

RE: 2501-0733-A - The Farm at Neills Creek Lot 00. Site Information:	0064 OWF Trenco 818 Soundside Rd Edepton NC 27932
Project Customer: DRB Raleigh Project Name: The	Farm at Neills Creek Lot 00.0064
Lot/Block: 00.0064 Subdivisio	n: The Farm at Neills Creek
Model: Millhaven	
Address: 401 Winding Creek Dr	
City: Lillington State: NC	
General Truss Engineering Criteria & Design Loads	(Individual Truss Design
Drawings Show Special Loading Conditions):	
Design Code: IRC2021/TPI2014	Design Program: MiTek 20/20 8.8
Wind Code: ASCE 7-16	Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16
Wind Speed: 115 mph	Floor Load: N/A psf
Roof Load: 40.0 psf	
Mean Roof Height (feet): 25	Exposure Category: B
No. Seal# Truss Name Date	

2345678910 11 2F6 2F2GE 171018472 171018473 2F1GE 171018474 1F 2F1A 2F2 2F2A 2F2B 2F2B 2F3 171018475 171018476 171018477 171018478 171018479 1/27/25

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

Truss Design Engineer's Name: Gilbert, Eric My license renewal date for the state of North Carolina is December 31, 2025 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use the building designer should verify applicability of design parameter incorporate these designs into the output applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF	
2501-0733-A	2F5	Floor	1	1	Job Reference (optional)	69

0-7-12

3x3 =

10 9

0-11-9

4x6 =

4

8

5-11-0

0-5-12

6x6 =

2 3

1-3-0

0-1-8

H

1.5x3 u 1.5x3 =

0-3-8

1-2-0

Structural LLC Thurmont MD - 21788

Scale = 1:24.4

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

OTHERS BRACING TOP CHORD

LUMBER

TOP CHORD

BOT CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

WEBS

NOTES

1)

2)

3)

4)

1)

FORCES

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:30 ID:MU0twSEzdMKNYDfUw6vVy8yCkhO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8

6x6 =

1-2-0

1-3-3

Page: 1

GRIP

G

244/190

FT = 20%F, 12%E

11 6x6 = 6x6 =1.5x3 u 4x8 = 4x6 =3x3 = 3x6 =0-1-8 5-11-0 Н 5-9-8 0-1-8 Plate Offsets (X, Y): [6:Edge,0-1-8], [10:0-1-8,Edge], [11:0-6-8,Edge], [13:0-1-8,0-0-0] PLATES (psf) Spacing 1-7-3 CSI DEFL in l/defl L/d (loc) 40.0 Plate Grip DOL 1.00 тс 0.87 Vert(LL) -0.02 9 >999 480 MT20 10.0 Lumber DOL 1.00 BC 0.85 Vert(CT) -0.05 8-9 >999 360 0.0 Rep Stress Incr NO WB Horz(CT) 6 0.76 0.02 n/a n/a 5.0 Code IRC2021/TPI2014 Matrix-P Weight: 38 lb Concentrated Loads (lb) 2x4 SP No.2(flat) Vert: 3=-300, 4=-1000 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood sheathing directly applied or 5-4-14 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing (size) 6=0-3-8, 11=0-5-8 Max Grav 6=1448 (LC 1), 11=1699 (LC 1) (lb) - Maximum Compression/Maximum Tension 1-11=-261/0, 5-6=-1452/0, 1-2=-16/0, 2-3=-2430/0, 3-4=-2512/0, 4-5=-849/0 10-11=0/1899, 9-10=0/2430, 8-9=0/2610, 7-8=0/2610, 6-7=0/87 2-11=-2363/0, 3-9=0/147, 4-9=-139/0, 4-8=-18/0, 4-7=-2237/0, 5-7=0/1604, 3-10=-1015/0. 2-10=0/1147 All bearings are assumed to be SP No.2. Bearing at joint(s) 11 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct CHALLOW WARNESS for the intended use of this truss. SEAL Recommend 2x6 strongbacks, on edge, spaced at 036322 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. LOAD CASE(S) Standard Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb/ft) mmm Vert: 6-11=-8, 1-4=-460, 4-5=-80 January 27,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabricated is the permanent bracing of trusses and truss systems are additional temporary and permanent bracing temporary and permanent bracing of trusses are addited at the permanent bracing temporary and p 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF
2501-0733-A	2F4	Floor	1	1	I71018470 Job Reference (optional)

Scale = 1:24.4

Plate Offsets (X, Y): [4:0-1-8,0-1-8], [8:0-4-8,Edge]

