

Trenco 818 Soundside Rd Edenton, NC 27932

Re: CC 2424 CC 2424

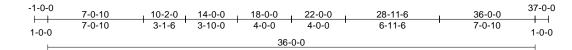
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by 84 Lumber 2383 (Dunn, NC).

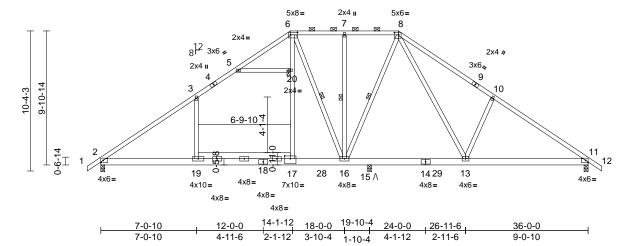
Pages or sheets covered by this seal: I70775753 thru I70775775

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

January 15,2025


Gagan, Iqbal


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	A1	ROOF TRUSS	1	1	Job Reference (optional)	170775753

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:03 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.6

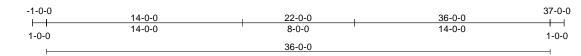
Plate Offsets (X, Y): [6:0-6-4,0-2-4], [8:0-3-12,0-2-0], [17:0-5-0,0-2-8]

	., ., ., [e.e e ., e = .],	[=== = .=,= = e], [-1	-								
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.73	Vert(LL)	0.40	19-23	>596	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.64	Vert(CT)	-0.61	19-23	>393	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.91	Horz(CT)	0.03	2	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Attic	-0.13	17-19	>665	360	Weight: 258 lb	FT = 20%
			2)		7-10; Vult=130m			Cat					
TOP CHORD	2x4 SP No.2	1 40 47 0.0 OD N-	•		ph; TCDL=6.0psf closed; MWFRS								
BOT CHORD WEBS	2x6 SP DSS *Excep 2x4 SP No.2 *Excep				terior (2) zone; ca			ie					
WED3	SP No.3	19-3,13-10,5-20.2	.X4		nd vertical left and								
BRACING					nd forces & MWFI								
TOP CHORD	Structural wood she	athing directly applie	ed or		L=1.60 plate grip								
	3-1-9 oc purlins, exc		3)		quate drainage to			j .					
	2-0-0 oc purlins (6-0		4)		as been designed								
BOT CHORD	Rigid ceiling directly		c		ad nonconcurrent								
	bracing.		5)		has been designe)psf					
WEBS		7-16, 8-16, 6-16			m chord in all are by 2-00-00 wide v			~~~					
JOINTS	1 Brace at Jt(s): 20				ny other members								
REACTIONS	(size) 2=0-3-8, 2	11=0-3-8, 15=0-3-8	6)		d live load (20.0 p								
	Max Horiz 2=-248 (L	,	0,		load (5.0 psf) app								
	Max Uplift 2=-122 (L	.C 12), 11=-141 (LC	13), 7)		are assumed to b								
	15=REL	0.00) 44 4050 (14	(8)	Provide med	chanical connection	on (by oth	ers) of truss t	0					
	Max Grav 2=1176 (L 15=994 (L		; 1),		e capable of withs o uplift at joint 11.		22 Ib uplift at	joint					
FORCES	(lb) - Maximum Com	pression/Maximum	9)		Released bearin		or upward						
	Tension		,		at joint(s) 15.	0							
TOP CHORD	1-2=0/33, 2-3=-1317	,	/ //)) Graphical p	urlin representatio	on does no	ot depict the s	size					III.
	5-6=-1042/378, 6-7=		/369,	or the orient	ation of the purlin	along the	e top and/or					NUMBER C.	A
	8-10=-1226/479, 10- 11-12=0/33	-11=-1376/384,		bottom chor								N'TOH U	ARO
BOT CHORD	2-19=-131/1089, 17-	10- 79/1090	11		CE SHOWN IS D	ESIGNED) AS				1	North The	···· / / /</td
BOT CHORD	16-17=-73/1053, 15			UNINHABIT								> EFA	Slow
	13-15=-20/675, 11-1		L	DAD CASE(S)	Standard						-	- ord	N. E
WEBS	3-19=-352/283, 17-2										5	4 05	. 7. 3
	6-20=-192/1381, 7-1										=	SE/	AL '
	8-16=-241/142, 8-13										=	114	77
	10-13=-424/282, 6-1										MILLIN IN THE	1	50 B
	5-20=-195/63												0/23
NOTEO											- (D · Ch	14:2:

NOTES

1) Unbalanced roof live loads have been considered for this design.

MA. Grin H.A


January 15,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	A1E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170775754

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:04 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:74.5

36-0-0

Plate Offsets (X_Y)	[10:0-4-4,0-2-4], [14:0-4-4,0-2-4], [29:0-3-0,0-3-0], [35:0-3-0,0-3-0]

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.03	Vert(CT)	n/a	-	n/a	999		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.11	Horz(CT)	0.01	22	n/a	n/a		
BCDL		10.0	Code	IRC2	015/TPI2014	Matrix-S							Weight: 274 lb	FT = 20%
LUMBER						Max Grav 2=1				1) Un	balance	d roof li	ive loads have be	en considered for
TOP CHORD	2x4 SP No	0.2					177 (LC 20),				s design			
BOT CHORD	2x4 SP No	0.2					170 (LC 20),						; Vult=130mph (3	
OTHERS	2x4 SP No						170 (LC 20),							L=6.0psf; h=30ft; C
			3,27-18,26-19,25-20,	,24-21			158 (LC 22),							lope) exterior zone
	:2x4 SP N						158 (LC 23),						2) zone; cantileve	
WEDGE	Left: 2x4 S						175 (LC 22),							exposed;C-C for
	Right: 2x4	SP No.3					169 (LC 19),							reactions shown;
BRACING	38=170 (LC 19), 39=170 (LC 19), Structural wood sheathing directly applied or 40=185 (LC 19)) plate grip DOL=	ent water ponding.
TOP CHORD				ed or	FORCES	=04 (Ib) - Maximun	. ,	n/Movim						otherwise indicated
	6-0-0 oc p				FURGES	(ID) - Maximun Tension	Compressio	n/waximum					ntinuous bottom	
			0-0 max.): 10-14.	-	TOP CHORD	1-2=0/23, 2-3=	245/212 3-	1170/171					en designed for a	
BOT CHORD	0	ng airectiy	/ applied or 10-0-0 o	C		4-5=-154/152,	,	,	173					any other live loads
NEBS	bracing. 1 Row at	midnt	14-30, 13-31, 12-32	2		8-9=-166/210,								a live load of 20.0p
WLD0	i now at	mapt	11-33, 10-34, 9-35,			10-11=-189/22							rd in all areas wh	
REACTIONS		2-36-0-0	, 22=36-0-0, 24=36-			12-13=-189/22				3-0	6-00 tal	by 2-0	0-00 wide will fit	between the bottom
(LACHONS ((3126)		0. 26=36-0-0. 27=36	,		14-15=-216/24	19, 15-16=-16	6/191,					er members.	
			0, 29=36-0-0, 30=36	/		16-18=-116/13	31, 18-19=-68	3/73,		8) All	bearing	s are as	ssumed to be Use	er Defined .
			0, 32=36-0-0, 33=36	,		19-20=-66/48,		,						
			0, 35=36-0-0, 36=36	5-0-0		21-22=-170/12								
		37=36-0-	0, 38=36-0-0, 39=36	5-0-0,	BOT CHORD	2-40=-112/173	,	,						
		40=36-0-	0			38-39=-112/17	- ,	,					- MILLI	11111
I	Max Horiz	2=-248 (L	_C 10)			36-37=-112/17							What C	AD
I	Max Uplift		C 8), 22=-11 (LC 9),			33-34=-112/17 31-32=-112/17							N OX	01 11
			LC 13), 25=-63 (LC 1			28-30=-112/17						1	Orde	cr.A.
			LC 13), 27=-63 (LC 1			26-27=-112/17						2	2. OF L	ON T:
			LC 13), 29=-64 (LC 1			24-25=-112/17						-	. 2	7.
			LC 9), 32=-31 (LC 8)		WEBS	14-30=-118/30						-	IQ SE	
			LC 9), 34=-7 (LC 9), LC 12), 36=-65 (LC 1			12-32=-118/60						=	UL/	
			LC 12), 38=-64 (LC 1			10-34=-135/36	6, 9-35=-139/	90, 8-36=-12	9/89,			=	: 114	11 :
			LC 12), 30=-04 (LC 1 LC 12), 40=-90 (LC 1			6-37=-130/87,	5-38=-130/8	8, 4-39=-131	/87,			=	A.	
		00 (L	(LO I	/		3-40=-153/113						=7	2:00	A:2:
						16-28=-130/90	,	,				-1	S.VGIN	AROLAN STONATA AL 77 VEEP CR
						19-26=-130/88	,)/87,				1	A	S. O.N
						21-24=-154/10	06					1	11 HAN	GAN
					NOTES								AL H.A	AL 77 GAULIN
														1111.

