Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 55091 JOB: 24-B431-F02 JOB NAME: LOT 0.0007 CAMPBELL RIDGE Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2018 as well as IRC 2021. 16 Truss Design(s)

Trusses:

F201, F202, F203, F204, F206, F207, F208, F209, F210, F211, F212, F213, F214, F215, F216,

Warning !--- Verify design parameters and read notes before use.

Job	Truss	Truss Type	Qt	y Ply	LOT 0.0007 CAMP	BELL RIDGE 196 ALDE	N WAY ANGIEF	र, NC
24-B431-F02	F201	Floor Supported Gable	1		1	ontional)	# 5.	5091
0-1-8	1		Run: 8.430 s ID:WI8rkg6	Feb 12 2021 Pr BK5SaRYCY0	int: 8.630 s Jul 12 202 Sf9_0xywFJ5-QAK8	4 MiTek Industries, Inc. 1 Sj9HF6dwdUuk5YCmZ	Thu Dec 12 16:25 ZHoZtcFxqSSJ	5:09 2024 Page 1 RVj5WFZy9g98
								Scale = 1:28.7
1.5x3	1.5x3	1.5x3	0.4 - 45.0				4.5-0.11	2-4
$1.5x_3 = 1.5x_3 \parallel$ 1 2	3 4 5	FP= 1.5x3 6 7	$3x4 = 1.5x3 \parallel 8$	1.5x3	1.5x3 1.5	2 13	1.5x3	3x4 15
	T1 0	ST1 ST1 W2 B1 D ST XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		ST1	ST1 S	П 1 ST1 B2 XXXXXXXXX	ST1	
30 29	28 27	26 25	24 23 2	2 21	20 19	9 18	17	16
3x4 1.5x3	1.5x3 1.5x3	1.5x3 3x4 =	1.5x3 3x8 1.5x3	FP≕ 1.5x3	1.5x3 1.5	x3 1.5x3	1.5x3	3x4
Plate Offsets (X,Y) [8:0	0-1-8,Edge], [25:0-1-8,Edg	ge], [30:Edge,0-1-8]	17-5-12 17-5-12					
LOADING (psf) TCLL 40.0 TCDL 10.0	SPACING- 2-0 Plate Grip DOL 1. Lumber DOL 1.	D-0 CSI. 00 TC 0.07 00 BC 0.01	DEFL. Vert(LL) Vert(CT)	in (loc) n/a - n/a -	l/defl L/d n/a 999 n/a 999	PLATES MT20	GRIP 244/190	

	DE	D

BCLL

BCDL

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

0.0

5.0

BRACING-TOP CHORD BOT CHORD

Horz(CT)

0.00

16

n/a

n/a

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

Weight: 76 lb

FT = 20%F, 11%E

REACTIONS. All bearings 17-5-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 30, 16, 29, 28, 27, 26, 25, 24, 23, 21, 20, 19, 18, 17

WB

Matrix-SH

0.03

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (6)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

YES

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

Rep Stress Incr

Code IRC2021/TPI2014

LOAD CASE(S) Standard

BCDL	5.0	Code IRC2021/1912014	Matrix-SH				FI = 20%F, 11%E
LUMBER TOP CHO	- DRD 2x4 SF	P No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing	directly applied or 5-9-	2 oc purlins, except
BOT CHO	ORD 2x4 SF	P SS(flat) [*] Except* 4 SP No 1/flat)			end verticals.	d or 10-0-0 oc bracing	
WEBS	2x4 SF	P No.3(flat)		BOT CHORD			

REACTIONS. (Ib/size) 21=942/0-3-6 (min. 0-1-8), 12=948/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2028/0, 3-4=-2028/0, 4-5=-3259/0, 5-6=-3830/0, 6-7=-3780/0, 7-8=-3111/0, 8-9=-3111/0, 9-10=-1700/0 BOT CHORD 20-21=0/1226, 19-20=0/2785, 18-19=0/3830, 17-18=0/3830, 16-17=0/3830, 15-16=0/3619, 14-15=0/3619, 13-14=0/2529,

BOT CHORD 20-21=0/1226, 19-20=0/2785, 18-19=0/3830, 17-18=0/3830, 16-17=0/3830, 15-16=0/3619, 14-15=0/3619, 13-14=0/2529, 12-13=0/837

WEBS 5-18=-65/292, 6-17=-260/97, 5-19=-879/0, 4-19=0/650, 4-20=-986/0, 2-20=0/1044, 2-21=-1514/0, 6-16=-424/231, 7-16=0/374, 7-14=-648/0, 9-14=0/744, 9-13=-1079/0, 10-13=0/1122, 10-12=-1256/0

NOTES- (5)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

L	6-8-3		7-8-3 8-8-3	15-	4-6
	6-8-3		1-0-0 1-0-0	6-8	8-3
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [16:Ed	lge,0-3-0]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.24 BC 0.51 WB 0.28	DEFL. ir Vert(LL) -0.11 Vert(CT) -0.15 Horz(CT) 0.03	n (loc) l/defl L/d 11-12 >999 480 5 12-13 >999 360 3 9 n/a n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH			Weight: 77 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)			BRACING- TOP CHORD	Structural wood sheathing c end verticals.	lirectly applied or 6-0-0 oc purlins, except
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly applied	l or 10-0-0 oc bracing.

