

Job	Truss	Truss Type	Qty	Ply	32 Kipling Creek-Roof-2913 B TMB TDR 4'Bump GLH
24120045-01	A12	Roof Special Girder	1	1	I73939014 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries. Inc. Tue Jun 03 14:18:21 ID:RTs0br_ihxuWJfKABVXeMCzq1uM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 $\begin{array}{l} \mathsf{ATTACH} < 2 \ \mathsf{LAYERS} > 3/4" \ \mathsf{PLYWOOD} \ \mathsf{OR} \ \mathsf{OSB} \ \mathsf{GUSSET} \ (23/32" \ \mathsf{RATED} \ \mathsf{SHEATHING} \ 48/24 \ \mathsf{EXP} \ \mathsf{1}) \\ \mathsf{TO} \ \mathsf{EACH} \ \mathsf{FACE} \ \mathsf{OF} \ \mathsf{TRUSS} \ \mathsf{WITH} \ (0.131" \ X \ 3.0") \ \mathsf{NAILS} \ \mathsf{PER} \ \mathsf{THE} \ \mathsf{FOLLOWING} \ \mathsf{NAILS} \ \mathsf{SCHEDULE}: \\ 2 \ X \ 3'S - 2 \ \mathsf{ROWS}, \ 2 \ X \ 4'S - 3 \ \mathsf{ROWS}, \ 2 \ X \ 6'S \ \mathsf{AND} \ \mathsf{LARGER} \ - 4 \ \mathsf{ROWS}: \ \mathsf{SPACED} \ @ \ 4" \ \mathsf{O.C}. \\ \mathsf{NAILS} \ \mathsf{OB} \ \mathsf{DRUSH} \ \mathsf{ROM} \ \mathsf{FROM} \ \mathsf{TO} \ \mathsf{BCC} \ \mathsf{ACC} \ \mathsf{ACC}$ FOR A NET 2" O.C. SPACING IN EACH COVERED TRUSS MEMBER. USE 2" MEMBER END DISTANCE. GLUE PLYWOOD LAYERS TOGETHER PRIOR TO ATTACHING TO TRUSS.

Scale = 1:79.5

	10-6-1 8-11-3	17-1-12	,			
8-5-10	8-10-6 11-11-0 15-6		22-5-15	23-1-0	30-8-0	35-0-0
8-5-10	0-4-12 1-4-15 3-7 0-0-13 1-6-14	-0 1-6-0 0-1-12	5-4-3	0-7-1	7-7-0	4-4-0