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.23	Vert(LL)	0.00	7	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.11	Vert(CT)	-0.01	7-8	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.10	Horz(CT)	0.00	5	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 34 lb	FT = 20%F, 12%E

0-1-8

LUMBER

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	5-11-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 5=0-3-8, 8=0-5-8
	Max Grav 5=247 (LC 1), 8=242 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-8=-28/0, 4-5=-249/0, 1-2=-2/0, 2-3=-308/0,
	3-4=-100/0
BOT CHORD	7-8=0/272, 6-7=0/316, 5-6=0/0
WEBS	2-8=-340/0, 2-7=0/47, 3-7=-11/0, 3-6=-284/0,
	4-6=0/220

NOTES

- 1) Bearings are assumed to be: Joint 8 SP No.3 , Joint 5 SP No.2 .
- Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF	
2501-0733-A	2F6	Floor	12	1	Job Reference (optional)	018471

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:30

Page: 1

Structural, LLC, Thurmont, MD - 21788,

	, ,									
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00	CSI TC 0.98	DEFL Vert(LL) -0.4	n (loc) 7 17-18	l/defl >499	L/d 480	PLATES MT20HS	GRIP 187/143
	10.0	Lumber DOL	1.00	BC 0.81	Vert(CT) -0.6	5 17-18	>362	360	M120	244/190
BCLL	0.0	Code	IRC2021/TPI2014	Matrix-S		/ 14	n/a	n/a	Weight: 102 lb	FT - 20%F 12%F
BODE	0.0	Couc	11(02021/1112014	Matrix O					Weight. Toz is	11 = 20701, 12702
LUMBER TOP CHORD	2x4 SP No.2(flat) *E	xcept* 7-13:2x4 SP S	4) Bearing at jo SS using ANSI/ designer sho	bint(s) 14 considers paralle TPI 1 angle to grain formu buld verify capacity of bea	el to grain value la. Building ring surface.					
BOT CHORD	2x4 SP SS(flat) *Exc (flat)	cept* 22-14:2x4 SP D	0SS 5) Recommend 10-00-00 oc	d 2x6 strongbacks, on edg and fastened to each trus	e, spaced at s with 3-10d					
WEBS OTHERS	2x4 SP No.3(flat) 2x4 SP No.3(flat)		(0.131" X 3") at their outer) nails. Strongbacks to be r ends or restrained by oth	attached to walls her means.					
BRACING			LOAD CASE(S)	Standard						
TOP CHORD	Structural wood she	athing directly applie	ed,							
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 oc	;							
REACTIONS	(size) 14=0-3-8, Max Grav 14=861 (L	24=0-3-8 _C 1), 24=861 (LC 1)	1							
FORCES	(lb) - Maximum Com Tension	pression/Maximum								
TOP CHORD	1-24=-32/0, 13-14=- 2-3=-1899/0, 3-4=-3 5-6=-3877/0, 6-8=-4 9-10=-3344/0, 10-11 12-13=-2/0	25/2, 1-2=-2/0, 186/0, 4-5=-3186/0, 098/0, 8-9=-3344/0, 1=-3344/0, 11-12=-18	316/0,							
BOT CHORD	23-24=0/1131, 21-23 19-20=0/4078, 18-19 16-17=0/3344, 15-16	3=0/2639, 20-21=0/3 9=0/4078, 17-18=0/3 6=0/2662, 14-15=0/1	653, 938, 079						UNITH CA	Rout
WEBS	9-17=-3/329, 10-16= 2-23=0/1000, 3-23=- 4-21=-45/0, 5-21=-5 6-20=-257/0, 6-19=- 8-18=-48/271, 8-17= 12-15=0/960, 11-15:	727/0, 2-24=-1394/(963/0, 3-21=0/698, 96/0, 5-20=0/292, 58/0, 6-18=-21/131, 875/0, 12-14=-1352 =-1101/0, 11-16=0/12	2/0, 259				G	IT IT	OR EESS SEA	L
NOTES							1	:	0363	22 ; =
1) Unbalance	ed floor live loads have	e been considered for	r							1 3
	1. MT00 1 / 1	a adh a suide a far dh' a f						-	1. A.	1 1 1 S

All plates are MT20 plates unless otherwise indicated.

3) Bearings are assumed to be: Joint 24 SP SS , Joint 14 SP DSS .