January 15,2025

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

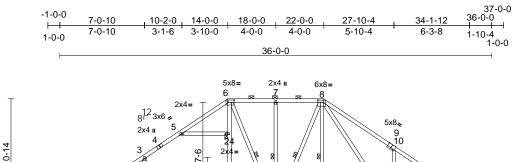
Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	A1E	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170775754

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 2, 33 lb uplift at joint 31, 31 lb uplift at joint 32, 32 lb uplift at joint 33, 7 lb uplift at joint 34, 66 lb uplift at joint 35, 65 lb uplift at joint 36, 63 lb uplift at joint 37, 64 lb uplift at joint 37, 64 lb uplift at joint 38, 63 lb uplift at joint 39, 90 lb uplift at joint 40, 64 lb uplift at joint 29, 66 lb uplift at joint 28, 63 lb uplift at joint 27, 64 lb uplift at joint 26, 63 lb uplift at joint 25, 82 Ib uplift at joint 24 and 11 lb uplift at joint 22.
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:04 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	A2	ROOF TRUSS	2	1	Job Reference (optional)	170775755

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:05 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

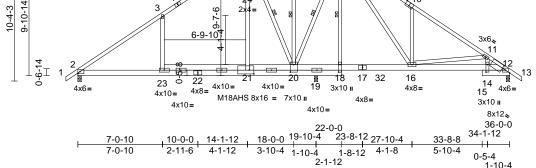
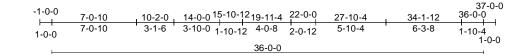


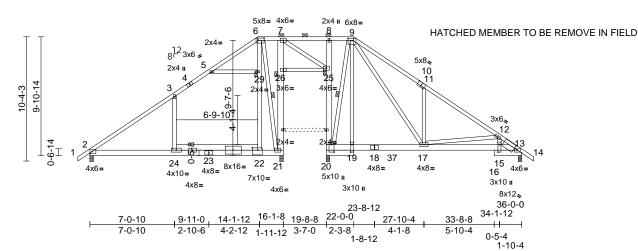
Plate Offsets (X, Y): [6:0-6-4,0-2-4], [8:0-6-0,0-2-14], [9:0-4-0,Edge], [12:0-1-4,Edge], [12:0-8-12,0-3-1], [14:0-7-8,0-1-8], [18:0-7-8,0-1-8], [20:0-7-8,0-3-8], [21:0-4-8,0-3-12]

Scale = 1:82.3

	()] [],-],	, [], [], [.,	- 1/ 1	J i , i	- 1/1	,,		- /	, L	-,	-1, 1		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.64	Vert(LL)	0.32	23-27	>733	240	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15		BC	0.69	Vert(CT)	-0.49	23-27	>485	180	M18AHS	186/179	
BCLL	0.0*	Rep Stress Incr	YES		WB	0.86	Horz(CT)	0.02	2	n/a	n/a			
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Attic	0.10	21-23	>831	360	Weight: 301 lb	FT = 20%	
		1												
LUMBER				OTES										
TOP CHORD		** ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1)		roof live loads ha	ve been	considered fo	or						
BOT CHORD		ot* 2-22:2x6 SP DSS,	2)	this design.	7-10; Vult=130m	nh (2 aa	and quat)							
WEBS	18-8:2x4 SP No.2	×+*	(۷		oh; TCDL=6.0psf;			Cat						
WEDS	2x4 SP No.2 *Excep 3-23,10-16,5-24,11-				closed; MWFRS (
BRACING	3-23, 10-10, 3-24, 11-	14.2X4 OF NU.3			erior (2) zone; car			ne						
TOP CHORD	Structural wood abo	athing directly applie	dor		d vertical left and			r						
TOP CHORD	4-4-14 oc purlins, ex	0 7 11	u 01		d forces & MWFR									
	2-0-0 oc purlins (6-0				=1.60 plate grip [
BOT CHORD			3)	Provide adeo	uate drainage to	prevent	water pondin	g.						
BOT ONORD	bracing. Except:		4)	All plates are	MT20 plates unl	ess othei	wise indicate	ed.						
	6-0-0 oc bracing: 8-	18	5)		s been designed									
WEBS		7-20, 8-20, 6-20			ad nonconcurrent									
JOINTS	1 Brace at Jt(s): 24		6)		as been designe			0psf						
REACTIONS	(size) 2=0-3-8,	12=0-3-8, 19=0-3-8			n chord in all area									
	Max Horiz 2=-249 (L				y 2-00-00 wide w									
	Max Uplift 2=-132 (L	C 12), 12=-98 (LC 13	3), <u> </u>		ly other members									
	19=-80 (L	.C 13)	·· · · /)		l live load (20.0 p bad (5.0 psf) appl									
	Max Grav 2=927 (L0	C 20), 12=669 (LC 1)	, 8)		are assumed to b									
	19=1549	(LC 1)	9)		hanical connectio			to						
FORCES	(lb) - Maximum Corr	npression/Maximum	0)		capable of withs								111.	
	Tension				at joint 12 and 80			. joint				, minning	1111	
TOP CHORD	1-2=0/33, 2-3=-909/		10		rlin representation			size				N' TH C.	ARO	
		134/178, 7-8=-134/1	78,	or the orienta	tion of the purlin	along the	top and/or					All		11
	8-10=-735/342, 10-1			bottom chord	l.	-					5	SVIDES	SIN	1
	11-12=-1020/193, 12		11	I) ATTIC SPAC	E SHOWN IS DE	SIGNED	AS				2		1.7	1 -
BOT CHORD				UNINHABIT	ABLE.						-	. x U	P.	1
	20-21=-150/754, 19- 18-19=-135/251, 16-		L	DAD CASE(S)	Standard						-	SE/	AL T	=
	14-16=-121/854, 12	,									=	114	77	
	8-18=-459/109										=	114		=
WEBS	3-23=-364/287, 21-2	24=-247/1497.									20	SE/		. :
	6-24=-250/1503, 8-1	,									= (District	-18-1	<:
	10-16=-432/288, 11-	,									1	O GIN	IEL. C	A A A A A A A A A A A A A A A A A A A
	7-20=-248/131, 8-20										1	A1		1
	6-20=-1549/284, 5-2	24=-187/62,										H.A.	6.11	
	11-14=-48/181											1111	in min	
													45.0005	

January 15,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

0-5-4 1-10-4

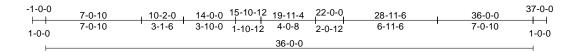
Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	A3	ROOF TRUSS	4	1	Job Reference (optional)	170775756

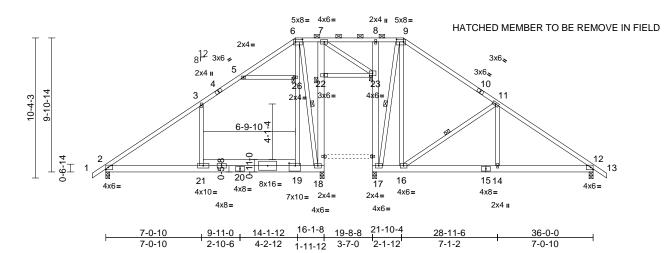
Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:05 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:82.3

00010 = 1.02.0													
Plate Offsets ((X, Y): [6:0-6-4,0-2-4]	, [9:0-4-0,0-2-6], [10:0	0-4-0,Edg	je], [13:0-1-4,	Edge], [13:0-8-12,0)-3-1], [15	:0-7-8,0-1-8],	[19:0-7	-8,0-1-8]	, [20:0-7	-8,0-2-	-4], [22:0-5-8,0-2-	4]
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	15/TPI2014	CSI TC BC WB Matrix-MS	0.65 0.65 0.97	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.59 0.03	(loc) 24-32 24-32 20 22-24	l/defl >504 >320 n/a >671	L/d 240 180 n/a 360	PLATES MT20 Weight: 325 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP No.2 2x6 SP No.2 *Excep DSS, 19-9:2x4 SP N 2x4 SP No.3 *Excep 22-6,17-9,17-12,21- 7-21,8-20:2x6 SP N 2x4 SP No.3 Structural wood she 5-3-3 oc purlins, exc	bt* 2-23,23-21:2x6 SF lo.2 bt* 6,9-20:2x4 SP No.2, o.2 eathing directly applie cept	V 5 N 1 d or	VEBS IOTES) Unbalance this design) Wind: ASC	3-24=-343/279, 2 6-29=-385/1859, 11-17=-431/285, 21-26=-178/124, 20-25=-214/98, 8 6-21=-2097/420, 12-15=-45/183 ed roof live loads ha b CE 7-10; Vult=130n	7-25=-24 12-17=-4 7-26=-17 3-25=-210 9-20=-64 ave been	2/1852, /7, 9-17=-290 22/145, 8/124, /102, 25-26=- 0/0, 5-29=-21 considered fc cond gust))/847, -3/13, 2/67, or		2011		Weight. and in	11-2070
BOT CHORD WEBS JOINTS	 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 25, 26, 29 	applied or 6-8-13 oc 6-21, 9-20		II; Exp B; I and C-C E exposed ; members ; Lumber D	mph; TCDL=6.0psf Enclosed; MWFRS xterior (2) zone; ca end vertical left an and forces & MWF DL=1.60 plate grip	(envelope antilever le d right exp RS for rea DOL=1.6	e) exterior zon off and right posed;C-C for octions shown D	ne r ı;					
REACTIONS	21=0-3-8 Max Horiz 2=-249 (L Max Uplift 2=-142 (L 21=-120 (Max Grav 2=709 (LC	∟C 10) ∟C 13), 13=-257 (LC ⁻ (LC 9)	,) This truss chord live) * This trus on the both 3-06-00 ta	lequate drainage to has been designed load nonconcurren s has been designe tom chord in all are Il by 2-00-00 wide any other member	t for a 10. t with any ed for a liv as where will fit bety	0 psf bottom other live loa re load of 20.0 a rectangle veen the botto	ads. Opsf om					
FORCES	(lb) - Maximum Corr Tension 1-2=0/33, 2-3=-628/ 5-6=-444/387, 6-7=- 8-9=-298/381, 9-11= 11-12=-865/386, 12	npression/Maximum /271, 3-5=-632/409, ·301/382, 7-8=-286/3 =-967/578,	6	chord dead All bearing Provide m bearing pla	ord live load (20.0) d load (5.0 psf) app is are assumed to l echanical connection ate capable of with plift at joint 13 and	blied only be User D on (by oth standing 1	to room. 22-2 efined . ers) of truss t 42 lb uplift at	to t joint			The state of the s	2 SE	
BOT CHORD	,	9=0/219, 19-20=0/14	1	or the orie bottom cho 0) ATTIC SP UNINHAB	ACE SHOWN IS D	along the	e top and/or	size			11111111111	NGIN NGIN NGIN	EER. CAN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932


