

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25080196-B

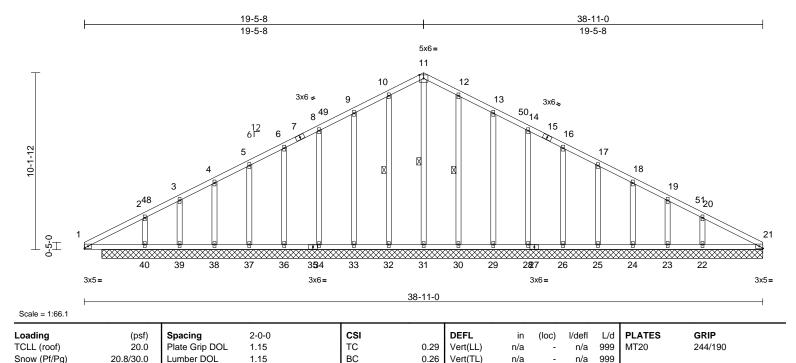
WINCHESTER MODEL ELEV F-Whitetree-Roof

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Chesapeake, VA).

Pages or sheets covered by this seal: I75807849 thru I75807897

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


August 21,2025

Galinski, John

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	A01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:54 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

TCDL BCLL BCDL	10.0 0.0* 10.0	Rep Stress Incr Code	YES IRC2018/TPI2014	WB Matrix-MSH	0.23	Horiz(TL)	0.02	21	n/a	n/a	Weight: 258 I
LUMBER TOP CHOR BOT CHOR OTHERS BRACING TOP CHOR	D 2x4 SP No.2 2x4 SP No.3 D Structural wood she 10-0-0 oc purlins.	eathing directly applie	TOP CHORD ed or BOT CHORD	1-2=-156/271, 2-3 4-5=0/280, 5-6=0 8-9=-15/316, 9-10 11-12=-53/433, 1 13-14=-15/316, 1 17-18=0/280, 18- 20-21=-156/271 1-40=-214/197, 3 38-39=-214/194,	/292, 6-8- 0=-34/376 2-13=-34 4-16=0/3 19=-24/2 9-40=-21	=0/305, 5, 10-11=-53/- /376, 05, 16-17=0/2 68, 19-20=-9- 4/194,	433, 292, 4/256,	onl see or (4) TC Pla DC Ex	y. For see Standa consult of LL: ASC tee DOL= DL=1.15 o.; Ce=0	tuds ex ard Indu qualified EE 7-16 =1.15); Plate D .9; Cs=	r wind loads in posed to wind listry Gable End building desig; Pr=20.0 psf (r Pg=30.0 psf; PGL=1.15); Is=1=1.00; Ct=1.10 loads have been
WEBS REACTION	1 Row at midpt \$ (size) 21=37-11 23=37-11 25=37-11 28=37-11 30=37-11 32=37-11 34=37-11	11-31, 10-32, 12-30 -0, 22=37-11-0, -0, 24=37-11-0, -0, 26=37-11-0, -0, 29=37-11-0, -0, 31=37-11-0, -0, 33=37-11-0, -0, 36=37-11-0, -0, 38=37-11-0,	WEBS	36-37=-214/194, 33-34=-214/194, 31-32=-214/194, 29-30=-214/194, 26-28=-214/194, 24-25=-214/194, 22-23=-214/194, 11-31=-319/0, 10 9-33=-190/128, 8	32-33=-2 30-31=-2 28-29=-2 25-26=-2 23-24=-2 21-22=-2 -32=-218 -34=-142	14/194, 14/194, 14/194, 14/194, 14/194, 14/194 /104, /118,	8	6) All 7) Ga 3) * T on 3-0 cho	ble stud: his truss the botto 6-00 tall ord and a	s space has be om cho by 2-0 any oth	MT20 unless of ed at 2-0-0 oc. een designed for in all areas v 0-00 wide will fer members. ssumed to be S

NOTES

39=37-11-0 40=37-11-0

22=-152 (LC 15), 23=-161 (LC 16),

24=-62 (LC 16), 25=-87 (LC 16),

26=-81 (LC 16), 28=-82 (LC 16),

29=-88 (LC 16), 30=-72 (LC 16),

32=-72 (LC 15), 33=-88 (LC 15),

34=-82 (LC 15), 36=-81 (LC 15),

37=-88 (LC 15), 38=-60 (LC 15),

21=0 (LC 19), 22=410 (LC 39),

25=158 (LC 1), 26=164 (LC 1),

39=-171 (LC 15), 40=-157 (LC 16)

23=120 (LC 28), 24=198 (LC 39),

28=181 (LC 22), 29=231 (LC 22)

30=258 (LC 22), 31=359 (LC 28),

32=258 (LC 21), 33=231 (LC 21),

34=181 (LC 21), 36=164 (LC 1), 37=158 (LC 1), 38=198 (LC 38),

39=125 (LC 29), 40=407 (LC 38)

(lb) - Maximum Compression/Maximum

Max Horiz 40=219 (LC 15)

Max Uplift

Max Grav

Tension

Unbalanced roof live loads have been considered for 1) this design.

20-22=-249/273

6-36=-140/121, 5-37=-138/119,

4-38=-151/130, 3-39=-93/140,

2-40=-248/270, 12-30=-218/104,

13-29=-191/128, 14-28=-142/118,

16-26=-140/121, 17-25=-138/119,

18-24=-151/131, 19-23=-93/135,

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-10-13, Exterior(2N) 3-10-13 to 19-5-8, Corner(3R) 19-5-8 to 23-5-8, Exterior (2N) 23-5-8 to 38-11-0 zone; cantilever left and right exposed: end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

n the plane of the truss d (normal to the face), nd Details as applicable, signer as per ANSI/TPI 1.

FT = 20%

- (roof LL: Lum DOL=1.15 Pf=20.8 psf (Lum =1.0; Rough Cat C; Fully
- een considered for this
- otherwise indicated.
- for a live load of 20.0psf where a rectangle fit between the bottom
- SP No.2.

August 21,2025

Continued on page 2

FORCES

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	A01	Common Supported Gable	1	1	I75807849 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:54 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 2

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 72 lb uplift at joint 32, 88 lb uplift at joint 33, 82 lb uplift at joint 34, 81 lb uplift at joint 36, 88 lb uplift at joint 37, 60 lb uplift at joint 38, 171 lb uplift at joint 39, 157 lb uplift at joint 40, 72 lb uplift at joint 30, 88 lb uplift at joint 29, 82 lb uplift at joint 28, 81 lb uplift at joint 26, 87 lb uplift at joint 25, 62 lb uplift at joint 24, 161 lb uplift at joint 23 and 152 lb uplift at joint 22.

11) Non Standard bearing condition. Review required.

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	A02	Common	2	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:55 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

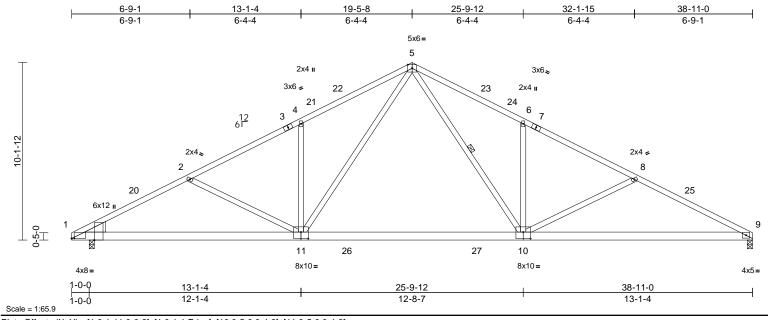


Plate Offsets (X, Y): [1:0-1-11,0-0-2], [1:0-1-1,Edge], [10:0-5-0,0-4-8], [11:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.88	Vert(LL)	-0.37	10-11	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.96	Vert(CT)	-0.59	10-11	>791	180		
TCDL	10.0	Rep Stress Incr	YES	WB	1.00	Horz(CT)	0.07	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 233 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 1-3,7-9:2x4 SP No.2 **BOT CHORD** 2x6 SP 2400F 2.0E *Except* 11-10:2x6 SP No.2

WEBS 2x4 SP No.3 *Except* 11-5,10-5:2x4 SP No.2

WEDGE Left: 2x8 SP 2400F 2.0E

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 5-10

REACTIONS (size) 1=0-3-8, 9=0-3-8

Max Horiz 1=219 (LC 15) Max Uplift 1=-421 (LC 15), 9=-404 (LC 16)

Max Grav 1=1778 (LC 4), 9=1687 (LC 4)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-3304/712, 2-4=-2997/611,

4-5=-3075/774, 5-6=-3240/811, 6-8=-3181/645, 8-9=-3616/791

BOT CHORD 1-9=-731/3175

WEBS 4-11=-556/385, 5-11=-423/1278,

2-11=-337/302. 5-10=-468/1555.

6-10=-524/372, 8-10=-529/363

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-10-13, Interior (1) 3-10-13 to 19-5-8, Exterior(2R) 19-5-8 to 23-4-5, Interior (1) 23-4-5 to 38-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP 2400F 2.0E .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 404 lb uplift at joint 9 and 421 lb uplift at joint 1.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	A03	Common	4	1	I75807851 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:55 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [1:0-0-7,0-0-14], [1:0-0-1,1-0-3], [9:0-0-3,0-0-10], [10:0-6-0,0-5-0], [15:0-5-0,0-4-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.98	Vert(LL)	-0.50	11-15	>943	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.84	11-15	>557	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.07	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 249 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP 2400F 2.0E *Except* 3-1,7-9:2x4 SP

No.2

BOT CHORD 2x6 SP 2400F 2.0E *Except* 14-12:2x4 SP No.2

WEBS

2x4 SP No.3 *Except* 15-5,10-5:2x4 SP No.2 WEDGE Left: 2x6 SP No.2

BRACING

TOP CHORD

Structural wood sheathing directly applied. **BOT CHORD**

Rigid ceiling directly applied or 6-0-0 oc

bracing. **WEBS** 1 Row at midpt

REACTIONS 1=0-3-8, 9=0-3-8 (size)

Max Horiz 1=219 (LC 15)

Max Uplift 1=-351 (LC 15), 9=-337 (LC 16) Max Grav 1=2023 (LC 4), 9=1919 (LC 4)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-3816/566, 2-4=-3509/454,

4-5=-3607/616, 5-6=-3802/651,

6-8=-3740/485, 8-9=-4179/633 **BOT CHORD** 1-11=-605/3296, 9-11=-460/3663,

13-14=-69/0, 12-13=-69/0

WEBS 4-15=-560/383, 14-15=-380/1419,

5-14=-342/1545, 2-15=-302/320, 6-10=-524/373, 5-12=-382/1872,

10-12=-420/1747, 8-10=-513/367,

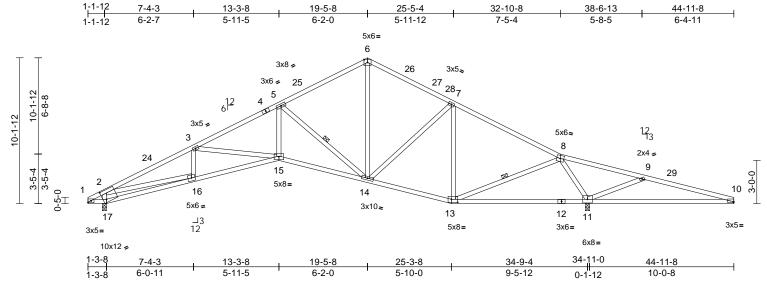
11-13=-318/0

NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-10-13, Interior (1) 3-10-13 to 19-5-8, Exterior(2R) 19-5-8 to 23-4-5, Interior (1) 23-4-5 to 38-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP 2400F 2.0E.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 337 lb uplift at joint 9 and 351 lb uplift at joint 1.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	B02	Roof Special	4	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:55 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:80.2

Plate Offsets (X, Y): [10:0-0-3,0-0-10], [13:0-5-4,0-2-8], [17:0-2-12,0-7-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.96	Vert(LL)	0.25	15-16	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.86	Vert(CT)	-0.46	15-16	>865	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.75	Horz(CT)	0.24	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 236 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 8-10:2x4 SP No.1

BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 16-2:2x4 SP No.2 BRACING

TOP CHORD

Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied or 4-6-6 oc

bracing.

WEBS 1 Row at midpt 8-13, 5-14 11=0-3-8. 17=0-3-8 REACTIONS (size) Max Horiz 17=220 (LC 15)

> Max Uplift 11=-658 (LC 16), 17=-388 (LC 15) Max Grav 11=2321 (LC 1), 17=1434 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-388/158, 2-3=-3365/964,

3-5=-3130/859, 5-6=-1491/466, 6-7=-1483/484, 7-8=-1323/370,

8-9=-1263/2133, 9-10=-791/1133 1-17=-203/454, 16-17=-316/255,

BOT CHORD 15-16=-989/3019, 14-15=-738/2836,

13-14=-182/1125, 11-13=-1076/861,

10-11=-1016/784

WEBS 2-17=-1435/588, 2-16=-661/2820,

6-14=-249/905, 7-14=-129/323, 7-13=-683/412, 8-13=-806/1520, 8-11=-2132/1069, 9-11=-1088/604,

5-15=-379/1533. 5-14=-2038/706.

3-16=-197/157, 3-15=-315/245

NOTES

Unbalanced roof live loads have been considered for 1) this design.

