, 33, 35 (size) 2=0-3-8, 22=10-3-1 25=0-3-8 Max Horiz 2=171 (LC Max Uplift 19=-3 (LC 22=-116 (Max Grav 2=985 (LC 21=374 (l 23=933 (l 25=502 (l	1-6-0, Right 2x4 SP N athing directly applied applied. 19=10-3-8, 21=10-3-8 8, 23=10-3-8, 24=10-3 C 15) C 46), 21=-27 (LC 17), (LC 57), 24=-94 (LC 5 C 34), 19=297 (LC 9 LC 97), 22=239 (LC 9 LC 97), 24=278 (LC 9 LC 34)	d. NOTES 1) Unbalanced this design. 3-8, 2) Wind: ASCE Vasd=95mp II; Exp B; Er Exterior(2E) 1) Exterior(2R) 31-0-0 zone 6), vertical left a 4), forces & MV DOL=1.60 p	28-31=-605/111, 28-33=0/541, 33-34=0/564, 12-34=0/664, 12-35=-772/0, 23-35=-747/0, 1: 23-36=-336/116, 16-36=-222/72, 8-31=-69/12, 7-32=-72/298, 10-33=-155/85, 27-33=-103/139, 11-34=-390/0, 26-34=-288/18, 13-35=-309/32, 12: 24-35=-317/32, 14-36=-256/49, 16-22=-105/134, 17-21=-307/59 13: IOTES) Unbalanced roof live loads have been considered for this design.) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 15-0-0, Exterior(2R) 15-0-0 to 18-0-0, Interior (1) 18-0-0 to 31-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60				 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 2 SP SS , Joint 19 SP No.2 , Joint 25 SP No.2 . One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 19, 24, 22, and 21. This connection is for uplift only and does not consider lateral forces. This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 				
FORCES	9-10=-561/127, 10-1 11-12=-383/91, 12-1 14-16=-5/261, 16-17	1/41, 4-6=-1234/83, 606/107, 8-9=-556/12 11=-590/104, 13=-9/218, 13-14=0/2 [:] 7=-51/139,	only. For str see Standar or consult qu 25, 4) TCLL: ASCE 70, Plate DOL= 1.15 Plate D	uds exposed to wind d Industry Gable Enc Jalified building desig 5 7-16; Pr=20.0 psf (r 1.15); Pg=20.0 psf; P OL = 1.15); Is=1.0; R 0; Cs=1.00; Ct=1.10	(normal to the face I Details as applica oner as per ANSI/T oof LL: Lum DOL= f=15.4 psf (Lum D	e), able, ™I 1. =1.15 OL =						
BOT CHORD	17-19=-195/190, 19 2-30=0/1063, 28-30 26-27=-18/159, 25-2 24-25=-18/159, 23-2 22-23=-132/78, 21-2 19-21=-134/78	=0/713, 27-28=-18/15 26=-18/159, 24=-18/159,	 5) Unbalanced design. 6) This truss ha load of 12.0 overhangs n 7) All plates arr 8) Plates check 	snow loads have been as been designed for psf or 2.00 times flat ion-concurrent with o e MT20 plates unless ked for a plus or minu	greater of min roo roof load of 15.4 p ther live loads. s otherwise indicate	f live osf on ed.						
			about its cer	IICI.					January	/ 23,2025		
WARN	NING - Verify design paramete	ers and READ NOTES ON T	'HIS AND INCLUDED MITEK R	EFERENCE PAGE MII-747	'3 rev. 1/2/2023 BEFOR	E USE.			ENGINEER	ING BY		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSUPTI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

