

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Contractor

Model: ¹³² Hidden Lakes - Plan 10 GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

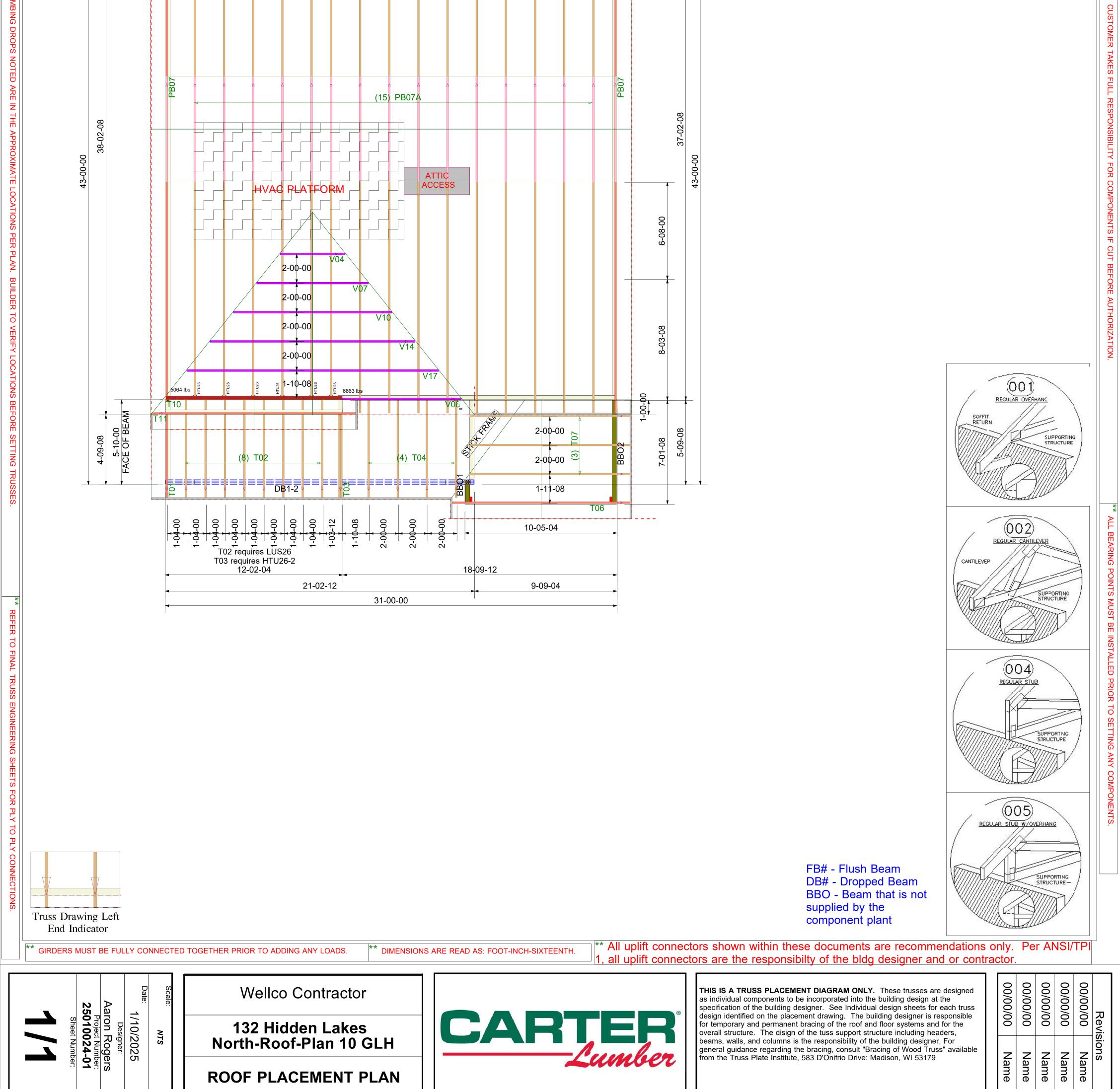
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

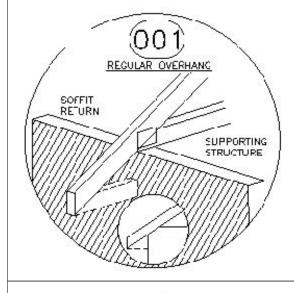
5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

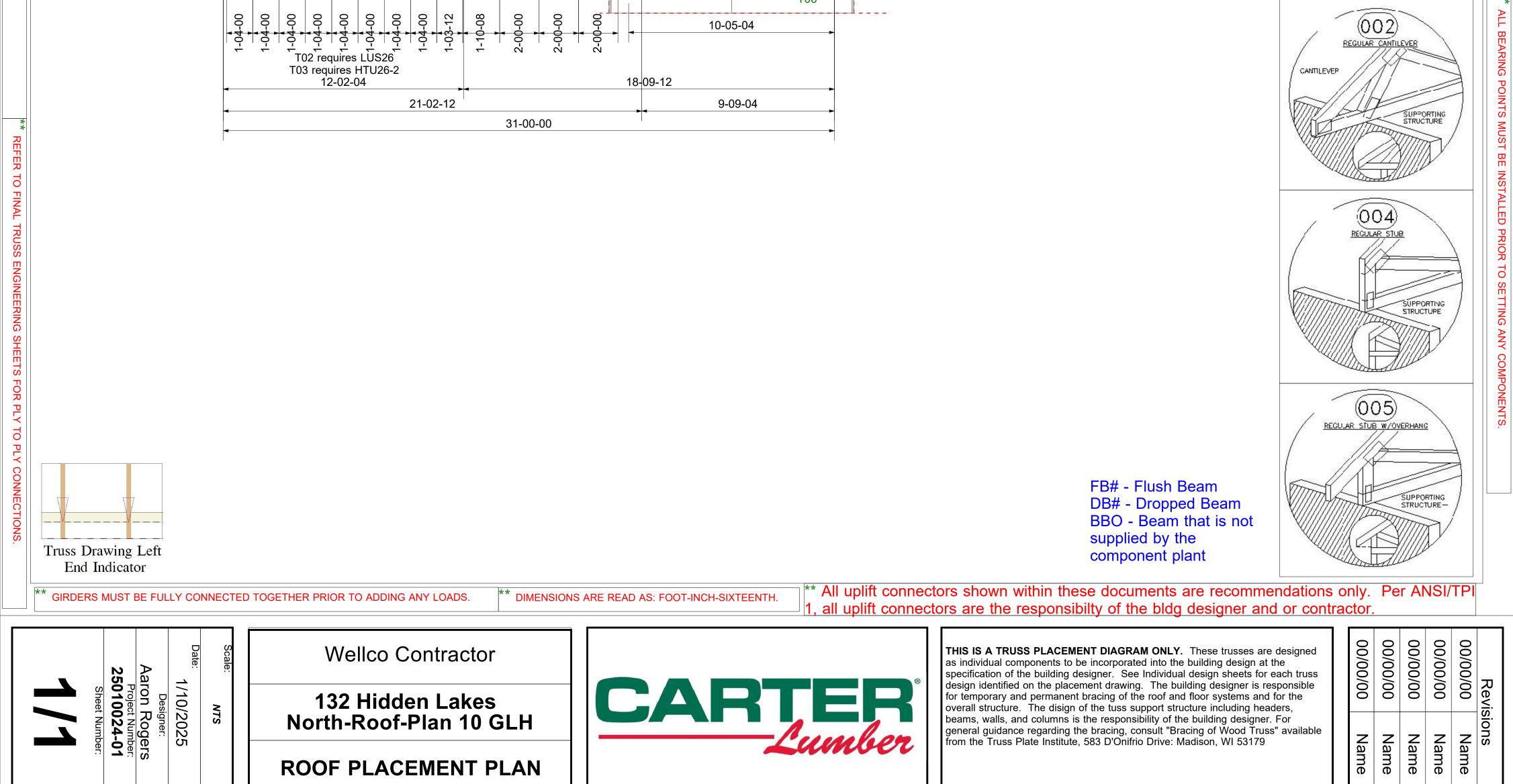
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

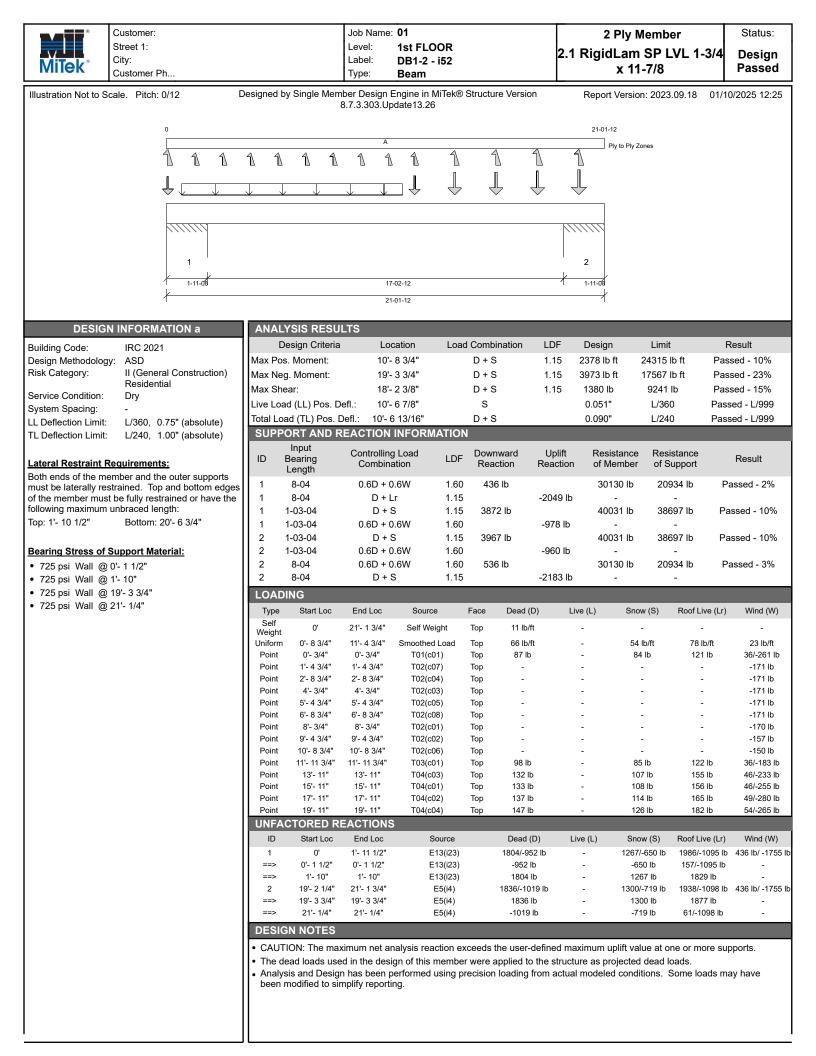
7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.


Approved By: _____




Date: _____


	31-00-00	
- 14-00-00	17-00-00	
T08 2-00-00		KEMPSVILLE BUILDING MATERIALS IS NOT RESPONSIBLE FOR THE DESIGN OR CALCULATION OF ANY AND ALL I-JOIST AND
2-00-00		LVL/PSL BEAM MATERIAL. ALL ENGINEERING AND INFORMATION FOR THIS MATERIAL IS TO BE PROVIDED BY THE ENGINEER OF RECORD MARKED ON APPROVED SET OF PLANS. ALL BEAM PLACEMENTS
2-00-00		ARE PER THE ENGINEERING RECEIVED. ALL CONNECTION DETAILS TO BE PROVIDED BY ENGINEER OF RECORD. REFER
(e) 10 (e) 10 (e	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TO ENGINEER OR RECORD FOR ALL MULTI-PLY LVL/ I-JOIST CONNECTION PATTERNS. BUILDER TO VERIFY ALL MATERIAL
2-00-00		LENGTHS, QUANTITIES, AND SIZES PRIOR TO ORDERING.
		PlotID Length Product Plies Net Qty Fab Type DB1-2 22-00-00 2.1 RigidLam SP LVL 1-3/4 x 11-7/8 2 2 FF
	T14-B T14-B T15 T15	Truss Connector Total ListManufProductQtySimpsonHTU266SimpsonLUS269SimpsonHTU26-21SimpsonOne H2.5A134
		1-06-04
		TO 2-00-00 2-00-00 0 2-00-00 0 0 0 0 0 0 0 0 0 0 0 0

DESIGN NOTES

- Tributary Loads have been generated based on actual spacing between members in the model which may differ from the default system spacing. The actual loads applied to the member are shown in the Specified Loads table.
- Transfer reactions may differ from design results as allowed per building codes and standard load distribution practices.
- This report is based on modeled conditions input by the user. Source information for the loads and supports are provided for reference only. Verify that all loads and support conditions are correct.
- Review all loads and reactions to ensure that the member/bearing/connector/structure can resist adequately. Unless already
 specified on this report, anchorage for uplift reactions to be specified by others. Installation of member and accessories (if
 required) as per manufacturer's instruction.
- Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.99

PLY TO PLY CONNECTION

Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 44. Row = 2, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face.