January 15,2025

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	A4	ROOF TRUSS	1	1	Job Reference (optional)	170775757

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:06 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.6

Plate Offsets (X, Y): [6:0-6-4,0-2-4], [9:0-6-4,0-2-4], [19:0-5-8,0-2-4]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.65	Vert(LL)		21-29	>504	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.65	Vert(CT)			>320	180	11120	210100
BCLL	0.0*	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.03	12	n/a	n/a		
BCDL	10.0	Code		5/TPI2014	Matrix-MS	0.01	Attic		19-21	>671	360	Weight: 304 lb	FT - 20%
BCDL	10.0	Code	160201	5/1712014	IVIAULX-IVIO		Auto	-0.13	19-21	2071	300	Weight. 304 lb	FT = 2076
LUMBER			W		3-21=-343/279, 1		,						
TOP CHORD	2x4 SP No.2				6-26=-385/1859,	6-18=-20	95/420,						
BOT CHORD	2x6 SP No.2 *Except	ot* 2-20,20-18:2x6 SP			9-17=-602/0, 9-16		,	7/233,					
	DSS				11-14=0/327, 17-								
VEBS	2x4 SP No.3 *Excep				8-23=-201/112, 1								
	19-6,18-6,17-9,16-9	,16-11:2x4 SP No.2,			7-22=-180/121, 2	2-23=-3/1	4, 7-23=-24/	11,					
	8-17,7-18:2x6 SP N	0.2			5-26=-212/67								
OTHERS	2x4 SP No.3			DTES									
BRACING			,		roof live loads ha	ve been o	considered fo	or					
TOP CHORD		eathing directly applied		this design.									
	5-8-7 oc purlins, ex		2)		7-10; Vult=130m								
	2-0-0 oc purlins (6-0				ph; TCDL=6.0psf;								
BOT CHORD		applied or 6-8-13 oc			nclosed; MWFRS			ne					
	bracing.	0 40 0 47 44 40			terior (2) zone; can nd vertical left and			-					
NEBS	1 Row at midpt	6-18, 9-17, 11-16			nd forces & MWFF								
JOINTS	1 Brace at Jt(s): 22, 23, 26				L=1.60 plate grip I			ι,					
	,	40 0 0 0 47 0 0 0	3)		quate drainage to			a					
REACTIONS	()	12=0-3-8, 17=0-3-8,	4)		as been designed			9.					
	18=0-3-8 Max Horiz 2=-248 (L				ad nonconcurrent			she					
	,	_C 10) _C 13), 12=-254 (LC 1	a) 5)		has been designe								
		C 13), 12=-254 (LC 1 C 8), 18=-115 (LC 9)	3), -/		m chord in all area								
		C 24), 12=721 (LC 21)	`		by 2-00-00 wide w			om				1111 Contraction of the second	III.
		LC 1), 18=908 (LC 20)			ny other members							111110	A.D. 111
ORCES	,	npression/Maximum	́б)	Bottom chor	d live load (20.0 p	osf) and a	dditional bott	tom				IN ROHC.	10,11,
ONCLO	Tension	npression/maximum		chord dead	load (5.0 psf) app	lied only t	o room. 19-2	21			2	ON A C	11.11
OP CHORD		/272 3-5=-633/407	7)		are assumed to b							Strates.	elo.
		-302/382, 7-8=-288/37	5 8)		chanical connection						The state of the s	\sim	N:1 =
	8-9=-295/381, 9-11:		0,		e capable of withs						-	4	. 7
	11-12=-847/379, 12	,			lift at joint 18, 5 lb	uplift at jo	pint 17 and 2	54 lb			-	SE/	AL `; :
BOT CHORD	2-21=-114/406, 19-2			uplift at joint							=	114	77
	18-19=-75/373, 16-	,	9)		urlin representatio			size			=	1 UT	
	14-16=-185/607, 12	-14=-185/607			ation of the purlin	along the	e top and/or				= -		- 1 - 3
				bottom chor							1	Disk	14:53
			10	UNINHABIT	CE SHOWN IS DI	ESIGNEL	AS				1	O. GIN	Er Crs
				DAD CASE(S)								171	CALIN
			LC	AD CASE(S)	Stanuaru							M.H.A	. Sinn
												- Minin	mm
												lanuary	15.2025

January 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	AT2E	GABLE	1	1	Job Reference (optional)	170775758

Loading

TCDL

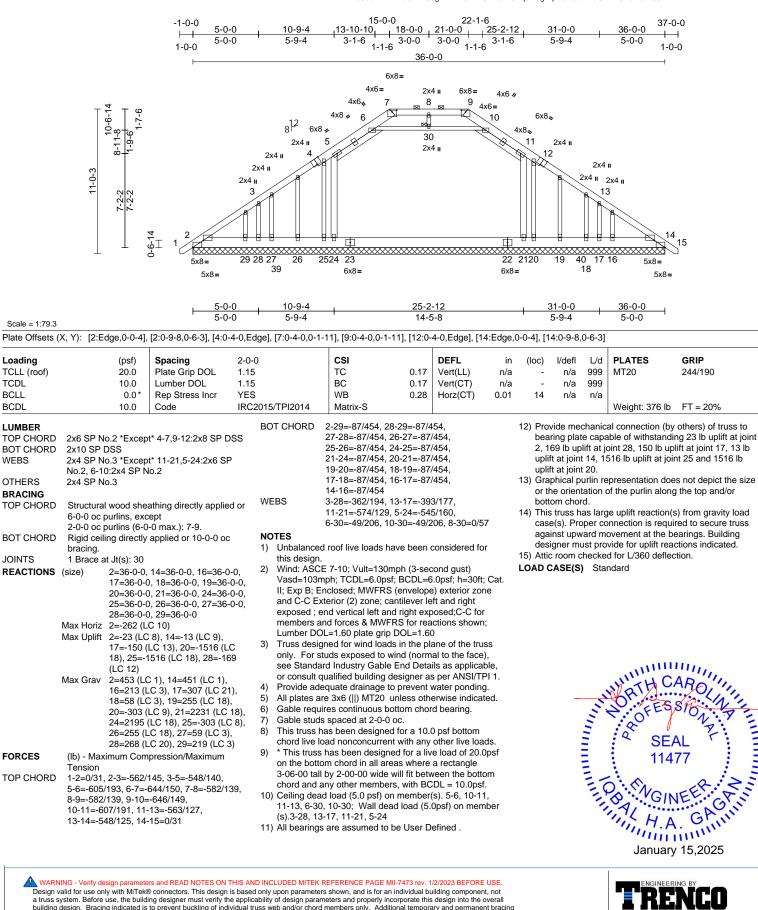
BCLL

BCDL

WEBS

OTHERS

BRACING


JOINTS

FORCES

LUMBER

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Wed Jan 15 05:26:06 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	AT3	ROOF TRUSS	4	1	Job Reference (optional)	170775759

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:07 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-9-4

5-0-0

-1-0-0 37-0-0 10-9-4 5-0-0 8-7-8 15-0-0 21-0-0 25-2-12 31-0-0 36-0-0 \vdash -5-0-0 3-7-8 2-1-12 4-2-12 6-0-0 4-2-12 5-9-4 5-0-0 1-0-0 1-0-0 36-0-0 7x10= M18AHS 8x16 = 8x12= 7x10= 8x16 8x16 10-6-14 9 φ 0-5-8 10 8x12 🖌 6x8。 4x6 ≠ 7x10 8x16, 6 6 8¹² 11 5 11-0-3 2x4 2x4 I 2 14-0-0 3 7-2-2 13 6-4-5-4-120 0-6-14 14 + 15 R 21 18 17 20 19 27 16 5x8= 5x8= 3x6 II 3x10 II 8x12= 5x6= 5x8= 5x8= 6x8= 3x10 II 5-0-0 10-9-4 25-2-12 31-0-0 36-0-0

Scale = 1:79.3 [2:0-8-0,0-1-0], [2:1-4-12,0-6-3], [5:0-6-0,0-4-8], [6:0-5-15,Edge], [7:0-6-0,0-1-8], [8:0-4-0,0-4-8], [9:0-4-12,0-5-0], [10:0-8-0,0-1-12], [11:0-5-0,0-5-12], [12:0-4-0,Edge], Plate Offsets (X, Y): [14:0-8-0,0-0-12], [14:0-9-8,0-6-3], [17:0-7-8,0-1-8], [20:0-7-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.37	17-20	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.59	17-20	>730	180	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.05	14	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Attic	-0.18	17-20	>974	360	Weight: 356 lb	FT = 20%

14-5-8

LUMBER 2) TOP CHORD 2x6 SP No.2 *Except* 5-8,9-12:2x8 SP DSS, this design 1-5,12-15:2x6 SP DSS 3) BOT CHORD 2x10 SP DSS 2x4 SP No.3 *Except* 11-17,6-20:2x6 SP WEBS DSS, 16-11:2x4 SP No.2 2x4 SP DSS *Except* 4-5:2x4 SP No.3 OTHERS WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 5) 3-9-5 oc purlins, except 6) 2-0-0 oc purlins (10-0-0 max.): 8-9. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc 7) bracing. WEBS 1 Row at midpt 11-16 WEBS 2 Rows at 1/3 pts 7-10 REACTIONS 2=0-3-8, (req. 0-3-11), 14=0-3-8 (size) 8) Max Horiz 2=-262 (LC 10) Max Grav 2=2353 (LC 20), 14=2121 (LC 21) 11-17, 20-22 FORCES (Ib) - Maximum Compression/Maximum 9) Tension TOP CHORD 1-2=0/28, 2-3=-3356/0, 3-4=-3443/35, 17-20 4-6=-2795/27, 6-7=-2404/195, 7-8=0/2681, 8-9=0/3224, 9-10=0/2600, 10-11=-2459/195, 11-13=-3671/249, 13-14=-3448/102, 14-15=0/28 BOT CHORD 2-21=0/2807. 20-21=0/2807. 17-20=0/2624. 16-17=0/2624, 14-16=0/2798 bottom chord 3-21=-520/102, 13-16=-756/234 WEBS 11-17=0/1406, 20-22=0/1570, 6-22=0/1594 LOAD CASE(S) Standard 7-10=-5760/90, 11-16=-422/794, 4-22=-793/98

5-0-0

5-9-4

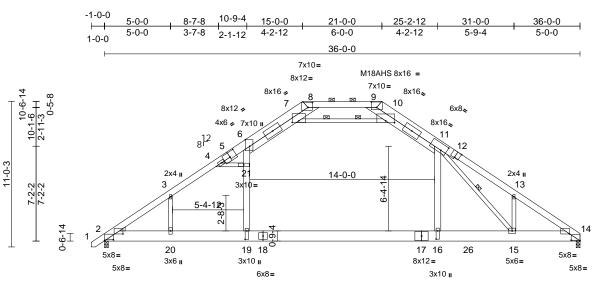
NOTES

2x10 SP DSS bearing block 12" long at jt. 2 attached to 1) front face with 5 rows of 10d (0.120"x3") nails spaced 3' o.c. 20 Total fasteners. User Defined Bearing crushing capacity= 425psi.