REACTIONS. (lb/size) 16=550/0-3-8 (min. 0-1-8), 9=554/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

. . .

TOP CHORD 2-3=-1153/0, 3-4=-1785/0, 4-5=-1990/0, 5-6=-1785/0, 6-7=-1154/0

BOT CHORD 15-16=0/707, 14-15=0/1576, 13-14=0/1990, 12-13=0/1990, 11-12=0/1990, 10-11=0/1576, 9-10=0/708

WEBS 4-14=-387/0, 3-14=0/314, 3-15=-550/0, 2-15=0/580, 2-16=-873/0, 5-11=-387/0, 6-11=0/314, 6-10=-550/0, 7-10=0/580, 7-9=-875/0

NOTES- (6)

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

....

	6-8-3			7-8-3 8-8-3	15-7-14				
	1	6-8-3		1-0-0 ' 1-0-0 '	6-11	-11			
Plate O	ffsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [17:Ed	dge,0-3-0]						
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 40.0 10.0 0.0 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.26 BC 0.56 WB 0.28 Matrix-SH	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.	in (loc) l/defl L/d 12 12-13 >999 480 16 12-13 >999 360 03 9 n/a n/a	PLATES GRIP MT20 244/190 Weight: 79 lb FT = 20%F, 11%E			
LUMBE TOP CH BOT CH WEBS	R- HORD 2x4 SP HORD 2x4 SP 2x4 SP	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except I or 10-0-0 oc bracing.			

REACTIONS. (lb/size) 9=565/0-3-8 (min. 0-1-8), 17=561/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 8-9=-566/0, 2-3=-1181/0, 3-4=-1839/0, 4-5=-2067/0, 5-6=-1886/0, 6-7=-1281/0

BOT CHORD 16-17=0/723, 15-16=0/1614, 14-15=0/2067, 13-14=0/2067, 12-13=0/2067, 11-12=0/1691, 10-11=0/851

WEBS 4-15=-413/0, 3-15=0/330, 3-16=-565/0, 2-16=0/596, 2-17=-891/0, 5-12=-371/0, 6-12=0/305, 6-11=-533/0, 7-11=0/559,

7-10=-798/0, 8-10=0/576

NOTES- (5)

1) Unbalanced floor live loads have been considered for this design.

2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

6-8-3			3-3 8-8-3	15-7-14				
1	6-8-3	' 1-0)-0 ' 1-0-0 '	6-11-	-11			
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [17:Ed	lge,0-3-0]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.41 BC 0.83 WB 0.43	DEFL. Vert(LL) -0.1 Vert(CT) -0.2 Horz(CT) 0.0	in (loc) l/defl L/d 8 12-13 >999 480 24 12-13 >772 360 15 9 n/a n/a	PLATES GRIP MT20 244/190			
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH			Weight: 79 lb FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except			

REACTIONS. (lb/size) 9=847/0-3-8 (min. 0-1-8), 17=841/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

~ ~ ~

TOP CHORD 8-9=-849/0, 2-3=-1771/0, 3-4=-2758/0, 4-5=-3101/0, 5-6=-2829/0, 6-7=-1921/0, 7-8=-358/0

BOT CHORD 16-17=0/1084, 15-16=0/2422, 14-15=0/3101, 13-14=0/3101, 12-13=0/3101, 11-12=0/2536, 10-11=0/1277

WEBS 4-15=-620/0, 3-15=0/496, 3-16=-847/0, 2-16=0/894, 2-17=-1337/0, 5-12=-556/0, 6-12=0/457, 6-11=-800/0, 7-11=0/839, 7-10=-1197/0, 8-10=0/864

NOTES- (4)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

.

ao	11	uss	Trus	s Type			Qiy	Piy	LOT 0.000	CAMPBELL RIDG	E 196 ALDEN V	VAY ANG	IER, NC	
4-B431-F02	F2	207	Floo	r Supported Gable			1	1	Job Refe	rence (optional)		#	55091	
0 ₁ 1-8						Run: 8.43 ID:p	80 s Feb 12 MqJz?gO_	2021 Print 6c5LWiS	: 8.630 s Ju ifiGO4Qyy	il 12 2024 MiTek Ind /WIk-n771nsLOx	lustries, Inc. Thu)Yvafd2KmLk_i	Dec 12 16 rGIZGe07):25:14 2024 P 7jbAf?oHwmy	age 1 /9g93
													Scale = 1	:25.7
1.5x3 1.5x3 =	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	11	1.5x3	1.5x3	1.5x3	1.5x3	3 3x4	
1	2	3	4	5	6	7	8		9	10	11	12	13	
	ST1	ST1	ST1	ST1	ST1 W2	ST1 B1	ST1	****	ST1	ST1	ST1	ST1		1-2-0
26	25	24	23	22	21	20	19		18	17	16	15	14	
3x4	1.5x3	1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	1.5x3	П	1.5x3	1.5x3	1.5x3	1.5x3	; 3x4	