X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

FASTENER INSTALLATION - 2 ROWS (FROM ONE FACE)

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25010029-01 132 Hidden Lakes North-Roof-Plan 10 GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

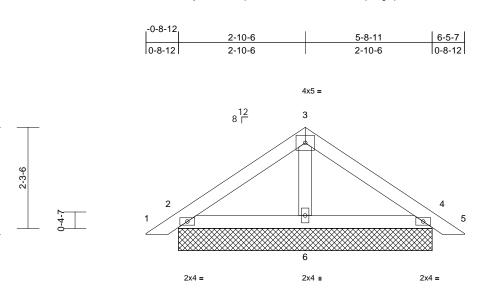
Pages or sheets covered by this seal: I70703713 thru I70703736

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

January 13,2025

Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	PB07	Piggyback	2	1	I70703713 Job Reference (optional)

2-5-0

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:10 ID:wjKFBa?RoBnOpc07UozVw1zwnLO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-8-11

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.15 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-8-11, Max Horiz 2=-51 (LC Max Uplift 2=-30 (LC Max Uplift 2=-30 (LC (lb) - Maximum Com Tension 1-2=0/24, 2-3=-114/7 2-6=-13/48, 4-6=-3/4	2 14), 4=-36 (LC 15) C 21), 4=218 (LC 22), C 22) ppression/Maximum 74, 3-4=-114/74, 4-5=0	6 7 8 9 1	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loo 0) * This truss la on the botton 3-06-00 tall l	E 7-16; Pr=20.0 ps I.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times i on-concurrent witl es continuous bot spaced at 2-0-0 c as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members	(Lum DC t B; Fully been cor for great flat roof li h other li ttom chor c. for a 10.1 with any d for a liv as where vill fit betw	DL=1.15 Plate Exp.; Ce=0.9 nsidered for t er of min roof oad of 20.0 p ve loads. d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	e 9; his f live sf on ads. 0psf					
WEBS	3-6=-87/18												

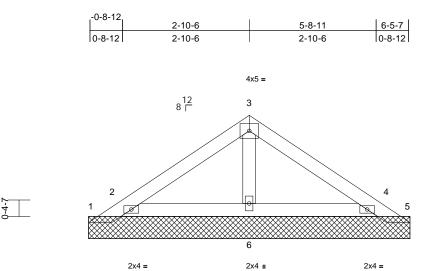
NOTES

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 3-11-10, Exterior(2E) 3-11-10 to 6-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	PB07A	Piggyback	15	1	I70703714 Job Reference (optional)

2-3-6

2-5-0

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:11 ID:3Ryt8403H6K4r2MujCZL5fzwnQX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

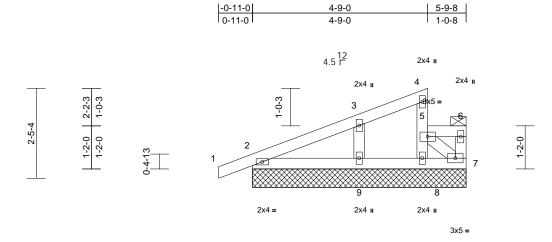
5-8-11

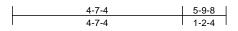
Scolo

Scale = 1:26											
TCLL (roof) 20.0 F Snow (Pf) 20.0 L TCDL 10.0 F	Plate Grip DOL 1.7 Lumber DOL 1.7 Rep Stress Incr YE	15	CSI TC BC WB Matrix-MP	0.20 0.07 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
5=7-2-15, 6 Max Horiz 1=-52 (LC 1 Max Uplift 1=-144 (LC 4=-86 (LC 1 Max Grav 1=66 (LC 14	pplied or 10-0-0 oc =7-2-15, 4=7-2-15, =7-2-15 0) 21), 2=-94 (LC 14), 5), 5=-141 (LC 22) 4), 2=413 (LC 21), 22), 5=46 (LC 15), 22)	 only. For str. see Standar, or consult qu 4) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: 5) Unbalanced design. 6) Gable requir 7) Gable studs 8) This truss ha chord live loc 9) * This truss h on the bottor 3-06-00 tall h chord and at 10) Provide mec 	snow loads have be es continuous botto spaced at 4-0-0 oc. is been designed fo ad nonconcurrent wi has been designed f in chord in all areas by 2-00-00 wide will by other members. hanical connection	I (norm d Deta gner as roof LL um DC 3; Fully een cor m chor r a 10.0 th any or a liv where fit betv (by oth	al to the face Is as applical as per ANSI/TF : Lum DOL=' L=1.15 Plate Exp.; Ce=0.9 isidered for th d bearing.) psf bottom other live loa e load of 20.0 a rectangle reen the botto ers) of truss t), ole, ol 1. 1.15); ds. opsf om					
TOP CHORD 1-2=-69/123, 2-3=-110 4-5=-44/110 BOT CHORD 2-6=-44/41, 4-6=-44/4 WEBS 3-6=-91/21 NOTES 1) Unbalanced roof live loads have be this design.	1	1 and 141 lb 11) n/a 12) See Standar	a capable of withstar uplift at joint 5. d Industry Piggybac nnection to base tru	k Trus	s Connection					OPTH CA	ROLA

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 3-11-10, Exterior(2E) 3-11-10 to 6-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

consult qualified building designer. LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH					
25010029-01	T01	Half Hip Supported Gable	1	1	I70703715 Job Reference (optional)					

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:11 ID:2EcAv09akBQYscVdl1iYymzwnLB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.2

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.15 1.15 NO IRC2021/	TPI2014	CSI TC BC WB Matrix-MP	0.08 0.05 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-9-8 oc purlins, ex 2-0-0 oc purlins: 5-8 Rigid ceiling directly bracing. (size) 2=5-9-8, 7 Max Horiz 2=62 (LC Max Uplift 2=-23 (LC 9=-37 (LC Max Grav 2=146 (LC	cept end verticals, a 5, 5-6. applied or 10-0-0 or 7=5-9-8, 8=5-9-8, 9= 14) 2 10), 7=-11 (LC 11), 2 14)	5) ed or 6) nd 7) 5 8) 5-9-8 9) 10) 11)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * on the bottor 3-06-00 tall b	7-16; Pr=20.0 ps .15); Pf=20.0 ps is=1.0; Rough Ca .1.10 snow loads have s been designed of or 1.00 times on-concurrent wit uate drainage to es continuous be spaced at 2-0-0 o s been designed ad nonconcurrent nas been designed ad nonconcurrent is been designed y 2-00-00 wide w yy other members	(Lum DC tt B; Fully been cor for great flat roof li h other lin prevent ttom chor oc. for a 10.1 with any d for a liv as where vill fit betw	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool oad of 20.0 p ve loads. water pondin, d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	e 9; f live sf on g. ads. 0psf		ncentra Vert: 4=		ads (lb) F)	
FORCES	(lb) - Maximum Com Tension 1-2=0/18, 2-3=-65/4		,	bearing plate	hanical connection capable of withs	tanding 2	3 lb uplift at j	joint					
	4-5=-151/0, 5-6=-7/2	14, 6-7=-30/27	51/0,	2, 37 lb uplift uplift at joint	at joint 9, 11 lb υ 2.	iplift at joi	nt 7 and 23 l	b					
BOT CHORD WEBS	2-9=-14/44, 8-9=-14 3-9=-159/148, 5-7=-		13)	Load case(s)	1 has/have beer								111.
NOTES	3-3=-133/140, 5-7=-	04/3			st review loads to led use of this tru		at they are co	orrect				WH CA	ROUL
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; I and C-C C left and rig exposed;C 	CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) -0-11-0 to 5 ght exposed ; end verti 2-C for members and f shown; Lumber DOL=	(3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zor cal left and right orces & MWFRS for	Cat. 15) le er 16)	Graphical pu or the orienta bottom choro Hanger(s) or provided suff Ib down at 4 such connec In the LOAD	rlin representatio ation of the purlin d. other connection ricient to support 7-4 on top chorce tion device(s) is t CASE(S) section re noted as front	n does no along the device(s concentra l. The de he respon , loads a	e top and/or s) shall be ated load(s) 1 sign/selection nsibility of oth pplied to the	20 n of ners.		4		SEA 0363	• -

Dead + Snow (balanced): Lumber Increase=1.15, Plate

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

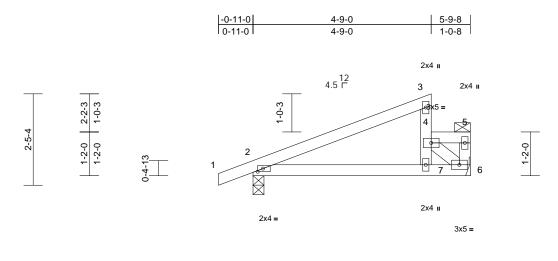
Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-40, 5-6=-40, 7-10=-13

1)

A. GILB


A. GILDIN

January 13,2025

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T02	Half Hip	8	1	I70703716 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:11 ID:mhHo83hBNiyJ8Nt4KGVsk2zwnKV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.7

Plate Offsets (X, Y): [2:0-1-11,0-1-0]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.15 1.15 NO IRC2021/T	PI2014	CSI TC BC WB Matrix-MP	0.61 0.24 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
this design 2) Wind: ASC Vasd=103 II; Exp B; and C-C E left and rig exposed;C reactions : DOL=1.6C 3) TCLL: AS Plate DOL DOL=1.15 Cs=1.00;	2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-8 oc purlins, ex 2-0-0 oc purlins: 4-7 Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=62 (LC Max Uplift 2=-16 (LC Max Grav 2=271 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-3=-203/ 3-4=-58/69, 4-5=-7/ 2-7=-8/174, 6-7=0/3 4-6=-442/0 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-11-0 to pht exposed ; end verti shown; Lumber DOL==) CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L	applied or 10-0-0 oc 6= Mechanical 14) C 10) C 38), 6=257 (LC 38) pression/Maximum 0, 4-7=-18/98, 11, 5-6=-30/18 44 been considered for (G-second gust) CDL=6.0psf; h=25ft; C tovelope) exterior zone 5-7-12 zone; cantileve cal left and right orces & MWFRS for 1.60 plate grip froof LL: Lum DOL=1. um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9;	6) F 7) T 1 or 8) * 9) F 10) C 11) L 11) L 11) L 13) F 13) F 13) F 13 Cat. 14) In 0 cat. 14) In 11)	oad of 12.0 p portangs no Provide adeco This truss ha chord live loa This truss ha thord live loa This truss ha thord live loa This truss ha thord live loa This truss ha thord live loa chord and an Refer to gird Doe H2.5A S ecommende JPLIFT at jt(does not con coad case(s) designer mus or the intence Graphical pu does not con coad case(s) designer mus or the orientat bottom chord Hanger(s) or provided suff design/selecc Increase=1. Uniform Loa Vert: 1-3:	other connection of cicient to support co ion of such conne of others. CASE(S) section, re noted as front (Standard ww (balanced): Lun 15 adds (lb/ft) =-40, 4-5=-40, 6-8: ed Loads (lb)	at roof le other lip orevent: or a 10. with any for a liv s where ll fit betw uss conre to bear to bear to bear to bear to bear to bear to bea	bad of 20.0 p ve loads. water pondinin 0 psf bottom other live load e load of 20.1 a rectangle veen the bott nections. ctors ing walls due r uplift only at d. Building at they are co bt depict the se e top and/or shall be ated load(s) . vice(s) is the pplied to the ck (B).	sf on g. ads. Opsf om e to nd prrect size The face		(W.11111)		SEA 0363	EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 13,2025

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	Т03	Half Hip	1	2	I70703717 Job Reference (optional)

-0-11-0

0-11-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-5-4

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:11 ID:MfeWfg3d4EsvM8k1eHY8UbzwnK0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-9-8

3x5 =

1-0-8

2x4 = 2x4 II

3

ø

4-9-0

4-9-0

12 4.5 Г

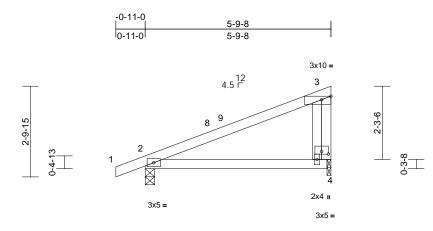
Page: 1

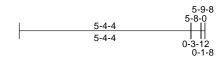
January 13,2025

818 Soundside Road Edenton, NC 27932

1-2-0 2-2-3 1-2-0 1-0-3 4 5 4 2 0-4-13 P 6 Ø 3x5 = 2x4 = 2x4 II 4-7-4 5-9-8 4-7-4 1-2-4