Unbalanced roof live loads have been considered for

- Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding.
- All plates are MT20 plates unless otherwise indicated.
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members, with BCDL = 10.0psf. Ceiling dead load (5.0 psf) on member(s). 3-4, 10-11, 7-10, 4-22; Wall dead load (5.0psf) on member(s).3-21,
- Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 20-21,
- 10) WARNING: Required bearing size at joint(s) 2 greater than input bearing size.
- 11) All bearings are assumed to be User Defined .
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or
- 13) Attic room checked for L/360 deflection.

Page: 1


January 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	AT3A	ROOF TRUSS	4	1	Job Reference (optional)	170775760

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Wed Jan 15 05:26:07 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	5-0-0	10-9-4	25-2-12	31-0-0	36-0-0	
Scale = 1:79.3	5-0-0	5-9-4	14-5-8	5-9-4	5-0-0	

[2:0-8-0,0-1-0], [2:1-4-12,0-6-3], [5:0-6-0,0-4-8], [6:0-5-15,Edge], [7:0-6-0,0-1-8], [8:0-4-0,0-4-8], [9:0-4-12,0-5-0], [10:0-8-0,0-1-12], [11:0-5-0,0-5-12], [12:0-4-0,Edge], Plate Offsets (X, Y): [14:0-8-0,0-0-8], [14:0-9-8,0-6-3], [16:0-7-8,0-1-8], [19:0-7-12,0-1-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.93	Vert(LL)	-0.37	16-19	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.59	16-19	>730	180	M18AHS	186/179
BCLL	0.0*	Rep Stress Incr	YES	WB	0.58	Horz(CT)	0.05	14	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Attic	-0.18	16-19	>974	360	Weight: 349 lb	FT = 20%

Wind: ASCE 7-10; Vult=130mph (3-second gust) LUMBER 2) TOP CHORD 2x6 SP No.2 *Except* 5-8,9-12:2x8 SP DSS, 1-5,12-14:2x6 SP DSS BOT CHORD 2x10 SP DSS 2x4 SP No.3 *Except* 11-16,6-19:2x6 SP WEBS DSS, 15-11:2x4 SP No.2 2x4 SP DSS *Except* 4-5:2x4 SP No.3 OTHERS WEDGE Left: 2x4 SP No.3 3) 4) BRACING 5) TOP CHORD Structural wood sheathing directly applied or 3-9-4 oc purlins, except 6) 2-0-0 oc purlins (10-0-0 max.): 8-9. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. WEBS 1 Row at midpt 11-15 7) WEBS 2 Rows at 1/3 pts 7-10 REACTIONS 2=0-3-8, 14=0-3-8 (size) Max Horiz 2=258 (LC 9) 8) Max Grav 2=2354 (LC 20), 14=2072 (LC 21) FORCES (Ib) - Maximum Compression/Maximum Tension 9) TOP CHORD 1-2=0/28, 2-3=-3357/0, 3-4=-3444/38, 4-6=-2797/28, 6-7=-2405/196, 7-8=0/2682, 8-9=0/3225, 9-10=0/2601, 10-11=-2460/197, 11-13=-3679/255, 13-14=-3456/107 BOT CHORD 2-20=0/2801, 19-20=0/2801, 16-19=0/2618, 15-16=0/2618. 14-15=-9/2809 WEBS 3-20=-520/102, 13-15=-758/235 11-16=0/1405, 19-21=0/1570, 6-21=0/1594, 7-10=-5761/94, 11-15=-427/803, 4-21=-792/98

NOTES

1) Unbalanced roof live loads have been considered for this design.

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.60 Provide adequate drainage to prevent water ponding. All plates are MT20 plates unless otherwise indicated. This truss has been designed for a 10.0 psf bottom

- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Ceiling dead load (5.0 psf) on member(s), 3-4, 10-11,
- 7-10, 4-21; Wall dead load (5.0psf) on member(s).3-20, 11-16. 19-21 Bottom chord live load (40.0 psf) and additional bottom
- chord dead load (5.0 psf) applied only to room. 19-20, 16-19
- Bearings are assumed to be: Joint 2 SP DSS , Joint 14 User Defined

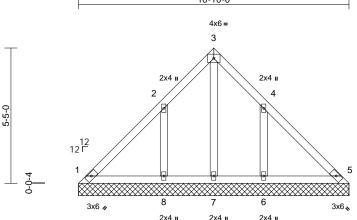
10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

11) Attic room checked for L/360 deflection. LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	AV1	GABLE	1	1	Job Reference (optional)	170775761

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:08 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-9-8

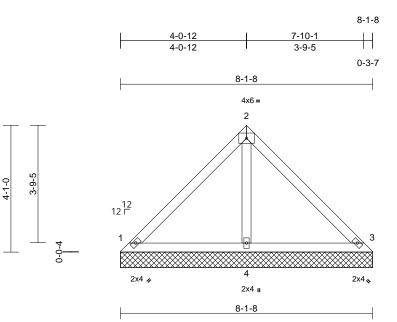
Scale =	1:41.9
---------	--------

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-S	0.11 0.07 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 53 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directl bracing. (size) 1=10-10 7=10-10 Max Horiz 1=-125 (Max Uplift 1=-10 (L 8=-171 (Max Grav 1=130 (L	C 8), 6=-171 (LC 13), LC 12) .C 20), 5=114 (LC 19 .C 20), 7=116 (LC 13	c 8) 9) 10-0, LC),	This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate	spaced at 0-0- is been design ad nonconcurrent has been design in chord in all a by 2-00-00 widd hy other membra are assumed to hanical connect a capable of wit ift at joint 8 and Standard	ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers. b be User D ction (by oth chstanding 1	other live loa e load of 20.0 a rectangle veen the bott efined . ers) of truss t 0 lb uplift at j	Dpsf om o					
FORCES	Tension	npression/Maximum	102										
	4-5=-101/85	-108/103, 3-4=-108/1	,										
BOT CHORD WEBS	5-6=-76/115	76/115, 6-7=-76/115, 254/197, 4-6=-254/19										mm	111 <i>11</i> .

NOTES

1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-10; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	170775700
CC 2424	AV2	Valley	1	1	Job Reference (optional)	170775762

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:08 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.9

00010 - 112010													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.47	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.14	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.05	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-P							Weight: 33 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 or	5	on the botto 3-06-00 tall chord and a All bearings Provide mee bearing plat	has been desig m chord in all a by 2-00-00 wide ny other member are assumed to chanical connec e capable of wit uplift at joint 3.	reas where e will fit betv ers. o be User D ction (by oth	a rectangle veen the bott efined . ers) of truss	om to					
REACTIONS	(size) 1=8-1-8, 3 Max Horiz 1=-92 (LC Max Uplift 1=-43 (LC Max Grav 1=179 (LC (LC 1)	2 13), 3=-43 (LC 13)	4=239										
FORCES	(lb) - Maximum Com Tension	npression/Maximum											
TOP CHORD		18/57											

BOT CHORD 1-4=-27/65, 3-4=-27/65

WEBS 2-4=-146/45

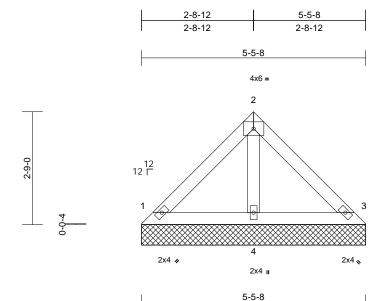
NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 0-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

Page: 1

January 15,2025

TRENCO A MITEK ATfiliate


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	AV3	Valley	1	1	Job Reference (optional)	170775763

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:08 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:20.1