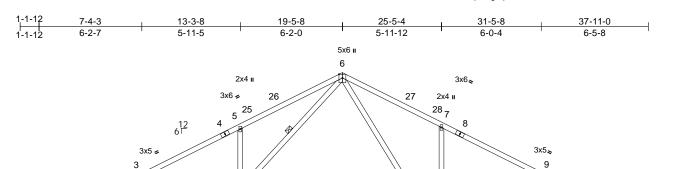
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 4-6-0, Interior (1) 4-6-0 to 19-5-8, Exterior(2R) 19-5-8 to 23-11-8, Interior (1) 23-11-8 to 44-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 388 lb uplift at joint 17 and 658 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	B03	Roof Special	6	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:55 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

4x5~

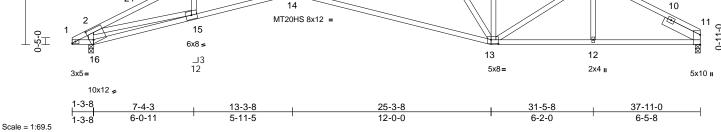


Plate Offsets (X, Y): [11:0-7-1,Edge], [13:0-5-4,0-2-12], [14:0-6-0,0-3-3], [16:0-2-12,0-7-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.90	Vert(LL)	0.31	14	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.99	Vert(CT)	-1.13	13-14	>390	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.94	Horz(CT)	0.30	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 209 lb	FT = 20%

LUMBER

2x4 SP 2400F 2.0E *Except* 1-4:2x4 SP TOP CHORD

No.2, 8-11:2x4 SP No.1

BOT CHORD 2x4 SP No.1 *Except* 1-16:2x4 SP No.2 WEBS 2x4 SP No.3 *Except* 15-2,6-14,13-6:2x4 SP

No.2

SLIDER Right 2x6 SP No.2 -- 2-6-0

BRACING

TOP CHORD Structural wood sheathing directly applied or

BOT CHORD Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 6-14 REACTIONS (size) 11=0-3-8, 16=0-3-8

Max Horiz 16=234 (LC 15) Max Uplift 11=-384 (LC 16), 16=-418 (LC 15)

Max Grav 11=1492 (LC 1), 16=1601 (LC 1) FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-447/161, 2-3=-4061/1069,

3-5=-3925/960, 5-6=-3991/1149, 6-7=-2330/743, 7-9=-2248/603,

9-11=-2529/627

BOT CHORD 1-16=-208/507, 15-16=-328/248,

14-15=-1098/3653, 13-14=-300/1709, 12-13=-450/2156, 11-12=-450/2156

WEBS 2-16=-1654/624, 2-15=-759/3398,

7-13=-541/345, 9-13=-294/239, 9-12=0/89,

6-14=-804/2622, 6-13=-403/587,

3-15=-295/154, 3-14=-187/249,

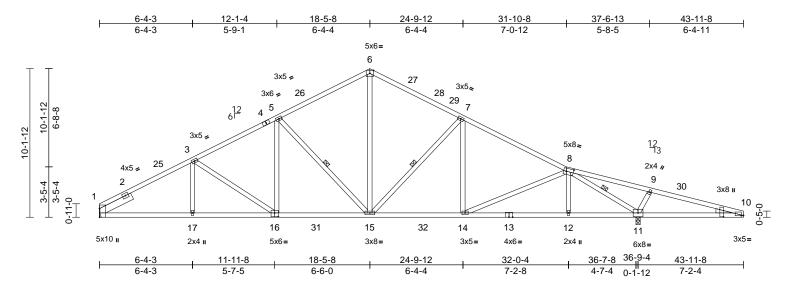
5-14=-510/347

NOTES

Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-9-9, Interior (1) 3-9-9 to 19-5-8, Exterior(2R) 19-5-8 to 23-3-1, Interior (1) 23-3-1 to 37-11-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Bearings are assumed to be: Joint 16 SP No.2, Joint 11 SP No.1.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 418 lb uplift at joint 16 and 384 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	B04	Roof Special	5	1	I75807854 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:55 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:78.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.98	Vert(LL)	-0.18	15-16	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.34	15-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.11	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 245 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 4-6:2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 1-16:2x4 SP No.1

WEBS 2x4 SP No.3 WEDGE Right: 2x4 SP No.3 Left 2x6 SP No.2 -- 2-6-0 **SLIDER**

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 1 Row at midpt 8-11, 5-15, 7-15

REACTIONS (size) 1= Mechanical, 11=0-3-8

Max Horiz 1=-233 (LC 16) Max Uplift 1=-381 (LC 15), 11=-605 (LC 16)

Max Grav 1=1600 (LC 5), 11=2306 (LC 4)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-2944/776, 3-5=-2644/749,

5-6=-2054/669, 6-7=-2057/660, 7-8=-2536/620, 8-9=-781/1340,

9-10=-720/1079

BOT CHORD 1-17=-635/2510, 15-17=-635/2510,

14-15=-314/2138, 12-14=-266/2020,

11-12=-262/2028, 10-11=-973/728 8-12=0/211, 8-11=-3560/1146,

9-11=-626/324 3-17=0/148 3-16=-299/213

5-16=-46/452, 5-15=-887/375,

6-15=-334/1399, 7-15=-722/331, 7-14=0/269,

8-14=-220/265

NOTES

WEBS

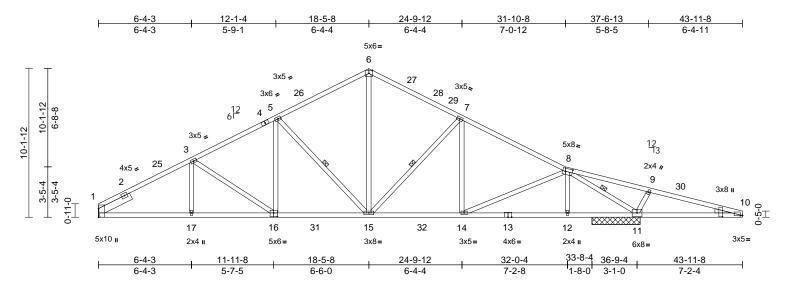
Unbalanced roof live loads have been considered for 1) this design

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 4-4-12, Interior (1) 4-4-12 to 18-5-8, Exterior(2R) 18-5-8 to 22-10-4, Interior (1) 22-10-4 to 43-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 11 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 381 lb uplift at joint 1 and 605 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	1	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-1	В Е	B05	Roof Special	1	1	I75807855 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:55 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:78.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.98	Vert(LL)	-0.18	15-16	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.34	15-16	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.78	Horz(CT)	0.11	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 245 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 4-6:2x4 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 1-16:2x4 SP No.1

WEBS 2x4 SP No.3 WEDGE Right: 2x4 SP No.3 Left 2x6 SP No.2 -- 2-6-0 **SLIDER**

BRACING

TOP CHORD Structural wood sheathing directly applied. **BOT CHORD** Rigid ceiling directly applied or 2-2-0 oc

bracing.

WEBS 8-11, 5-15, 7-15 1 Row at midpt

REACTIONS (size) 1= Mechanical, 11=3-3-8

Max Horiz 1=-233 (LC 16) Max Uplift 1=-381 (LC 15), 11=-605 (LC 16)

Max Grav 1=1600 (LC 5), 11=2306 (LC 4)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-3=-2944/776, 3-5=-2644/749,

5-6=-2054/669, 6-7=-2057/660, 7-8=-2536/620, 8-9=-781/1340,

9-10=-720/1079

BOT CHORD 1-17=-635/2510, 15-17=-635/2510,

14-15=-314/2138, 12-14=-266/2020,

11-12=-262/2028, 10-11=-973/728

8-12=0/211, 8-11=-3560/1146, 9-11=-626/324 3-17=0/148 3-16=-299/213

5-16=-46/452, 5-15=-887/375,

6-15=-334/1399, 7-15=-722/331, 7-14=0/269,

8-14=-220/265

NOTES

WEBS

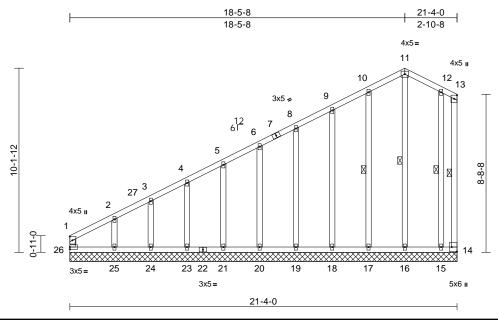
Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 4-4-12, Interior (1) 4-4-12 to 18-5-8, Exterior(2R) 18-5-8 to 22-10-4, Interior (1) 22-10-4 to 43-11-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 11 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 381 lb uplift at joint 1 and 605 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	C01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:56 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:63.5 Plate Offsets (X, Y): [14:Edge,0-3-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.82	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.39	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.01	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0										Weight: 168 lb	FT = 20%

LUMBER TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 13-14:2x4 SP No.2

OTHERS 2x4 SP No.3 BRACING

TOP CHORD

Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing. WEBS

1 Row at midpt 13-14, 11-16, 10-17,

12-15

14=21-4-0, 15=21-4-0, 16=21-4-0, REACTIONS (size) 17=21-4-0, 18=21-4-0, 19=21-4-0, 20=21-4-0, 21=21-4-0, 23=21-4-0,

24=21-4-0, 25=21-4-0, 26=21-4-0

Max Horiz 26=470 (LC 12)

Max Uplift 14=-27 (LC 15), 15=-86 (LC 11),

16=-111 (LC 14), 17=-86 (LC 15), 18=-84 (LC 15), 19=-82 (LC 15), 20=-83 (LC 15), 21=-79 (LC 15),

23=-96 (LC 15), 24=-28 (LC 15), 25=-263 (LC 15), 26=-30 (LC 13) Max Grav 14=16 (LC 22), 15=189 (LC 22),

16=184 (LC 26), 17=231 (LC 21), 18=189 (LC 21), 19=163 (LC 1), 20=164 (LC 21), 21=162 (LC 1),

23=166 (LC 21), 24=151 (LC 1), 25=208 (LC 26), 26=303 (LC 12)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-26=-313/193, 1-2=-627/415, 2-3=-491/346, 3-4=-446/337, 4-5=-377/312, 5-6=-314/290,

6-8=-249/267, 8-9=-225/254, 9-10=-225/321, 10-11=-246/380, 11-12=-249/372, 12-13=-309/411, 13-14=-302/404

BOT CHORD 25-26=-198/257, 24-25=-198/257, 23-24=-198/257, 21-23=-198/257,

20-21=-198/257, 19-20=-198/257, 18-19=-198/257, 17-18=-198/257,

16-17=-198/257. 15-16=-198/257.

14-15=-198/257

11-16=-259/174, 10-17=-191/123, 9-18=-149/126, 8-19=-140/120, 6-20=-140/120, 5-21=-140/119,

4-23=-146/130, 3-24=-134/109,

2-25=-234/276, 12-15=-248/257

NOTES

WEBS

Unbalanced roof live loads have been considered for 1) this design

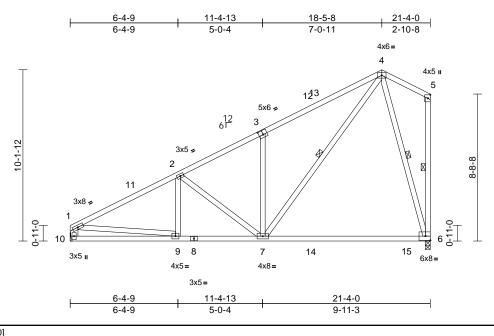
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 3-9-11, Exterior(2N) 3-9-11 to 18-5-8, Corner(3E) 18-5-8 to 21-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.: Ce=0.9: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc.

- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 26, 27 lb uplift at joint 14, 111 lb uplift at joint 16, 86 lb uplift at joint 17, 84 lb uplift at joint 18, 82 lb uplift at joint 19, 83 lb uplift at joint 20, 79 lb uplift at joint 21, 96 lb uplift at joint 23, 28 lb uplift at joint 24, 263 lb uplift at joint 25 and 86 lb uplift at joint 15.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	C02	Common	4	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:56 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68.2

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.98	Vert(LL)	-0.44	6-7	>566	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.84	Vert(CT)	-0.70	6-7	>361	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.56	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 145 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD

BOT CHORD 2x4 SP No.2 *Except* 8-6:2x4 SP No.1 **WEBS** 2x4 SP No.3 *Except* 10-1:2x6 SP No.2,

6-5,7-4:2x4 SP No.2

BRACING

WFBS

TOP CHORD Structural wood sheathing directly applied,

except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-10-11 oc

bracing.