1-0-3


Scale = 1:32.6


						_							
Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.33	Vert(LL)	-0.01	7-10	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	-0.02	7-10	>999	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.10	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/T	PI2014	Matrix-MP								FT 000/
BCDL	10.0		_									Weight: 48 lb	FT = 20%
LUMBER	_				7-16; Vult=130m					CASE(S)			
TOP CHORD	2x4 SP No.2				h; TCDL=6.0psf							alanced): Lumb	er Increase=1.15, Plate
BOT CHORD	2x4 SP No.2				closed; MWFRS erior(2E) -0-11-0					crease=" niform Lo		lb /ft)	
WEBS	2x4 SP No.3				exposed ; end v			evel				4-5=-140 (F=-1	00) 6 9- 12
BRACING	0	- 4			for members an			r			,	ads (lb)	00), 0-0=-13
TOP CHORD		athing directly applied cept end verticals, an	101		wn; Lumber DO			-		Vert: 7=			
	2-0-0 oc purlins: 4-7			OL=1.60			0.			von. 7=	120 (• /	
BOT CHORD		applied or 10-0-0 oc			7-16; Pr=20.0 p								
	bracing.				.15); Pf=20.0 ps								
REACTIONS	(size) 2=0-3-8, 0	6= Mechanical			s=1.0; Rough Ca	at B; Fully	Exp.; Ce=0.9	9;					
	Max Horiz 2=62 (LC			s=1.00; Ct=	:1.10 snow loads have			h i a					
	Max Uplift 2=-7 (LC	10)	,	esign.	Show loads have	e been coi		1115					
	Max Grav 2=281 (L0	C 38), 6=352 (LC 38)			s been designed	for areat	er of min roof	live					
FORCES	(lb) - Maximum Com	pression/Maximum			osf or 1.00 times								
	Tension		0	verhangs no	on-concurrent wi	th other liv	ve loads.						
TOP CHORD	1-2=0/18, 2-3=-225/				uate drainage to			g.					
	3-4=-51/77, 4-5=-37				s been designed								
BOT CHORD	2-7=0/194, 6-7=-7/1	1			d nonconcurrent								
WEBS	5-7=0/497				as been designe n chord in all are			Upst					
NOTES					y 2-00-00 wide v			om					
	to be connected toge) nails as follows:	ther with 10d			y other members			0111				mun	111111
	s connected as follows.	- 2x4 - 1 row at 0-9-0			er(s) for truss to		nections.					NHTH C	ARO
OC.	S connected as follows	5. 2A+ 110W at 0 5 C	12) C	ne H2.5A S	impson Strong-T	Tie conne	ctors				5	R	
	ords connected as foll	ows: 2x4 - 1 row at			d to connect true						1.	OFES	SIDIN VIL
0-9-0 oc.					s) 2. This conne		r uplift only ar	nd		4	Ď	1P 1	NOU
Web conn	ected as follows: 2x4 ·	1 row at 0-9-0 oc.			sider lateral force					-			
	re considered equally		<i>'</i> .		1 has/have bee							SE	Δι : Ξ
	oted as front (F) or ba				st review loads to led use of this tru		at they are co	mect		Ξ			
	section. Ply to ply con o distribute only loads				rlin representatio		ot denict the	size				0363	322 : E
	erwise indicated.	noted as (F) of (D),			ition of the purlin					-		1	1 2
	ed roof live loads have	been considered for	b	ottom chord	l. ·	Ū	•			1	-	·	a
this design					other connection						-15	SE/ 036	AL 322
0					icient to support						11	710	BEIN
					tion of such conr	nection de	vice(s) is the					A. (GILLIN
			re	esponsibility	or others.							in the second se	mm
												lonuo	ny 12 2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T04	Monopitch	4	1	I70703718 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:12 ID:bOhwYkAHy??dxWwmggCFMUzwnJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:35.9

Plate Offsets (X, Y): [3:Edge.0-1-5]. [4:0-2-8.0-1-0]

Plate Offsets (X, Y): [3:Edge,0-1-5],	[4:0-2-8,0-1-0]									-	
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.11Lumber DOL1.11Rep Stress IncrYESCodeIRC	5 5	CSI TC BC WB Matrix-MP	0.66 0.47 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.01	(loc) 4-7 4-7 2	l/defl >959 >540 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheat 5-9-8 oc purlins, exc BOT CHORD Rigid ceiling directly a bracing. REACTIONS (size) 2=0-3-8, 4: Max Horiz 2=92 (LC 1 Max Uplift 2=-57 (LC Max Grav 2=395 (LC FORCES (lb) - Maximum Comp Tension TOP CHORD 1-2=0/29, 2-3=-83/75 BOT CHORD 2-4=-28/114 NOTES 1) Wind: ASCE 7-16; Vult=130mph 0 Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (em and C-C Exterior(2E) 0-11-0 to 2 to 2-6-0, Exterior(2E) 2-6-0 to 5-6 and right exposed ; end vertical le C for members and forces & MWI shown; Lumber DOL=1.60 plate (c) 2) TCLL: ASCE 7-16; Pr=20.0 psf (Lu DOL=1.15); Is=1.0; Rough Cat B; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have beet design. 4) This truss has been designed for load of 12.0 psf or 1.00 times flat overhangs non-concurrent with 0	applied or 10-0-0 oc =0-1-8 13) 10), 4=-41 (LC 14) :21), 4=298 (LC 21) pression/Maximum is, 3-4=-214/113 (3-second gust) DL=6.0psf; h=25ft; Cat. velope) exterior zone :-1-0, Interior (1) 2-1-0 i-0 zone; cantilever left aft and right exposed; C- FRS for reactions grip DOL=1.60 oof LL: Lum DOL=1.15 Im DOL=1.15 Plate : Fully Exp.; Ce=0.9; en considered for this greater of min roof live roof load of 20.0 psf on	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar 7) Bearing at jo using ANSI/I designer sho 8) Provide mec bearing plate 9) One H2.5A S recommende UPLIFT at jt(is been designed fo ad nonconcurrent wi has been designed fo n chord in all areas by 2-00-00 wide will y other members. int(s) 4 considers pr IPI 1 angle to grain uld verify capacity of hanical connection at joint(s) 4. Simpson Strong-Tie d to connect truss t (s) 2 and 4. This cor t consider lateral for Standard	ith any for a liv where fit betv arallel t formula of beari (by oth connecto bear	other live loa e load of 20.0 a rectangle veen the bott to grain value a. Building ing surface. ers) of truss to ctors ing walls due	Opsf om to				SEA 0363	22

January 13,2025

Page: 1

TRENGINEERING BY A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	Т06	Common Structural Gable	1	1	I70703719 Job Reference (optional)

5-2-2

5-2-2

12 6 ┌

21

3

ø

14

3x5 =

IRC2021/TPI2014

4

13

5-2-2

5-2-2

Matrix-MSH

CSI

TC

BC

WB

12

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

0.28

0.43

0.09

-0-11-0

0-11-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Sun Jan 12 16:02:12 ID:wW?YzW8yGGstrA9rWd6in9zwnG2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 10-4-4 11-3-4 0-11-0 5-2-2 4x5 = 5

> > 6

11

10-4-4

5-2-2

(loc)

10-11

10-11

2

in

-0.05

-0.07

0.01

l/defl

>999

>999

L/d

240

180

n/a n/a

22

7

10

8

K

3x5 =

PLATES

Weight: 46 lb

MT20

g

GRIP

244/190

FT = 20%

Scale = 1:34 Spacing 2-0-0 (psf) TCLL (roof) 20.0 Plate Grip DOL 1.15 Snow (Pf) 20.0 Lumber DOL 1 15 10.0 Rep Stress Incr YES

Code

0.0

3-1-7

9-9-(

3-4-8

BCDL		10.0	
LUMBER			
TOP CHORD	2x4 SP N	0.2	
BOT CHORD			
WEBS	2x4 SP N	0.3	
OTHERS	2x4 SP N	0.3	
BRACING			
TOP CHORD	Structural	wood shea	athing directly applied or
	6-0-0 oc p	ourlins.	
BOT CHORD		ng directly	applied or 10-0-0 oc
	bracing.		
REACTIONS	()	,	
	Max Horiz	· ·	/
		· ·	14), 8=-58 (LC 15)
	Max Grav	2=572 (LC	21), 8=572 (LC 22)
FORCES	(Ib) Max		
TORCES	()	imum Com	pression/Maximum
	Tension		
TOP CHORD	Tension 1-2=0/25,	2-3=-576/1	88, 3-4=-552/221,
	Tension 1-2=0/25, 4-5=-533/	2-3=-576/1 276, 5-6=-5	88, 3-4=-552/221, 533/276, 6-7=-552/221,
TOP CHORD	Tension 1-2=0/25, 4-5=-533/ 7-8=-576/	2-3=-576/1 276, 5-6=-5 188, 8-9=0	88, 3-4=-552/221, 533/276, 6-7=-552/221, /25
	Tension 1-2=0/25, 4-5=-533/ 7-8=-576/ 2-14=-106	2-3=-576/1 276, 5-6=-5 188, 8-9=0 5/460, 13-1	88, 3-4=-552/221, 533/276, 6-7=-552/221, /25 4=-106/460,
TOP CHORD	Tension 1-2=0/25, 4-5=-533/ 7-8=-576/ 2-14=-106 12-13=-10	2-3=-576/1 276, 5-6=-5 188, 8-9=0 6/460, 13-1 06/460, 11-	88, 3-4=-552/221, 533/276, 6-7=-552/221, /25 4=-106/460, 12=-106/460,
TOP CHORD	Tension 1-2=0/25, 4-5=-533/ 7-8=-576/ 2-14=-100 12-13=-10 10-11=-10	2-3=-576/1 276, 5-6=-5 188, 8-9=0 5/460, 13-1 06/460, 11- 06/460, 8-1	88, 3-4=-552/221, 533/276, 6-7=-552/221, /25 4=-106/460, 12=-106/460, 0=-106/460
TOP CHORD	Tension 1-2=0/25, 4-5=-533/ 7-8=-576/ 2-14=-106 12-13=-10 10-11=-10 5-12=-97/	2-3=-576/1 276, 5-6=-5 188, 8-9=0 5/460, 13-1 06/460, 11- 06/460, 8-1	88, 3-4=-552/221, 333/276, 6-7=-552/221, /25 4=-106/460, 12=-106/460, 0=-106/460 -110/96, 3-14=-62/53,

NOTES

Loading

TCDL

BCLL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Exterior(2R) 2-1-0 to 8-3-4, Exterior(2E) 8-3-4 to 11-3-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 5) desian.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 10) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 2 and 58 lb uplift at joint 8.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	Т07	Common	3	1	I70703720 Job Reference (optional)

5-2-2

5-2-2

12 6 Г

-0-11-0

0-11-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Sun. Jan 12 16:02:12 ID:CtwBRvDLcQltAFBBRbkLZdzwnFx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 3

10-0-12

4-10-10

5

PLATES

Weight: 40 lb

MT20

GRIP

244/190

FT = 20%

0-8-2

Page: 1

15 3x5 👟 14 3-1-7 3-4-8 4 2 9-9-(6 2x4 🛛 3x5 II 3x5 = 5-2-2 10-0-12 5-2-2 4-10-10 Plate Offsets (X, Y): [2:Edge,0-0-8], [5:0-2-8,0-3-3] 2-0-0 CSI DEFL in l/defl L/d (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 TC 0.51 Vert(LL) -0.03 6-13 >999 240 20.0 Lumber DOL 1.15 BC 0.34 Vert(CT) -0.05 6-13 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.08 0.01 2 n/a n/a 0.0 IRC2021/TPI2014 Matrix-MSH Code 10.0 4) Unbalanced snow loads have been considered for this design. 2x4 SP No.2 2x4 SP No.2 5) This truss has been designed for greater of min roof live 2x4 SP No.3 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Left: 2x4 SP No.3 overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom Right 2x4 SP No.3 -- 1-6-0 6) chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 6-0-0 oc purlins.

- BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 5=0-3-8 Max Horiz 2=58 (LC 14)
- Max Uplift 2=-57 (LC 14), 5=-37 (LC 15) Max Grav 2=563 (LC 21), 5=495 (LC 22) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/25, 2-3=-592/227, 3-5=-499/234 BOT CHORD 2-6=-159/428, 5-6=-157/428 WEBS 3-6=0/213

NOTES

Scale = 1:34

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WEBS

WEDGE

SLIDER

BRACING

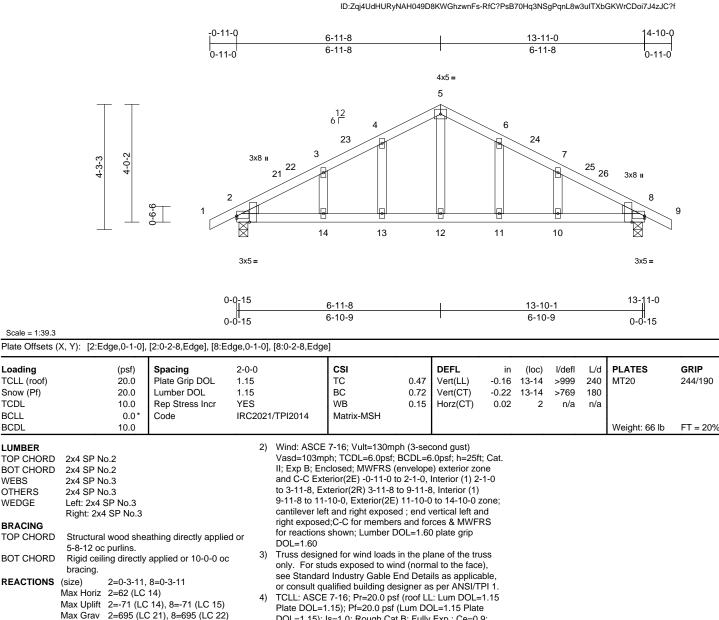
TOP CHORD

- 1) Unbalanced roof live loads have been considered for this design
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Exterior(2R) 2-1-0 to 7-0-12, Exterior(2E) 7-0-12 to 10-0-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors 9) recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	Т08	Common Structural Gable	1	1	I70703721 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:12

Page: 1

- FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/25, 2-3=-778/204, 3-4=-728/239, 4-5=-722/289, 5-6=-722/289, 6-7=-728/239, 7-8=-778/204, 8-9=0/25 BOT CHORD 2-14=-100/639, 13-14=-100/639 12-13=-100/639, 11-12=-100/639, 10-11=-100/639, 8-10=-100/639 WEBS 5-12=-118/369, 4-13=-125/85, 3-14=-76/54,
- NOTES

Scale = 1:39.3

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WEBS

OTHERS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

1) Unbalanced roof live loads have been considered for this design.

6-11=-125/85, 7-10=-76/54

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhands non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 8. This connection is for uplift only and does not consider lateral forces.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	Т09	Common	6	1	I70703722 Job Reference (optional)

6-11-8

3-4-6

Carter Components (Sanford, NC), Sanford, NC - 27332,

4-3-3

0-11-0

0-11-0

3-7-2

3-7-2

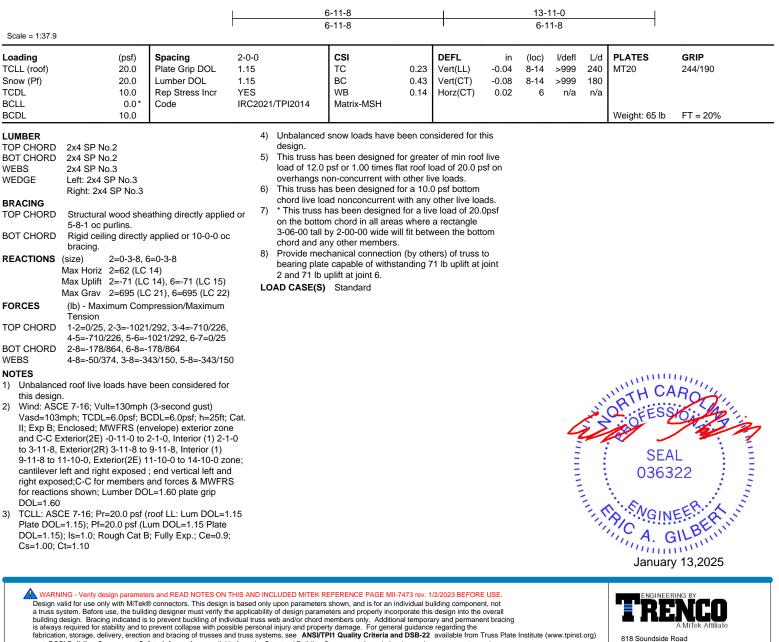
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:12 ID:D8Rd?jQ0ceuTjs?TwgXKIDzwnFg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-3-14

3-4-6

4x5 =

Page: 1


4-10-0

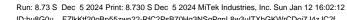
0-11-0

13-11-0

3-7-2

12 6 Г 4 2x4 👟 2x4 🧔 18 17 3 5 4-0-2 ¹⁹ 20 15 ¹⁶ 6 9-9-0 8 3x8 = 3x5 = 3x5 = 6-11-8 13-11-0 6-11-8 6-11-8 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.23 Vert(LL) -0.04 8-14 >999 240 MT20 244/190 1 15 BC Lumber DOL 0.43 Vert(CT) -0.08 8-14 >999 180 10.0 Rep Stress Incr YES WB 0.14 Horz(CT) 0.02 6 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH 10.0 Weight: 65 lb FT = 20%4) Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 2 and 71 lb uplift at joint 6. LOAD CASE(S) Standard SEAL 036322

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T10	Common Girder	1	2	I70703723 Job Reference (optional)

<u>2-11-2</u> 2-11-2 \vdash

9-2-2


6-3-0

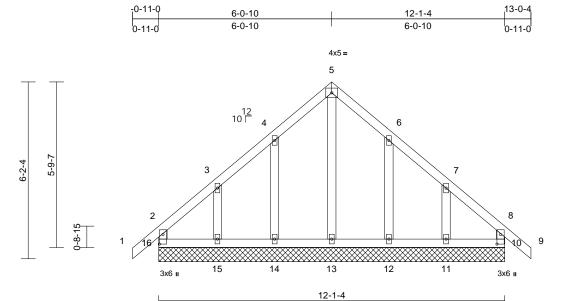
Carter Components (Sanford, NC), Sanford, NC - 27332,

Page: 1

ı	2-11-2	6-0-10	9-2-2	12-1-4
Г	2-11-2	3-1-8	3-1-8	2-11-2

		<u>2-11-</u> 2-11-
Scale = 1:70		
Plate Offsets (X, Y):	[1:Edge,0-1-5], [7:0-1-8,0-2-0], [9:0-5-0,0-2-8], [10:Edge,0-3	3-8]

	A, Y): [1:Edge,0-1-5],	[<i>1</i> .0-1-0,0-2-0], [9:0-	0-0,0-2-8	I, [10.⊏dge,0-3	-oj							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.38 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 13-14 13-14 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 242 lb	GRIP 244/190 FT = 20%
	4-7-3 oc purlins, ex Rigid ceiling directly bracing. 1 Brace at Jt(s): 6, 9	1-3-11 athing directly applie cept end verticals. applied or 10-0-0 oc 10=0-3-8 C 11) C 12), 10=-203 (LC 12 -C 22), 10=6663 (LC ppression/Maximum	d or 2) 3) 2) 21)	(0.131"x3") r Top chords o oc. Bottom chorr staggered at Web connec Except mem All loads are except if not CASE(S) se provided to o unless other Unbalanced this design. Wind: ASCE Vasd=103mµ II; Exp B; En cantilever lef	b be connected tograils as follows: connected as follows: connected as follow ds connected as follow ds connected as follows: ted as follows: 2x4 ber 4-13 2x4 - 1 ro considered equally ed as front (F) or b ction. Ply to ply con distribute only loads wise indicated. roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; (e t and right exposed d; Lumber DOL=1.0	vs: 2x4 - 1 row w at 0-6 / applie ack (B) nection noted been h (3-see 3CDL=6 nvelopp 1; end	- 1 row at 0-9-0 x6 - 3 rows at 0-9-0 oc, 5-0 oc. d to all plies, face in the LO, is have been as (F) or (B), considered for cond gust) 6.0psf; h=25ft; ' e) exterior zone vertical left and	AD Cat. e;	rec UP anc 12) Gra or t bott 13) Use 14- ma: con 14) Fill LOAD (1) De In: Ur Co	ommence LIFT at j d does na aphical p he orien tom choice Simpso 10dx1 1. x. startin nect true all nail h CASE(S ead + Sr crease= niform Lo Vert: 1- oncentra Vert: 1- 22=-17	ded to $(s) = 1$ t(s) 1 a ot consuring re- tation of d. on Stro- /2 Trus g at 2- ss(es) noles w) Stainow (ba 1.15 boads (II 4=-60, ted Lo. s=-171(10, B),	and 10. This conn sider lateral force: ppresentation doe of the purlin along ung-Tie HTU26 (1 is) or equivalent s 0-0 from the left of to back face of bo here hanger is in ndard alanced): Lumber b/ft) 4-8=-60, 8-11=-6 ads (lb) 0 (B), 20=-1710 (B), 24	bearing walls due to ection is for uplift only s. s not depict the size g the top and/or 0-16d Girder, spaced at 2-0-0 oc end to 11-4-0 to ottom chord. contact with lumber. Increase=1.15, Plate 50, 10-15=-20 B), 21=-1710 (B),
BOT CHORD WEBS NOTES	5-8=-196/121, 8-11= 4-6=-4413/204, 6-7= 7-9=-6315/270, 9-10 10-11=-236/79 1-14=-214/4424, 13- 12-13=-190/4809, 10	223/108, 4489/253,)=-6320/224, -14=-214/4424, 0-12=-194/5008 48/210, 4-13=-106/5; 14=-25/1756,	5) 6)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable studs This truss ha	snow loads have b spaced at 2-0-0 oc as been designed fo	d (norm nd Deta iigner a (roof LI Lum DC B; Fully een con	al to the face), ils as applicab s per ANSI/TP .: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9; nsidered for thi	, le, I 1. .15 ; is		1	35	SEA 0363	
			10	 This truss h on the bottor 3-06-00 tall b 	ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide wil hy other members.	for a liv where	e load of 20.0 a rectangle	psf				AIC A. G	


January 13,2025

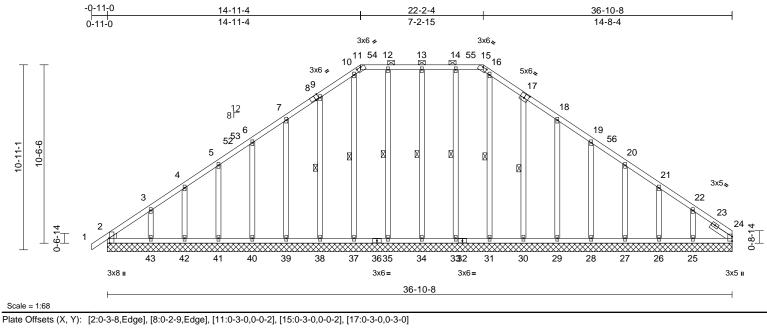
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T11	Common Supported Gable	1	1	I70703724 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:12 ID:?addf8zgiguRSNCttrJ6P?zwnDh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:40.3			F								1		
Plate Offsets (X, Y):	[10:0-4-0,0-1-8], [16:0-4-0,0-1-8]											
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		Plate Grip DOL	1.15	TC	0.15	Vert(LL)	n/a	-	n/a	999	MT20	244/190	