Scale = 1.20.1													
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL	10.0	Lumber DOL	1.15		BC	0.10	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015	/TPI2014	Matrix-P							Weight: 21 lb	FT = 20%
UMBER			7)	* This truss I	nas been desig	ned for a liv	e load of 20.	Opsf					
OP CHORD	2x4 SP No.3		,		n chord in all a								
OT CHORD	2x4 SP No.3			3-06-00 tall I	oy 2-00-00 wide	e will fit betw	een the bott	om					
THERS	2x4 SP No.3			chord and a	ny other membe	ers.							
RACING			8)		are assumed to								
OP CHORD	Structural wood she	athing directly applie	ed or ⁹⁾		hanical connec		,						
	5-6-0 oc purlins.	5			e capable of wit	thstanding 2	8 lb uplift at	joint					
OT CHORD	Rigid ceiling directly	applied or 10-0-0 or			uplift at joint 3.								
	bracing.		LO	AD CASE(S)	Standard								
EACTIONS	(size) 1=5-5-8, 3	3=5-5-8, 4=5-5-8											
	Max Horiz 1=59 (LC	9)											
	Max Uplift 1=-28 (LC	13), 3=-28 (LC 13)											
	Max Grav 1=115 (LC	C 1), 3=115 (LC 1), 4	4=154										
	(LC 1)												
ORCES	(lb) - Maximum Com	pression/Maximum											
	Tension												
OP CHORD	1-2=-85/47, 2-3=-76	/38											
OT CHORD	1-4=-17/41, 3-4=-17	/41											
VEBS	2-4=-95/30												
OTES													
) Unbalance	d roof live loads have	been considered for	r										
this design													
) Wind: ASC	E 7-10; Vult=130mph	(3-second gust)											111.
Vasd=103r	nph; TCDL=6.0psf; B	CDL=6.0psf; h=30ft;	Cat.										1111

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 0-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

and a state of the state of the

 \sim

0

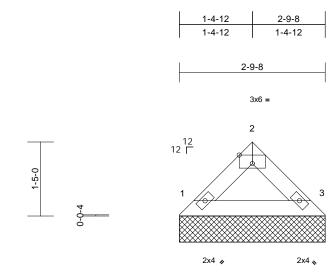
818 Soundside Road Edenton, NC 27932

"minin January 15,2025

SEAL

11477

C


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	AV4	Valley	1	1	Job Reference (optional)	170775764

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:08 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-9-8

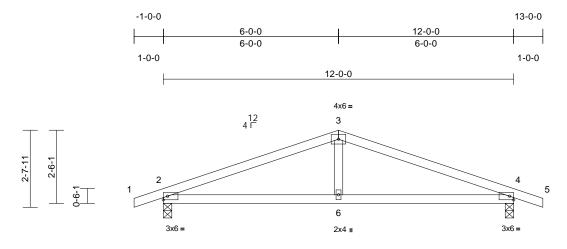
Page: 1

Scale =	1:15
---------	------

Plate Offsets (X, Y): [2:0-3-0,Edge]

oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.03	Vert(LL)	n/a		n/a	999	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
CLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-P		- ()					Weight: 9 lb	FT = 20%
-											5	
UMBER				rings are assumed to								
OP CHORD	2x4 SP No.3			e mechanical connec								
OT CHORD	2x4 SP No.3			plate capable of wit	hstanding 7	' lb uplift at jo	pint 1					
RACING				b uplift at joint 3.								
OP CHORD	Structural wood she	athing directly applie	ed or LOAD CAS	SE(S) Standard								
	2-10-0 oc purlins.											
OT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	С									
EACTIONS	(size) 1=2-9-8, 3 Max Horiz 1=-26 (LC											
	Max Uplift 1=-7 (LC	,										
	Max Grav 1=85 (LC											
ORCES	(lb) - Maximum Corr											
	Tension											
OP CHORD	1-2=-63/27, 2-3=-63	/27										
OT CHORD	1-3=-7/36											
OTES												
) Unbalance	d roof live loads have	been considered fo	r									
this design												
	E 7-10; Vult=130mph											
	nph; TCDL=6.0psf; B											
	Inclosed; MWFRS (er		ne								- mm	
	xterior (2) zone; cantil										NILL C	AROUL
	end vertical left and rig and forces & MWFRS										NaV.	
	DL=1.60 plate grip DC		,							~	Ortos	an A''
	gned for wind loads in		ee							2	- of y	N. Y :
	studs exposed to wind									-	: ~ /	7: -
	ard Industry Gable En									-	: Q SE	AI 7: =
	qualified building desi									=	UL UL	• •
	ires continuous botto									=	114	•// : -
	s spaced at 0-0-0 oc.	0								=		
) This truss I	has been designed fo	r a 10.0 psf bottom								The state of the s	2:00	4:23
	oad nonconcurrent wi									-	A GI	NEF
	s has been designed f		Opsf							1	A	S.S.
	om chord in all areas										11X HI	Grin
3-06-00 tal	I by 2-00-00 wide will any other members.	fit between the botto	m								Min H.	1. ann

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

January 15,2025

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	B1	Common	1	1	Job Reference (optional)	170775765

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:09 ID:wjcigtm3MOSECrCz986vh2zvD1U-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

				6-0-0		1		12-0-0				
0 1 1 00 0				6-0-0		T		6-0-0				
Scale = 1:33.9												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	-0.03	6-12	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.37	Vert(CT)	-0.07	6-12	>999	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		. ,					Weight: 43 lb	FT = 20%
LUMBER												
TOP CHORD	2x4 SP No.2											
BOT CHORD	2x4 SP No.2											
WEBS	2x4 SP No.3											
BRACING												
TOP CHORD	Structural wood she	athing directly appli	ed or									
BOT CHORD	5-8-9 oc purlins. Rigid ceiling directly		•									
BOT CHORD	bracing.	applied of 10-0-0 0	C									
REACTIONS	(size) 2=0-3-8, 4	1-0-3-8										
	Max Horiz 2=-39 (LC											
	Max Uplift 2=-108 (L											
	Max Grav 2=540 (L											
FORCES	(lb) - Maximum Com	,. , ,										
	Tension											
TOP CHORD	1-2=0/19, 2-3=-818/ 4-5=0/19	239, 3-4=-818/239,										
BOT CHORD	2-6=-150/723, 4-6=-	150/723										
WEBS	3-6=0/254	100/120										
NOTES												
	ed roof live loads have	been considered fo	r									
this design												
	 CE 7-10; Vult=130mph	(3-second aust)										
	mph; TCDL=6.0psf; B		: Cat.								minin	111111
	Enclosed; MWFRS (er										WORH C	AROUL
and C-C E	Exterior (2) zone;C-C fo	or members and for	ces									
& MWFRS	for reactions shown;	Lumber DOL=1.60	olate							~	O. tes	Start's
grip DOL=	:1.60										7. 6K-0	N. T.
	has been designed fo									-	: ~ (7: -
	load nonconcurrent w									-	IQ SE	
4) * This trus	s has been designed f	or a live load of 20.0	Opsf							=	UL	
	tom chord in all areas									-	114	77 : =
	II by 2-00-00 wide will	fit between the botte	om							=	4	1 - E
	any other members.									=7	SE 114	2:2:
	s are assumed to be									-1	Non	IFE OS
	echanical connection									1	00	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
bearing pla	ate capable of withsta	nding 108 lb uplift at	i joint							1	1.11	CAN

- 5) All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 108 lb uplift at joint 2 and 108 lb uplift at joint 4. 6)

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

"minin

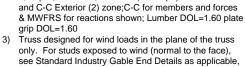
January 15,2025

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	B1E	Common Supported Gable	1	1	Job Reference (optional)	170775766

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:09

ID:_84EydMoqRdHbNSOXwUPAOzvD0j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

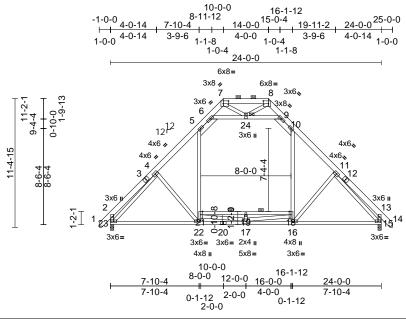

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

-1-0-0 13-0-0 6-0-0 12-0-0 6-0-0 6-0-0 1-0-0 1-0-0 12-0-0 4x6 = 12 4 Г 4 2x4 II 2x4 II 4 3 5 9 2-7-11 0 2-6-1 6 -9-1 10 9 8 3x6 = 3x6 = 2x4 II 2x4 II 2x4 🛛

Scale = 1:33

12-0-0

00010 - 1.00												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	-0.01	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/TF	PI2014 Matrix-MS							Weight: 47 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP No.2			nis truss has been design ord live load nonconcurre			ads.					
BOT CHORD				This truss has been desig								
OTHERS	2x4 SP No.3		or	the bottom chord in all a	areas where	a rectangle	•					
BRACING				06-00 tall by 2-00-00 wide		veen the bott	om					
TOP CHORD	Structural wood she 10-0-0 oc purlins.	athing directly applie	eu or 8) Al	ord and any other memb I bearings are assumed to	o be SP No.							
BOT CHORD	Rigid ceiling directly bracing.	applied or 6-0-0 oc	be	ovide mechanical connect aring plate capable of wi	thstanding 9	4 lb uplift at	joint					
REACTIONS	(size) 2=12-0-0,	6=12-0-0, 8=12-0-0		41 lb uplift at joint 9, 79 l		nt 10, 110 lb	uplift					
	,	10=12-0-0		joint 8 and 94 lb uplift at CASE(S) Standard	joint 2.							
	Max Horiz 2=-39 (LC			CASE(S) Standard								
	Max Uplift 2=-94 (LC											
		9), 10=-79 (LC 12)										
	Max Grav 2=121 (LC	C 1), 10=388 (LC 1),										
FORCES												
FORCES	(lb) - Maximum Com Tension	pression/maximum										
TOP CHORD		517 3-1-180/173										
	4-5=-177/472, 5-6=-											
BOT CHORD												
	8-9=-450/278, 6-8=-											
WEBS	4-9=-297/123, 3-10=	-252/156, 5-8=-279	/166									
NOTES											, unu	IIIII.
,	ed roof live loads have	been considered fo	r								NOTH C	ARO
this design		(2 accord such)									N	······································
	CE 7-10; Vult=130mph 3mph; TCDL=6.0psf; B0		Cot							5	S. GES	Starke
	Enclosed; MWFRS (en									2	- of the	Nº Y =
	Exterior (2) zone;C-C fc									-		
	S for reactions shown; I									-	SE.	
grip DOL=		2411001 2 0 2 1100 p								=	114	
	igned for wind loads in	the plane of the tru:	SS							=	1 04	11 i z
	studs exposed to wind									MILLIN N	- A - A -	. 1. 2
	ard Industry Gable End									= (Disk	14:53
or consult	qualified building desig	gner as per ANSI/TF	기 1.							1	GI	VELCES
4) Gable req	uires continuous bottor	m chord bearing.								1	1.41	A AN
E) Coble atu	do oppood at 2 0 0 ao										IN LIN	