				15-7-12					
Plate O	ffsets (X,Y)	[7:0-1-8,Edge], [21:0-1-8,Edge], [26:E	dge,0-1-8]						
LOADIN TCLL TCDL BCLL BCDL	IG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	(loc) l/defl L/d - n/a 999 - n/a 999 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 69 lb FT = 20%F, 11%E			
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)				BRACING- TOP CHORD BOT CHORD	 D Structural wood sheathing directly applied or 6-0-0 oc purlins, end verticals. D Rigid ceiling directly applied or 10-0-0 oc bracing. 				

15-7-12

REACTIONS. All bearings 15-7-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Plate Offsets (X,Y)	[6:0-1-8,Edge], [18:0-1-8,Edge], [22:E	Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ir Vert(LL) n/z Vert(CT) n/z Horz(CT) 0.00	n (loc) l/defl L/d a - n/a 999 a - n/a 999) 12 n/a n/a	PLATES GRIP MT20 244/190 Weight: 58 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 12-11-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(5)

1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

ļ	5-5-14 5-5-14	<u> </u>	7-5-14	<u>12-11</u> 5-5-	I-12 14
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [6:0-1-	8,Edge], [14:Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.32 BC 0.58 WB 0.47 Matrix-SH	DEFL. in Vert(LL) -0.10 Vert(CT) -0.13 Horz(CT) 0.03	(loc) I/defl L/d 11-12 >999 480 9-10 >999 360 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 65 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	2 No.1(flat) 2 No.1(flat) 2 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing di end verticals. Rigid ceiling directly applied	rectly applied or 6-0-0 oc purlins, except or 10-0-0 oc bracing.

REACTIONS. (lb/size) 14=694/0-3-6 (min. 0-1-8), 7=694/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 14-15=-688/0, 1-15=-687/0, 7-16=-688/0, 6-16=-687/0, 1-2=-836/0, 2-3=-1812/0, 3-4=-2109/0, 4-5=-1812/0,

5-6=-836/0

BOT CHORD 12-13=0/1506, 11-12=0/2109, 10-11=0/2109, 9-10=0/2109, 8-9=0/1506

WEBS 3-12=-507/0, 2-12=0/427, 2-13=-872/0, 1-13=0/984, 4-9=-507/0, 5-9=0/427, 5-8=-872/0, 6-8=0/984

NOTES- (3)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Jop	Truss	Truss Type	Qty	Ply LOT 0.0	0007 CAMPBELL RIDGE 19	96 ALDEN WAY ANGI	ER, NC
24-B431-F02	F210	Floor	2	1 Job Re	eference (optional)	# .	55091
			Run: 8.430 s Feb 12 ID:pMqJz?gO_6	2 2021 Print: 8.630 : c5LWiSfiGO4Qy	s Jul 12 2024 MiTek Industrie yWlk-Bip9PuNGD4wUR6	es, Inc. Thu Dec 12 16 6Ld0uvRcUu2hUT8ł	25:17 2024 Page 1 (?scLz1xX5y9g90
0-1-8							
H ⁰⁻⁵⁻¹⁵ 1-3-0		2	2-0-0	0-10-3		<u>⊢1-0-</u>	0-1-8 Scale: 3/8"=1
3x4 =							
1.5x3	1.5x3	$3x4 \equiv$					1.5x3
1.5x3 =	3x4 = 3x8 F	P= 3x4 =	3x4 =	3x8 =	3x4 =	3x4 =	1.5x3 =
1 2	3 4 5	6 7	8	9 T2	10	11	12
		R A	R	- Firk			
				WA []	$\langle // \rangle$	W N	
		R1		tí l		182 182	
24 23	22	21 20	19 1	8 17	16 15	14	13
6x6 3x4	4 = 3x8 =	3x4 = − 1.5x3	1.5x3 3x	≪4 = 3x4	3x8 FP=	3x4 =	6x6
					3x4 =		

			10-7-7	12-10-2			
1	8-5-15	9-5	-15 10-5-15 11-8-1	12-8-10		19-3-4	1
	8-5-15	¹ 1-0	ጋ-0 ' 1-0-0 0-፟-8 1-0-9 '	1-0-9 0- ¹ -8		6-5-2	1
Plate Offsets (X,Y)	[7:0-1-8,Edge], [8:0-1-8,Edge], [13:Ed	lge,0-3-0], [24:Edge,0-3-	-0]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.83 BC 0.88 WB 0.38 Matrix-SH	DEFL. in Vert(LL) -0.25 Vert(CT) -0.34 Horz(CT) 0.03	n (loc) l/defl 520-21 >612 120-21 >451 20-21 >451 3 13 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 100 I	GRIP 244/190 b FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF B2: 2x WEBS 2x4 SF	P No.1(flat) P SS(flat) *Except* 4 SP No.1(flat) P No.3(flat)	<u> </u>	BRACING- TOP CHORD BOT CHORD	Structural wood end verticals. Rigid ceiling di 6-0-0 oc bracin	d sheathing di rectly applied g: 17-18,16-1	rectly applied or 6- or 10-0-0 oc bracir 7.	0-0 oc purlins, except ng, Except:
REACTIONS. (Ib/size	e) 24=697/0-3-6 (min. 0-1-8), 17=10)35/0-3-8 (min. 0-1-8), 1	3=348/0-3-6 (min. 0-1-	-8)			