LUMBER 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING 2-0-10 to 3-0-10, Corner(3R) 3-0-10 to 9-0-10, Exterior (2N) OTHERS 2x4 SP No.3 BRACING 2-0-10 to 10-0-4, Corner(3R) 3-0-10 to 9-0-10, Exterior (2N) OP CHORD Structural wood sheathing directly applied or 6-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 10=12-1-4, 11=12-1-4, 12=12-1-4, 16=12-1	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(ps 20, 20, 10, 0, 10,	.0 .0 .0 .0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.05 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%	
 Plate DOL=1.15; Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15 Plate DOL=1.15; ls=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.0; Ct=1.10 Max Grav 10=148 (LC 27), 11=188 (LC 22), 12=277 (LC 21), 13=175 (LC 28), 14=277 (LC 21), 15=188 (LC 21), 16=161 (LC 26) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-16=-134/111, 1-2=0/41, 2-3=-101/90, 3-45-74/121, 4-5=-118/225, 5-6=-118/224, 6-7=-72/122, 7-8=-81/66, 8-9=0/41, 8-10=-130/108 BOT CHORD 15-16=-66/139, 12-139, 10-11=-66/139, 11-12=-66/139, 12-13=-05/50, 4-14=-236/137, 3-15=-163/156, 6-12=-236/136, 7-11=-160/160 WEBS 5-133=-205/50, 4-14=-236/137, 3-15=-163/156, 6-12=-236/136, 7-11=-160/160 NOTES 1) Unbalanced roof live loads have been considered for this design. 	LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood 6-0-0 oc purlins Rigid ceiling dire bracing. (size) 10=1: 16=1: Max Horiz 16=-1 Max Uplift 10=-2 12=-7 Max Grav 10=1: 12=2 14=2 14=2 14=2 16=1: (lb) - Maximum Tension 2-16=-134/111, 3-4=-74/121, 4-3 6-7=-72/122, 7-3 8-10=-130/108 15-16=-66/139, 13-14=-66/139, 13-14=-66/139, 5-13=-205/50, 4 3-15=-163/156, 7-11=-160/160	d shea s, exc ectly a 2-1-4, 2-1-4, 2-1-4, 23 (LC 72 (LC 135 (L 77 (L1 61 (L1 77 (L1) 77 (L1 77 (L1 77 (L1 77 (L1) 77 (L1	expt end verticals. applied or 6-0-0 oc , 11=12-1-4, 12=12- , 14=12-1-4, 15=12- C 12) C 11), 11=-103 (LC 1 C 12), 14=-71 (LC 14 C 14), 16=-42 (LC 1 C 37), 11=188 (LC 2 C 22), 13=175 (LC 2 C 21), 15=188 (LC 2 C 22), 15=188 (LC 2 C 26) pression/Maximum 0/41, 2-3=-101/90, 18/225, 5-6=-118/224 //66, 8-9=0/41, 5=-66/139, 1=-66/139, 1=-66/136, =-236/136,	d or 1-4, 3) 1-4, 4) (5), 4) (0) (2), 5) (8), 5) (1), 6) (1), 6) (1) (1) (1) (1) (1) (1) (1) (1	Vasd=103mp II; Exp B; En and C-C Cor 2-0-10 to 3-C (2N) 9-0-10 t cantilever lef right expose for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable requiri Truss to be f braced agair Cable studs This truss ha chord live loa 2) * This truss ha	bh; TCDL=6.0psf; closed; MWFRS (h=r(3E) -0-11-0 to h=0, Corner(3R) 3 io 10-0-4, Corner(t and right expose d;C-C for member shown; Lumber D ed for wind loads ids exposed to wi d Industry Gable F allifed building de i: 7-16; Pr=20.0 psf ls=1.0; Rough Ca =1.10 snow loads have is been designed psf or 1.00 times i on-concurrent wite ext MT20 unless es continuous bot ully sheathed from ist lateral moveme spaced at 2-0-0 o is been designed a nonconcurrent in all area by 2-00-00 wide w	BCDL=6 envelope 5 2-0-10, 3-0-10 to 3E) 10-0 ad; end \ s and for DOL=1.60 in the pland (norm End Deta signer at f(roof LL (Lum DC t B; Fully been cor for great flat roof la h other lin s otherwit tom chorn n one fac ent (i.e. dr c. for a 10.1 with any d for a liv is where ill fit betw	Suppsi, h=25ft; s) exterior zono Exterior (2N) Po-10, Exterior 4 to 13-0-4 zi vertical left and cress & MWFR 0 plate grip ane of the trus al to the face) its as applicat s per ANSI/TF L: Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 ansidered for the er of min roof pado f 20.0 ps ve loados. se indicated. d bearing. er or securely liagonal web). D psf bottom other live load of 20.0 a rectangle	d ss ss ss ble, ble, ble, ble, ble, ble, ble, ble,	bea 16, joini LOAD (ring pla 23 lb up ft at join t 11. CASE(S	te cap. lift at j t 15, 7) Sta	A connection (by able of withstandi oint 10, 71 lb upli 2 lb uplift at joint ndard ORTH CA ORTEESS SEA 0363	others) of truss t ng 42 lb uplift at je ft at joint 14, 106 12 and 103 lb upli ROULE I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2 I 2	oint Ib iift at

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T12	Piggyback Base Supported Gable	1	1	I70703725 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:13 ID:bpWnkZYnOQxeDlt5gwAML7zwnCx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (2	X, Y): [2:0-	-3-8,Edge],	, [8:0-2-9,Edge], [11:0)-3-0,0-0-2], [15:0-3-0	,0-0-2], [1	7:0-3-0,0-3	3-0]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matri	x-MSH	0.08 0.07 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 24	n/a n/a	L/d 999 999 n/a	MT20	GRIP 244/190	
LUMBER TOP CHORD BOT CHORD OTHERS WEDGE SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	Structural 6-0-0 oc p 2-0-0 oc p Rigid ceili bracing. 1 Row at (size)	0.2 0.2 0.3 SP No.3 SP	athing directly applie sept -0 max.): 11-15. • applied or 10-0-0 oc 13-34, 12-35, 10-37, 9-38, 14-33, 16-31, 8, 24=36-10-8, -8, 26=36-10-8, -8, 30=36-10-8, -8, 33=36-10-8, -8, 35=36-10-8, -8, 45=36-10-8, -8, 42=36-10-8, -8, 42=36-10, -8, 42=36-10, -8, 42=36-10, -8, 42=3	FORCES TOP CHORD (7-30) BOT CHORD (5), (5), (5), (7), (7), (7), (7), (7), (7), (7), (7	(lb) - M. Tensior 1-2=0/3 4-5=-12 7-9=-12 10-11= 12-13= 14-15= 16-18= 19-20= 22-24= 2-43=-1 41-42= 39-40= 37-38= 31-33= 29-30= 27-28= 25-26= 13-34= 10-37= 6-40=-1 3-43=-1 16-31=	25=216 27=169 29=211 31=173 34=222 37=181 39=219 41=172 43=222 aximum Cc n 30, 2-3=-22 46/138, 5-6 29/179, 9-1 -135/184, 1 -129/201, 1 -129/201, 1 -129/201, 1 -129/201, 1 -160/213, 1 -75/159, 32 -75/159, 32 -74/158, 22 -74/158, 22 -143/00, 12 -142/29, 9- 182/79, 5-4 165/102, 14 -134/0, 17-	6 (LC 53) 9 (LC 53) 9 (LC 53) 9 (LC 41) 9 (LC 44) 9 (LC 45) 9 (LC 45) 9 (LC 41) 1 (LC 57) 9 (LC 51) 1 (LC 51) 1 (LC 51) 9 (LC 51)	29/201, 29/201, 35/185, 10/104, 16, 21-22=-10 /159, /159, /159, /159, /159, /159, /158, /158, 8/45, /90, 7-39=-18 81, 4-42=-131 7/46, /93,	26), 41), 41), 40), 40), 40), 41), 40), 41), 25), 7147, 7147, 75/63,	th 2) WV Va II; ar 2- (2 zcc ar M gr 3) Tr or se or 4) TC PI DC CS	halance is design asd=103r Exp 8; E bd C-C Cd 6-12 to 1 N) 25-10 nne; canti d right e: WFRS fo ip DOL=1 uss desig ly. For s e Standa consult c CLL: ASC DL=1.15) i=1.00; C	E 7-16 mph; Tri inclose ormer(3 1-3-0, 8 to 3: lever le cxposec tuds e inclose tuds inclose tuds	ive loads have ; Vult=130mph CDL=6.0psf; Bd d; MWFRS (er 3E) -0-11-0 to 2 Corner(3R) 11- 3-2-4, Corner(3 aft and right exp d;C-C for memb ions shown; Lu or wind loads in xposed to wind ustry Gable En- d building desie 5; Pr=20.0 psf (L 0; Rough Cat E	been consid (3-second g CDL=6.0psf; velope) exte -6-12, Exter 3-0 to 25-10 E) 33-2-4 to bosed ; end bers and forc mber DOL= the plane of (normal to t d Details as gner as per the plane of (normal to t d Details as	dered for gust) ; h=25ft; Cat. erior zone ior(2N) -8, Exterior -36-10-8 vertical left zes & 1.60 plate f the truss the face), applicable, ANSI/TPI 1. n DOL=1.15 15 Plate
					20-27=	-178/74, 19 -142/81, 21 -166/114							Janua	GILB:	25

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type		Ply	132 Hidden Lakes North-Roof-Plan 10 GRH	
25010029-01	T12	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170703725
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S Dec 5 2	2024 MiTek Industries, Inc. Sun Jan 12 16:02:13	Page: 2		

ID:bpWnkZYnOQxeDlt5gwAML7zwnCx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

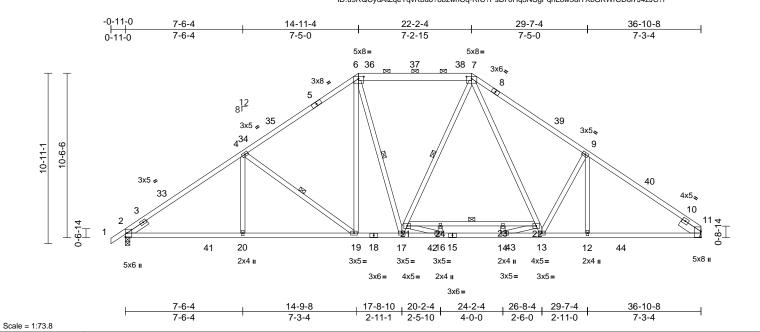
Carter Components (Sanford, NC), Sanford, NC - 27332,

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) n/a

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

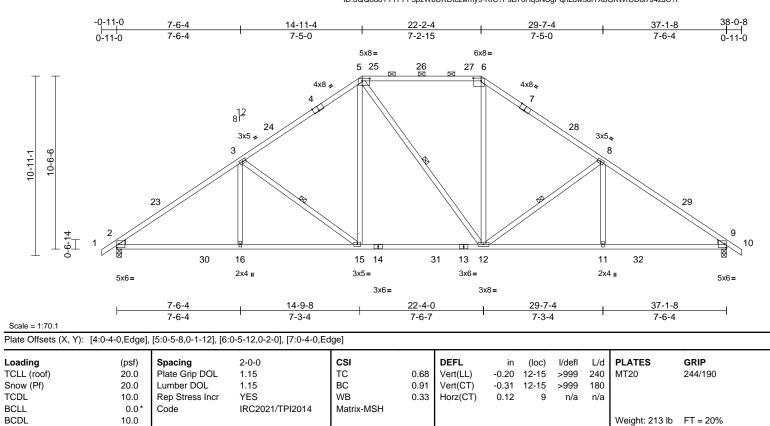
Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T13	Piggyback Base	6	1	Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:13 ID:u9RQCydAlZqeYqvRbuo?8bzwnCq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [6:0-4-0,0-1-9], [7:0-4-0,0-1-9], [11:0-4-6,0-0-1]