Plate Offsets (X, Y): [2:0-5-8,Edge], [5:0-0-8,0-1-8], [7:0-5-0,0-5-0], [10:0-6-0,0-2-0], [14:0-2-13,0-2-8]														
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.69 0.78 1.00	Vert(CT)	in -0.17 -0.32 0.08		l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 263 lb	GRIP 244/190 187/143 FT = 20%	
	No.2, 20-14:2x6 SP 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 2-6-15 oc purlins, e 2-0-0 oc purlins (6-C Rigid ceiling directly bracing, Except: 5-11-12 oc bracing: 18 5-10-5 oc bracing: 18 5-10-5 oc bracing: 11 1 Row at midpt 1 Brace at Jt(s): 11, 25 (size) 2=0-3-8, ' Max Horiz 2=314 (LC Max Uplift 12=-100 (Max Grav 2=2112 (I (Ib) - Maximum Corr Tension 1-2=0/51, 2-3=-3200 5-6=-1367/43, 6-7=-	eathing directly applied except end verticals, a p-0 max.): 10-11. r applied or 10-0-0 oc 21-23 -21 7-18. 5-25, 7-16 12=0-3-8 C 10) (LC 12) LC 25), 12=2631 (LC apression/Maximum 0/0, 3-5=-3042/0, -1447/16, 7-9=-2722/5	5P W d or ind 1) 2) 26) 5, 5)	EBS Unbalancec this design. Wind: ASCI Vasd=103rr II; Exp C; E and right ex Lumber DO TCLL: ASC Plate DOL= DOL=1.15 ff Exp.; Ce=0. Unbalancec design. This truss h load of 12.0 overhangs i 200.0lb AC	E 7-16; Vult=130mpl nph; TCDL=6.0psf; E nclosed; MWFRS (e posed; end vertical L=1.60 plate grip DC E 7-16; Pr=20.0 psf; 1.15); Pg=20.0 psf; Plate DOL=1.15); Is- 9; Cs=1.00; Ct=1.1(d snow loads have b as been designed fo psf or 2.00 times fla non-concurrent with unit load placed on	19=0/23 13=-24/ 1=-936, 17=-19 25=0/1 25=-15, 15=-24, 5=-598, 4=-41/2 22=-21; 9=0/11(e been of h (3-sec 3CDL=6, nvelope left and OL=1.3; (roof LL Pf=18.9; e en cor or great at roof le other lift the bott	69, 15-16=0// 3237, /0, 17-18=-93 1/660, 149, 81/239, /719, /142, 180, 5-23=0/7 2/0, 22-23=0/ 28 considered fo considered fo cond gust) 6.0psf; h=25ft; a); cantilever i d right expose 3 .: Lum DOL=: 9 psf (Lum Dugh Cat C; F D-0-0 sidered for th er of min roof bad of 13.9 ps ve loads. om chord, 13	6/0 60, 923, r Cat. left d; 1.15 fully his live sf on	 8) All 9) All 10) * Tr on 1 3-00 cho 11) All 12) Pro beaa 12. 13) This Inte R80 	olates ar olates ar olates ar his truss the botto 6-00 tall rd and a ocearings vide meo ring plat s truss is rrnationa 02.10.2 a	e MT2 e 3x5 l has be m cho by 2-0 iny oth are as chanic e capa a desig il Resid and ref	drainage to prev 0 plates unless of MT20 unless oth een designed for rd in all areas wh 0-00 wide will fit er members, with ssumed to be SP al connection (by able of withstandi ned in accordance dential Code sect erenced standard SEA 0363	therwise indicate a live load of 2 ere a rectangl petween the b BCDL = 10.0 2400F 2.0E others) of true ng 100 lb uplif e with the 201 ions R502.11. I ANSI/TPI 1.	ated. ed. 20.0psf e ottom psf. ss to t at joint 8
	9-10=-3856/59, 10-11=-111/25, 11-12=-212/65			load of 12.0 overhangs i 200.0lb AC	and of 12.0 psf or 2.00 times flat roof load of 13.9 psf on werhangs non-concurrent with other live loads. 20.0lb AC unit load placed on the bottom chord, 13-0-0 rom left end, supported at two points, 5-0-0 apart.					SEAL 036322				

June 4,2025

Continued on page 2 WARNING

Job	Truss	Truss Type	Qty	Ply	32 Kipling Creek-Roof-2913 B TMB TDR 4'Bump GLH
24120045-01	A12	Roof Special Girder	1	1	I73939014 Job Reference (optional)

Carter Components (Sanford, NC), Sanford, NC - 27332,

- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent at 34-0-12 from the left end to connect truss(es) to front face of bottom chord.
- 16) Fill all nail holes where hanger is in contact with lumber.
- 17) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 61 lb down and 30 lb up at 34-10-4 on top chord. The design/selection of such connection device(s) is the responsibility of others.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-48, 6-10=-48, 10-11=-58, 12-26=-20, 17-23=-20

Concentrated Loads (Ib)

Vert: 11=-34 (F), 22=-100, 19=-100, 34=-644 (F)

Run: 8.73 S Feb 19 2025 Print: 8.730 S Feb 19 2025 MiTek Industries, Inc. Tue Jun 03 14:18:21 ID:RTs0br_ihxuWJfKABVXeMCzq1uM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