ENGINEERING BY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILP

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF	
2501-0733-A	2F2GE	Floor Supported Gable	1	1	Job Reference (optional)	8472

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:29

Page: 1

1-2-0

Scale = 1:39.1

00010 = 110011														
Loading		(nsf)	Spacing	1-7-3		CSI		DEEL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCU		40.0	Plate Grin DOI	1 00		TC	0.06	Vert(LL)	n/a	(100)	n/a	999	MT20	244/190
		10.0		1.00		BC	0.00	Vort(TL)	n/a	_	n/a	000	11120	210100
RCU		0.0	Bon Stroop Inor	VES			0.01		0.00	10	n/a	555		
BOLL		0.0		I E O		VVD	0.02	HUNZ(IL)	0.00	10	n/a	n/a		
BCDL		5.0	Code	IRC20	21/1912014	Matrix-R							vveight: 83 lb	FT = 20%F, 12%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural w 6-0-0 oc pur Rigid ceiling bracing. (size) 18	2(flat) 2(flat) 3(flat) 3(flat) rood shea rlins, exc g directly a 8=20-0-0.	thing directly applie ept end verticals. applied or 10-0-0 oc , 19=20-0-0, 20=20-	V d or 1 : 2 3 -0-0,	VEBS 2 SOTES All plates are indicated.) Gable requiri) Truss to be f braced again	2-33=-104/0, 3-32 5-30=-107/0, 6-28 3-26=-107/0, 9-25 1-23=-107/0, 13-2 15-20=-107/0, 16-2 1.5x3 () MT20 es continuous bott ully sheathed from st lateral moveme	=-107/0, =-107/0, =-107/0, 22=-107/ 19=-104/ unless of tom chor n one fac	4-31=-106/0, 7-27=-107/0, 10-24=-107/0 0, 14-21=-10 0 herwise d bearing. e or securely iagonal web).), 6/0,					
REACTIONS	(\$126) 16 22 24 27 33 34 Max Grav 18 20 22 24 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26	3=20-0-0 1=20-0-0 7=20-0-0 1=20-0-0 4=20-0-0 8=45 (LC 0=118 (Ld 2=117 (Ld 4=117 (Ld 8=117 (Ld 8=117 (Ld 3=115 (Ld	1)=20-00, 2)=20- , 22=20-00, 2)=20- , 22=20-00, 2)=20- , 22=20-00, 30=20- , 32=20-00, 33=20- 1), 19=115 (LC 1), C 1), 21=117 (LC 1) C 1), 23=117 (LC 1) C 1), 25=117 (LC 1) C 1), 30=117 (LC 1) C 1), 30=117 (LC 1) C 1), 32=118 (LC 1) C 1), 34=45 (LC 1)	0-0, 4 0-0, 5 0-0, 6 0-0, 7 , , , , , , , , ,) Gable studs) All bearings a) Bearing at jo value using <i>A</i> designer sho) Recommend 10-00-00 oc (0.131" X 3") at their outer OAD CASE(S)	spaced at 1-4-0 or are assumed to be int(s) 34, 18 consi NNSI/TPI 1 angle t uld verify capacity 2x6 strongbacks, and fastened to ea nails. Strongback ends or restrained Standard	c. e SP No. ders par to grain f v of beari on edge ach truss ks to be d by othe	2. allel to grain ormula. Build ng surface. , spaced at with 3-10d attached to w ar means.	ding alls					1117.
FORCES	(lb) - Maxim Tension	um Comp	pression/Maximum										TH CA	RO
TOP CHORD	1-34=-41/0, 2-3=-10/0, 3 6-7=-10/0, 7 10-11=-10/0 14-15=-10/0	17-18=-4 3-4=-10/0, 7-8=-10/0, 0, 11-13=- 0, 15-16=-	1/0, 1-2=-10/0, 4-5=-10/0, 5-6=-10 8-9=-10/0, 9-10=-1 10/0, 13-14=-10/0, 10/0, 16-17=-10/0	/0, 0/0,							4		OF FESS	Braz
BOT CHORD	33-34=0/10, 30-31=0/10, 26-27=0/10, 23-24=0/10, 20-21=0/10,	, 32-33=0, , 28-30=0, , 25-26=0, , 22-23=0, , 19-20=0	/10, 31-32=0/10, /10, 27-28=0/10, /10, 24-25=0/10, /10, 21-22=0/10, /10, 18-19=0/10								THURS.			EER. KINN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

January 27,2025

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF	
2501-0733-A	2F1GE	Floor Supported Gable	1	1	Job Reference (optional)	171018473

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:27 ID:XelKwmb1ctVe0SSk3X1_WfyCkoh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:54.5