1 Row at midpt 5-6, 4-7, 4-6

REACTIONS 6=0-3-8. 10= Mechanical (size) Max Horiz 10=470 (LC 12)

Max Uplift 6=-296 (LC 15), 10=-233 (LC 15)

Max Grav 6=979 (LC 5), 10=934 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1577/404, 2-4=-1362/563,

4-5=-277/303, 1-10=-991/313, 5-6=-199/211

BOT CHORD 9-10=-727/669, 7-9=-699/1505, 6-7=-279/410 **WEBS**

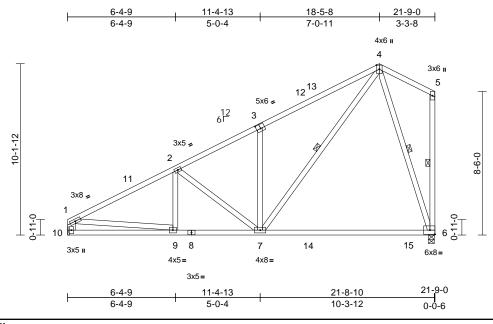
1-9=-165/993, 3-7=-459/349, 4-7=-471/1329, 4-6=-1061/575, 2-7=-408/223, 2-9=-13/83

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-10-11, Interior (1) 3-10-11 to 18-5-8, Exterior(2E) 18-5-8 to 21-2-4 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.33

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 6 SP No.1 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 233 lb uplift at joint 10 and 296 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	C03	Common	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:56 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68.2

Plate Offsets (X, Y): [3:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.77	Vert(LL)	-0.52	6-7	>494	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.91	Vert(CT)	-0.81	6-7	>316	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.57	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0			1							Weight: 146 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 3-4:2x4 SP No.1 BOT CHORD 2x4 SP No.2 *Except* 8-6:2x4 SP No.1 **WEBS** 2x4 SP No.3 *Except* 10-1:2x6 SP No.2,

6-5,7-4:2x4 SP No.2 BRACING

TOP CHORD Structural wood sheathing directly applied or 3-5-10 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 5-1-0 oc

bracing. WFBS

1 Row at midpt 5-6, 4-7, 4-6 REACTIONS 6=0-4-3. 10= Mechanical (size)

Max Horiz 10=462 (LC 12)

Max Uplift 6=-292 (LC 15), 10=-239 (LC 15) Max Grav 6=999 (LC 5), 10=958 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1612/409, 2-4=-1407/565,

4-5=-274/301, 1-10=-1009/315, 5-6=-200/212 **BOT CHORD** 9-10=-708/666, 7-9=-702/1540, 6-7=-290/448

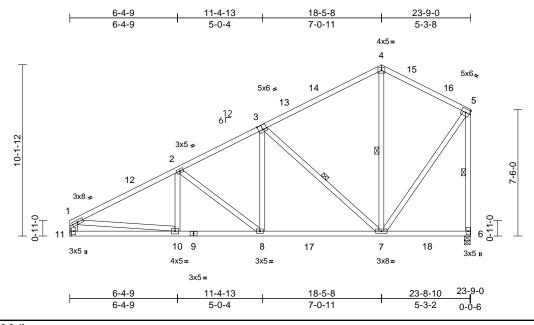
WEBS 2-9=-21/81, 3-7=-457/347, 4-7=-464/1340, 2-7=-396/222, 1-9=-173/1021, 4-6=-1053/550

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-10-11, Interior (1) 3-10-11 to 18-5-8, Exterior(2E) 18-5-8 to 21-7-4 zone; cantilever left and right exposed; end vertical left and right exposed: C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOI = 1.33

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 6 SP No.1 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 239 lb uplift at joint 10 and 292 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	C04	Common	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:56 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68.2

Plate Offsets (X, Y): [3:0-3-0,0-3-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.79	Vert(LL)	-0.09	7-8	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.59	Vert(CT)	-0.17	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.49	Horz(CT)	0.03	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 159 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 3-4:2x4 SP No.1

2x4 SP No.2 BOT CHORD

WEBS 2x4 SP No.3 *Except* 11-1:2x6 SP No.2,

6-5:2x4 SP No.2 BRACING

TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 3-7-11 oc purlins, except end verticals.

Rigid ceiling directly applied or 7-1-3 oc

bracing.

WFBS 1 Row at midpt 5-6, 3-7, 4-7

REACTIONS 6=0-4-3, 11= Mechanical (size)

Max Horiz 11=426 (LC 12)

Max Uplift 6=-276 (LC 15), 11=-266 (LC 15) Max Grav 6=1064 (LC 4), 11=1066 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1801/439, 2-4=-1458/436,

4-5=-756/355, 1-11=-1117/325,

5-6=-1181/400

BOT CHORD 10-11=-635/625, 8-10=-693/1712, 7-8=-557/1372, 6-7=-167/183

WEBS 5-7=-323/975, 1-10=-206/1203, 2-10=-12/127, 2-8=-430/203, 3-8=-48/515,

3-7=-934/384, 4-7=-80/229

NOTES

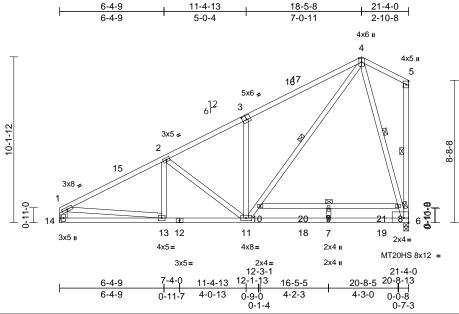
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-10-11. Interior (1) 3-10-11 to 18-5-8, Exterior(2R) 18-5-8 to 22-1-7, Interior (1) 22-1-7 to 23-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 6 SP No.2 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 266 lb uplift at joint 11 and 276 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	C05	Common	4	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:56 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:70.4 Plate Offsets (X, Y): [3:0-3-0,0-3-0], [6:Edge,0-3-8]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.47	6-7	>532	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.95	Vert(CT)	-0.76	6-7	>332	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.70	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 159 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 *Except* 3-4:2x4 SP No.1 BOT CHORD 2x4 SP No.1 *Except* 14-12:2x4 SP No.2 **WEBS** 2x4 SP No.3 *Except* 14-1:2x6 SP No.2,

6-5,11-4:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-8-11 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing. WFBS

1 Row at midpt 5-6, 4-11, 4-8 6=0-3-8. 14= Mechanical

REACTIONS (size) Max Horiz 14=470 (LC 12)

> Max Uplift 6=-214 (LC 15), 14=-209 (LC 15) Max Grav 6=1266 (LC 5), 14=1014 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1719/363, 2-4=-1518/510,

4-5=-276/297, 1-14=-1069/291, 5-6=-199/207 **BOT CHORD** 13-14=-724/677, 11-13=-661/1632,

7-11=-259/553, 6-7=-259/553, 9-10=-119/0,

8-9=-119/0

2-13=-24/71, 3-11=-456/347,

10-11=-452/1326, 4-10=-408/1531,

2-11=-387/231, 1-13=-133/1115, 4-8=-1148/542, 6-8=-1346/485, 7-9=-46/4

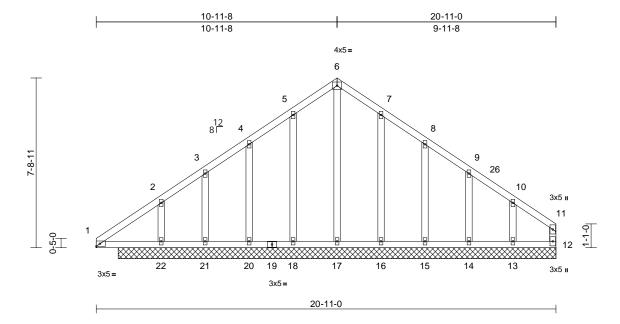
NOTES

WEBS

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-2-12 to 3-10-11, Interior (1) 3-10-11 to 18-5-8, Exterior(2E) 18-5-8 to 21-2-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are MT20 plates unless otherwise indicated.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearings are assumed to be: , Joint 6 SP No.1 .
- Refer to girder(s) for truss to truss connections.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 209 lb uplift at joint 14 and 214 lb uplift at joint 6.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	D01	Common Supported Gable	1	1	I75807861 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:56 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	= 1	1:52.
-------	-----	-------

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.33	Horiz(TL)	-0.01	12	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 126 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size)

12=19-11-0, 13=19-11-0, 14=19-11-0, 15=19-11-0, 16=19-11-0, 17=19-11-0, 18=19-11-0, 20=19-11-0, 21=19-11-0, 22=19-11-0 Max Horiz 22=261 (LC 12)

Max Uplift 12=-226 (LC 12), 13=-205 (LC 14), 14=-79 (LC 14), 15=-112 (LC 14), 16=-99 (LC 14), 18=-98 (LC 13),

20=-103 (LC 13), 21=-119 (LC 13),

22=-115 (LC 13)

Max Grav 12=176 (LC 9), 13=356 (LC 23) 14=150 (LC 35), 15=188 (LC 23),

16=197 (LC 23), 17=354 (LC 24), 18=193 (LC 22), 20=191 (LC 22), 21=139 (LC 22), 22=323 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 11-12=-116/167. 6-7=-102/322. 7-8=-55/262.

8-9=-78/242, 9-10=-109/242, 10-11=-185/309, 1-2=-73/212, 2-3=-11/156,

3-4=-6/181, 4-5=-56/241, 5-6=-102/322 **BOT CHORD** 1-22=-151/111, 21-22=-242/168,

20-21=-242/168, 18-20=-242/168 17-18=-242/168, 16-17=-242/168, 15-16=-242/168, 14-15=-242/168, 13-14=-242/168, 12-13=-242/168

WEBS

6-17=-313/7, 5-18=-170/122, 4-20=-173/141, 3-21=-122/129, 2-22=-258/198, 7-16=-172/124, 8-15=-165/138, 9-14=-155/128, 10-13=-223/180

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 2-11-8, Exterior(2N) 2-11-8 to 10-11-8, Corner(3R) 10-11-8 to 13-11-8, Exterior(2N) 13-11-8 to 20-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown;
- Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable studs spaced at 2-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 226 lb uplift at joint 12, 98 lb uplift at joint 18, 103 lb uplift at joint 20, 119 lb uplift at joint 21, 115 lb uplift at joint 22, 99 lb uplift at joint 16, 112 lb uplift at joint 15, 79 lb uplift at joint 14 and 205 lb uplift at joint 13.
- 10) Non Standard bearing condition. Review required.

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	D02	Common	2	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:56 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

LUMBER

Scale = 1:60.4 Loading

TCLL (roof)

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 5-8-12 oc purlins, except end verticals.

(psf)

20.0

10.0

0.0

10.0

20.8/30.0

Plate Grip DOL

Rep Stress Incr

Lumber DOL

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 7=0-3-8, 10=0-3-8

Max Horiz 10=261 (LC 12)

Max Uplift 7=-191 (LC 14), 10=-223 (LC 13)

Max Grav 7=798 (LC 1), 10=897 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 4-5=-901/261, 5-6=-308/75, 1-2=-245/8,

2-3=-364/81, 3-4=-901/262, 6-7=-274/97

BOT CHORD 1-10=0/214, 8-10=-271/839, 7-8=-195/836 **WEBS**

5-8=-290/292, 4-8=-101/541, 3-8=-289/284, 5-7=-859/259, 3-10=-773/269, 2-10=-251/265

NOTES

- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-11-8, Exterior(2R) 10-11-8 to 13-11-8, Interior (1) 13-11-8 to 20-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.: Ce=0.9: Cs=1.00: Ct=1.10

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

0.37

0.64

0.56

in

0.02

-0.21

0.02

(loc)

8 >999

7-8

7

I/defI

>999

n/a n/a

L/d

240

180

PLATES

Weight: 117 lb

MT20

GRIP

244/190

FT = 20%

All bearings are assumed to be SP No.2.

CSI

TC

BC

WB

Matrix-MSH

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 191 lb uplift at joint 7 and 223 lb uplift at joint 10.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

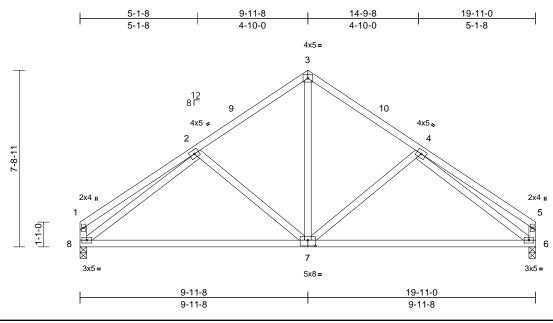
2-0-0

1.15

1 15

YES

IRC2018/TPI2014


August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	D03	Common	7	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:57 ID:zcZD3Daca4WpthxGRSgfy0ym04_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.4

Plate Offsets (X, Y): [7:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	0.02	7	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.20	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.63	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 115 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 8-1,6-5:2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD 5-11-11 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=0-3-8, 8=0-3-8

Max Horiz 8=260 (LC 10)

Max Uplift 6=-191 (LC 14), 8=-191 (LC 13) Max Grav 6=801 (LC 1), 8=801 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-350/111, 2-3=-902/268, 3-4=-902/268, TOP CHORD

4-5=-350/111, 1-8=-317/134, 5-6=-316/134

BOT CHORD 6-8=-257/830

WEBS 3-7=-129/592, 4-7=-295/290, 2-7=-295/290,

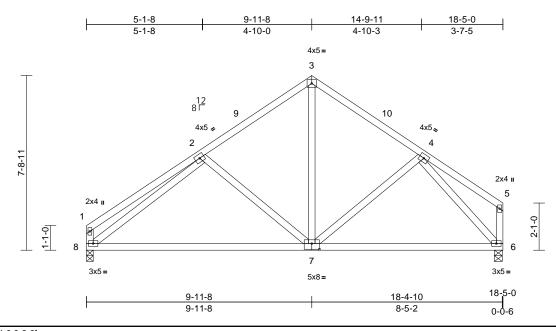
2-8=-810/222, 4-6=-810/221

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-11-8, Exterior(2R) 9-11-8 to 12-11-8, Interior (1) 12-11-8 to 19-9-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 191 lb uplift at joint 8 and 191 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	D04	Common	1	1	I75807864 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:57 ID:CwoJQKMdDdrBMYiGWY_I15ym?f9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:50.9

Plate Offsets (X, Y): [7:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	0.02	7	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.61	Vert(CT)	-0.21	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.54	Horz(CT)	0.02	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 109 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3 *Except* 8-1:2x4 SP No.2

BRACING

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 6=0-4-3, 8=0-3-8

Max Horiz 8=278 (LC 10)

Max Uplift 6=-168 (LC 14), 8=-179 (LC 13) Max Grav 6=739 (LC 1), 8=739 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-353/105, 2-3=-790/251, 3-4=-786/242,

4-5=-142/99, 5-6=-148/77, 1-8=-318/131

BOT CHORD 6-8=-254/792

WEBS 3-7=-105/459, 4-7=-115/214, 2-7=-309/290,

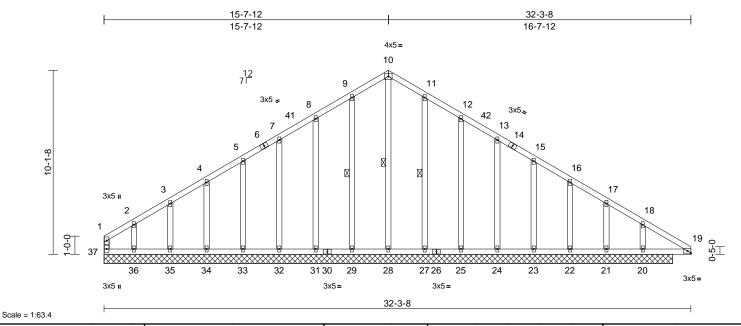
2-8=-698/211, 4-6=-864/245

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 9-11-8, Exterior(2R) 9-11-8 to 12-11-8, Interior (1) 12-11-8 to 18-3-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 179 lb uplift at joint 8 and 168 lb uplift at joint 6.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	E01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:57 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.37	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.21	Horiz(TL)	0.01	20	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 221 lb	FT = 20%

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
OTHERS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wo

al wood sheathing directly applied or 10-0-0 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing.