(psf)	Spacing	2-0-0											
(1·•··)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
20.0	Plate Grip DOL	1.15		TC	0.84	Vert(LL)	-0.13	19-20	>999	240	MT20	244/190	
20.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.26	19-20	>999	180	_		
10.0	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.10	11	n/a	n/a			
0.0*		IRC202	1/TPI2014	Matrix-MSH		. ,							
10.0											Weight: 251 lb	FT = 20%	
No.2, 7-8:2x4 SP No 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 1-6-0 Structural wood she except 2-0-0 oc purlins (4-9	2) I SP Io.2 d,	 this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-9-4, Interior (1) 2-9-4 to 9-8-11, Exterior(2R) 9-8-11 to 27-4-13, Interior (1) 27-4-13 to 33-2-4, Exterior(2E) 33-2-4 to 36-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 											
0 0 7	applied or 10-0-0 oc	0)	Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate										
	4-19, 7-17, 21-22, 6-	17	DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;										
· · · ·		4)		snow loads have b	een cor	nsidered for the	his						
		E)		a haan daalanad fa	r aroot	or of min roof	live						
Max Grav 2=1838 (I	_C 51), 11=1819 (LC	47) 3)											
· · /	pression/Maximum		overhangs n	on-concurrent with	other liv	/e loads.							
1-2=0/35, 2-4=-2904		-,	 6) 200.0lb AC unit load placed on the bottom chord, 22-2-4 from left end, supported at two points, 5-0-0 apart. 7) Provide adequate drainage to prevent water ponding. All lotters are 2x5 MT20 unloss otherwise instant. 								TH CA	ROLLIN	
17-19=0/1722, 16-1	7=0/1734, 14-16=0/2		This truss ha chord live loa) * This truss h	s been designed fo ad nonconcurrent w as been designed	or a 10.0 rith any for a liv) psf bottom other live loa e load of 20.0	ıds.		4	is	THE SE		
4-20=0/315, 4-19=-7 9-12=-11/191, 17-21 7-21=-78/303, 7-22= 13-22=-149/728, 21 23-24=-609/0, 22-23 16-24=0/9, 16-21=0	1=-207/153, =-41/916, -24=-609/0, 3=-609/0, 14-23=0/13 /583, 14-22=0/550,	11	3-06-00 tall b chord and an) Refer to gird) Provide med	by 2-00-00 wide will by other members, v er(s) for truss to tru hanical connection	fit betw with BC ss conr (by oth	veen the bott DL = 10.0ps nections. ers) of truss t	f. to		HILL NAME.		SEA 0363	22 EERER III	
	20.0 10.0 0.0* 10.0 0.0* 10.0 2x4 SP 2400F 2.0E No.2, 7-8:2x4 SP No 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 *Excep Left 2x4 SP No.3 *Excep Lef	20.0 Lumber DOL 10.0 Rep Stress Incr 0.0* Code 10.0 Code 2x4 SP 2400F 2.0E *Except* 6-7:2x6 SP No.2, 7-8:2x4 SP No.1 2x4 SP 2400F 2.0E 2x4 SP 2400F 2.0E 2x4 SP No.3 *Except* 17-7,7-13,17-6:2x4 No.2 Left 2x4 SP No.3 - 1-6-0, Right 2x6 SP N 1-6-0 Structural wood sheathing directly applied or 10-0-0 oc bracing. 1 Row at midpt 4-19, 7-17, 21-22, 6- (size) 2=0-3-8, 11= Mechanical Max Horiz 2=242 (LC 11) Max Uplift 2=-79 (LC 14), 11=-17 (LC 15) Max Grav 2=1838 (LC 51), 11=1819 (LC (lb) - Maximum Compression/Maximum Tension 1-2=0/35, 2-4=-2904/86, 4-6=-2336/111, 6-7=-1863/122, 7-9=-2730/112, 9-11=-2917/31 2-0=-0/315, 2-4=-2904/86, 4-6=-2336/111, 6-7=-1863/122, 7-9=-2730/112, 9-11=-2917/31 2-20=-124/2320, 19-20=-124/2320, 17-19=-0/1724, 14-16=0/22 13-14=0/1785, 12-13=0/2330, 11-12=-92/2330 11-12=-92/2330 11-12=-92/2330 11-12=-92/2330 4-20=0/315, 4-19=-741/232, 6-19=-66/62 9-12=-11/191, 17-21=-207/153, 7-21=-78/303, 7-22=-41/916, 13-22=-149/728, 21-24=-609/0,	$\begin{array}{c cccc} 20.0 & \mbox{Lumber DOL} & 1.15 & \mbox{Rep Stress Incr} & YES & \ Code & \ IRC202^{-1} & \ 10.0 & $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 20.0\\ 10.0\\ 0.0^*\\ 0.0^*\\ 10.0\\ 10.0\\ 0.0^*\\ 10.0\\ 1$	20.0 10.0Lumber DOL Rep Stress Incr VESBC WB Matrix-MSHVert(CT) Horz(CT)20.0 10.0Rep Stress Incr VESWB Matrix-MSH0.4110.010.0Not Color WB0.412x4 SP 2400F 2.0E 2x4 SP No.3 2x4 SP 2400F 2.0E*Except* 6-7:2x6 SP No.210.02x4 SP 2400F 2.0E 2x4 SP No.3 *Except* 17-7,7-13,17-6:2x4 SP No.210.011Unbalanced roof live loads have been considered for this design.2x4 SP No.3 *Except* 17-7,7-13,17-6:2x4 SP No.210.011.1 12 Left 2x4 SP No.3 - 1-6-0, Right 2x6 SP No.2 - 1-6-010.03tructural wood sheathing directly applied, except2-0-0 oc purlins (4-9-15 max.): 6-7. Rigid ceiling directly applied or 10-0-0 oc bracing.10.011.1 12 Ever 12 Left 2x4 SP No.3 - 1-16-04-19, 7-17, 21-22, 6-1713.1 2-0-0 oc purlins (4-9-15 max.): 6-7. Rigid ceiling directly applied or 10-0-0 oc bracing.10.014 Now Horiz 2=242 (LC 11) (size) 2=0-3-8, 11= Mechanical Max Horiz 2=242 (LC 11), 11=1819 (LC 47)10.010.1 12-20/35, 2-4=-2904/86, 4-6=-2336/111, 6-7=-1863/122, 7-9=-2730/112, 9-12=-11/191, 17-21=-207/153, 7-21=-78/303, 7-22=-41/916, 13-22=-149/728, 21-24=-609/0, 9-12=-11/191, 17-21=-207/153, 17-21=-207/153, 7-21=-270/153, 17-21=-78/303, 7-22=-41/916, 13-22=-149/728, 21-24=-609/0, 12-22=-200550,10.010.2 10.2 10.2 10.2 11-2 10.2 11-211.2 11.2 11.2 11.2 11.211.1 12-24=-609/0, 22-23=-609/0, 14-23=0/13, 16-24=-00/9, 0, 22-23=-609/0, 14-23=0/550,11.2 11.2 11.2 11.2 11.2<	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20.0 10.0 10.0Lumber DOL Rep Stress Incr VES Code1.5 VES VES VES CodeBC VES WB Matrix-MSHVert(CT) Horz(CT)-0.26 Horz(CT)19-20 >>999180 Horz(CT)2.4 SP 2400F 2.0E 2x4 SP 2400F 2.0E x4 SP 2400F 2.0E that 2x4 SP No.3 - 1-6-0, Right 2x6 SP No.2 $-1-6-0$ 1)Unbalanced roof live loads have been considered for this design.1)Unbalanced roof live loads have been considered for this design.13) One H2.5A Simps recommended to UPLIFT at I(ts) 2. does not consider and C-C Exterior(2E) 9-11-0 to 2-94, Interior (1) 2-9-4 to 9-8-11. Exterior(2E) 9-3-14 to 32-4.4. Exterior(2E) 9-3-14 to 33-2.4. Exterior(2E) 33-2.4 to 36-10-8 zone; caniliever left and right exposed; -C for members and forces & MWRES for reactions shown; Lumber DOL=1.60 plate grip DOL=1.6013) One H2.5A Simps recommended to UPLIFT at I(ts) 2. does not consider and C-C Exterior(2E) 9-011-0 to 2-94, Interior (1) 2-4-13 to 33-2-4, Exterior(2E) 3-3-24 to 36-10-8 zone; caniliever left and right exposed; -C for members and forces & MWRES for reactions shown; Lumber DOL=1.60 plate grip DOL=1.15; IIs=10, Rough Cat B, Fully Exp.; Ce=0.9; Cs=1.00, DL=1.15; IIs=10, Rough Cat B, Fully Exp.; Ce=0.9; Cs=1.00, DL=1.15; IIs=10, Cat U-1.16101111.111.111.111.112.0025, 2-4-:2904/86, 4-6:-2336/111, 6-7-:1863/12, 7-9-:271/32, 7-9=:273011.111.113.111.111.111.114.111.111.114.111.111.114.22-0-12/223011.211.214.22-0-12/223012.4-14916, 11.211.114.22-0-1	20.0 10.0Lumber DOL Rep Stress Incr YESLifs YESBC WB WB0.41Vert(CT) Horz(CT)-0.2619-20>99918010.010.010.011n/an/aWeight: 251 lbWeight: 251 lbWeight: 251 lb2x4 SP 2400F 2.0E*Except' 6-7.2x6 SP No.2, 7-8:2x4 SP No.11Unbalanced roof live loads have been considered for this design.1)Unbalanced roof live loads have been considered for this design.1)Unbalanced roof live loads have been considered for this design.10.010	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 13,2025

ſ	Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
	25010029-01	T14	Piggyback Base	5	1	I70703727 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:13 ID:8QQo8oYTTPFF3pzWbURDtczwmy9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

BCDL	10.0	
LUMBER TOP CHORD BOT CHORD		2)
WEBS	2x4 SP No.3 *Except* 12-5:2x4 SP No.2	
WEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3	
BRACING		
TOP CHORD	4-4-9 oc purlins, except	
	2-0-0 oc purlins (5-5-7 max.): 5-6.	3)
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.	3)
WEBS	1 Row at midpt 3-15, 5-12, 8-12	
REACTIONS	(,	4)
	Max Horiz 2=-249 (LC 12)	.,
	Max Uplift 2=-158 (LC 14), 9=-158 (LC 15) Max Grav 2=1805 (LC 51), 9=1799 (LC 53)	5)
FORCES	(lb) - Maximum Compression/Maximum	
TOROLO	Tension	6)
TOP CHORD		7)
	5-6=-1790/266, 6-8=-2306/248,	,
	8-9=-2914/225, 9-10=0/31	8)
BOT CHORD	,,,	
	12-15=-37/1696, 11-12=-60/2332,	
	9-11=-60/2332	
WEBS	3-16=0/309, 3-15=-792/234, 5-15=-45/781,	9)
	5-12=-208/210, 6-12=-28/759, 8-12=-793/234, 8-11=0/311	
NOTEO	0-12793/234, 0-11-0/311	
NOTES 1) Unbalance	ed roof live loads have been considered for	10)
this desig		,

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-9-9, Interior (1) 2-9-9 to 9-8-4, Exterior(2R) 9-8-4 to 27-5-4, Interior (1) 27-5-4 to 34-3-15, Exterior(2E) 34-3-15 to 38-0-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

- TCLL: ASCE 7-16; PT=20.0 pst (root LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 9. This connection is for uplift only and does not consider lateral forces.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	Т14-В	Piggyback Base	2	1	I70703728 Job Reference (optional)

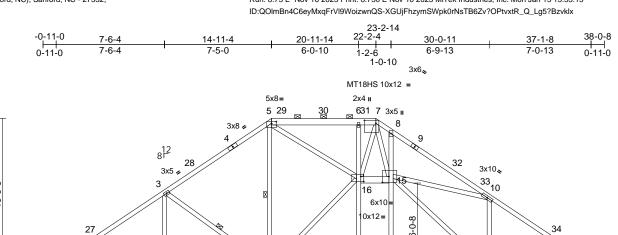
10-11-1

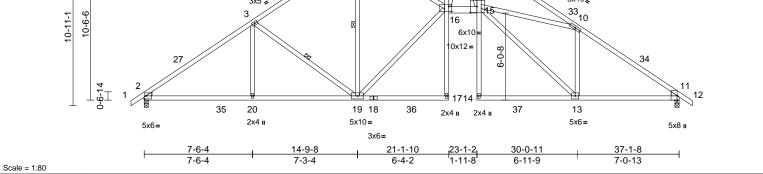
Scale = 1:73.8

Run: 8,73 E Nov 16 2023 Print: 8,730 E Nov 16 2023 MiTek Industries, Inc. Mon Jan 13 15:33:46 Page: 1 ID:AI1MRIs5Zoo7wT5WXhZrnBzwn7N-d8c4aFu7j6IRZLXG8G5FS8pCo?VpXHkKW?ctOrzvknK 38-0-8 7-6-4 14-11-4 22-2-4 29-7-4 37-1-8 7-6-4 7-2-15 7-5-0 7-5-0 7-6-4 0-11-0 5x8= 5x8= 5 32 33 34 6 3x8 🍫 3x8、 4 7 8¹² 31 35 3x5 🖌 3x5💊 3 8 10-6-6 30 36 9 0-6-14 ∏ 22 10 1<u>2</u>8 ⊓⊓ Ř 2 37 3815 14 18 17 1339 40 19 16 12 11 2x4 II 3x5= 3x5= 4x5= 3x5= 2x4 II 2x4 II 5x8 II 6x8 =3x6= 4x5= 2x4 II 3x5= 3x5= 3x6= 7-6-4 14-9-8 17-8-10 | 20-2-4 24-2-4 26-8-4 29-7-4 37-1-8 7-3-4 7-6-4 2-6-0 2-11-0 7-6-4 2-11-1 2-5-10 4-0-0 Plate Offsets (X, Y): [2:0-3-8,Edge], [5:0-4-0,0-1-9], [6:0-4-0,0-1-9]

					-								-
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.68		-0.15	18-19	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.00	Vert(CT)	-0.29	18-19	>999	180	11120	244/100
TCDL	10.0	Rep Stress Incr	YES		WB	0.47	Horz(CT)	0.12	9	n/a	n/a		
BCLL	0.0*	Code		21/TPI2014	Matrix-MSH	0.47	11012(01)	0.12	3	n/a	n/a		
BCDL		Code	160202	21/1712014	Wath A-WIGHT							Woight: 240 lb	ET - 20%
DODL	10.0		-									Weight. 249 lb	1 1 = 2078
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS		t* 6-12,16-6,16-5:2x4 athing directly applied (cept -8 max.): 5-6. applied or 10-0-0 oc 19,9-11. 3-18, 20-21, 6-16, 5- -3-8, 9=1660/0-3-8 C 12) : 14), 9=-38 (LC 15) .C 51), 9=1887 (LC 5 ax. Ten All forces 2 hen shown. =-2825/86, =-218/87, =-1900/121, 3-34=-1900/121, =-2807/70, =-3051/0 37=-112/2400,	+ SP N 1, 2 d or 16 3)	OTES Unbalanced this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Ext to 9-8-4, Ext to 34-3-15, E cantilever lef right exposer for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=1 Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u from left end Provide adee; This truss ha	3-19=0/332, 3-18=- 5-21=-43/965, 12-2 20-23=-623/0, 22-2 15-20=0/608, 13-21 5-20=-85/305, 5-16 roof live loads have 7-16; Vult=130mpl b; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-11-0 to erior(2E) -0-11-0 to for (2E) -0-11-0 to erior(2E) -0-11-0 to	1=-154, 3=-623 3=-623 =-56/30 b been of a been of a been of a been of a been of a been of a construction 2-9-9, 7-5-4, I 5 to 38-1 5 to 38-1 5 to 38-1 5 to 18, Fully een con or great at roof I other lift points, s revent of or a 10.0	r770, (0, 21-22=-62, (0, 21-22=-62, (2, 3-12=-677/2) (2, 3-12) (2,	3/0, 255, r (Cat. ne 9-9 -5-4 d S 1.15 2; his live sf on -2-4	trus Thi late 11) Gra or t bot LOAD	ss to bea s connector and force aphical p he orien tom chor CASE(S)	ring w. tion is is. urlin re tation (rd.) Sta	alls due to UPLIF for uplift only and presentation doe of the purlin along indard	The top and/or
	,	3=0/1763, 15-38=0/1 4=0/2280, 13-39=0/1 2=0/2444, 11-40=0/2	818, ⁹) * This truss h on the bottor 3-06-00 tall b	has been designed n chord in all areas y 2-00-00 wide will y other members,	for a liv where I fit betv	e load of 20.0 a rectangle veen the botto)psf om		10000000000000000000000000000000000000	in the second se	(IIIIII)	EER. AT INT