Ocale = 1.54.5													-	
Loading TCLL TCDL BCLL BCDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-R	0.06 0.02 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 26	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 124 lb	GRIP 244/190 FT = 20%F, 12%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size)	lo.2(flat) lo.3(flat) lo.3(flat) lo.3(flat) l wood shea purlins, exi ing directly 26=30-0-0 32=30-0-0 35=30-0-0 39=30-0-0	athing directly applie cept end verticals. applied or 10-0-0 oc), 27=30-0-0, 28=30-), 30=30-0-0, 31=30-), 36=30-0-0, 37=30-), 40=30-0-0, 41=30-	E d or 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, 0-0, ►	NOT CHORD	49-50=0/6, 48-49= 45-46=0/6, 44-45= 41-42=0/6, 40-41= 36-37=0/6, 35-36= 32-33=0/6, 31-32= 28-29=0/6, 27-28= 2-49=-107/0, 3-48 5-46=-107/0, 6-45: 8-43=-107/0, 19-3 11-40=-107/0, 13-3 15-36=-107/0, 16-1 18-33=-107/0, 19-3 21-30=-107/0, 22-3 24-27=-80/0	60/6, 47 60/6, 43 60/6, 39 60/6, 34 60/6, 30 60/6, 26 107/0, 8-107/0, 8-107/0, 398107/, 328107/ 328107/ 298106/	48=0/6, 46-47 44=0/6, 42-43 40=0/6, 37-39 35=0/6, 33-34 31=0/6, 29-30 27=0/6 4-47=-107/0, 7-44=-107/0, 10-41=-107/0 (0, 14-37=-10 (0, 20-31=-10 (0, 20-31=-10 (0, 23-28=-11)	=0/6, =0/6, =0/6, =0/6, =0/6, =0/6, 7/0, 7/0, 7/0, 1/0,					
	Max Grav	42=30-0-C 45=30-0-C 48=30-0-C 26=14 (LC 28=123 (L 30=118 (L 32=117 (L 34=117 (L 43=117 (L 43=117 (L 43=117 (L 47=117 (L 49=120 (L	, 43=30-0, 44=30-), 43=30-0, 47=30-), 49=30-0, 50=30- C 1), 27=84 (LC 1), C 1), 27=84 (LC 1), C 1), 33=117 (LC 1) C 1), 33=117 (LC 1) C 1), 35=117 (LC 1) C 1), 40=117 (LC 1) C 1), 42=117 (LC 1) C 1), 44=117 (LC 1) C 1), 46=117 (LC 1) C 1), 5=41 (LC 1)	00-0, 1 00-0, 2 00-0 2 3, 4 1, 5 1, 5 1, 5 1, 7 1, 7 1, 7	 All plates are indicated. Gable requir Truss to be braced again Gable studs Gable studs All bearings Bearing at years and value using designer shot Recommence 10-00-00 oc (0.131" X 3" at their outer 	e 1.5x3 () MT20 of res continuous bott fully sheathed from statateral moveme spaced at 1-4-0 of are assumed to be pint(s) 50, 26 consi ANSI/TPI 1 angle f ould verify capacity d 2x6 strongbacks, and fastened to ea) nails. Strongback r ends or restrained Standard	unless of tom chorn one fac- ent (i.e. d c. e SP No. ders par to grain f r of bear on edge ach truss ks to be d by othe	therwise d bearing. e or securely iagonal web). 2. allel to grain ormula. Build ng surface. e, spaced at s with 3-10d attached to w er means.	ling alls		G		OR LEESS	ROUT
FORCES	(lb) - Max	kimum Com	pression/Maximum		(-)						Ξ		SEA	L È E
TOP CHORD	l ension 1-50=-38 3-4=-6/0, 7-8=-6/0, 15-16=-6, 15-16=-6, 18-19=-6, 21-22=-6	/0, 25-26=- 4-5=-6/0, 5 8-9=-6/0, 9 /0, 13-14=- /0, 16-17=- /0, 19-20=- /0 /0	8/0, 1-2=-6/0, 2-3=-6 i-6=-6/0, 6-7=-6/0, i-10=-6/0, 10-11=-6/0 6/0, 14-15=-6/0, 6/0, 17-18=-6/0, 6/0, 20-21=-6/0, 6/0, 23-24=-6/0,	%0, D,							11111		0363	22 ILBERTITUTE 27,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF
2501-0733-A	1F1	Floor	2	1	I71018474 Job Reference (optional)