WERS 1 Row at midpt

10-28, 9-29, 11-27 **REACTIONS** (size) 20=31-3-8, 21=31-3-8, 22=31-3-8, 23=31-3-8, 24=31-3-8, 25=31-3-8, 27=31-3-8. 28=31-3-8. 29=31-3-8. 31=31-3-8, 32=31-3-8, 33=31-3-8, 34=31-3-8, 35=31-3-8, 36=31-3-8, 37=31-3-8

Max Horiz 37=-339 (LC 13) Max Uplift 20=-65 (LC 15), 21=-140 (LC 16), 22=-79 (LC 16), 23=-95 (LC 16),

24=-89 (LC 16), 25=-101 (LC 16), 27=-76 (LC 16), 29=-83 (LC 15), 31=-98 (LC 15), 32=-91 (LC 15), 33=-90 (LC 15), 34=-98 (LC 15), 35=-67 (LC 15), 36=-229 (LC 15), 37=-307 (LC 13)

Max Grav 20=315 (LC 1), 21=144 (LC 27), 22=189 (LC 27), 23=178 (LC 27), 24=181 (LC 27), 25=230 (LC 22), 27=263 (LC 22), 28=370 (LC 29), 29=261 (LC 21), 31=231 (LC 21), 32=181 (LC 26), 33=178 (LC 26), 34=188 (LC 26), 35=157 (LC 21),

36=367 (LC 26), 37=269 (LC 12) **FORCES** (lb) - Maximum Compression/Maximum Tension

1-37=-183/220, 1-2=-285/364, 2-3=-210/292, 3-4=-176/276, 4-5=-155/267, 5-7=-136/308, 7-8=-116/347, 8-9=-146/390, 9-10=-182/420, 10-11=-182/420, 11-12=-146/363,

12-13=-106/292, 13-15=-68/226, 15-16=-30/167, 16-17=0/155, 17-18=-48/152, 18-19=-96/194

BOT CHORD 36-37=-145/125, 35-36=-145/125, 34-35=-145/125, 33-34=-145/125, 32-33=-145/125, 31-32=-145/125, 29-31=-145/125, 28-29=-145/125, 27-28=-145/125, 25-27=-145/125,

24-25=-145/125, 23-24=-145/125, 22-23=-145/125, 21-22=-145/125, 20-21=-145/125, 19-20=-145/125 WEBS 10-28=-337/75, 9-29=-221/107, 8-31=-191/122, 7-32=-159/115,

5-33=-159/116, 4-34=-161/118, 3-35=-156/107, 2-36=-223/175, 11-27=-223/100, 12-25=-190/124, 13-24=-160/114, 15-23=-158/117, 16-22=-169/111, 17-21=-123/136, 18-20=-235/119

NOTES

- 1) Unbalanced roof live loads have been considered for
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-1-12 to 3-7-12, Exterior(2N) 3-7-12 to 15-7-12, Corner(3R) 15-7-12 to 18-11-13, Exterior(2N) 18-11-13 to 32-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 307 lb uplift at joint 37, 83 lb uplift at joint 29, 98 lb uplift at joint 31, 91 lb uplift at joint 32, 90 lb uplift at joint 33, 98 lb uplift at joint 34, 67 lb uplift at joint 35, 229 lb uplift at joint 36, 76 lb uplift at joint 27, 101 lb uplift at joint 25, 89 lb uplift at joint 24, 95 lb uplift at joint 23, 79 lb uplift at joint 22, 140 lb uplift at joint 21 and 65 lb uplift at joint 20.
- 11) Non Standard bearing condition. Review required.

August 21,2025

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
2508	80196-B	E01	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:57 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 2

12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

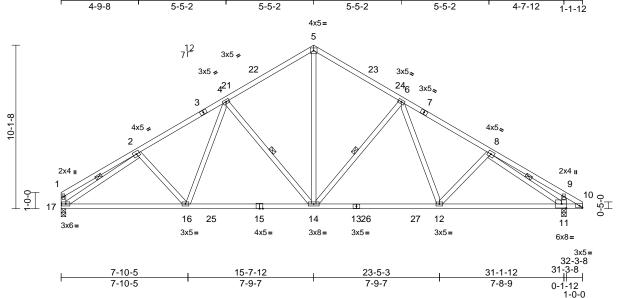
Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	E02	Common	2	1	I75807866 Job Reference (optional)

21-0-14

15-7-12

Carter Components (Chesapeake), Chesapeake, VA - 23323

4-9-8


10-2-10

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:57 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

26-6-0

31-1-12

Page: 1

Scale = 1:71.4 Plate Offsets (X, Y): [11:0-3-8,0-3-0]

-				Į.							l	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	-0.15	12-14	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.27	12-14	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.50	Horz(CT)	0.08	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 194 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 **BOT CHORD** 2x4 SP No.2 **WEBS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or 3-7-4 oc purlins, except end verticals. **BOT CHORD** Rigid ceiling directly applied or 10-0-0 oc

bracing, Except: 8-2-0 oc bracing: 16-17.

WEBS 1 Row at midpt 6-14, 2-17, 8-11, 4-14

REACTIONS (size) 11=0-3-8, 17=0-3-8 Max Horiz 17=-339 (LC 13)

Max Uplift 11=-347 (LC 16), 17=-314 (LC 15) Max Grav 11=1559 (LC 27), 17=1462 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-411/113, 2-4=-2341/472, 4-5=-1779/446,

5-6=-1779/448, 6-8=-2327/472,

8-9=-515/140, 9-10=-364/16, 1-17=-333/127

BOT CHORD 16-17=-509/1931, 14-16=-336/1722,

12-14=-191/1719, 11-12=-287/1921,

WEBS 5-14=-270/1361, 6-14=-671/346,

6-12=-64/394, 8-12=-110/215,

2-17=-2106/383, 8-11=-1965/384,

9-11=-336/278, 2-16=-110/222, 4-16=-65/408,

4-14=-676/345

NOTES

Unbalanced roof live loads have been considered for 1) this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-5-13, Interior (1) 3-5-13 to 15-7-12, Exterior(2R) 15-7-12 to 18-11-13, Interior (1) 18-11-13 to 32-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown: Lumber DOL=1.60 plate grip DOL=1.33
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 3x5 MT20 unless otherwise indicated.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 17 and 347 lb uplift at joint 11.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	E03	Common Girder	1	3	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:57 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RtC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

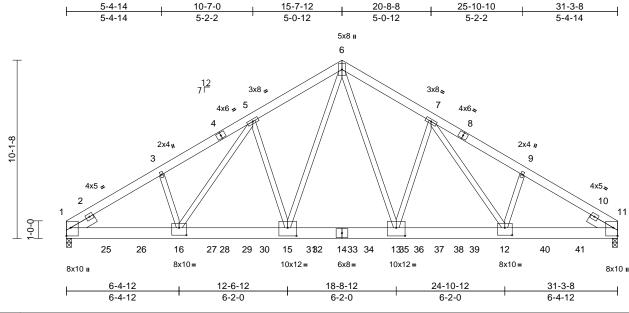


Plate Offsets (X, Y): [1:Edge,0-2-12], [11:Edge,0-2-12], [12:0-5-0,0-5-0], [13:0-6-0,0-5-8], [15:0-6-0,0-5-8], [16:0-5-0,0-5-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.59	Vert(LL)	-0.19	15-16	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.42	Vert(CT)	-0.35	15-16	>999	180		
TCDL	10.0	Rep Stress Incr	NO	WB	0.58	Horz(CT)	0.09	11	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 804 lb	FT = 20%

LUMBER

Scale = 1:65.4

TOP CHORD 2x6 SP No.2 BOT CHORD 2x8 SP 2400F 2.0E WEBS 2x4 SP No.2

SLIDER Left 2x6 SP No.2 -- 1-6-0, Right 2x6 SP No.2

-- 1-6-0

BRACING

TOP CHORD Sheathed or 6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing

REACTIONS (size) 1=0-3-8, 11=0-3-8

Max Horiz 1=302 (LC 35)

Max Uplift 1=-3104 (LC 11), 11=-2273 (LC 12)

Max Grav 1=12524 (LC 5), 11=9074 (LC 6)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-3=-15763/3922, 3-5=-15574/3984

5-6=-12394/3210, 6-7=-11830/3045,

7-9=-13264/3420, 9-11=-13442/3355 1-16=-3448/13374, 15-16=-2808/11302,

1-16=-3448/13374, 15-16=-2808/11302, 13-15=-1977/8474, 12-13=-2458/10503,

11-12=-2758/11381

WEBS 3-16=-187/472, 5-16=-1132/4071,

5-15=-2394/856, 6-15=-1909/7090, 6-13=-1443/5506, 7-13=-1346/607,

7-12=-617/1866, 9-12=-174/430

NOTES

BOT CHORD

 3-ply truss to be connected together with Simpson SDS 1/4 x 4-1/2 screws as follows:

Top chords connected as follows: 2x6 - 2 rows

staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x8 - 2 rows

staggered at 0-9-0 oc

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

- All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.
- Unbalanced roof live loads have been considered for this design.
- 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33
- 5) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) All bearings are assumed to be SP 2400F 2.0E.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 3104 lb uplift at joint 1 and 2273 lb uplift at joint 11.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 1581 lb down and 388 lb up at 0-1-12, 1565 lb down and 393 lb up at 2-3-4, 1565 lb down and 393 lb up at 4-3-4, 1565 lb down and 393 lb up at 4-3-4, 1565 lb down and 393 lb up at 6-3-4, 1563 lb down and 393 lb up at 10-3-4, 1031 lb down and 278 lb up at 12-3-4, 912 lb down and 251 lb up at 14-3-4, 964 lb down and 221 lb up at 16-3-4, 970 lb down and 221 lb up at 17-2-4, 978 lb down and 221 lb up at 19-2-4, 899 lb down and 245 lb up at 23-2-4, 899 lb down and 245 lb up at 25-2-4, and 899 lb down and 245 lb up at 27-2-4, and 899 lb down and 245 lb up at 29-2-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-62, 6-11=-62, 17-21=-20 Concentrated Loads (lb)

SEAL 28677

August 21,2025

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MIL-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MITek® connectors. This design is based only upon parenteres shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

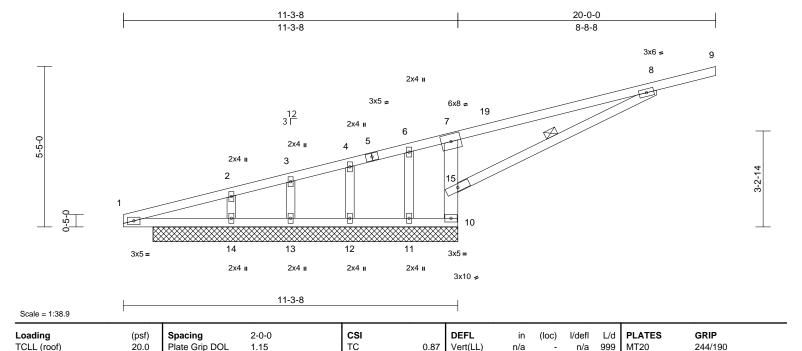
a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI (audity Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	E03	Common Girder	1	3	I75807867 Job Reference (optional)

 $Run: 8.73 \ S \ Aug \ 13 \ 2025 \ Print: 8.730 \ S \ Aug \ 13 \ 2025 \ MiTek \ Industries, \ Inc. \ Thu \ Aug \ 21 \ 07:30:57$ ID: bLGxm6WoUEd? J6NsHb? wOVzrtGN-RfC? PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC? for the property of the proper Page: 2

Vert: 16=-1469 (F), 15=-983 (F), 12=-854 (F), 17=-1477 (F), 25=-1469 (F), 26=-1469 (F), 27=-1469 (F), 29=-1469 (F), 32=-876 (F), 33=-894 (F), 34=-894 (F), 35=-894 (F), 37=-894 (F), 39=-854 (F), 40=-854 (F), 41=-854 (F)

August 21,2025



Job Truss Truss Type Qty Ply WINCHESTER MODEL ELEV F-Whitetree-Roof 175807868 25080196-B J01 Monopitch Supported Gable Job Reference (optional)

Carter Components (Chesapeake), Chesapeake, VA - 23323

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:57 ID:SBt0oBrjud8RrRzxT7ek3Mym0A6-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER

TCDL

BCLL

BCDL

Snow (Pf/Pg)

TOP CHORD 2x4 SP 2400F 2.0E *Except* 1-5:2x4 SP

20.8/30.0

10.0

0.0

10.0

No 2

BOT CHORD 2x4 SP No.1

WEBS 2x6 SP 2400F 2.0E *Except* 15-8:2x4 SP

No.3

OTHERS 2x4 SP No.3

BRACING TOP CHORD

Structural wood sheathing directly applied or

3-6-3 oc purlins, except end verticals.