REACTIONS. (Ib/size) 24=697/0-3-6 (min. 0-1-8), 17=1035/0-3-8 (min. 0-1-8), 13=348/0-3-6 (min. 0-1-8) Max Grav24=703(LC 3), 17=1035(LC 1), 13=376(LC 7)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1058/0, 3-4=-1954/0, 4-5=-1954/0, 5-6=-1954/0, 6-7=-2133/0, 7-8=-1724/0,

8-9=-668/0, 9-10=-476/0, 10-11=-559/0

- BOT CHORD 23-24=0/442, 22-23=0/1639, 21-22=0/2254, 20-21=0/1724, 19-20=0/1724, 18-19=0/1724, 15-16=0/698, 14-15=0/698, 13-14=0/384
- WEBS 7-20=-399/0, 8-19=0/456, 9-17=-914/0, 7-21=0/562, 6-22=-383/0, 3-22=0/402, 3-23=-756/0, 2-23=0/803, 2-24=-870/0, 8-18=-1360/0, 9-18=0/775, 9-16=0/408,

10-16=-376/0, 11-13=-511/0

NOTES- (4)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT C	0.0007 CAMPBELL F	RIDGE 196 ALDEN WAY	ANGIER, NC	
24-B431-F02	F211	Floor	5	1 Job F	Reference (optiona	al)	# 5509	1
		F	Run: 8.430 s Feb 12 D:pMqJz?gO_6c	2 2021 Print: 8.630 5LWiSfiGO4Qy) s Jul 12 2024 MiTe yWlk-fuNYcEOv_N	k Industries, Inc. Thu De N2L3GwpZbQh8hRJE	c 12 16:25:18 20 tnk3QDmadm	24 Page 1 V3Xy9g9?
0-1-8								
H <mark>0-5-15 1-3-0</mark>		2-0-0					0-9-5 0-1	-8 le: 3/8"-1'
							004	ile. 5/0 – 1
3x6 =								
1.5x3	1.5x3	3x4 =					1.5x3	
1.5x3 =	3x4 = 3x8 F	P= 3x4 =	3x4 =	3x4 =	= 1.5x3	3x4 =	4x4 = 1.5x3	=
1 2	3 4 5	6 7	8	9	10	11	12 13	
		R F	- R			R.		~
~ ²⁵ в∰//2					$\searrow \parallel //$			20 0 -
7 💾 😽		B1		<u>í</u>		B2		[
×				_			X	
24 23	22	21 20	19 1	8	17	16 15	14	
6x6 3x6	3x8 =	3x4 = 1.5x3	1.5x3 3x	<4 =	3x8 =	3x8 FP = 4x4 =	6x6	1

L	8-5-15	9-5	5-15 10-5-15	19-3-4	<u> </u>
	8-5-15	· 1-	0-0 ' 1-0-0 '	8-9-5	
Plate Offsets (X,Y)	[7:0-1-8,Edge], [8:0-1-8,Edge], [24:Ed	lge,0-3-0]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.46 BC 0.92 WB 0.50 Matrix SH	DEFL. ir Vert(LL) -0.31 Vert(CT) -0.42 Horz(CT) 0.07	n (loc) l/defl L/d 19-20 >747 480 2.19-20 >542 360 7 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 08 lb ET = 20%E 11%E
BODE 5.0	Code II(C2021/1112014	Matrix-Si i			Weight. 90 lb 11 - 20 /01, 11 /0E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied 2-2-0 oc bracing: 19-20.	lirectly applied or 6-0-0 oc purlins, except I or 10-0-0 oc bracing, Except:

REACTIONS. (Ib/size) 24=831/0-3-6 (min. 0-1-8), 14=831/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1325/0, 3-4=-2720/0, 4-5=-2720/0, 5-6=-2720/0, 6-7=-3509/0, 7-8=-3788/0, 8-9=-3565/0, 9-10=-2835/0,

10-11=-2835/0, 11-12=-1502/0 23-24=0/513, 22-23=0/2114, 21-22=0/3233, 20-21=0/3788, 19-20=0/3788, 18-19=0/3788, 17-18=0/3324, 16-17=0/2263, BOT CHORD 15-16=0/2263, 14-15=0/717