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:25 ID:9WH0KZtbpZkebnBeIQ?wJwyCkqu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [36:0-4-8, Edge]

Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-10-0 1.00 1.00 NO IRC20	21/TPI2014	CSI TC BC WB Matrix-S	0.88 0.86 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.18 0.03	(loc) 24-25 24-25 21	l/defl >999 >980 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 152 lb	GRIP 244/190 FT = 20%F,	12%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) *E: (flat) 2x4 SP SS(flat) *Exc (flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she: 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 21=0-3-8, Max Grav 21=634 (L 36=654 (L (lb) - Maximum Com	xcept* 10-1:2x4 SP * ept* 28-21:2x4 SP N athing directly applie cept end verticals. applied or 6-0-0 oc 29=0-3-8, 36=0-3-8 C 4), 29=1870 (LC C 3) pression/Maximum	SS No.2 ed or	WEBS (NOTES NOTES I) Unbalanced this design. 2) All plates are SP SS , Join	6-33=-23/191, 7-32 17-23=-240/21, 2-3 3-35=-605/0, 3-34= 19-22=0/594, 18-22 4-34=-38/16, 5-34= 11-29=-103/0, 9-29 8-30=-963/0, 8-31= 12-29=-1425/0, 12- 13-27=-1001/0, 13- 15-26=-541/0, 15-2 floor live loads hav a 3x3 (=) MT20 unl assumed to be: Jot t 21 SP No.2.	==0/414, 6=-10116 63/290 2=-590/0 87/123 ==-1448, 0/753, 1 27=0/10 26=0/70 5=0/41 e been less oth- bint 36 \$	16-24=-137, //0, 2-35=0/6 , 19-21=-977), 18-23=-521, 0, 9-30=0/10 , 5-33=-521/ 0, 9-30=0/10 , 5-30=0/10 , 18-23=-39 considered fr erwise indice iP No.3 , Joi	(152, 335, 7/0, (402, 0, 003, 8/0, 5/20 or ated. nt 29						
TOP CHORD	Tension 1-36=-32/0, 20-21=- 2-3=-1295/0, 3-4=-13 5-6=-1957/191, 6-7= 7-8=-1648/412, 8-9= 11-12=0/2269, 12-11 13-14=-1340/102, 14 15-16=-1876/0, 16-1 17-18=-1830/0, 18-1 35-36=0/807, 34-35= 32-33=-191/1957, 3' 30-31=-684/1208, 22 27-29=-1149/0, 26-2 25-26=0/1723, 24-25 22-23=0/1690, 21-22	32/0, 1-2=-2/0, 987/0, 4-5=-1987/0, -1957/191, -555/969, 9-11=0/22 3=-118/560, 4-15=-1340/102, 7=-1890/0, 9=-1237/0, 19-20=-2 =0/1760, 33-34=-2/2 1-32=-191/1957, 9-30=-1285/0, 7:7=-312/839, 5=0/1890, 23-24=0/1 2=0/781	269, 2/0 039, .	 Bearing at jo value using / designer sho Load case(s) designer mutic for the intend Recommendino-000 oc (0.131" X 3") at their outer CAUTION, E In the LOAD of the truss a CAD CASE(S) Dead + Flo Plate Increa Uniform Los Vert: 21- 12-20=-9 	(int(s) 36, 21 consider ANSI/TPI 1 angle to vold verify capacity and verify capacity 1 has/have been 1 st review loads to verify and fastened to ea and fastened to ea an ails. Strongbacks ends or restrained bo not erect truss b CASE(S) section, are noted as front (I Standard or Live (balanced): ase=1.00 ads (lb/ft) 36=-9, 1-8=-92, 8-12 20	lers par o grain f o foeari modified verify that s. on edge ch truss s to be l by othe ackward loads ag F) or ba Lumbel	allel to grain ormula. Buil ng surface. I. Building at they are co spaced at with 3-10d attached to v or means. Is. pplied to the ck (B). Increase=1 (F=-10),	ding prrect valls face .00,		An		SEA O3632 SEA O3632 SEA O3632	RO(11) 222 EFR.H. 11, BEF. 11, BEF. 11, BEF. 11, BEF. 11, BEF. 11, BEF. 11, BEF. 11, BEF. 11, BEF. 11, 12, 12, 12, 12, 12, 12, 12, 12, 12,	. Annunning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF		
2501-0733-A	2F1A	Floor	5	1	I71018475 Job Reference (optional)		

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:27 ID:juhUALIIZHDFe8S2BENPrWyCkuw-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-0-0