Except:

10-0-0 oc bracing: 10-15

BOT CHORD Rigid ceiling directly applied or 5-7-6 oc bracing

WEBS

1 Row at midpt 8-15

REACTIONS (size) 10=10-3-8, 11=10-3-8, 12=10-3-8,

13=10-3-8, 14=10-3-8, 15=10-3-8

Lumber DOL

Code

Rep Stress Incr

1 15

YES

IRC2018/TPI2014

Max Horiz 14=230 (LC 15)

Max Uplift 10=-102 (LC 15), 11=-672 (LC 22), 12=-69 (LC 11), 13=-365 (LC 15),

14=-153 (LC 21), 15=-913 (LC 15) Max Grav 10=82 (LC 22), 11=544 (LC 15),

12=200 (LC 1), 13=463 (LC 22), 14=308 (LC 19), 15=1673 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-1307/930, 2-3=-1324/959,

3-4=-1206/929, 4-6=-1140/913,

6-7=-1360/1088, 7-8=-2092/1758, 8-9=-51/0,

10-15=0/0, 7-15=-829/1122

BOT CHORD 1-14=-890/1335, 13-14=-890/919, 12-13=-890/919, 11-12=-890/919,

10-11=-890/919

WEBS 3-13=-246/462, 2-14=-155/64,

4-12=-205/251, 6-11=-931/636, 8-15=-1850/2121

NOTES

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 20-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

0.85

0.65

Vert(CT)

Horz(CT)

n/a

-0.04

BC

WB

Matrix-MSH

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads
- All plates are 2x4 MT20 unless otherwise indicated
- Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP 2400F 2.0E .
- 10) Bearing at joint(s) 15 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 10, 365 lb uplift at joint 13, 153 lb uplift at joint 14, 69 lb uplift at joint 12, 672 lb uplift at joint 11 and 913 lb uplift
- Non Standard bearing condition. Review required.

13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Weight: 74 lb

FT = 20%

LOAD CASE(S) Standard

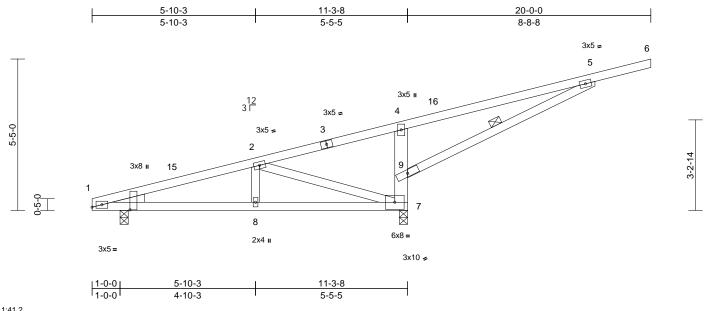
n/a 999

n/a n/a

15

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	J02	Monopitch	7	1	Job Reference (optional)

Run: 8.73~S~Aug~13~2025~Print:~8.730~S~Aug~13~2025~MiTek~Industries,~Inc.~Thu~Aug~21~07:30:58ID:wrNYtuR0gUz6ONyb2hZ_DOym0Ad-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.2

Plate Offsets (X, Y): [1:0-1-11,0-0-7], [1:0-1-2,1-4-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.89	Vert(LL)	0.03	8-14	>999	240	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.34	Vert(CT)	-0.03	7-8	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.66	Horz(CT)	-0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 76 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.1 *Except* 1-3:2x4 SP No.2

2x4 SP No.2 **BOT CHORD**

WEBS 2x4 SP No.3 *Except* 4-7:2x6 SP 2400F

2.0E WEDGE Left: 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins, except end verticals.

Except:

6-0-0 oc bracing: 7-9

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

WEBS 1 Row at midpt REACTIONS (size) 1=0-3-8, 7=0-3-8 Max Horiz 1=230 (LC 15)

Max Uplift 7=-696 (LC 15)

Max Grav 1=252 (LC 1), 7=1498 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

1-2=-578/324, 2-4=-1051/1198, 4-5=-1400/1791, 5-6=-51/0, 7-9=-1217/886,

4-9=-426/290

BOT CHORD 1-8=-276/341, 7-8=-276/341

WEBS 2-8=-13/173, 2-7=-938/560, 5-9=-1883/1411

NOTES

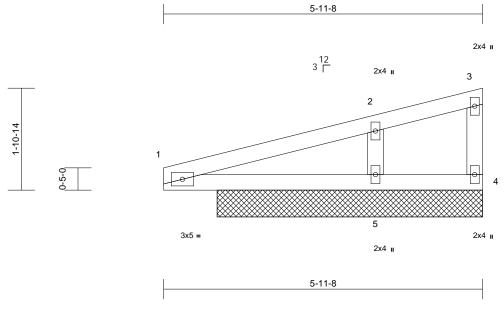
TOP CHORD

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 20-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.8 psf on overhangs non-concurrent with other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 696 lb uplift at joint
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025



Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	J03	Monopitch Supported Gable	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58

Page: 1

1-10-14

Scal	le =	1:21	.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.91	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.79	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 21 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.1 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

2-2-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

4=4-11-8, 5=4-11-8 Max Horiz 5=84 (LC 14)

Max Uplift 4=-354 (LC 21), 5=-240 (LC 11) Max Grav 4=77 (LC 11), 5=977 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-169/98, 2-3=-84/75, 3-4=-105/141

BOT CHORD 1-5=-92/213, 4-5=-39/52

2-5=-556/623

WEBS NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 5-9-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this

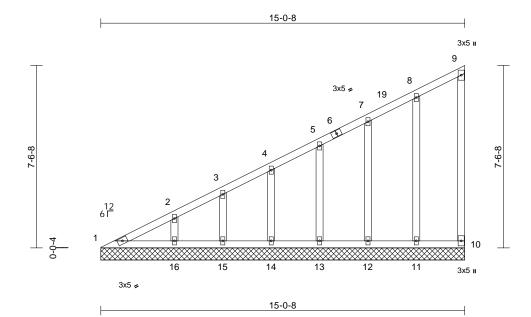
- Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.1 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 354 lb uplift at joint 4 and 240 lb uplift at joint 5.
- Non Standard bearing condition. Review required.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V01	Valley	1	1	I75807871 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58 ID:vJMEO64ZtFqbUstf6WYg31ym?fX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.81	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.24	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.00	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 88 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

1=15-0-8, 10=15-0-8, 11=15-0-8, 12=15-0-8, 13=15-0-8, 14=15-0-8, 15=15-0-8, 16=15-0-8

Max Horiz 1=385 (LC 12)

Max Uplift 10=-55 (LC 14), 11=-89 (LC 15),

12=-79 (LC 15), 13=-84 (LC 15),

14=-83 (LC 15), 15=-80 (LC 15),

16=-94 (LC 15)

Max Grav 1=160 (LC 27), 10=90 (LC 21),

11=248 (LC 21), 12=234 (LC 21),

13=176 (LC 21), 14=171 (LC 1), 15=133 (LC 21), 16=252 (LC 1)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=-547/322 2-3=-484/285 3-4=-422/264

4-5=-360/239, 5-7=-297/213, 7-8=-238/195,

8-9=-157/151, 9-10=-74/59

BOT CHORD 1-16=-244/259, 15-16=-170/185,

14-15=-170/185, 13-14=-170/185, 12-13=-170/185, 11-12=-170/185,

10-11=-170/185

WEBS 8-11=-206/198, 7-12=-194/134,

5-13=-145/117, 4-14=-147/117, 3-15=-131/115, 2-16=-183/132

NOTES

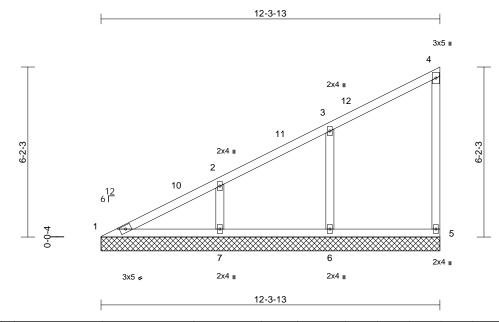
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-1-0, Interior (1) 3-1-0 to 14-11-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 7)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 10, 89 lb uplift at joint 11, 79 lb uplift at joint 12, 84 lb uplift at joint 13, 83 lb uplift at joint 14, 80 lb uplift at joint 15 and 94 lb uplift at joint 16.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V02	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58 ID:vJMEO64ZtFqbUstf6WYg31ym?fX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

_			
Scale	_ ′	1 • 4 1	q

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.69	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0			1							Weight: 54 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

BOT CHORD

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=12-3-13, 5=12-3-13, 6=12-3-13,

> 7=12-3-13 Max Horiz 1=313 (LC 12)

Max Uplift 5=-57 (LC 12), 6=-173 (LC 15),

7=-176 (LC 15)

1=185 (LC 27), 5=211 (LC 5), Max Grav

6=491 (LC 5), 7=396 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-547/316, 2-3=-384/258, 3-4=-184/181,

4-5=-158/179

BOT CHORD 1-7=-329/376, 6-7=-138/184, 5-6=-138/184

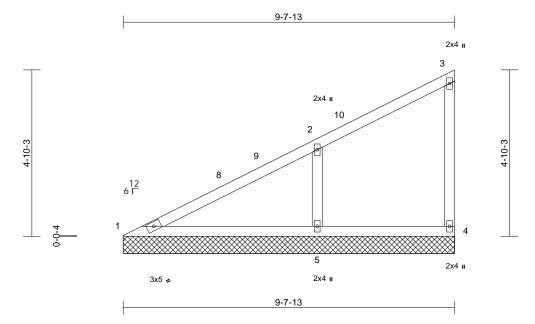
3-6=-395/400, 2-7=-326/353 WFBS

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 12-2-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 5, 173 lb uplift at joint 6 and 176 lb uplift at joint 7.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V03	Valley	1	1	I75807873 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58 ID:vJMEO64ZtFqbUstf6WYg31ym?fX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:33.6

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.44	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.36	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 39 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing

BOT CHORD REACTIONS (size)

1=9-7-13, 4=9-7-13, 5=9-7-13

Max Horiz 1=242 (LC 12)

Max Uplift 1=-7 (LC 15), 4=-44 (LC 12),

5=-239 (LC 15)

Max Grav 1=188 (LC 21), 4=153 (LC 21),

5=631 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-428/261, 2-3=-169/149, 3-4=-139/185 **BOT CHORD** 1-5=-405/427, 4-5=-109/146

WEBS 2-5=-475/531

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 9-6-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

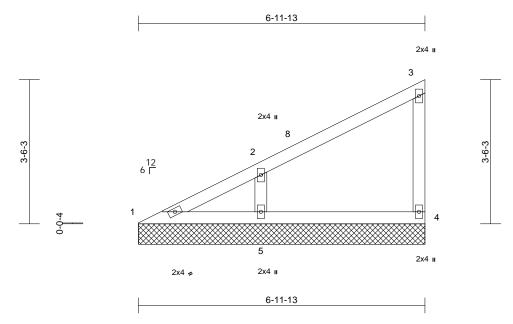
- Unbalanced snow loads have been considered for this 4) design.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 4, 7 lb uplift at joint 1 and 239 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V04	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58 ID:NVwcbS4BeYyS60RrgD4vcFym?fW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	l									Weight: 27 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

> 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

BOT CHORD REACTIONS (size)

1=6-11-13, 4=6-11-13, 5=6-11-13

Max Horiz 1=171 (LC 12)

Max Uplift 4=-45 (LC 15), 5=-166 (LC 15)

Max Grav 1=95 (LC 27), 4=182 (LC 21), 5=497 (LC 21)

FORCES (lb) - Maximum Compression/Maximum Tension

TOP CHORD

1-2=-410/212, 2-3=-173/128, 3-4=-157/234

BOT CHORD 1-5=-190/177, 4-5=-77/103

WEBS 2-5=-408/508

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-5, Exterior(2N) 3-0-5 to 6-10-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

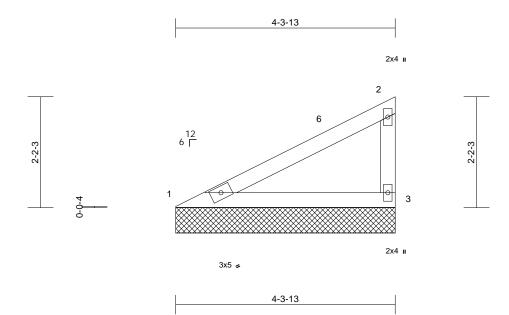
- 4) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 4 and 166 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V05	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58

Page: 1

Scale = 1:22.7

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.37	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0	1									Weight: 15 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-3-13 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

1=4-3-13, 3=4-3-13 REACTIONS (size)

Max Horiz 1=100 (LC 12)

Max Uplift 1=-47 (LC 15), 3=-71 (LC 15) Max Grav 1=240 (LC 21), 3=240 (LC 21)

(lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-399/304, 2-3=-161/253

BOT CHORD 1-3=-449/356

NOTES

FORCES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 4-2-9 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp : Ce=0.9: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

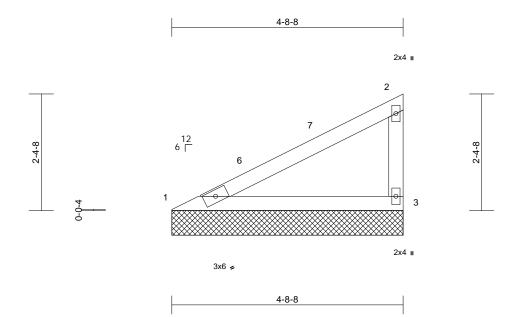
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 3 and 47 lb uplift at joint 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V06	Valley	1	1	I75807876 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58

Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.45	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 16 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS

BRACING

TOP CHORD Structural wood sheathing directly applied or 4-8-8 oc purlins, except end verticals.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

1=4-8-8, 3=4-8-8 REACTIONS (size)

Max Horiz 1=111 (LC 12)

Max Uplift 1=-51 (LC 15), 3=-78 (LC 15)

Max Grav 1=266 (LC 21), 3=266 (LC 21) (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-450/331, 2-3=-179/274

BOT CHORD 1-3=-483/398

NOTES

FORCES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 4-7-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp : Ce=0.9: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

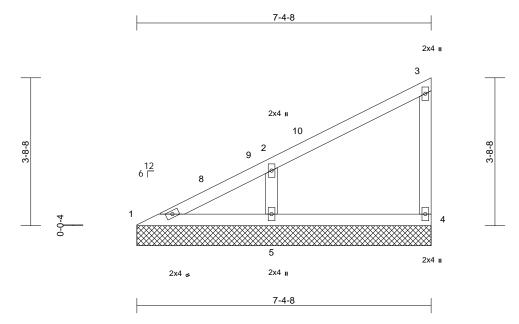
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 78 lb uplift at joint 3 and 51 lb uplift at joint 1.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V07	Valley	1	1	I75807877 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58 ID:NVwcbS4BeYyS60RrgD4vcFym?fW-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:28.9