WEBS 7-21=-579/9, 6-21=0/454, 6-22=-656/0, 3-22=0/773, 3-23=-1028/0, 2-23=0/1057, 2-24=-1008/0, 8-18=-531/57,

9-18=0/423, 9-17=-624/0, 11-17=0/730, 11-15=-990/0, 12-15=0/1022, 12-14=-1096/0

NOTES-(3)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lob	Trucc			Otv					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100	11055	iluss type		Quy		0.0007 CAMPBELL RI	DGE 190 ALDEN WAY	ANGIER, NC	
$\begin{array}{c} \text{Rur: } 6.430 \text{ s} \text{ Feb 12 2021 Print } 6.630 \text{ s} \text{ Jul 12 2024 MTek industries, inc. Thu Dec 12 16:25:19 2024 Page 1 \\ \text{ID:pMqJ2?gO_6c5LWiSfiGO4QyyWik-85xwqaPXihBChQV07Jxwhv_U2H7xosTvoHW2b_y9g_} \\ 0.1-8 \\ H^{0.5-15 1-3-0} \\ \hline \\ 1.5x3 \text{ II} \\ 1.5x3 \text{ II} \\ 1.5x3 \text{ II} \\ 3x6 \text{ II} \\ 1.5x3 \text{ II} \\ 3x4 \text{ II} \\ 1.5x3 \text{ II} \\ 3x4 \text{ II} \\ 3x4 \text{ III} \\ 1.2 \\ 1.2 \\ 2.3 \\ 2.3 \\ 2.2 \\ 2.1 \\ 2.0 \\ 1.9 \\ $	24-B431-F02	F212	Floor		5	1 Job	Reference (optional)	# 55091	
0-1-8 H^{0-5-15} 1-3-0 3x6 = 1.5x3 1.5x3 3x4 = 1.5x3 = 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 1.5x3 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.5x3 = 3x4 = 1.5x3 1.5x3 = 1.5x3 3x4 = 1.5x3 1.5x3 = 1.5x3 = 1.5x3 = 1.5x3 1.5x3 = 1				Run: 8 ID:p	.430 s Feb 12 MaJz?aO 6	2021 Print: 8.63	30 s Jul 12 2024 MiTek QvvWlk-85xwgaPXI	Industries, Inc. Thu Dec hBChQV07Jxwhy Uzh	12 16:25:19 2024 Pag 17xosTvoHW2b v9	je 1 a9
$H^{0.5-15-1.3.0}$ $3x6 =$ $1.5x3 \parallel \qquad 1.5x3 \parallel \qquad 3x4 =$ $1.5x3 \parallel \qquad 1.5x3 \parallel \qquad 3x4 =$ $3x4 = \qquad 3x4 = \qquad 3$	0-1-8				14 3 2					J
3x6 = $1.5x3 $ $1.5x3 $ $1.5x3 $ $1.5x3 $ $3x4 = $ $3x4 =$	H0-5-15 1-3-0			2-0-0	4				0-9-7	
3x6 = 1.5x3 1.5x3 3x4 = 1.5x3 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.2 + 1.2				1	ļ				' Scale: 3/8"	=1'
3x6 = 1.5x3 1.5x3 3x4 = 1.5x3 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1.2 + 1.2										
3x6 = 1.5x3 1.5x3 3x4 = 1.5x3 3x4 = 1.5x3 3x4 = 1.5x3 3x4 = 4x4 = 3x4 1 2 13 1 3										
$1.5x3 \parallel 1.5x3 \parallel 3x4 = 1.5x3 \parallel 3x4 = 1.5x3 \parallel 3x4 = 4x4 = 3x4 \parallel 1.5x3 \parallel 1.5x3 \parallel 3x4 = 4x4 = 3x4 \parallel 1.5x3 \parallel $	3x6 =									
1.5x3 = 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 4x4 = 3x4 $1 2 1 3 4 5 6 7 8 12 9 10 11 12 13 9 10 11 12 13 9 10 11 12 13 9 10 11 12 13 9 10 11 12 13 12 13 12 13 12 13 12 13 12 13 13$	1.5x3	1.5x3	3 3x4 =							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.5x3 =	3x4 =	3x8 FP=	3x4 =	$3x4 \equiv$	3x4	= 1.5x3	3x4 =	4x4 = 3x4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 2	3 4	5 6	7 8	3	т2 ⁹	10	11	12 13	
1 2 1 1 1 1 1 1 1 2 23 22 21 20 19 18 17 16 15 14				۶İ.	R			Þ.		
Image: Participant state Image: Particip										1-2-(
24 23 22 21 20 19 18 17 16 15 14		4	T B	1	ē Ì	¥/		B2		ľ
	23	22	21	20	10 1	8	17	16 15		
	6v6 3v6	, <u>22</u> 6 — 3v8	- 3×4	15v3 1	5v3 3	v4 —	378 —	3v8 ED- 4v4 -	3×6 —	