5) Gable studs spaced at 2-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	C1	ATTIC	1	1	Job Reference (optional)	170775767

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:09 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:88.4

Plate Offsets (X	, Y):	[7:0-5-8,0-3-0],	[8:0-5-8,0-3-0]
------------------	-------	------------------	-----------------

							-							
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0		1.15		TC	0.49	Vert(LL)	0.14	22-23	>999	240	MT20	244/190	
TCDL	10.0		1.15		BC	0.98	Vert(CT)	-0.21	22-23	>999	180			
BCLL	0.0*	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.04	15	n/a	n/a			
BCDL	10.0	Code	IRC2015	5/TPI2014	Matrix-MS		Attic	-0.09	18-21	>999	360	Weight: 229 I	b FT = 20%	
LUMBER			2)	Wind: ASCE	7-10; Vult=130mp	oh (3-sec	ond gust)							
TOP CHORD	2x6 SP No.2			Vasd=103mp	oh; TCDL=6.0psf;	BCDL=6	.0psf; h=30ft;	Cat.						
BOT CHORD	2x4 SP No.2				closed; MWFRS (ne						
WEBS	2x4 SP No.3 *Excep	ot* 5-22,6-9,10-16:2x4 \$	SP		erior (2) zone; can									
	No.2				d vertical left and									
BRACING					d forces & MWFR			;						
TOP CHORD		athing directly applied			=1.60 plate grip D			_						
		xcept end verticals, an	d 3) 4)		uate drainage to been designed f].						
	2-0-0 oc purlins (6-0		4)		ad nonconcurrent v			de						
BOT CHORD		applied or 3-10-5 oc	5)		as been designed									
	bracing.		0)		n chord in all area			,001						
JOINTS	1 Brace at Jt(s): 24	~ ~ ~ ~			y 2-00-00 wide wi			om						
REACTIONS					y other members.									
	Max Horiz 23=302 (L		6)	Ceiling dead	load (5.0 psf) on r	member	s). 5-6, 9-10,							
		(LC 2), 23=1359 (LC 2))		Nall dead load (5.	0psf) on	member(s).5	-21,						
FORCES	(lb) - Maximum Com	pression/Maximum		10-18										
TOP CHORD	Tension 1-2=0/44, 2-4=-397/	102 4 5 1410/52	7)		d live load (40.0 ps									
IOP CHORD		102, 4-5=-1419/55,			oad (5.0 psf) appli	ed only f	o room. 19-2	1,						
	8-9=-170/143, 9-10=	, , ,	0)	18-19			afinad							
	10-11=-1419/53, 11-		8)	0	are assumed to be			170						
		402/137, 13-15=-401/13	9) 37		rlin representation ation of the purlin a			ize						
BOT CHORD		-22=0/1005, 16-17=0/8		bottom chord		along the	top anu/or					- mm		
	,	=-1106/0, 18-19=-1106	10		necked for L/360 d	eflection						World (CARO	
WEBS	4-22=-185/273, 21-2	22=-87/309, 5-21=-7/69	· - ·	AD CASE(S)		onootion	•							
	6-24=-1212/129, 9-2	24=-1212/129,			otandara						1	9.15	Sasta	1
		18=-7/696, 4-23=-1184/	/0,								3	C. Ore	VIT	AND AND AND A
	11-16=-186/273, 17-	,									5	. 4	1 7:	-
	,	8=0/1198, 7-24=-135/2	03,								Commun	SF	AI	Ξ
	8-24=-135/203, 11-1	15=-1184/0									=		477	- 3
NOTES												• 11	477 :	

NOTES

 Unbalanced roof live loads have been considered for this design. SEAL 11477 January 15,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	C1A	ATTIC	3	1	Job Reference (optional)	170775768

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:09 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12

Page: 1

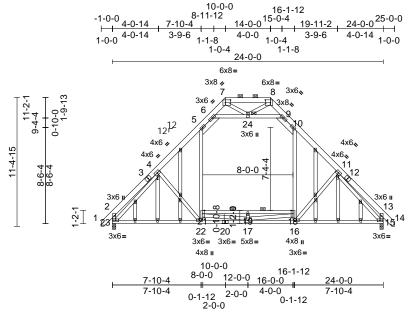
10-0-0 16-1-12 -1-0-0 4-0-14 <u>14-0-0</u>15-0-4 8-11-12 7-10-4 5-0-4 19-11-2 24-0-0 1-0-0 4-0-14 + + -3-9-6 4-0-14 3-9-6 4-0-0 1-1-8 1-0-4 1-1-8 1-0-4 24-0-0 6x8= 3x8 ⁄⁄ 7 6x8= 3x6💊 8 3x8, 3x6 🕢 ∕Ħ Ħ 6 5 10 12¹² 22 3x6 II 4x6 🥠 11-4-15 4x6 🥠 4x6 4 11 <u>8-0-0</u>4 8-6-4 8-6-4 3 3x6 II 3x6 2 ¦-] 当13 1 21 愶 20 018 15 14 3x6= 3x6= 3x6= 3x6= 2x4 II 4x8 🛚 4x8 II 5x8= 3x6= 10-0-0 16-1-12 8-0-0 12-0-0 7-10-4 16-0-0 24-0-0 -11--11 7-10-4 4-0-0 7-10-4 2-0-0 0-1-12 2-0-0 0-1-12

Scale = 1:88.4

Plate Offsets (X, Y): [7:0-5-8,0-3-0], [8:0-5-8,0-3-0]

a a din a	(ncf)											1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	0.14		>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.21	20-21	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.83	Horz(CT)	0.04	13	n/a	n/a		
BCDL	10.0	Code	IRC20	5/TPI2014	Matrix-MS		Attic	-0.09	16-19	>999	360	Weight: 226 lb	FT = 20%
LUMBER			2) Wind: ASCE	7-10; Vult=130m	ph (3-sec	ond gust)						
TOP CHORD	2x6 SP No.2			Vasd=103m	oh; TCDL=6.0psf;	BCDL=6	.0psf; h=30ft;	Cat.					
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS (envelope	e) exterior zon	e					
WEBS	2x4 SP No.3 *Exce	ept* 5-20,6-9,10-14:2x4	SP	and C-C Exte	erior (2) zone; car	ntilever le	ft and right						
	No.2				d vertical left and								
BRACING				members an	d forces & MWFR	S for rea	ctions shown	;					
	Structural wood sh	eathing directly applied	lor		.=1.60 plate grip [
		except end verticals, and	2		quate drainage to			J.					
	2-0-0 oc purlins (6		4		s been designed								
		ly applied or 3-10-5 oc			ad nonconcurrent								
	bracing.	, ,,,	5		has been designe			psf					
JOINTS	1 Brace at Jt(s): 22	2			n chord in all area								
REACTIONS (size) 13=0-3-	8. 21=0-3-8			y 2-00-00 wide w		een the botto	m					
	Aax Horiz 21=294	(LC 9)			y other members								
		7 (LC 2), 21=1361 (LC 2	2) 6		load (5.0 psf) on			10					
		mpression/Maximum	_,		Wall dead load (5	.upst) on	member(s).5-	-19,					
	Tension	mpression/maximum	7	10-16	d live load (40.0 p	of) and a	dditional batte						
		7/102, 4-5=-1420/53,	'		b live load (40.0 p bad (5.0 psf) appl								
		=-170/143, 7-8=-13/161		16-17	bau (5.0 psi) appi	ieu oniy i	010011.17-1	9,					
	8-9=-171/143, 9-10		, 8		are assumed to b		ofined						
	10-11=-1424/53, 1		9		rlin representation			izo					
	2-21=-403/137, 12	,	9		ation of the purlin			126					
	,	5-20=0/993, 14-15=0/8	77.	bottom chord		along the	top anu/or					mini	$(1)_{11}$
	,	9=-1106/0, 16-17=-110			necked for L/360 o	aflection						WH C	AD
		-20=-87/309, 5-19=-7/6	<u>.</u>	OAD CASE(S)		Lenection	•					N'aYA.	20111
	6-22=-1214/129, 9	,	- , L	UAD CASE(S)	Standard							Ortes	an All
		-16=-8/702, 4-21=-1185	5/0,								2	2. Fray	Ol Y Y
	11-14=-190/274, 1										2	NORTH C.	AL
		16=0/1198, 7-22=-135/	204,								-	: Q OF	NI 7: =
	8-22=-135/202, 11	-13=-1224/0									-	: 35/	∧∟ : =
NOTES											2	114	77 : =

1) Unbalanced roof live loads have been considered for


this design.

minin January 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	C1E	GABLE	1	1	Job Reference (optional)	170775769

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Wed Jan 15 05:26:10 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:88.4