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 29 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

1=7-4-8, 4=7-4-8, 5=7-4-8

Max Horiz 1=182 (LC 12)

Max Uplift 4=-43 (LC 12), 5=-175 (LC 15) Max Grav

1=110 (LC 27), 4=180 (LC 21), 5=509 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-408/218, 2-3=-174/133, 3-4=-157/229

BOT CHORD 1-5=-231/218, 4-5=-82/110

WEBS 2-5=-410/499

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 7-3-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

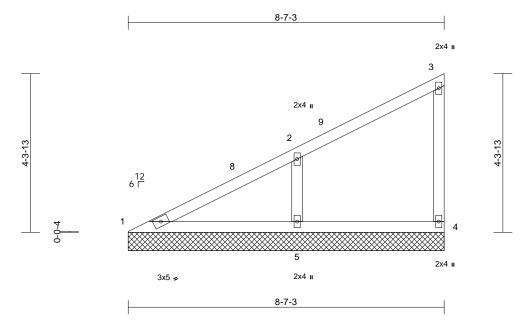
- 4) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
 - All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 4 and 175 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V08	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58 ID:riT?po5qPs4JjA01Exb88Sym?fV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Scal	\sim	_	1	.21	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.47	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.21	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0			1							Weight: 34 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

BOT CHORD

1=8-7-3, 4=8-7-3, 5=8-7-3

Max Horiz 1=214 (LC 12)

Max Uplift 4=-44 (LC 12), 5=-207 (LC 15) Max Grav 1=152 (LC 27), 4=167 (LC 21),

5=572 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-417/240, 2-3=-174/145, 3-4=-151/209

BOT CHORD 1-5=-332/335, 4-5=-97/130

WEBS 2-5=-443/505

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 8-5-15 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

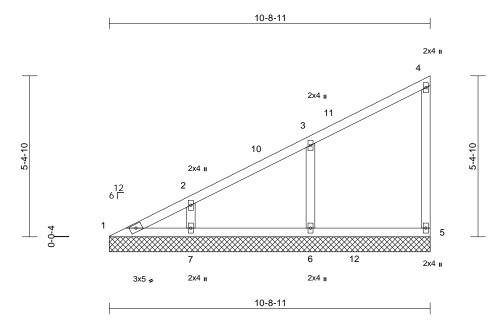
- 4) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- 6) Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 4 and 207 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V09	Valley	1	1	I75807879 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:58 ID:riT?po5qPs4JjA01Exb88Sym?fV-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

0 1 -		4 00	_
Scale	=	1:38.	b

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.51	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0			1							Weight: 45 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc

BOT CHORD bracing.

REACTIONS (size)

1=10-8-11, 5=10-8-11, 6=10-8-11,

7=10-8-11 Max Horiz 1=271 (LC 12)

Max Uplift 5=-52 (LC 12), 6=-183 (LC 15),

7=-131 (LC 15)

1=121 (LC 27), 5=204 (LC 5),

6=493 (LC 5), 7=305 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

Max Grav

TOP CHORD 1-2=-536/290, 2-3=-395/248, 3-4=-176/164,

4-5=-156/191

BOT CHORD 1-7=-231/225, 6-7=-119/160, 5-6=-119/160

3-6=-406/441, 2-7=-271/327 WFBS

NOTES

- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 2-9-3, Exterior(2N) 2-9-3 to 10-7-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

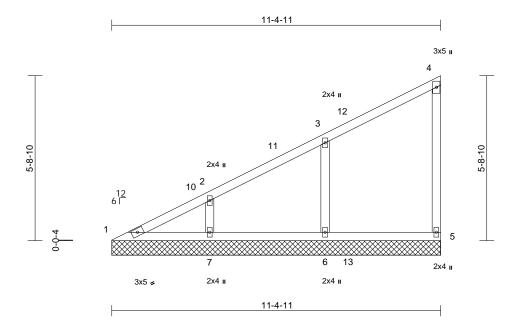
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 5, 183 lb uplift at joint 6 and 131 lb uplift at joint 7.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V10	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:Ju1N086SAACALKbEoe6Nhgym?fU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Page: 1

Sca	e =	1:39	٠.٤
-----	-----	------	-----

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.58	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 49 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

1=11-4-11, 5=11-4-11, 6=11-4-11, 7=11-4-11

Max Horiz 1=288 (LC 12)

Max Uplift 5=-54 (LC 12), 6=-180 (LC 15),

7=-148 (LC 15)

1=149 (LC 27), 5=208 (LC 5), Max Grav

6=495 (LC 5), 7=339 (LC 5)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-539/300, 2-3=-390/253, 3-4=-179/171,

4-5=-156/185

1-7=-276/288, 6-7=-127/170, 5-6=-127/170

3-6=-403/425, 2-7=-290/331 WFBS

NOTES

BOT CHORD

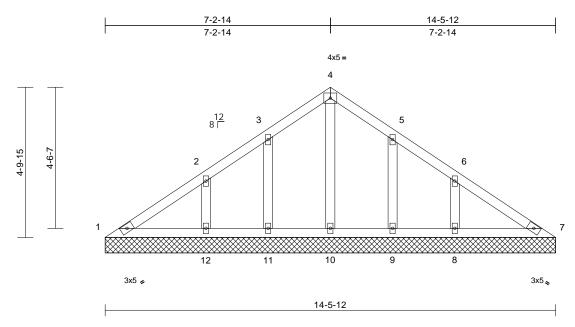
- 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-8 to 3-0-8, Exterior(2N) 3-0-8 to 11-3-7 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 6)
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 54 lb uplift at joint 5, 180 lb uplift at joint 6 and 148 lb uplift at joint 7.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V11	Valley	1	1	I75807881 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:37

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.11	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.07	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	1									Weight: 66 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=14-5-12, 7=14-5-12, 8=14-5-12, 9=14-5-12, 10=14-5-12,

11=14-5-12, 12=14-5-12

Max Horiz 1=155 (LC 10)

Max Uplift 1=-18 (LC 14), 8=-145 (LC 14),

9=-93 (LC 14), 11=-93 (LC 13),

12=-147 (LC 13)

Max Grav 1=100 (LC 23), 7=89 (LC 35), 8=283 (LC 23), 9=156 (LC 23)

10=225 (LC 1), 11=156 (LC 22),

12=286 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-135/171, 2-3=-56/121, 3-4=-40/144, 4-5=-40/143, 5-6=0/81, 6-7=-104/131

BOT CHORD 1-12=-101/165, 11-12=-101/165,

10-11=-101/165, 9-10=-101/165,

8-9=-101/165, 7-8=-101/165

WEBS 4-10=-174/0, 3-11=-159/153, 2-12=-225/223,

5-9=-159/153. 6-8=-225/223

NOTES

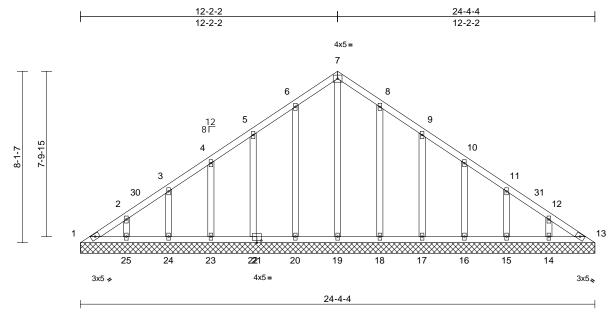
Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-2-14, Exterior(2N) 3-2-14 to 7-2-14, Corner(3R) 7-2-14 to 10-2-14, Exterior(2N) 10-2-14 to 14-5-12 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1, 93 lb uplift at joint 11, 147 lb uplift at joint 12, 93 lb uplift at joint 9 and 145 lb uplift at joint 8.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V12	Valley	1	1	I75807882 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:54.5	

Plate Offsets	(X,	Y):	[21:0-2-8,0-1-4]
---------------	-----	-----	-----------------	---

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.04	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.23	Horiz(TL)	0.01	13	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 142 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No 2 BOT CHORD 2x4 SP No 2 **OTHERS** 2x4 SP No.3

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins. **BOT CHORD**

Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=24-4-4, 13=24-4-4, 14=24-4-4, 15=24-4-4, 16=24-4-4, 17=24-4-4,

18=24-4-4, 19=24-4-4, 20=24-4-4, 22=24-4-4, 23=24-4-4, 24=24-4-4,

25=24-4-4 Max Horiz 1=-265 (LC 9)

Max Uplift 1=-60 (LC 9), 14=-77 (LC 14),

15=-110 (LC 14), 16=-100 (LC 14), 17=-107 (LC 14), 18=-99 (LC 14), 20=-102 (LC 13), 22=-105 (LC 13),

23=-101 (LC 13), 24=-108 (LC 13), 25=-83 (LC 13)

1=129 (LC 23), 13=85 (LC 25)

14=201 (LC 23), 15=179 (LC 23), 16=184 (LC 23), 17=182 (LC 23), 18=191 (LC 23), 19=219 (LC 14),

20=194 (LC 22), 22=180 (LC 22), 23=185 (LC 22), 24=177 (LC 22),

25=207 (LC 22) **FORCES** (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-250/213, 2-3=-197/183, 3-4=-154/153, 4-5=-131/155, 5-6=-108/205, 6-7=-152/253, 7-8=-152/253, 8-9=-107/178, 9-10=-71/96,

10-11=-67/56, 11-12=-118/85,

12-13=-183/113

BOT CHORD

1-25=-98/192, 24-25=-98/192, 23-24=-98/192, 22-23=-98/192, 20-22=-98/192, 19-20=-98/192, 18-19=-98/192, 17-18=-98/192, 16-17=-98/192, 15-16=-98/192,

14-15=-98/192, 13-14=-98/192 WEBS 7-19=-195/61, 6-20=-167/126,

> 5-22=-165/129, 4-23=-164/125, 3-24=-164/132, 2-25=-163/116, 8-18=-167/123, 9-17=-165/131 10-16=-164/124, 11-15=-164/132,

12-14=-163/116

NOTES

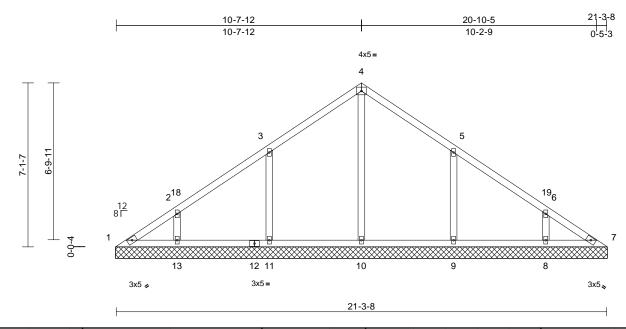
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 12-2-2, Corner(3R) 12-2-2 to 15-2-2, Exterior(2N) 15-2-2 to 24-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc.

- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 1, 102 lb uplift at joint 20, 105 lb uplift at joint 22, 101 lb uplift at joint 23, 108 lb uplift at joint 24, 83 lb uplift at joint 25, 99 lb uplift at joint 18, 107 lb uplift at joint 17, 100 lb uplift at joint 16, 110 lb uplift at joint 15 and 77 lb uplift at joint 14.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V13	Valley	1	1	I75807883 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.20	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.18	Horiz(TL)	0.01	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 93 lb	FT = 20%

LUMBER

Scale = 1:50

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

1=21-4-4, 7=21-4-4, 8=21-4-4, 9=21-4-4, 10=21-4-4, 11=21-4-4,

13=21-4-4

Max Horiz 1=232 (LC 10)

Max Uplift 1=-50 (LC 9), 8=-159 (LC 14), 9=-232 (LC 14), 11=-232 (LC 13),

13=-163 (LC 13)

Max Grav 1=131 (LC 23), 7=92 (LC 22),

8=371 (LC 23), 9=488 (LC 23) 10=414 (LC 25), 11=488 (LC 22),

13=375 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-203/188, 2-3=-164/145, 3-4=-164/227, 4-5=-164/227. 5-6=-99/76. 6-7=-144/100

BOT CHORD 1-13=-81/154, 11-13=-81/154, 10-11=-81/154,

9-10=-81/154, 8-9=-81/154, 7-8=-81/154

WFBS 4-10=-207/0, 3-11=-356/282, 2-13=-284/231,

5-9=-356/282. 6-8=-284/230

NOTES

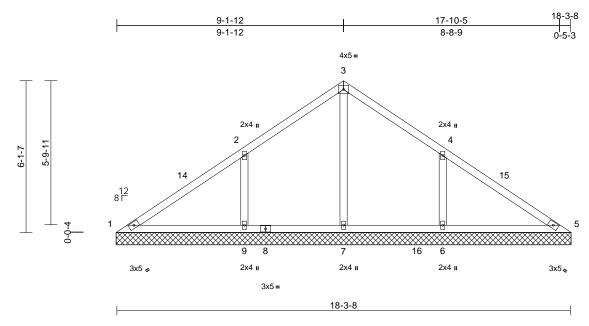
Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 10-8-2, Corner(3R) 10-8-2 to 13-8-2, Exterior(2N) 13-8-2 to 21-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
 - All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 50 lb uplift at joint 1, 232 lb uplift at joint 11, 163 lb uplift at joint 13, 232 lb uplift at joint 9 and 159 lb uplift at joint 8.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V14	Valley	1	1	I75807884 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:46.5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.28	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 75 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=18-4-4, 5=18-4-4, 6=18-4-4, 7=18-4-4, 9=18-4-4

Max Horiz 1=-198 (LC 11)

Max Uplift 1=-17 (LC 9), 6=-275 (LC 14),

9=-278 (LC 13)

Max Grav 1=100 (LC 23), 5=99 (LC 35),

6=590 (LC 23), 7=576 (LC 22), 9=595 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-185/370, 2-3=-16/279, 3-4=0/250,

4-5=-173/346

BOT CHORD 1-9=-258/242, 7-9=-258/242, 6-7=-258/242,

5-6=-258/242

3-7=-436/90, 2-9=-413/344, 4-6=-413/344

WEBS NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 9-2-2, Corner(3R) 9-2-2 to 12-2-2, Exterior(2N) 12-2-2 to 18-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

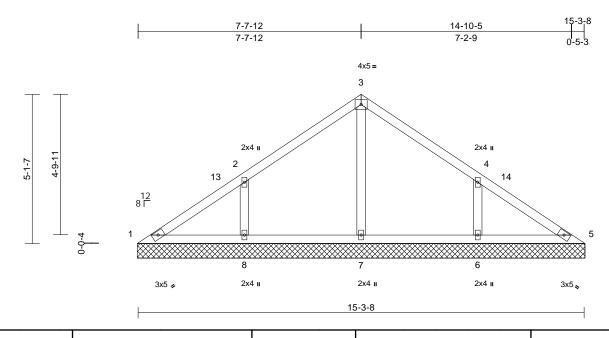
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 4-0-0 oc.