Page: 1

1-0-0

Plate Offsets (X, Y): [36:0-4-8,Edge]

		-											
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-7-3 1.00 1.00 NO IRC20	21/TPI2014	CSI TC BC WB Matrix-S	0.81 0.78 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.17 0.03	(loc) 24-25 33-34 21	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 152 lb	GRIP 244/190 FT = 20%F, 12%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2(flat) 2x4 SP SS(flat) *Exc (flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept* 28-21:2x4 SP N athing directly applie cept end verticals. applied or 6-0-0 oc	lo.2 d or	NEBS	6-33=-31/128, 7-32 17-23=-211/21, 2-3 3-35=-521/0, 3-34= 19-22=0/525, 18-22 4-34=-32/11, 5-34= 11-29=-80/0, 9-29= 8-30=-827/0, 8-31= 12-29=-1231/0, 12- 13-26=0/611, 14-26 15-25=0/360, 16-25 floor live loads bay	=0/404, 6=-873, -52/244 2=-524/(-61/118 -1218/0 0/646, 27=0/8 5=-67/0, 5=-347/2	16-24=-122/ (0, 2-35=0/54), 19-21=-860), 18-23=-48/ i, 5-33=-437/ i, 9-30=0/865 7-31=-791/0, 96, 13-27=-8 ; 15-26=-470/ 22	/134, 46, 0/0, /355, 0, 5, 71/0, /0,					
REACTIONS	(SIZE) 21=0-3-8, Max Grav 21=558 (L 36=566 (L	, 29=0-3-8, 36=0-3-8 _C 4), 29=1586 (LC 1 _C 3)),	this design. 2) All plates are	e 3x3 (=) MT20 uni	ess oth	erwise indica	ited.					
TOP CHORD	(lb) - Maximum Com Tension 1-36=-28/0, 20-21=- 2-3=-1117/0, 3-4=-1 5-6=-1669/158, 6-7= 7-8=-1385/356, 8-9= 11-12=0/1947, 12-1; 13-14=-1214/103, 11 15-16=-1669/0, 16-1 17-18=-1674/0, 18-1 35-36=0/697, 34-35 32-33=-158/1669, 3 30-31=-589/997, 29 27-29=-981/0, 26-27	pression/Maximum 28/0, 1-2=-2/0, 708/0, 4-5=-1708/0, 1669/158, 433/824, 9-11=0/19 3=-159/506, 4-15=-1214/103, 17=-1674/0, 19=-1091/0, 19-20=-2 =0/1517, 33-34=-1/11 1-32=-158/1669, -30=-1088/0, 7=-287/783,	47, 5 2/0 6 745, I	 Searings are assumed to be: Joint 36 SP No.3, Joint 29 SP SS, Joint 21 SP No.2. Bearing at joint(s) 36, 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards. LOAD CASE(S) Standard 						4	The second se	OPTERS	ROUN
	25-26=0/1543, 24-2 22-23=0/1493, 21-2	5=0/1674, 23-24=0/1 2=0/687	674,							THE DAY		SEA 0363	L 22 EREALIT

818 Soundside Road Edenton, NC 27932

A. GILP.... January 27,2025

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF
2501-0733-A	2F2	Floor	5	1	I71018476 Job Reference (optional)

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:28 ID:ja2mwzLw?wJrS_CfhZ8W1kyCknj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