January 13,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



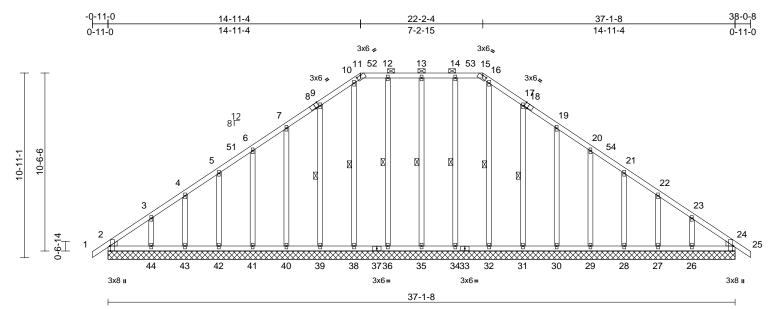
Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T15	Piggyback Base	2	1	I70703729 Job Reference (optional)

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Mon Jan 13 15:35:15

Page: 1

Plate Offsets (X, Y): [5:0-4-0,0-1-9], [7:0-9-8,0-2-8], [11:0-3-8,Edge], [15:0-5-8,0-5-0], [16:0-2-8,0-4-4]

						-												
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP					
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.74	Vert(LL)	-0.37	13-14	>999	240	MT20	244/190					
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.89	- ()	-0.64		>697	180	MT18HS	244/190					
TCDL	10.0	Rep Stress Incr	YES		WB	0.91	Horz(CT)	0.53	10 11	n/a	n/a		211/100					
BCLL	0.0*	Code		1/TPI2014	Matrix-MSH	0.01	11012(01)	0.00		n/a	n/a	1						
BCDL	10.0	Code	11(0202	1/11/2014	Wath World							Weight: 260 lb	FT = 20%					
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	PP CHORD 2x4 SP 2400F 2.0E *Except* 5-7:2x6 SP No.2 No.2 2x4 SP No.2 *Except* 17-6,8-14:2x4 SP No.3, 16-15:2x6 SP No.2 EBS 2x4 SP No.3 *Except* 16-5,15-7,13-15,15-10:2x4 SP No.2 EDGE EDGE Left: 2x4 SPF Stud Right: 2x4 SPF Stud Right: 2x4 SPF Stud RACING DP CHORD Structural wood sheathing directly applied or 2-6-11 oc purlins, except 2-0-0 oc purlins (3-4-6 max.): 5-7. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. EBS 1 Row at midpt 3-19, 5-19 CACTIONS (lb/size) 2=1540/0-3-8, 11=1540/0-3-8 Max Horiz 2=248 (LC 13) Max Uplift 2=-158 (LC 14), 11=-158 (LC 15) Max Grav 2=1791 (LC 51), 11=1782 (LC 53)				16-19=-57/2376, 5-16=0/3037, 7-16=-176/606, 7-15=-183/2981, 13-15=-86/3083, 10-15=0/2654, 10-13=-1814/134 1 NOTES 1) Unbalanced roof live loads have been considered for							 10) One RT15 MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 11. This connection is for uplift only and does not consider lateral forces. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 						
WEBS	0	3-19 5-19		right exposed:C-C for members and forces & MWFRS														
				for reactions shown; Lumber DOL=1.60 plate grip														
	· /	,		DOL=1.60														
			5) 3)		E 7-16; Pr=20.0 psf													
		<i>,,</i>	,		1.15); Pf=20.0 psf (
FORCES	,	1. (,		Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;										
1 011020	(lb) or less except w			Cs=1.00; Ct														
TOP CHORD	2-27=-2899/193, 3-2		4)	Unbalanced design.	snow loads have b	een cor	nsidered for t	nis				WITH CA	ROUL					
BOT CHORD	3-28=-2290/204, 4-2 4-5=-2095/249, 5-26 29-30=-4324/225, 6 6-31=-4331/225, 7-5 7-8=-5992/330, 8-9= 9-32=-6023/201, 32 10-33=-6159/181, 11 11-34=-2909/191 2-35=-226/2318, 20 19-20=-226/2318, 6 15-16=0/4139, 8-15)=-4323/225, -30=-4324/225, 31=-4329/225, -5954/222, -33=-6059/194, 0-34=-2746/220, -35=-226/2318, -16=-534/187,	5) 6) 7) 8) 9)	This truss ha load of 12.0 overhangs n Provide ader All plates are This truss ha chord live loa * This truss l on the botton 3-06-00 tall l	as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p e MT20 plates unle as been designed fad nonconcurrent v has been designed m chord in all areas by 2-00-00 wide wi ny other members,	at roof lo other liv prevent ss other or a 10.0 vith any for a liv s where Il fit betv	bad of 20.0 p ve loads. water ponding wise indicate 0 psf bottom other live loa re load of 20.1 a rectangle veen the botto	esfon g. ed. ads. Opsf		Contraction of the second seco	in	OFESS						
	11-13=-60/2324				- ,		·				1	in min	112 2025					


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

January 13,2025

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	T16	Piggyback Base Supported Gable	1	1	I70703730 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:14 ID:1TBkY_oeWsuG414YKOK8E1zwmxq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:68.2

Plate Offsets (X, Y): [2:0-3-8,Edge],	, [8:0-2-9,Edge], [11:0-3-0,0	0-0-2], [15:0-3-0,0	0-0-2], [18:0-2-9,E	dge], [24:()-3-8,Edge]						
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0-Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC	5	CSI TC BC WB Matrix-MSH	0.09 0.08 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	· · /	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 288 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 OTHERS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood she 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 BOT CHORD Rigid ceiling directly bracing. WEBS 1 Row at midpt REACTIONS (size) 2=37-1-8, 27=37-1-8, 27=37-1-4 30=37-1-4 34=37-1-6 44=37-1-6 44=37-1-6 Max Horiz 2=-249 (L 28=-61 (L 30=-57 (L 34=-23 (L 36=-22 (L 36=-22 (L 36=-27 (L) 36=-27 (L 36=-27 (L) 36=-27	-0 max.): 11-15. applied or 10-0-0 oc 13-35, 12-36, 10-38, 9-39, 14-34, 16-32, 17-31 , 24=37-1-8, 26=37-1-8, 8, 28=37-1-8, 29=37-1-8, 8, 31=37-1-8, 32=37-1-8, 8, 35=37-1-8, 36=37-1-8, 8, 42=37-1-8, 40=37-1-8, 8, 42=37-1-8, 43=37-1-8, 8, 42=37-1-8, 43=37-1-8, 8	FORCES TOP CHORD BOT CHORD	28=17 30=22 32=17 35=22 38=18 40=22 42=17	0 (LC 53), 5 (LC 53), 6 (LC 43), 2 (LC 45), 9 (LC 47), 9 (LC 47), 9 (LC 47), 6 (LC 41), 6 (LC 57), 6 (LC 51), 0 (LC 51), 0 (LC 51), 0 (LC 51), 0 (LC 51), 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 11-12=-1; 10-160/2, 10-160/2	27=153 (LC 29=215 (LC 31=234 (LC 36=223 (LC 39=234 (LC 39=234 (LC 41=215 (LC 43=150 (LC on/Maximum 4=-171/161, 17, 6-7=-133/ 30/215, 31/107, 1/60, 1/65, 1/18	26), 41), 41), 40), 40), 41), 41), 25),	this 2) Wir Vas II; E and 2-6 Ext 38- ver ford DO	balance s design. nd: ASC sd=103n Exp B; E d C-C Co i-12 to 1 rerior(2N 0-8 zon tical left ces & M 0L=1.60	10-38 6-41= 3-44= 19-30 21-28 23-26 d roof I E 7-16 nph; T(nclose ormer(3) 1-2-12, 9) 25-11 e; canti wFRS plate g	i=-189/62, 12-36= i=-149/29, 9-39=- 185/82, 5-42=-1 i=-170/105, 14-34= i=-132/0, 17-31=- i=-193/81, 20-29= i=-147/83, 22-27= i=-170/101 ive loads have be ; Vult=130mph (3 CDL=6.0psf; BCE d; MWFRS (enve iE) -0-11-0 to 2-6 , Corner(3R) 11-2 0-12 to 34-3-15, (illever left and rigt ght exposed;C-C for reactions sho ODL=1.60 IMAGE AND	183/46, 204/94, 7-40=-193, 47/84, 4-43=-135/7 183/47, 204/96, 185/82, 135/76, een considered for second gust) DL=6.0psf; h=25f; G 40pe) exterior zone -12, Exterior(2N) 2-12 to 25-10-12, Corner(3E) 34-3-15 th exposed ; end for members and wn; Lumber

Continued on page 2

818 Soundside Road Edenton, NC 27932

January 13,2025

Job	Truss	Truss Type		Ply	132 Hidden Lakes North-Roof-Plan 10 GRH		
25010029-01	T16	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170703730	
Carter Components (Sanford, N	C). Sanford. NC - 27332.	Run: 8.73 S Dec 5 2	2024 MiTek Industries, Inc. Sun Jan 12 16:02:14	Page: 2			

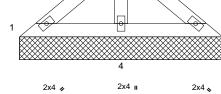
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8) 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 65 lb uplift at joint 2, 5 lb uplift at joint 24, 34 lb uplift at joint 35, 22 lb uplift at joint 36, 5 lb uplift at joint 38, 70 lb uplift at joint 39, 57 Ib uplift at joint 40, 57 lb uplift at joint 41, 62 lb uplift at joint 42, 42 lb uplift at joint 43, 108 lb uplift at joint 44, 23 Ib uplift at joint 34, 72 lb uplift at joint 31, 57 lb uplift at joint 30, 57 lb uplift at joint 29, 61 lb uplift at joint 28, 45 Ib uplift at joint 27, 99 lb uplift at joint 26, 65 lb uplift at joint 2 and 5 lb uplift at joint 24.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Sun Jan 12 16:02:14 ID:1TBkY_oeWsuG414YKOK8E1zwmxq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	V04	Valley	1	1	I70703731 Job Reference (optional)


Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:14 ID:o7uIAWxTBLFIrFLHnz6txFzwn26-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-4-15

3

Page: 1

2-2-8 4-0-13 2-2-8 1-10-6 4x5 = 2 12 10 ∟ 1-6-10 1-10-5 0-0-4 1 0

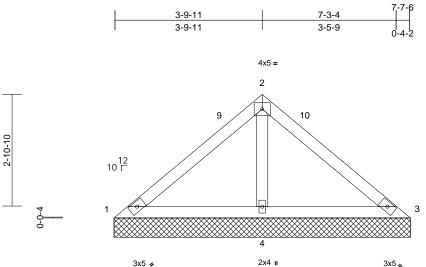
4-4-15

Scale = 1:25.3

		i											
Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.07	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.07	Vert(LL)	n/a	-	n/a	999 999	101120	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.03	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code		1/TPI2014	Matrix-MP	0.00	110112(112)	0.00		n/u	n#u	1	
BCDL	10.0											Weight: 16 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.3	athing directly appli	5) 6) 7) 8) ed or	design. Gable requir Gable studs This truss ha	snow loads have es continuous boi spaced at 4-0-0 c as been designed ad nonconcurrent	ttom choi bc. for a 10.	d bearing. 0 psf bottom						
BOT CHORD	4-4-15 oc purlins.	U U U	9)	on the bottor	nas been designe m chord in all area by 2-00-00 wide w	as where	a rectangle	•					
REACTIONS	•	15), 4=-28 (LC 14)	4 004	 Provide mec bearing plate and 28 lb up Beveled plat 	ny other members hanical connectio capable of withs lift at joint 4. e or shim required truss chord at join	n (by oth tanding 7 d to provi	' lb uplift at jo de full bearing	int 3					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	L	DAD CASE(S)		11(5) 1, 3.							
TOP CHORD BOT CHORD WEBS	1-2=-76/89, 2-3=-76												
NOTES													
1) Unbalanc	ed roof live loads have	been considered fo	r										
Vasd=103 II; Exp B; and C-C I exposed ; members	n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and ri and forces & MWFRS JOL=1.60 plate grip DC	CDL=6.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown	ie							4	22	ORTH CA	ROUT
 Truss des only. For see Stand or consult TCLL: AS Plate DOI 	signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi CCE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	the plane of the true (normal to the face) d Details as applicat gner as per ANSI/TF roof LL: Lum DOL= um DOL=1.15 Plate							11111VVV			EER ER III	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB


A. GILD January 13,2025

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	V07	Valley	1	1	I70703732 Job Reference (optional)

3-2-5

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:14 ID:o7uIAWxTBLFIrFLHnz6txFzwn26-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

7-7-6

Scale =	1:29.8
---------	--------

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.30 0.30 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-7-6 oc purlins. Rigid ceiling directly a bracing. (size) 1=7-7-15, Max Horiz 1=-71 (LC Max Uplift 1=-29 (LC 4=-83 (LC (lb) - Maximum Comp	applied or 6-0-0 oc 3=7-7-15, 4=7-7-15 10) 21), 3=-29 (LC 20), 14) 20), 3=102 (LC 21) 20)	d or d or d or d or d or d or d or d or	E 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (I Is=1.0; Rough Cat I=1.10 I snow loads have b res continuous botto a spaced at 4-0-0 oc as been designed for bad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. chanical connection e capable of withsta t at joint 3 and 83 lk	Lum DC B; Fully een cor om chor or a 10.0 vith any for a liv where l fit betw (by oth nding 2	DL=1.15 Plate Exp.; Ce=0.9 nsidered for th d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the botto ers) of truss t 19 lb uplift at ju); ds. dpsf om o					
TOP CHORD BOT CHORD WEBS	Tension 1-2=-104/263, 2-3=-1 1-4=-205/165, 3-4=-2 2-4=-472/222	104/263	11) Beveled pla	te or shim required truss chord at joint	to provi		9					
NOTES	ed roof live loads have l	been considered for									mmm	U117.

this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0 to 4-7-15, Exterior(2E) 4-7-15 to 7-7-15 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

- DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	V08	Valley	1	1	I70703733 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:14 ID:Dvvc1cqq1BXPh9x7QGXNimzwn7P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

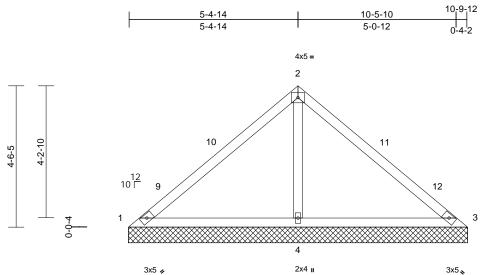
8-1-8 4 2x4 🛛 3 10 2x4 II 6-9-8 2 6-9-8 9 8 12 10 Г 0-0-4 1 4 5 11 2x4 🛛 2x4 II 2x4 🍬

8-1-8

Scale = 1:41.6

Scale = 1:41.6												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2	CSI TC BC WB Matrix-MP	0.68 0.19 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103r II; Exp B; E and C-C E: 3-9-2, Exte and right e:	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	cept end verticals. applied or 10-0-0 oc 4=8-1-13, 5=8-1-13 C 11) C 10), 4=-56 (LC 11), C 14) C 25), 4=196 (LC 5), C 5) npression/Maximum 163/151, 3-4=-160/7 8/113 (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 0-0, Interior (1) 3-0-0 1 zone; cantilever lef left and right expose	Plate DOL Cs= 4) Unbi desi 6) Gabi 5) Gabi 6) Gabi 7) This chor 8) * Thi on th 3-06 chor 9) Prov Bear 4, 18 10) Beve surfa 3 LOAD C	L: ASCE 7-16; Pr=20.0 a DOL=1.15); Pf=20.0 p =1.15); Is=1.0; Rough 1.00; Ct=1.10 alanced snow loads ha gn. le requires continuous l le studs spaced at 4-0- truss has been design le bottom chord in all a -00 tall by 2-00-00 widd d and any other membride model any other membride le buplift at joint 1 and eled plate or shim requi ace with truss chord at j ASE(S) Standard	osf (Lum DC Cat B; Fully ve been col bottom choi 0 oc. ed for a 10. ent with any ned for a liv reas where e will fit betw ers, with BC ction (by oth thstanding § 157 lb uplifit ired to provi	DL=1.15 Plate Exp.; Ce=0.9 Insidered for the d bearing. D psf bottom other live loa e load of 20.0 a rectangle ween the botto DL = 10.0psf ers) of truss t of bl uplift at j at joint 5.	e 9; his dds. 0psf om f. to ioint			i	ORTH CA	
 Truss designed only. For sister Standard 	mber DOL=1.60 plate gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi	the plane of the trus (normal to the face) d Details as applicab	, ble,						11111	A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G 11111111 January 13,2025

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	V10	Valley	1	1	Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:14 ID:Dvvc1cqq1BXPh9x7QGXNimzwn7P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

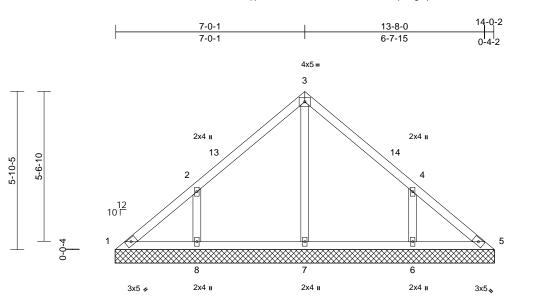
10-9-12

Scale =	1.26.0

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.51 0.27	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%	
	10-0-0 oc purlins. Rigid ceiling directly bracing.	C 21), 3=-81 (LC 20), _C 14)	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requin 7) Gable studs 8) This truss ha chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide med	snow loads have res continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designe m chord in all are by 2-00-00 wide v ny other members chanical connection	(Lum DC at B; Fully been cor ttom chor cc. for a 10.1 with any d for a liv as where vill fit betw s. on (by oth	DL=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottwers) of truss to	e); his ds. Dpsf om						
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Con Tension 1-2=-149/465, 2-3=- 1-4=-316/202, 3-4=- 2-4=-788/320	-149/465	1, 81 lb uplif 11) Beveled plat	e capable of withs t at joint 3 and 13 te or shim require truss chord at joi Standard	9 lb uplift d to provi	at joint 4.							
 Unbalance this design Wind: ASC Vasd=103i II; Exp B; E and C-C E to 7-10-6, cantilever right exposition 	CE 7-16; Vult=130mpf mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) 0-0-0 to 3- Exterior(2E) 7-10-6 to left and right exposed sed;C-C for members ns shown; Lumber DC	n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zon -0-0, Exterior(2R) 3-0 10-10-6 zone; ; end vertical left and and forces & MWFR:	Cat. e -0						4.11111		ORTH CA ORTHESS SEA 0363	L	and

Truss designed for wind loads in the plane of the truss 3) only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. ANNUMERIC STREET GI minim

January 13,2025



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	V14	Valley	1	1	I70703735 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:14 ID:Dvvc1cqq1BXPh9x7QGXNimzwn7P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

14-0-2

Scale	e = 1	:42.	7

BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD		20.0 20.0	Plate Grip DOL	1.15		TC	0.34	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL BCLL BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD			Lumber DOL	1.15		BC	0.11	Vert(TL)	n/a	-	n/a	999		
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD		10.0	Rep Stress Incr	YES		WB		Horiz(TL)	0.00	5	n/a	n/a		
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD		0.0*	Code	IRC202	I/TPI2014	Matrix-MSH								
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD		10.0											Weight: 60 lb	FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD				3)	Truss desian	ed for wind loads	in the pla	ane of the tru	SS					
OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No	o.2		- /		ds exposed to wir								
BRACING TOP CHORD BOT CHORD	2x4 SP No	5.2			see Standard	Industry Gable E	nd Deta	ils as applical	ole,					
TOP CHORD BOT CHORD	2x4 SP No	o.3			or consult qu	alified building de	signer as	s per ANSI/TF	기 1.					
BOT CHORD				4)		7-16; Pr=20.0 ps								
	Structural 6-0-0 oc p		athing directly applie	ed or	DOL=1.15);	.15); Pf=20.0 psf s=1.0; Rough Cat								
REACTIONS (applied or 6-0-0 oc	oplied or 6-0-0 oc 5) Unbalanced snow loads have been considered for this										
	(size)		, 5=14-0-12, 6=14-0 , 8=14-0-12	6)		es continuous bot		d bearing.						
l l	Max Horiz			7)		spaced at 4-0-0 o								
	Max Uplift 1=-25 (LC 10), 6=-150 (LC 15), 8=-153 (LC 14) Max Grav 1=116 (LC 25), 5=92 (LC 24),), 8)		s been designed and nonconcurrent			de						
			9)		as been designed									
I					n chord in all area			,po.						
		6=449 (LC 8=449 (LC	21), 7=296 (LC 20) 20)),	3-06-00 tall b	y 2-00-00 wide w	ill fit betw		om					
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	10) Provide mec	hanical connection capable of withst	n (by oth							
TOP CHORD		126, 2-3=-1	83/117, 3-4=-183/1	14,		ft at joint 8 and 15			oint					
	4-5=-115/	92		11		e or shim required			r					
BOT CHORD		,	4/94, 6-7=-54/94,			truss chord at join		Section Douring	5					11
WERS	5-6=-54/9		1/104 4 6- 274/400	LC	AD CASE(S)	Standard							TH CA	1111
WEBS	3-7=-215/	∪, ∠-ŏ=-3/4	1/194, 4-6=-374/192										N'TH UF	HOIL
1) Unbalancer												AN	AL HIGH	

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- 2) Wind: ASCE 7-16, Vulle 130mph (3-Second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-6, Interior (1) 3-0-6 to 4-0-6, Exterior(2E) 11-0-6 to 14-0-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	132 Hidden Lakes North-Roof-Plan 10 GRH
25010029-01	V17	Valley	1	1	Job Reference (optional)

4x5= 3

8-7-4

8-7-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

7-2-5

(psf)

20.0

20.0

10.0

0.0

10.0

Scale = 1:48.5

Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design

DOL=1.60

WEBS

NOTES

1)

2)

REACTIONS (size)

TCDL

BCLL

BCDL

Plate Offsets (X, Y): [7:0-3-0,0-3-0]

2x4 SP No 2

2x4 SP No 2

2x4 SP No.3

6-0-0 oc purlins.

bracing.

Max Horiz

Max Uplift

Max Grav

Tension

4-5=-111/243

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Sun Jan 12 16:02:15 ID:TamHZwblSeR3hNAsvmFIWzzwnCt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

16-10-7

8-3-2

Page: 1

17-2-9

2x4 II 2x4 II 15 14 2 4 <u></u> ഄ 16 13 12 10 Г 20, 0-0-4 818 196 7 3x5 🖌 2x4 II 5x6 = 2x4 II 3x5 💊 17-2-9 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP in (loc) Plate Grip DOL 1.15 TC 0.36 Vert(LL) 999 MT20 244/190 n/a n/a Lumber DOL 1.15 BC 0.19 Vert(TL) n/a n/a 999 Rep Stress Incr WB 0.30 Horiz(TL) 5 YES 0.00 n/a n/a Code IRC2021/TPI2014 Matrix-MSH Weight: 77 lb FT = 20% 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Structural wood sheathing directly applied or DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1 00. Ct=1 10 Rigid ceiling directly applied or 6-0-0 oc 5) Unbalanced snow loads have been considered for this design. 1=17-3-2, 5=17-3-2, 6=17-3-2, 6) Gable requires continuous bottom chord bearing. 7=17-3-2, 8=17-3-2 7) Gable studs spaced at 4-0-0 oc. 1=164 (LC 11) This truss has been designed for a 10.0 psf bottom 8) 1=-21 (LC 10), 6=-186 (LC 15), chord live load nonconcurrent with any other live loads. 8=-190 (LC 14) 9) * This truss has been designed for a live load of 20.0psf 1=118 (LC 25), 5=82 (LC 21), on the bottom chord in all areas where a rectangle 6=533 (LC 25), 7=517 (LC 24), 3-06-00 tall by 2-00-00 wide will fit between the bottom 8=537 (LC 24) chord and any other members, with BCDL = 10.0psf. (lb) - Maximum Compression/Maximum 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 1-2=-149/276. 2-3=-93/205. 3-4=-94/185. 1, 190 lb uplift at joint 8 and 186 lb uplift at joint 6. 11) Beveled plate or shim required to provide full bearing 1-8=-149/135, 6-8=-149/135, 5-6=-149/135 surface with truss chord at joint(s) 1, 5. 3-7=-334/0, 2-8=-400/224, 4-6=-400/222 LOAD CASE(S) Standard \cap Unbalanced roof live loads have been considered for Wind: ASCE 7-16; Vult=130mph (3-second gust) CHINA AND Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. SEAL II; Exp B; Enclosed; MWFRS (envelope) exterior zone 036322 and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-7-9, Exterior(2R) 5-7-9 to 11-7-9, Interior (1) 11-7-9 to 13-10-5, Exterior(2E) 13-10-5 to 16-10-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip G mmm January 13,2025

818 Soundside Road

Edenton, NC 27932