 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 17 lb uplift at joint 1, 278 lb uplift at joint 9 and 275 lb uplift at joint 6.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V15	Valley	1	1	I75807885 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.10	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.13	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 61 lb	FT = 20%

LUMBER

Scale = 1:39.5

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=15-4-4, 5=15-4-4, 6=15-4-4, 7=15-4-4, 8=15-4-4

Max Horiz 1=165 (LC 10)

Max Uplift 1=-25 (LC 14), 6=-224 (LC 14),

8=-226 (LC 13)

Max Grav 1=111 (LC 23), 5=94 (LC 35),

6=406 (LC 23), 7=341 (LC 1), 8=408 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension 1-2=-155/185, 2-3=-66/151, 3-4=-61/134,

4-5=-115/136

BOT CHORD 1-8=-93/151, 7-8=-93/151, 6-7=-93/151,

5-6=-93/151

3-7=-270/60, 2-8=-350/328, 4-6=-350/328

WEBS NOTES

TOP CHORD

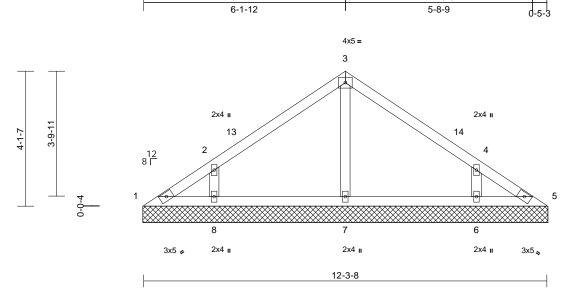
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 7-8-2, Corner(3R) 7-8-2 to 10-8-2, Exterior(2N) 10-8-2 to 15-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 226 lb uplift at joint 8 and 224 lb uplift at joint 6.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V16	Valley	1	1	I75807886 Job Reference (optional)


6-1-12

Carter Components (Chesapeake), Chesapeake, VA - 23323

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-10-5

Page: 1

Scale) = 1	1:35.
-------	-------	-------

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.19	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.09	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0	1									Weight: 47 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=12-4-4, 5=12-4-4, 6=12-4-4,

7=12-4-4, 8=12-4-4 Max Horiz 1=-132 (LC 9)

1=-32 (LC 9), 5=-3 (LC 13), 6=-189 Max Uplift

(LC 14), 8=-192 (LC 13)

1=87 (LC 23), 5=64 (LC 22), 6=344 Max Grav

(LC 23), 7=271 (LC 1), 8=347 (LC

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-121/113, 2-3=-151/168, 3-4=-151/168,

4-5=-84/63

BOT CHORD 1-8=-36/81, 7-8=-36/79, 6-7=-36/79,

5-6=-36/79

3-7=-185/51, 2-8=-343/369, 4-6=-343/369

WEBS NOTES

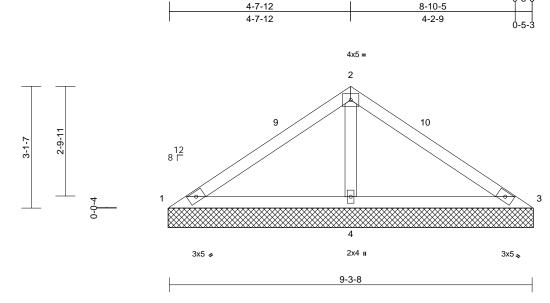
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 6-2-2, Corner(3R) 6-2-2 to 9-2-2, Exterior(2N) 9-2-2 to 12-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 1, 3 lb uplift at joint 5, 192 lb uplift at joint 8 and 189 lb uplift at joint 6.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V17	Valley	1	1	I75807887 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 1

Scale	=	1.29	5

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.31	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.15	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 33 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

9-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=9-4-4, 3=9-4-4, 4=9-4-4

Max Horiz 1=98 (LC 10)

Max Uplift 1=-21 (LC 35), 3=-26 (LC 9),

4=-193 (LC 13)

1=72 (LC 34), 3=72 (LC 35), 4=693 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

1-2=-240/375, 2-3=-233/375

1-4=-309/329, 3-4=-309/329 BOT CHORD

WFBS 2-4=-672/505

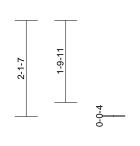
NOTES

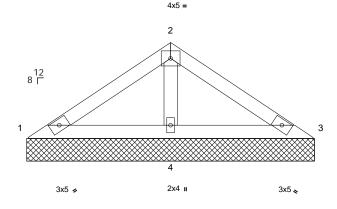
TOP CHORD

- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 4-8-2, Corner(3R) 4-8-2 to 7-8-2, Exterior(2N) 7-8-2 to 9-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1, 26 lb uplift at joint 3 and 193 lb uplift at joint 4.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


August 21,2025



Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V18	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-3-8

Scal	le	=	1	.25	4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.13	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.20	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.10	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 21 lb	FT = 20%

ш	М	R	F	R

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=6-4-4, 3=6-4-4, 4=6-4-4

Max Horiz 1=-65 (LC 11)

1=-10 (LC 13), 3=-20 (LC 14), Max Uplift

4=-110 (LC 13)

1=68 (LC 34), 3=68 (LC 35), 4=419 Max Grav

(LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-148/198, 2-3=-148/198 **BOT CHORD**

1-4=-185/252, 3-4=-185/252 2-4=-370/347

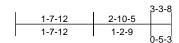
WEBS

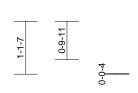
NOTES

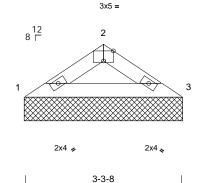
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 1, 20 lb uplift at joint 3 and 110 lb uplift at joint 4.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard




August 21,2025



Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V19	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:30:59 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:24.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 9 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

3-3-8 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=3-4-4, 3=3-4-4

Max Horiz 1=-31 (LC 11)

Max Uplift 1=-35 (LC 13), 3=-35 (LC 14) Max Grav 1=137 (LC 1), 3=137 (LC 1)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-255/226, 2-3=-255/226

BOT CHORD 1-3=-165/203

NOTES

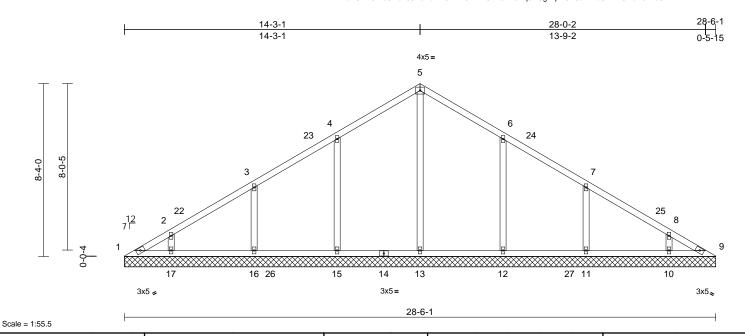
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.

- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 1 and 35 lb uplift at joint 3.
- 10) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V20	Valley	1	1	I75807890 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	I/defI	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.16	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.27	Horiz(TL)	0.01	9	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 129 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size)

1=28-6-1, 9=28-6-1, 10=28-6-1, 11=28-6-1, 12=28-6-1, 13=28-6-1, 15=28-6-1, 16=28-6-1, 17=28-6-1

Max Horiz 1=-273 (LC 11)

Max Uplift 1=-64 (LC 11), 9=-3 (LC 12), 10=-132 (LC 16), 11=-188 (LC 16),

12=-198 (LC 16), 15=-198 (LC 15),

16=-188 (LC 15), 17=-137 (LC 15) 1=120 (LC 27), 9=75 (LC 29),

Max Grav 10=353 (LC 27), 11=447 (LC 27),

12=520 (LC 6), 13=417 (LC 29), 15=520 (LC 5), 16=446 (LC 26),

17=358 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-253/219 2-3=-200/180 3-4=-172/186 4-5=-192/266, 5-6=-192/262, 6-7=-126/124,

7-8=-119/74. 8-9=-178/109

BOT CHORD 1-17=-96/172, 16-17=-87/172

15-16=-87/172, 13-15=-87/172

12-13=-87/172, 11-12=-87/172 10-11=-87/172, 9-10=-87/172

5-13=-218/0, 4-15=-396/246, 3-16=-323/235,

2-17=-279/196, 6-12=-396/246,

7-11=-323/236, 8-10=-279/194

NOTES

WFBS

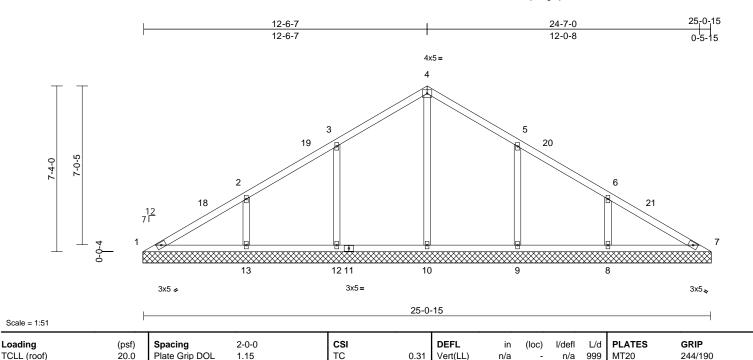
Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-7 to 3-0-7, Exterior(2N) 3-0-7 to 14-3-7, Corner(3R) 14-3-7 to 17-3-7, Exterior(2N) 17-3-7 to 28-6-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 1, 3 lb uplift at joint 9, 198 lb uplift at joint 15, 188 lb uplift at joint 16, 137 lb uplift at joint 17, 198 lb uplift at joint 12, 188 lb uplift at joint 11 and 132 lb uplift at joint 10.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V21	Valley	1	1	I75807891 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

LUMBER

Snow (Pf/Pg)

TCDL

BCLL

BCDL

2x4 SP No.2 TOP CHORD **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

20.8/30.0

10.0

0.0

10.0

bracing.

REACTIONS (size) 1=25-1-13, 7=25-1-13, 8=25-1-13, 9=25-1-13, 10=25-1-13,

12=25-1-13, 13=25-1-13

Lumber DOL

Code

Rep Stress Incr

1 15

YES

IRC2018/TPI2014

Max Horiz 1=-239 (LC 11) Max Uplift 1=-26 (LC 11), 8=-203 (LC 16),

9=-193 (LC 16), 12=-193 (LC 15),

13=-205 (LC 15)

Max Grav 1=143 (LC 27), 7=124 (LC 22),

8=492 (LC 27), 9=467 (LC 6), 10=538 (LC 26), 12=467 (LC 5),

13=494 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-224/286, 2-3=-101/234, 3-4=-55/233, 4-5=-55/215, 5-6=-3/160, 6-7=-171/218

BOT CHORD 1-13=-161/219 12-13=-161/176

10-12=-161/176, 9-10=-161/176,

8-9=-161/176, 7-8=-161/176

WFBS 4-10=-323/0, 3-12=-390/247, 2-13=-349/232,

5-9=-390/247. 6-8=-349/231

NOTES

Unbalanced roof live loads have been considered for this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 12-6-14, Corner(3R) 12-6-14 to 15-6-14, Exterior(2N) 15-6-14 to 25-1-13 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

0.20

0.30

Vert(TL)

Horiz(TL)

n/a

0.01

n/a 999

n/a n/a

Weight: 108 lb

FT = 20%

7

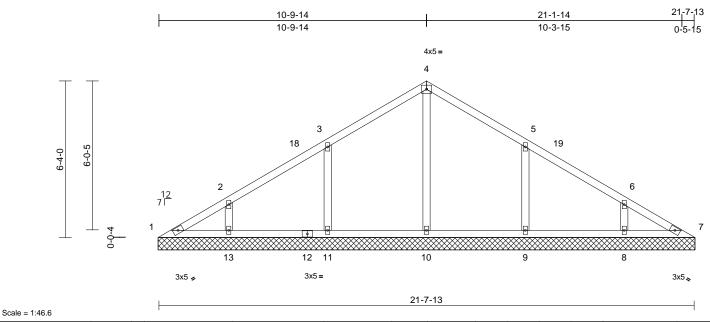
BC

WB

Matrix-MSH

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 26 lb uplift at joint 1, 193 lb uplift at joint 12, 205 lb uplift at joint 13, 193 lb uplift at joint 9 and 203 lb uplift at joint 8.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job		Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
250801	196-B	V22	Valley	1	1	I75807892 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	csı		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.17	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.16	Horiz(TL)	0.00	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 90 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

6-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=21-8-10, 7=21-8-10, 8=21-8-10, 9=21-8-10, 10=21-8-10,

11=21-8-10, 13=21-8-10

Max Horiz 1=-206 (LC 11) Max Uplift 1=-33 (LC 11), 8=-149 (LC 16),

9=-207 (LC 16), 11=-207 (LC 15),

13=-152 (LC 15)

Max Grav 1=119 (LC 27), 7=92 (LC 22),

8=376 (LC 27), 9=495 (LC 6), 10=417 (LC 26), 11=495 (LC 5),

13=379 (LC 26)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-186/170, 2-3=-137/133, 3-4=-137/202, 4-5=-137/202. 5-6=-75/77. 6-7=-125/91

BOT CHORD 1-13=-72/156, 11-13=-72/128, 10-11=-72/128,

9-10=-72/128, 8-9=-72/128, 7-8=-72/128

WFBS 4-10=-230/0. 3-11=-404/257. 2-13=-281/209.