BCDL	5.0	Code	IRC202	21/TPI2014	Matrix-S		Weight:	151 lb	FT = 20%F, 12%E
BCDL LUMBER TOP CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	5.0 2x4 SP No.2(flat) *E (flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood shi 6-0-0 oc purlins, e: Rigid ceiling directl bracing. (size) 21=0-3-E Max Uplift 21=-69 (Max Grav 21=391 (35=722 ((lb) - Maximum Cor Tension 1-35=-28/0, 20-21= 2-3=-1513/0, 3-4=-; 5-6=-2842/0, 6-7=-; 8-9=-2472/0, 9-10= 11-13=-65/206, 13- 15-16=-285/1272, 7 17-18=-764/765, 18 24-26=-0005, 23-22	Code Except* 12-20:2x4 eathing directly all except end vertical y applied or 6-0-0 8, 26=0-3-8, 35=0 LC 3) LC 4), 26=1645 (0,LC 10) mpression/Maxim -32/0, 1-2=-2/0, 2474/0, 4-5=-247 2842/0, 7-8=-284 -1571/0, 10-11=- 14=0/2245, 14-19 16-17=-764/765, 3-19=-690/228, 11	Pplied or IS. 0 oc N-3-8 (LC 1), 2/0, 1571/0, 5-0/2245, 9-20=-2/0 7. 0/0652 1572/0, 1571/0, 100/2652 1	21/1PI2014 VEBS 6 1 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	Matrix-S 3-32=-311/0, 7-31=-218/19 7-23=0/333, 2-35=-1134/($-34=-752/0, 3-33=-0489, 79-22=-160/285, 18-22=-2^{-2}8-23=-66/515, 14-26=-130/3-27=0/1147, 11-27=-1120-29=-55/0, 9-29=-754/0, 73-30=-413/0, 8-31=-104/335-25=0/804, 16-25=-988/(2)floor live loads have beenMT20 plates unless other3x3$ (=) MT20 unless other 3x3 (=	, 16-24=0/241,), 2-34=0/791, 19-21=-588/133, 11/284, 5-33=-299/0, '0, 13-26=-1485/0, 3/0, 11-29=0/869, 9-30=0/451, 3, 15-26=-968/0,) considered for wise indicated. erwise indicated. SP No.3, Joint 26 allel to grain ormula. Building ng surface. ers) of truss to i9 lb uplift at joint a, spaced at s with 3-10d	Weight: -		FT = 20%F, 12%E
BOT CHORD	34-35=0/905, 33-34 31-32=0/2842, 30-3 27-29=0/909, 26-27 24-25=-765/764, 23 22-23=-447/852, 21	4=0/2091, 32-33= 31=0/2767, 29-30 7=-1061/0, 25-26 3-24=-765/764, 1-22=-106/471	0/2652, ==0/2142, =-1652/0, 8 L	10-00-00 oc a (0.131" X 3") at their outer) CAUTION, D OAD CASE(S)	and tastened to each truss nails. Strongbacks to be ends or restrained by othe o not erect truss backward Standard	i with 3-10d attached to walls er means. Is.	CALL OF	ESS	Mare .

036322

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component duration development and the prevent of the truster and property damage. Component Advance intervention, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Create the fabrication and the fabrication of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-21 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF
2501-0733-A	2F2A	Floor	2	1	I71018477 Job Reference (optional)

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:28 ID:ja2mwzLw?wJrS_CfhZ8W1kyCknj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

January 27,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF		
2501-0733-A	2F2B	Floor	3	1	Job Reference (optional)	171018478	

Structural LLC Thurmont MD - 21788

Run: 8 83 S. Jan 17 2025 Print: 8 830 S. Jan 17 2025 MiTek Industries. Inc. Mon. Jan 27 11:41:28 ID:ja2mwzLw?wJrS_CfhZ8W1kyCknj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- 2-3=-1519/0, 3-4=-2437/0, 4-5=-2848/0, 5-6=-2848/0, 6-7=-2848/0, 7-8=-2479/0, 8-9=-1580/0, 9-10=-1580/0, 10-12=-76/201, 12-13=0/2233, 13-14=0/2233, 14-15=-319/1237. 15-16=-817/711. 16-17=-817/711, 17-18=-749/169, 18-19=-2/0 33-34=0/903, 32-33=0/2105, 31-32=0/2765, BOT CHORD 30-31=0/2848 29-30=0/2774 28-29=0/2150
 - 26-28=0/920, 25-26=-1050/0, 24-25=-1629/0, 23-24=-711/817, 22-23=-711/817, 21-22=-376/922, 20-21=-61/515
- bearing plate capable of withstanding 32 lb uplift at joint 20. Load case(s) 1 has/have been modified. Building 7) designer must review loads to verify that they are correct

Provide mechanical connection (by others) of truss to

- for the intended use of this truss. 8) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- CAUTION. Do not erect truss backwards. 9)
- 10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

6)

Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00 Uniform Loads (lb/ft) Vert: 20-34=-8, 1-16=-80, 16-19=-90 (F=-10)

NUMETH CA

SEAL

036322

ORTH

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

VIIIIIIIIIII

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0064 OWF
2501-0733-A	2F3	Floor	1	1	I71018479 Job Reference (optional)

Run: 8.83 S Jan 17 2025 Print: 8.830 S Jan 17 2025 MiTek Industries, Inc. Mon Jan 27 11:41:29 ID:QxYptPyjzbygrNOmpBpGszyCkTY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:54.5

Plate Offsets (X, Y): [35:0-4-8,Edge]