	0-0-10		3-3-10 10-3-10	10-0-	-0	
	8-5-15		1-0-0 1-0-0	8-9-	/	
Plate Offsets (X,Y)	[7:0-1-8,Edge], [8:0-1-8,Edge], [24:Ed	dge,0-3-0]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.46 BC 0.92 WB 0.50 Matrix-SH	DEFL. ir Vert(LL) -0.3 Vert(CT) -0.42 Horz(CT) 0.07	n (loc) l/defl L/d 1 19-20 >745 480 2 19-20 >541 360 7 14 n/a n/a	PLATES MT20 Weight: 99 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	^o No.1(flat) o No.1(flat) o No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing o end verticals. Rigid ceiling directly applied 2-2-0 oc bracing: 19-20.	directly applied or 6-0 d or 10-0-0 oc bracing	-0 oc purlins, except J, Except:

9-5-15 10-5-15

REACTIONS. (lb/size) 24=832/0-3-6 (min. 0-1-8), 14=837/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

8-5-15

TOP CHORD 2-3=-1326/0, 3-4=-2722/0, 4-5=-2722/0, 5-6=-2722/0, 6-7=-3512/0, 7-8=-3792/0, 8-9=-3570/0, 9-10=-2841/0,

- 10-11=-2841/0, 11-12=-1510/0 BOT CHORD 23-24=0/513, 22-23=0/2116, 21-22=0/3236, 20-21=0/3792, 19-20=0/3792, 18-19=0/3792, 17-18=0/3330, 16-17=0/2270, 15-16=0/2270, 14-15=0/725
- WEBS 7-21=-581/9, 6-21=0/455, 6-22=-656/0, 3-22=0/774, 3-23=-1028/0, 2-23=0/1058, 2-24=-1008/0, 8-18=-531/59,
 - 9-18=0/423, 9-17=-624/0, 11-17=0/730, 11-15=-989/0, 12-15=0/1022, 12-14=-1101/0

NOTES- (4)

1) Unbalanced floor live loads have been considered for this design.

- 2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to
- be attached to walls at their outer ends or restrained by other means.
- 3) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

10-3-6

24.B431-F02 F213 Floor 3 1 Job Reference (optional) # 55.091 Run: 8.430 s Feb 12 2021 Print 8630 s Jul 12 2024 MTek Industries, Inc. Thu Dec 12 16:25:20 2024 Page 1 ID:pMqJ2?gO_6c5LWiShGO4QyWik-cHV11vP9W?J3Ja4Ch0S9D6WgAhUzXJr31xFb7Qy9g8: 0-1-8 $4x4 =$ 1.5x3 1.5x3 3x4 = 1	Job	Truss	Truss Type		Qty	Ply	LOT 0.0007 0	CAMPBELL RID	DGE 196 ALDEN WAY	ANGIER, NC	
$Rur, 8430 \text{ s} Feb 12 2021 Print: 8.630 s Jul 12 2024 MTek Industries, Inc. Thu Dec 12 16:25:20 2024 Page 1 D:pMqJz?gO_6c5LWSfiGO4QyyWk-cHV11vP9W?JJJa4Ch0S9D6WgAhUzXJ/31xFb7Qy9g8: 0-1-8 HQ-5-15 1-3-0 4x4 = 1.5x3 \parallel \qquad 1.5x3 \parallel \qquad 3x4 = 4x4 = 1.5x3 = 3x4 =$	24-B431-F02	F213	Floor		3	1	Job Referer	nce (optional)	1	# 55091	!
0-1.8 $H^{0.5-15}$ 1-3-0 4x4 = 1.5x3 1.5x3 3x4 = 1.5x3 = 1.5		÷		Run: 8 ID:r	8.430 s Feb 1 MaJz?aO	12 2021 Print 6c5LWiSfiC	t: 8.630 s Jul 1 GO4QvvWlk-	2 2024 MiTek	Industries, Inc. Thu De ?J3Ja4Ch0S9D6Wg	c 12 16:25:20 202 AhUzXJr31xFb	4 Page 1 7Qv9d8z
$4x4 = $ $1.5x3 \parallel \qquad 1.5x3 \parallel \qquad 3x4 = \qquad$	0-1-8						,,,		Ū.		, 0
$4x4 = 1.5x3 \parallel 1.5x3 \parallel 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 \parallel 3x4 = 3x4 = 3x4 = 1.5x3 \parallel 3x4 = 3x4 = 3x4 = 1.5x3 \parallel 3x4 = 3x4 \parallel 1.2 = 3x4 \parallel 1.2 = 3x4 = 3x4 = 3x4 = 1.2 = 3x4 \parallel 1.2 = 3x4 \parallel 1.2 = 3x4 = 3x4 = 1.2 = 3x4 \parallel 1.2 = 3x4 \parallel 1.2 = 3x4 = 3x4 = 3x4 = 1.2 = 3x4 \parallel 1.2 = 3x4 \parallel 1.2 = 3x4 = 3x4 = 3x4 = 1.2 = 3x4 \parallel 1.2 = 3x4 \parallel 1.2 = 3x4 \parallel 1.2 = 3x4 = $	_Н 0 <u>-5-15 1-3-0</u>	4		2-0-0	_					0-5-15	
4x4 = 1.5x3 1.5x3 3x4 = 4x4 = 1.5x3 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 1.5x3 3x4 = 3x4 = 3x4 1 2 13 1 3		I		I	1					Scale	= 1:31.2
4x4 = 1.5x3 1.5x3 3x4 = 4x4 = 1.5x3 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 1.5x3 3x4 = 3x4 = 3x4 1 2 13 1 3											
4x4 = 1.5x3 1.5x3 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 3x4 1.5x3 3x4 = 3x4 1.5x3 3x4 = 3x4 1.5x3 1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$4x4 \equiv$										
1.5x3 = 3x4 = 3x8 FP = 3x4 = 3x4 = 3x4 = 1.5x3 3x4 = 3x4 12 1	1.5x3	1.5x3	3x4 ≕							4x4 =	
$\begin{array}{c} 1 & 2 & 1 & 3 & 4 & 5 & 6 & 7 & 8 & 12 & 9 & 10 & 11 & 12 & 13 \\ \hline & & & & & & & & & & & \\ 25 & & & & & & & & & & \\ \hline & & & & & & & &$	1.5x3 =	3x4 = 3x4	3 FP=	3x4 =	3x4 =		3x4 =	1.5x3	3x4 =	3x4	П
	1 2	T1 3 4 5	5 6	7	8	Т2	9	10	11	12 13	
				1	R	12		•			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			// 📉 //			_ //	\sim	$ \parallel //$		W2 W1	-2-(
				B1 👦		¥.				32	ſ
$\frac{1}{10}$	×.										
	24 2	3 22	21	20	19	18		1/	16 15	14	