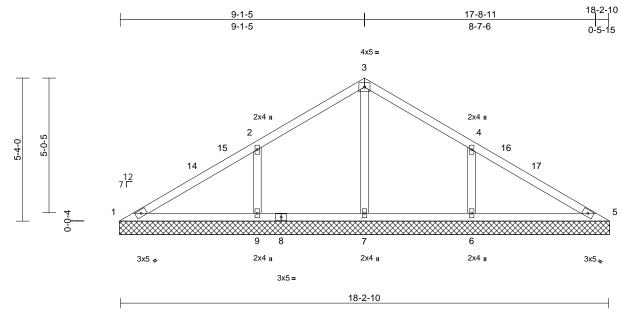
5-9=-404/256. 6-8=-281/209

NOTES

Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 2-10-5, Exterior(2N) 2-10-5 to 10-10-5, Corner(3R) 10-10-5 to 13-10-5, Exterior(2N) 13-10-5 to 21-8-10 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 10) All bearings are assumed to be SP No.2.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 1, 207 lb uplift at joint 11, 152 lb uplift at joint 13, 207 lb uplift at joint 9 and 149 lb uplift at joint 8.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 7.
- 13) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



August 21,2025

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V23	Valley	1	1	I75807893 Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	_	1.4

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.42	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.22	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.20	Horiz(TL)	0.00	6	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 71 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=18-3-8, 5=18-3-8, 6=18-3-8,

7=18-3-8, 9=18-3-8 Max Horiz 1=-172 (LC 13)

1=-12 (LC 16), 5=-9 (LC 16), Max Uplift

6=-247 (LC 16), 7=-10 (LC 15), 9=-248 (LC 15)

Max Grav 1=103 (LC 38), 5=103 (LC 39),

6=575 (LC 22), 7=437 (LC 1),

9=575 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-156/323, 2-3=-10/248, 3-4=0/240,

4-5=-149/305 1-9=-235/213, 7-9=-235/213, 6-7=-235/213,

BOT CHORD 5-6=-235/213

WFBS 3-7=-404/110 2-9=-445/313 4-6=-445/313

NOTES

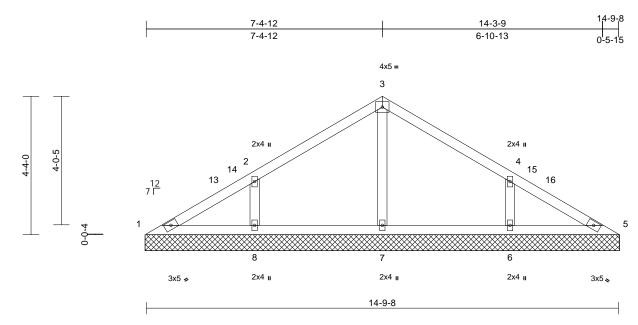
- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 9-1-12, Corner(3R) 9-1-12 to 12-1-12, Exterior(2N) 12-1-12 to 18-3-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.: Ce=0.9: Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 12 lb uplift at joint 1, 9 lb uplift at joint 5, 10 lb uplift at joint 7, 248 lb uplift at joint 9 and 247 lb uplift at joint 6.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V24	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff Page: 1

Scale = 1:36.1

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.08	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 56 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

TOP CHORD Structural wood sheathing directly applied or

10-0-0 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=14-10-6, 5=14-10-6, 6=14-10-6,

7=14-10-6, 8=14-10-6

Max Horiz 1=-139 (LC 11) Max Uplift 1=-24 (LC 16), 5=-10 (LC 16),

6=-196 (LC 16), 8=-197 (LC 15)

Max Grav 1=100 (LC 27), 5=91 (LC 22),

6=487 (LC 22), 7=338 (LC 22),

8=487 (LC 21)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-147/154, 2-3=-100/131, 3-4=-100/124,

4-5=-120/111

1-8=-72/140, 7-8=-72/117, 6-7=-72/117,

BOT CHORD 5-6=-72/117

3-7=-266/85, 2-8=-400/301, 4-6=-400/301

WEBS NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 7-5-3, Corner(3R) 7-5-3 to 10-5-3, Exterior(2N) 10-5-3 to 14-10-6 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

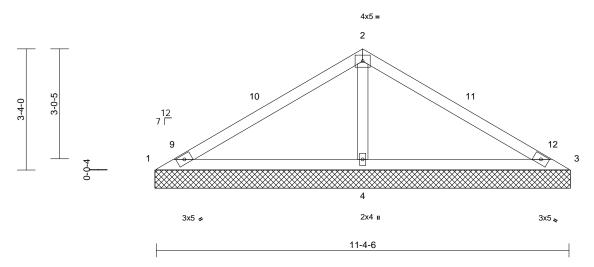
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.: Ce=0.9: Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1, 10 lb uplift at joint 5, 197 lb uplift at joint 8 and 196 lb uplift at joint 6.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 5.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall


building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V25	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scal	\sim	_	1	.21	

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.62	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.55	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.19	Horiz(TL)	0.01	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 39 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 **OTHERS**

BRACING

TOP CHORD Structural wood sheathing directly applied or

9-4-6 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=11-5-3, 3=11-5-3, 4=11-5-3

Max Horiz 1=106 (LC 14)

Max Unlift 1=-80 (LC 22), 3=-80 (LC 21),

4=-243 (LC 15)

1=90 (LC 21), 3=90 (LC 22), 4=953 Max Grav

(LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension TOP CHORD

1-2=-323/555, 2-3=-319/555

1-4=-468/403, 3-4=-468/403 **BOT CHORD**

WEBS 2-4=-880/594

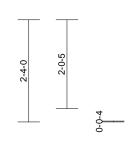
NOTES

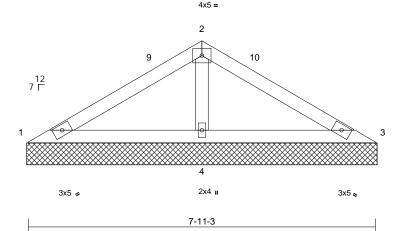
- Unbalanced roof live loads have been considered for 1) this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 5-8-10, Corner(3R) 5-8-10 to 8-8-10, Exterior(2N) 8-8-10 to 11-5-3 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 80 lb uplift at joint 1, 80 lb uplift at joint 3 and 243 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

August 21,2025


Page: 1



Job	Truss	Truss Type	Qty Ply WINCHESTER		WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V26	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:26.3

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.30	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.12	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 26 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 **BOT CHORD** 2x4 SP No.2 2x4 SP No.3 OTHERS

BRACING

Structural wood sheathing directly applied or TOP CHORD

7-11-3 oc purlins.

BOT CHORD Rigid ceiling directly applied or 6-0-0 oc

bracing.

REACTIONS (size) 1=8-0-1, 3=8-0-1, 4=8-0-1

Max Horiz 1=-72 (LC 11)

Max Uplift 1=-20 (LC 22), 3=-23 (LC 11),

4=-147 (LC 15)

Max Grav 1=109 (LC 21), 3=109 (LC 22),

4=589 (LC 22)

FORCES (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-222/321, 2-3=-214/321 1-4=-294/307, 3-4=-294/307 BOT CHORD

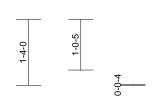
WFBS 2-4=-518/399

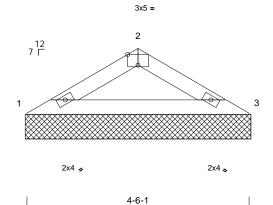
NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-0 to 3-0-0, Exterior(2N) 3-0-0 to 4-0-1, Corner(3R) 4-0-1 to 6-11-2, Exterior(2N) 6-11-2 to 8-0-1 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2.
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 20 lb uplift at joint 1, 23 lb uplift at joint 3 and 147 lb uplift at joint 4.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard


August 21,2025



Job	Truss	Truss Type	Qty	Ply	WINCHESTER MODEL ELEV F-Whitetree-Roof
25080196-B	V27	Valley	1	1	Job Reference (optional)

Run: 8.73 S Aug 13 2025 Print: 8.730 S Aug 13 2025 MiTek Industries, Inc. Thu Aug 21 07:31:00 ID:bLGxm6WoUEd?J6NsHb?wOVzrtGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:23.4

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	20.8/30.0	Lumber DOL	1.15	BC	0.15	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 13 lb	FT = 20%

LUMBER

2x4 SP No.2 TOP CHORD BOT CHORD 2x4 SP No.2

BRACING

Structural wood sheathing directly applied or TOP CHORD

4-6-1 oc purlins.

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc

bracing.

REACTIONS (size) 1=4-6-15, 3=4-6-15

Max Horiz 1=-39 (LC 13)

Max Uplift 1=-48 (LC 15), 3=-48 (LC 16)

Max Grav 1=216 (LC 21), 3=216 (LC 22) **FORCES** (lb) - Maximum Compression/Maximum

Tension

TOP CHORD 1-2=-397/332, 2-3=-397/332

BOT CHORD 1-3=-265/332

NOTES

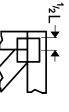
- Unbalanced roof live loads have been considered for 1)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=30.0 psf; Pf=20.8 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat C; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this desian.
- Gable requires continuous bottom chord bearing.

- Gable studs spaced at 4-0-0 oc.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- All bearings are assumed to be SP No.2 .
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 48 lb uplift at joint 1 and 48 lb uplift at joint 3.
- 11) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1, 3.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

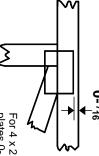
LOAD CASE(S) Standard

August 21,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.


Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall

building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Symbols

PLATE LOCATION AND ORIENTATION

Center plate on joint unless x, y offsets are indicated.
Dimensions are in ft-in-sixteenths.
Apply plates to both sides of truss and fully embed teeth.

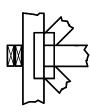
For 4 x 2 orientation, locate plates 0- ¹/16" from outside edge of truss.

This symbol indicates the required direction of slots in connector plates.

*Plate location details available in MiTek software or upon request.

PLATE SIZE

4 × 4

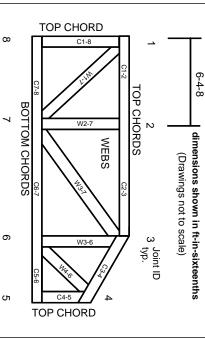

The first dimension is the plate width measured perpendicular to slots. Second dimension is the length parallel to slots.

LATERAL BRACING LOCATION

Indicated by symbol shown and/or by text in the bracing section of the output. Use T or I bracing if indicated.

BEARING

Indicates location where bearings (supports) occur. Icons vary but reaction section indicates joint number/letter where bearings occur Min size shown is for crushing only.


Industry Standards:

National Design Specification for Metal Plate Connected Wood Truss Construction Design Standard for Bracing.

Building Component Safety Information, Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses.

ANSI/TPI1: DSB-22:

Numbering System

JOINTS ARE GENERALLY NUMBERED/LETTERED CLOCKWISE AROUND THE TRUSS STARTING AT THE JOINT FARTHEST TO THE LEFT.

CHORDS AND WEBS ARE IDENTIFIED BY END JOINT NUMBERS/LETTERS.

Product Code Approvals

ICC-ES Reports:

ESR-1988, ESR-2362, ESR-2685, ESR-3282 ESR-4722, ESL-1388

Design General Notes

Trusses are designed for wind loads in the plane of the truss unless otherwise shown.

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

© 2023 MiTek® All Rights Reserved

MiTek®

MiTek Engineering Reference Sheet: MII-7473 rev. 1/2/2023

▲ General Safety Notes

Failure to Follow Could Cause Property Damage or Personal Injury

- Additional stability bracing for truss system, e.g. diagonal or X-bracing, is always required. See BCSI
- Truss bracing must be designed by an engineer. For wide truss spacing, individual lateral braces themselves may require bracing, or alternative Tor I bracing should be considered.
- Never exceed the design loading shown and never stack materials on inadequately braced trusses.

ω

- Provide copies of this truss design to the building designer, erection supervisor, property owner and all other interested parties.
- Cut members to bear tightly against each other.

'n

- Place plates on each face of truss at each joint and embed fully. Knots and wane at joint locations are regulated by ANSI/TPI 1.
- Design assumes trusses will be suitably protected from the environment in accord with ANSI/TPI 1.
- Unless otherwise noted, moisture content of lumber shall not exceed 19% at time of fabrication.
- Unless expressly noted, this design is not applicable for use with fire retardant, preservative treated, or green lumber.
- Camber is a non-structural consideration and is the responsibility of truss fabricator. General practice is to camber for dead load deflection.
- Plate type, size, orientation and location dimensions indicated are minimum plating requirements.
- Lumber used shall be of the species and size, and in all respects, equal to or better than that specified.
- Top chords must be sheathed or purlins provided at spacing indicated on design.
- Bottom chords require lateral bracing at 10 ft. spacing, or less, if no ceiling is installed, unless otherwise noted.
- 15. Connections not shown are the responsibility of others
- Do not cut or alter truss member or plate without prior approval of an engineer.
- Install and load vertically unless indicated otherwise.
- Use of green or treated lumber may pose unacceptable environmental, health or performance risks. Consult with project engineer before use.
- Review all portions of this design (front, back, words and pictures) before use. Reviewing pictures alone is not sufficient.
- Design assumes manufacture in accordance with ANSI/TPI 1 Quality Criteria.
- The design does not take into account any dynamic or other loads other than those expressly stated.