Plate Offsets (X, Y): [7:0-5-8,0-3-0], [8:0-5-8,0-3-0], [29:0-2-0,0-0-5], [36:0-2-0,0-0-5]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.49	Vert(LL)	0.14	22-23	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15		BC	0.98	Vert(CT)	-0.21	22-23	>999	180		
BCLL	0.0*	Rep Stress Incr	YES		WB	0.80	Horz(CT)	0.04	15	n/a	n/a		
BCDL	10.0	Code	IRC201	5/TPI2014	Matrix-MS		Attic	-0.09	18-21	>999	360	Weight: 265 lb	FT = 20%
LUMBER			2) Wind: ASCE	7-10; Vult=130m	ph (3-sec	cond gust)						
TOP CHORD	2x6 SP No.2			Vasd=103m	ph; TCDL=6.0psf	; BCDL=6	.0psf; h=30ft	; Cat.					
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS	(envelope	e) exterior zor	ne					
WEBS	2x4 SP No.3 *Excep	ot* 5-22,6-9,10-16:2x	4 SP		erior (2) zone; ca								
	No.2				nd vertical left and								
OTHERS	2x4 SP No.3				d forces & MWFF			;					
BRACING			_		=1.60 plate grip								
TOP CHORD	Structural wood she	athing directly applie	ed or ³		ned for wind loads								
	5-7-12 oc purlins, e	xcept end verticals,	and		uds exposed to w								
	2-0-0 oc purlins (6-0				d Industry Gable								
BOT CHORD	0 0 7	applied or 3-10-5 o	с ₄		alified building de quate drainage to								
	bracing.		5		e 2x4 () MT20 u								
JOINTS	1 Brace at Jt(s): 24		6		fully sheathed from								
REACTIONS	· · · · · · · · · · · · · · · · · · ·		0		nst lateral movem								
	Max Horiz 23=302 (L	_C 11)	7		spaced at 2-0-0 d		lagonal web)						
	Max Grav 15=1359	(LC 2), 23=1359 (LC	2) [,] 8		as been designed) psf bottom						
FORCES	(lb) - Maximum Com	pression/Maximum	Ũ		ad nonconcurrent			ds.					
	Tension		9		has been designe								
TOP CHORD	1-2=0/44, 2-4=-397/	102, 4-5=-1419/53,			m chord in all are								
	5-6=-842/133, 6-7=-	,	62,		oy 2-00-00 wide v			om					
	8-9=-170/143, 9-10=				y other members								
	10-11=-1419/53, 11-	,	. 1	0) Ceiling dead	load (5.0 psf) on	member	s). 5-6, 9-10,						116.
	13-14=0/44, 2-23=-4				Wall dead load (5	6.0psf) on	member(s).5	-21,				111110	A = 111.
BOT CHORD	,	,	'	10-18								THU	ARO
	15-16=0/952, 19-21:				d live load (40.0 p						1	NORTH C	······································
WEBS	4-22=-185/273, 21-2	,	/695,		oad (5.0 psf) app	lied only t	o room. 19-2	1,			5.	STREA	SID
	6-24=-1212/129, 9-2		04/0	18-19							-		Nº 2
	16-18=-87/309, 10-1	,	· ·		are assumed to b						2	· ~ V	P: =
	11-16=-186/273, 17-	,		, , ,	Irlin representatio			size			2	SE/	
	17-21=0/1198, 17-18 8-24=-135/203, 11-1		5/203,		ation of the purlin	along the	e top and/or					•	
	0-24=100/200, 11-1	IJ1104/U		bottom chore	d.						=	114	11 i z

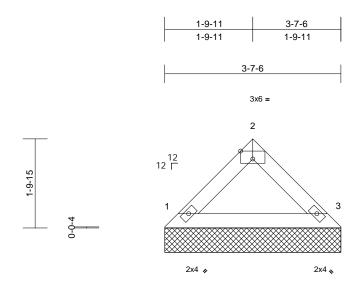
NOTES

1) Unbalanced roof live loads have been considered for this design.

14) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

In IOBY minim January 15,2025


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	CV1	Valley	1	1	Job Reference (optional)	170775770

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Wed. Jan 15 05:26:10 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

					570					
Scale = 1:16.6										
Plate Offsets (X, Y)	: [2:0-3-0,Edge]									
Loading	(nsf)	Spacing	2-0-0	CSI	DEEL	in	(loc)	l/defl	l /d	P

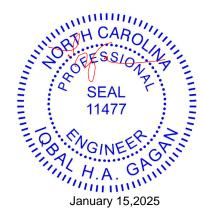
and 9 lb uplift at joint 3. LOAD CASE(S) Standard

9)

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 12 lb	FT = 20%
LUMBER			8) All bearings	are assumed to	be User D	efined .						

Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 9 lb uplift at joint 1

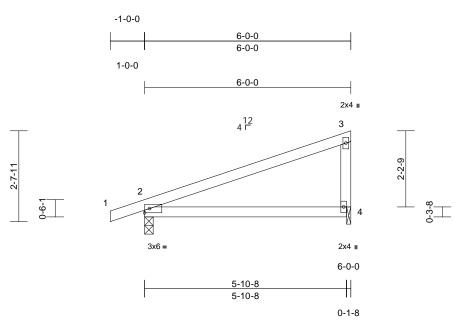

3-7-6

TOP CHORD	2x4 SP N	0.3
BOT CHORD	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied or
	3-7-14 oc	purlins.
BOT CHORD	Rigid ceili	ng directly applied or 10-0-0 oc
	bracing.	
REACTIONS	(size)	1=3-7-6, 3=3-7-6
	Max Horiz	1=37 (LC 11)
	Max Uplift	1=-9 (LC 13), 3=-9 (LC 13)
	Max Grav	1=118 (LC 1), 3=118 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum

- Tension TOP CHORD 1-2=-88/37, 2-3=-88/37
- BOT CHORD 1-3=-9/51

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=30ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 0-0-0 oc. 5)
- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

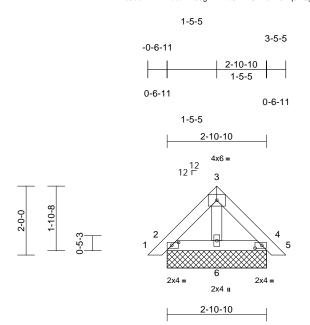
Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	M1	MONOPITCH	5	1	Job Reference (optional)	170775771

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:11 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:23.8

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (r	oof) 20.0	Plate Grip DOL	1.15	ТС	0.54	Vert(LL)	0.06	4-7	>999	240	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.37	Vert(CT)	-0.12	4-7	>602	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 23 lb	FT = 20%
LUMBE	R			chanical connection								
TOP CH				e capable of withs	standing 7	'8 lb uplift at	joint					
BOT CH				uplift at joint 4.								
WEBS	2x4 SP No.3		LOAD CASE(S	Standard								
BRACII TOP CH		athing directly appli	ed or									
IOF CI	6-0-0 oc purlins, ex											
BOT CH			C									
	bracing.											
REACT	ONS (size) 2=0-3-0,											
	Max Horiz 2=95 (LC Max Uplift 2=-78 (LC											
	Max Opint $2=78$ (LC Max Grav $2=299$ (L											
FORCE	,											
101102	Tension	nprocolori/maximam										
TOP CH		/88, 3-4=-156/133										
BOT CH	IORD 2-4=-174/105											
NOTES												
,	alanced roof live loads have	e been considered fo	or									
	design. d: ASCE 7-10; Vult=130mph	(3-second quist)										
	d=103mph; TCDL=6.0psf; B		; Cat.									
II; E	xp B; Enclosed; MWFRS (er	nvelope) exterior zo										110.
	C-C Exterior (2) zone; canti										1111110	A.D. 1111
	osed ; end vertical left and ri nbers and forces & MWFRS										"ATH U	ARO
	ber DOL=1.60 plate grip DC		ι,							3	Ollice	Si All
	truss has been designed fo									2	C. Ster	DION TO IS
	d live load nonconcurrent w									Ξ	· ~ V	7
	is truss has been designed		0psf							-	: ⁴ SE	AL T: E
	he bottom chord in all areas 6-00 tall by 2-00-00 wide will		om							=	11/	77 : =
	d and any other members.	In between the bott	om							=	1 UH	14 i E
	earings are assumed to be	User Defined .								3-		0123
	ring at joint(s) 4 considers p		9							-19	SEA SEA SEA SEA SEA SEA	IFE PS
	g ANSI/TPI 1 angle to grain									1	A	GN
	gner should verify capacity of vide mechanical connection		to								11 HA	Grin
	ring plate at joint(s) 4.	(5) 501613/ 61 0035									H.A.	in million
	. , , , ,										lanuar	/ 15,2025
											January	y 10,2020


January 15,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	170775772
CC 2424	PB1	PIGGYBACK	5	1	Job Reference (optional)	110115112

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:11 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:21.6

Plate Offsets (X, Y): [2:0-2-6,0-1-0], [4:0-2-6,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.01	Horz(CT)	0.00	4	n/a	n/a		FT 000/
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 14 lb	FT = 20%
UMBER				iss has been design			Opsf					
FOP CHORD	2x4 SP No.2			ottom chord in all are		0						
BOT CHORD				tall by 2-00-00 wide		veen the bott	om					
DTHERS	2x4 SP No.3			d any other member		ofin od						
BRACING	.			ngs are assumed to mechanical connecti			0					
OP CHORD		athing directly applie		plate capable of with								
BOT CHORD	4-0-0 oc purlins. Rigid ceiling directly	opplied or 10.0.0 or	0	Ib uplift at joint 4.		.2 10 april at j	0					
	bracing.	applied of 10-0-0 oc		ndard Industry Piggy	back Trus	s Connection						
REACTIONS	0), 4=2-10-10, 6=2-10		r Connection to base		applicable, or						
LACTIONO	Max Horiz 2=-44 (LC		consuit	ualified building des	signer.							
	Max Uplift 2=-22 (LC	,	LOAD CAS	(S) Standard								
	Max Grav 2=93 (LC	,, , , ,	39									
	(LC 3)											
ORCES	(lb) - Maximum Com	pression/Maximum										
	Tension											
FOP CHORD	,)/13									
BOT CHORD	,	/35										
WEBS	3-6=-51/12											
	ad reaf live leads have	heen ennidered for	_									
this design	ed roof live loads have	been considered for	ſ									10.
	CE 7-10; Vult=130mph	(3-second gust)										
	Bmph; TCDL=6.0psf; B		Cat.								WITH C	ARO
II; Exp B;	Enclosed; MWFRS (en	velope) exterior zon	e						_			10.11.11
	Exterior (2) zone; cantil									5	N. FED	510
	end vertical left and rig									3	A OFES	N. E
	and forces & MWFRS OL=1.60 plate grip DO		,							2	4 00	AL 7: =
	signed for wind loads in		20							THILITIC CONTRACT	SE.	
,	studs exposed to wind									2	114	77 : =
	lard Industry Gable En	```	,							=		1 2
	qualified building desig									=1	5.0	A:23
	uires continuous bottor	m chord bearing.								-	GIN	VEF
	ds spaced at 4-0-0 oc.									1	A	O'N
	has been designed for										11: HA	Grin
chord live	load nonconcurrent wi	th any other live load	ds.								Minin H.F	in the
											lanuar	y 15,2025
											Januar	y 10,2020

- Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- Gable studs spaced at 4-0-0 oc. 5)
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	CC 2424	
CC 2424	PB4	PIGGYBACK	1	1	Job Reference (optional)	170775773

3-3-1

2-0-0

1-3-1

1-3-1

-0-8-15

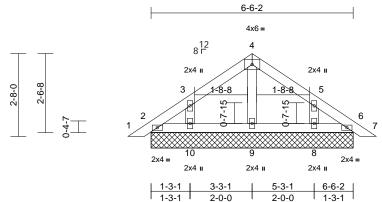
0-8-15

84 Lumber-2383 (Dunn, NC), Dunn, NC - 28334,

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:11 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-3-1

6-6-2


1-3-1

0-8-15 6-6-2

5-3-1

2-0-0

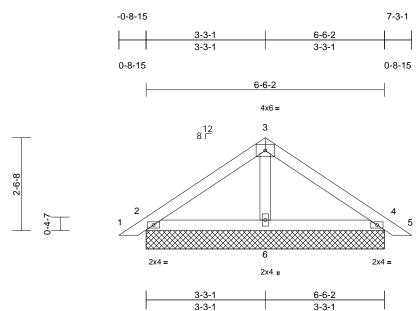
Scale = 1:25.1

Loading	(psf)	Spacing	2-0-0	с	SI	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	T	C 0.0	5 Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	B	C 0.03	3 Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES		VB 0.03	B Horz(CT)	0.00	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/T	PI2014 M	latrix-P						Weight: 29 lb	FT = 20%
LUMBER			5) A	II bearings are	assumed to be User	Defined .						
TOP CHOR	D 2x4 SP No.2		6) P	rovide mechar	nical connection (by o	thers) of truss	to					
BOT CHOR	D 2x4 SP No.2				pable of withstanding							
WEBS	2x4 SP No.3				t 6, 68 lb uplift at joint	8 and 69 lb up	olift at					
BRACING				pint 10.								
TOP CHOR		eathing directly applie			earing condition. Re		_					
	6-0-0 oc purlins.		, ,		ndustry Piggyback Tru action to base truss a							
BOT CHOR		applied or 10-0-0 oc			building designer.	s applicable, of	1					
	bracing.		1.045	D CASE(S) S								
REACTION	5 (SIZE) 2=6-6-2, 10=6-6-2	6=6-6-2, 8=6-6-2, 9=6	5-6-2, 2011									
	Max Horiz 2=-62 (LC											
	Max Uplift 2=-8 (LC		-68									
		10=-69 (LC 12)	00									
	Max Grav 2=73 (LC	; 1), 6=73 (LC 1), 8=1	66									
		9=122 (LC 1), 10=167	7 (LC									
	19)											
FORCES	(lb) - Maximum Con	npression/Maximum										
	Tension											
TOP CHOR	D 1-2=0/14, 2-3=-56/4 4-5=-62/57, 5-6=-40											
BOT CHOR												
Der enera	6-8=-22/42	22/12, 0 0 22/12,										
WEBS	4-9=-80/0, 5-8=-145	5/98, 3-10=-145/98									, minin	1111.
NOTES											MILLI C	AD
1) Unbalan	nced roof live loads have	been considered for									Mallin	01 11
this desi	ign.									2	DEES	Sp. Nº
	SCE 7-10; Vult=130mph									2	4.042	A. A.
	03mph; TCDL=6.0psf; B									3	· ~ 0	7: -
	B; Enclosed; MWFRS (er		9							111111	: a SE	AL T
	CExterior (2) zone; canti d ; end vertical left and ri									-	•	77 : 2
	rs and forces & MWFRS									=	114	// i =
	DOL=1.60 plate grip DC									3,		1.2
	ss has been designed fo									= (Disting	AL 77
	e load nonconcurrent w									1	GIN	VEY CYS
	uss has been designed t		osf							1	1,41	CAN
on tha h	ottom chord in all areas	whore a rectangle										171 11

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

minim

January 15,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type		Ply	CC 2424		
CC 2424	PB4A	PIGGYBACK	8	1	Job Reference (optional)	170775774	

2-8-0

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:11 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

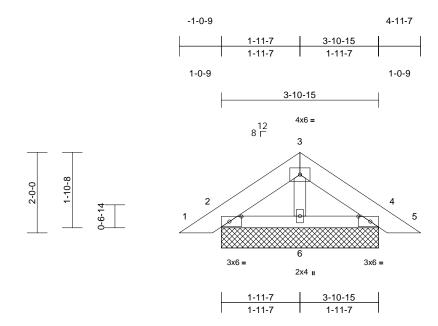
Scale = 1:23

00010 = 1.20												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.11	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.03	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-P							Weight: 27 lb	FT = 20%
LUMBER			7) Non Stand	ard bearing condit	tion. Revie	w required.						
TOP CHORD	2x4 SP No.2		8) See Stand	ard Industry Piggy	back Trus	s Connection						
BOT CHORD	2x4 SP No.2		Detail for C	connection to base	e truss as a	applicable, or						
WEBS	2x4 SP No.3		consult qua	alified building des	signer.							
BRACING			LOAD CASE(S	 Standard 								
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins.											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	C									
REACTIONS	(size) 2=6-6-2, 4	4=6-6-2, 6=6-6-2										
	Max Horiz 2=-62 (LC	,										
	Max Uplift 2=-43 (LC	2 12), 4=-51 (LC 13)	1									
	Max Grav 2=172 (L0	C 1), 4=172 (LC 1),	6=235									
FORCES	(LC 1) (Ib) - Maximum Com											
FURGES	Tension	ipression/iviaximum										
TOP CHORD	1-2=0/14, 2-3=-86/5	2 3-4=-78/48 4-5=(0/14									
BOT CHORD	2-6=-12/42. 4-6=-12	, , ,	0,11									
WEBS	3-6=-154/53											
NOTES												
	ed roof live loads have	been considered fo	or									
this design												
	CE 7-10; Vult=130mph	(3-second gust)									2011	10.
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=30ft;	; Cat.									1111
	Enclosed; MWFRS (er		ne								IN THC	AROLI
and C-C E	xterior (2) zone; cantil	ever left and right								5	All y	AROLI

- exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 4)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. All bearings are assumed to be User Defined . 5)

6)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 2 and 51 lb uplift at joint 4.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Marcine. Description, Component dependent description, Uww.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type		Ply	CC 2424		
СС	2424	PB5	PIGGYBACK	9	1	Job Reference (optional)	170775775	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Wed Jan 15 05:26:11 ID:No3derHDwkHocaZM86gtV2zFa64-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:19.7

Plate Offsets (X, Y): [2:0-3-9,0-1-8], [4:0-3-9,0-1-8]

	х, т). [2.0 0 0,0 т 0],	[4.0 0 0,0 1 0]										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.02	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.02	Horz(CT)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI20	14 Matrix-P							Weight: 24 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x6 SP No.2 2x4 SP No.2		on the 3-06-0	truss has been design bottom chord in all ar 00 tall by 2-00-00 wide	eas where will fit betv	a rectangle	•					
WEBS	2x4 SP No.3			and any other membe								
BRACING				arings are assumed to								
TOP CHORD	Structural wood she 6-0-0 oc purlins.	athing directly appli	bearir	le mechanical connect g plate capable of with								
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 c	10) See S	43 lb uplift at joint 4. tandard Industry Piggy								
		5, 4=3-10-15, 6=3-1		for Connection to base It qualified building des		applicable, or						
	Max Horiz 2=-43 (LC			SE(S) Standard	signer.							
	Max Uplift 2=-37 (LC)	Stanuaru								
	Max Grav 2=131 (L0	C 1), 4=131 (LC 1),	6=126									
	(LC 1)											
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	1									
TOP CHORD	1-2=0/15, 2-3=-67/3	8 3-4=-62/39 4-5=	0/15									
BOT CHORD	2-6=-7/30, 4-6=-7/30		0,10									
WEBS	3-6=-77/18											
NOTES												
	ed roof live loads have	been considered for	or									
this design												1111
0	CE 7-10; Vult=130mph	(3-second gust)									111110	A.D. 111
Vasd=103	mph; TCDL=6.0psf; B	CDL=6.0psf; h=30ft	t; Cat.								N'AHU	ARO
	Enclosed; MWFRS (er		ne							1	all 1	······································
	Exterior (2) zone; cantil									5.	1 × 4/3	Story
	end vertical left and right									-		1.1 -
	and forces & MWFRS		n;							5	19 05	AL 7: 3
	OL=1.60 plate grip DC									Ξ	SE SE	AL ' : Ξ
	igned for wind loads in studs exposed to wind									Ξ	114	77 : 3
	ard Industry Gable En									=		14 E
	qualified building desi									:-	5. 0.	2:22
	uires continuous botto									-19	A SE 114 C SE 114 C SE 114	LEE! PS
	ds spaced at 4-0-0 oc.									1	on on	1 - I A' N
	has been designed fo	r a 10.0 psf bottom									11/ 1	GAMIN
,											1. 11	

- 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

H.A

"minim January 15,2025