L	8-5-15		9-5-15 10-5-15	18-11	-14
l	8-5-15		' 1-0-0 ' 1-0-0 '	8-5-1	15
Plate Offsets (X,Y)	[7:0-1-8,Edge], [8:0-1-8,Edge], [24:Ed	lge,0-3-0]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-7-3 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.43 BC 0.87 WB 0.49 Matrix-SH	DEFL. i Vert(LL) -0.2 Vert(CT) -0.4 Horz(CT) 0.0	n (loc) l/defl L/d 9 19-20 >785 480 0 19-20 >569 360 7 14 n/a n/a	PLATES GRIP MT20 244/190 Weight: 98 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	⊢ P No.1(flat) P No.1(flat) P No.3(flat)	I	BRACING- TOP CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins, except

WFBS 2x4 SP No.3(flat)

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 24=819/0-3-6 (min. 0-1-8), 14=824/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1303/0, 3-4=-2667/0, 4-5=-2667/0, 5-6=-2667/0, 6-7=-3426/0, 7-8=-3678/0, 8-9=-3426/0, 9-10=-2667/0,

- 10-11=-2667/0, 11-12=-1303/0 BOT CHORD 23-24=0/505, 22-23=0/2077, 21-22=0/3168, 20-21=0/3678, 19-20=0/3678, 18-19=0/3678, 17-18=0/3168, 16-17=0/2077, 15-16=0/2077, 14-15=0/506
- WEBS 7-21=-549/27, 6-21=0/434, 6-22=-640/0, 3-22=0/753, 3-23=-1008/0, 2-23=0/1038, 2-24=-994/0, 8-18=-549/27,

9-18=0/434, 9-17=-640/0, 11-17=0/752, 11-15=-1008/0, 12-15=0/1038, 12-14=-989/0

NOTES- (5)

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to
- be attached to walls at their outer ends or restrained by other means.
- 4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (Ib/size) 8=332/0-3-8 (min. 0-1-8), 5=332/Mechanical

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-8=-327/0, 1-2=-295/0, 2-3=-422/0

BOT CHORD 6-7=0/538, 5-6=0/275

WEBS 1-7=0/370, 2-7=-317/0, 3-5=-416/0

NOTES-(3)

1) Refer to girder(s) for truss to truss connections.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

	1	4-2-3			1-0-0 1-0-0	4-9-11	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [9:0-1-8,Edge], [10:0-	1-8,Edge], [12:0-1-8,Edg	e], [17:0-3-0,0-0-0], [18	3:0-3-0,E	Edge]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-6-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.64 BC 1.00 WB 0.49 Matrix-SH	DEFL. ir Vert(LL) -0.43 Vert(CT) -0.60 Horz(CT) 0.08	(loc) 22 22 13	l/defl L/d >575 480 >418 360 n/a n/a	PLATES MT20 MT20HS Weight: 113 lb	GRIP 244/190 187/143 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structu end ve Rigid o 2-2-0 o	ural wood sheathing rticals. æiling directly applie oc bracing: 18-20.	directly applied or 5-7- d or 10-0-0 oc bracing	1 oc purlins, except , Except:

REACTIONS. (lb/size) 26=856/0-3-8 (min. 0-1-8), 13=851/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 13-27=-853/0, 12-27=-851/0, 2-3=-1815/0, 3-4=-3107/0, 4-5=-3107/0, 5-6=-3947/0, 6-7=-3947/0, 7-8=-4218/0,