		-												
Loading	(psf)	Spacing	1-10-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCU	40.0	Plate Grip DOI	1 00		тс	0.91	Vert(LL)	-0 29	30-31	>797	480	MT20	244/190	
TCDI	10.0	Lumber DOI	1.00		BC	0.60	Vert(CT)	-0.38	30-31	>596	360	1	2.0,000	
BCU	0.0	Ren Stress Incr	NO		WB	0.62	Horz(CT)	0.00	26	>000 n/a	n/a			
BCDI	5.0	Code	IRC202	I/TPI2014	Matrix-S	0.02	11012(01)	0.01	20	n/a	n, a	Weight: 151 lb	$FT = 20^{\circ}$	%F 12%F
	0.0	0000	11(0202		Manx 0		L					Wolght. To Th	11 = 20	/01 ; 12/02
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) *E: (flat) 2x4 SP SS(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 5-9-4 oc purlins, exi Rigid ceiling directly bracing. (size) 21=0-3-8, Max Horiz 35=19 (LC Max Uplift 21=-109 (Max Grav 21=500 (L 35=829 (I	xcept* 12-20:2x4 SP athing directly applied cept end verticals. applied or 6-0-0 oc 26=0-3-8, 35=0-3-8 C 7) LC 19), 35=-29 (LC 7 C 18), 26=1891 (LC C 24)	W/ SS 1 or) N(1), 1)	EBS	S-32=-440/206, 7-3 I6-24=-81/367, 17- 2-35=-1301/68, 2-3 3-34=-882/112, 3-3 I9-21=-763/202, 1 { 18-22=-392/456, 18 1-33=-86/29, 5-33= 14-26=-147/2, 13-2 13-27=-36/1311, 11 11-29=-98/1012, 10 3-29=-895/122, 9-3 3-30=-609/239, 8-3 15-26=-1120/10, 15 I6-25=-1256/199 floor live loads hav	1=-313/ 23=-14: 4=-101/ 3=-161/)-22=-2(3-23=-8 -477/19 6=-169(1-27=-1:)-29=-6 0=-137/ 1=-407/ 5-25=-10 e been	168, 3/434, 940, '649, 30/429, 70/280, '4, 5-32=-422 5/12, 286/57, 1/0, '595, '702, 20/958, considered f(2/816, or	9) Rec 10-1 (0.1 at ti 10) CAI 11) In ti of ti LOAD (1) De Pi: Ur	commen 00-00 oc 31" X 3' heir oute UTION, I he LOAE he truss CASE(S) ead + Flo ate Incre- hiform Lo Vert: 21	d 2x6 s c and fa d) nails r ends Do not O CASI are no O Sta por Live ease=1 bads (II -35=-9	strongbacks, on astened to each . Strongbacks i or restrained b erect truss bac E(S) section, loa ted as front (F) ndard e (balanced): Lu .00 b/ft) 0, 1-17=-92, 17-2	edge, spac truss with 3 o be attach y other mea kwards. ads applied or back (B). umber Incre 20=-102 (F=	ed at 3-10d ed to walls ins. to the face ase=1.00, =-10)
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-35=-32/0, 20-21=- 2-3=-1738/0, 3-4=-2 5-6=-3266/0, 6-7=-3 8-9=-2847/0, 9-10=- 11-13=-301/397, 13- 14-15=0/2545, 15-11 16-17=-935/815, 17- 18-19=-858/278, 19- 34-35=-33/1039, 33- 32-33=0/3050, 31-3; 29-30=0/2471, 27-29 26-27=-1215/151, 22 24-25=-920/1038, 2; 22-23=-448/1046, 2;	40/0, 1-2=-197/197, 839/0, 4-5=-2839/0, 266/0, 7-8=-3266/0, 1816/21, 10-11=-181 -14=0/2545, 5=-415/1424, -18=-935/815, -20=-198/197 -34=0/2401, 2=0-3266, 30-31=0/3 5=-711/1064, 5-26=-1860/68, 3-24=-815/935, 1-22=-180/630	2) 3) 4) 6/0, 5) 182, 7) 8)	 NOTES 1) Unbalanced floor live loads have been considered for this design. 2) All plates are 3x3 (=) MT20 unless otherwise indicated. Bearings are assumed to be: Joint 35 SP No.3 , Joint 26 SP SS , Joint 21 SP SS . 4) Bearing at joint(s) 35, 21 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 21. 6) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 35. This connection is for uplift only and does not consider lateral forces. 7) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 8) This truss has been designed for a total drag load of 150 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 30-0-0 for 150.0 plf. 							SEA 0363	CARO SEAL 36322 GINEER		

January 27,2025