8-9=-4008/0, 9-10=-3550/0, 10-11=-2316/0, 11-12=-615/0

BOT CHORD 25-26=0/1025, 24-25=0/2580, 23-24=0/3613, 22-23=0/4175, 21-22=0/4253, 20-21=0/4253, 19-20=0/3550, 18-19=0/3522, 17-18=0/3550, 16-17=0/3550, 15-16=0/1537, 14-15=0/1538

WEBS 9-18=-545/0, 10-17=0/736, 9-20=-24/716, 8-20=-363/31, 7-23=-292/0, 5-23=0/426, 5-24=-659/0, 3-24=0/685,

3-25=-996/0, 2-25=0/1028, 2-26=-1311/0, 10-16=-1540/0, 11-16=0/987, 11-14=-1202/0, 12-14=0/969

NOTES- (5)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are MT20 plates unless otherwise indicated.

3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

4) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Job		Truss	Truss Type		Qty	Ply	LOT 0.0007 CAMPBELL RI	DGE 196 ALDEN WAY	ANGIER, NC
24-B431-F02		F216	FLOOR SUPPORTED GABL		1	1	Job Reference (optional	I) :	# 55091
				Run: 8.4 ID:pN	30 s Feb 1 lqJz?gO_	2 2021 Prin 6c5LWiSfi	: 8.630 s Jul 12 2024 MiTek GO4QyyWlk-Ygc2SbRP	Industries, Inc. Thu Dec 1 2cZnYtEaoRUdJXb1R	2 16:25:22 2024 Page 1 /KE?GHLVFkiBly9g8x
	I	1-3-0							
									Scale = 1:16.8
	₁ 3x6 =		3x4 =	1.5x3	3x4 =			3x4 =	3x4
1			2	3 	4			5	
		<			坆				
2-0	w1	$\langle \rangle$				$\langle \rangle$			W1 2
÷							$\langle //$		
				J₀F∕B1					
,		·							
		10 3x4 =		9 3x8 =			8 3x4 =		\bowtie
	3x4	0,11							3x6 =

			9-4-8		
Plate Offsets (X,Y)	[11:Edge,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2021/TPI2014	CSI. TC 0.32 BC 0.24 WB 0.31 Matrix-SH	DEFL. ir Vert(LL) -0.02 Vert(CT) -0.03 Horz(CT) 0.01	n (loc) I/defi L/d 2 9 >999 480 3 8-9 >999 360 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 51 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie 6-0-0 oc bracing: 10-11.	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing, Except:

9-4-8

REACTIONS. (lb/size) 11=502/0-3-8 (min. 0-1-8), 7=502/0-3-8 (min. 0-1-8) Max Uplift11=-56(LC 6), 7=-56(LC 7) Max Grav 11=528(LC 3), 7=528(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

1-11=-523/60, 1-2=-562/78, 2-3=-1072/0, 3-4=-1072/0, 4-5=-870/6 9-10=-14/954, 8-9=0/1109, 7-8=-75/627 TOP CHORD

BOT CHORD

WEBS 1-10=-121/723, 2-10=-648/149, 2-9=-206/315, 4-9=-253/254, 4-8=-434/199, 5-8=-153/479, 5-7=-804/118

NOTES-(5)

1) Unbalanced floor live loads have been considered for this design.

2) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 56 lb uplift at joint 11 and 56 lb uplift at joint 7.

3) This truss has been designed for a total drag load of 150 plf. Lumber DOL=(1.33) Plate grip DOL=(1.33) Connect truss to resist drag loads along bottom chord from 0-0-0 to 9-4-8 for 150.0 plf.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Plate Offsets (X,Y)	4-9-11 4-9-11 [3:0-1-8,Edge], [4:0-1-8,Edge], [6:0-1-	5-9-11 1-0-0 -8,Edge], [14:Edge,0-1-8]	6-9-11 1-0-0	11 4-5	-7-6 9-11
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.26 BC 0.50 WB 0.33 Matrix-SH	DEFL. ir Vert(LL) -0.08 Vert(CT) -0.09 Horz(CT) 0.02	n (loc) l/defl L/d 3 9-10 >999 480 9 9-10 >999 360 2 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 60 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	9 No.1(flat) 9 No.1(flat) 9 No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing d end verticals. Rigid ceiling directly applied	lirectly applied or 6-0-0 oc purlins,except l or 10-0-0 oc bracing.

REACTIONS. (lb/size) 14=625/0-3-8 (min. 0-1-8), 7=619/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-14=-624/0, 7-15=-619/0, 6-15=-618/0, 1-2=-424/0, 2-3=-1373/0, 3-4=-1681/0, 4-5=-1373/0, 5-6=-426/0

BOT CHORD 12-13=0/1056, 11-12=0/1681, 10-11=0/1681, 9-10=0/1681, 8-9=0/1055

3-12=-476/0, 2-12=0/413, 2-13=-822/0, 1-13=0/693, 4-9=-476/0, 5-9=0/414, 5-8=-818/0, 6-8=0/669 WEBS

NOTES-(4)

1) Unbalanced floor live loads have been considered for this design.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

3) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

