

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Contractor

Model: 129 Hidden Lakes Plan 4 GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

ш MHII

PI ANS

10

L L L

Ī ۲ ۲

FB# - Flush Beam DB# - Dropped Beam BBO - Beam that is not supplied by the component plant

KEMPSVILLE BUILDING MATERIALS IS NOT RESPONSIBLE FOR THE DESIGN OR CALCULATION OF ANY AND ALL I-JOIST AND LVL/PSL BEAM MATERIAL. ALL ENGINEERING AND INFORMATION FOR THIS MATERIAL IS TO BE PROVIDED BY THE ENGINEER OF RECORD MARKED ON APPROVED SET OF PLANS. ALL BEAM PLACEMENTS ARE PER THE ENGINEERING RECEIVED. ALL CONNECTION DETAILS TO BE PROVIDED BY ENGINEER OF RECORD. REFER TO ENGINEER OR RECORD FOR ALL MULTI-PLY LVL/ I-JOIST CONNECTION PATTERNS. BUILDER TO VERIFY ALL MATERIAL LENGTHS, QUANTITIES, AND SIZES PRIOR TO ORDERING.

		Products			
ength	Product		Plies	Net Qty	Fab Type
2-00-00	2.1 Rigidl	am SP LVL 1-3/4 x 11-7/8	2	2	FF
nnector T	otal List				
Product	Qty				
HTU26	14				
	-				

REFER TO	FINAL [®]	TRUSS	ENGINEERING	SHEETS	FOR	PLY T		CONNEC	CTIONS.
	REFER TO	REFER TO FINAL	REFER TO FINAL TRUSS	REFER TO FINAL TRUSS ENGINEERING	REFER TO FINAL TRUSS ENGINEERING SHEETS	REFER TO FINAL TRUSS ENGINEERING SHEETS FOR	REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY 1	REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY	REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNEC

EAD AS: FOOT-INCH-SIXTEENTH. An upper connectors shown within these documents are recommendations only. For ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design of the building designer. See Individual design sheets for 00,00,00,00,00,00,00,00,00,00,00,00,00,	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing consult "Bracing	S Vame Name Name Nadison, WI 53179 Madison, WI 53179
D TOGETHER PRIOR TO ADDING ANY LOADS.	Wellco Contractor	129 Hidden Lakes North-Roof-Plan 4 GLH	ROOF PLACEMENT PLAN
" GIRDERS MUST BE FULLY CONNECTEI	Scale: Date: Aa 25	NTS 1/9/2023 Designer: ron Rog Project Nun 6010026 Sheet Num	5 jers nber: -01 iber:

*

DESIGN NOTES

- Tributary Loads have been generated based on actual spacing between members in the model which may differ from the default system spacing. The actual loads applied to the member are shown in the Specified Loads table.
- Transfer reactions may differ from design results as allowed per building codes and standard load distribution practices.
- This report is based on modeled conditions input by the user. Source information for the loads and supports are provided for reference only. Verify that all loads and support conditions are correct.
- Review all loads and reactions to ensure that the member/bearing/connector/structure can resist adequately. Unless already
 specified on this report, anchorage for uplift reactions to be specified by others. Installation of member and accessories (if
 required) as per manufacturer's instruction.
- Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.52

PLY TO PLY CONNECTION

- Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 44. Row = 2, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face.
 - X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.
 - FASTENER INSTALLATION 2 ROWS (FROM ONE FACE)

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25010026-01 129 Hidden Lakes North-Roof-Plan 4 GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I70611595 thru I70611623

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

January 9,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	V05	Valley	1	1	Job Reference (optional)	170611595

2-4-9

2-4-9

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-4-15

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:LGiRc4qW?Gn79ibRpZAEfozxSOq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x5 =

4-3-3

1-10-10

4-9-2

3

1-1-3 10 0 4 2x4 🍬 4-9-2

Scale = 1:23.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.09 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 4-9-2 oc purlins. Rigid ceiling directly bracing. (size) 1=4-9-2, 3 Max Horiz 1=-29 (LC Max Uplift 3=-13 (LC Max Grav 1=49 (LC 1)	athing directly applie applied or 6-0-0 oc 3=4-9-2, 4=4-9-2 10) 15), 4=-17 (LC 14) 20), 3=83 (LC 21), 4	5) 6) 7) 8) ed or 9) 10 4=268 LC	Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 3 and 17 lb o DAD CASE(S)	snow loads have es continuous bo spaced at 4-0-0 d is been designed ad nonconcurrent has been designed n chord in all are: by 2-00-00 wide v yo 2-00-00 wide v yo other members hanical connectio e capable of withs uplift at joint 4. Standard	been cor oc. I for a 10.0 t with any d for a liv as where will fit betw s. on (by oth- standing 1	bioinsidered for the d bearing. D psf bottom other live load of 20.0 a rectangle veen the botto ers) of truss to 3 lb uplift at ju	nis ds. Dpsf om oint				Weight. 19 ib	11200
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=103	(lb) - Maximum Com Tension 1-2=-62/95, 2-3=-83/ 1-4=-88/64, 3-4=-88/ 2-4=-182/74 ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; BC	pression/Maximum /97 /65 been considered fo (3-second gust) CDL=6.0psf; h=25ft;	r Cat.									WITH CA	RO

- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	V04	Valley	1	1	Job Reference (optional)	170611596

2-6-8

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:LGiRc4qW?Gn79ibRpZAEfozxSOq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

 $4 \cdot 3 \cdot 13$ $4 \cdot 5 =$ $4 \cdot 5 =$ $7 \cdot 12$ $7 \cdot 12$ $1 \cdot 10$ $1 \cdot 10$ $4 \cdot 5 =$ $4 \cdot 5$

2x4 II

8-7-10

3x5 🍫

Scale - 1:27 2

00010 = 1.21.2														
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.33 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 8-7-10 oc purlins. Rigid ceiling directly bracing. (size) 1=8-7-10, Max Horiz 1=-53 (LC Max Uplift 1=-40 (LC (LC) 4=-57 (LC Max Grav 1=65 (LC 4=616 (LC (lb) - Maximum Com Tension 1-2=-94/315, 2-3=-9 1-4=-273/141, 3-4=- 2-4=-494/180	athing directly applied applied or 6-0-0 oc 3=8-7-10, 4=8-7-10 (10) (21), 3=-25 (LC 20), (24) 20), 3=104 (LC 21), (20) (20) (21), 3=104 (LC 21), (20) (20) (20) (20) (20) (20) (20) (20)	4) 5) d or 6) 7) 8) 9) 10	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar) Provide mec bearing plate 1, 25 lb uplift DAD CASE(S)	7-16; Pr=20.0 psf .15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b es continuous botte spaced at 4-0-0 oc s been designed fr ad nonconcurrent v as been designed n chord in all areas by 2-00-00 wide will y other members. hanical connection capable of withstat at joint 3 and 57 lt Standard	(roof LL Lum DC B; Fully eeen cor or a 10.0 or a 10.0 or a 10.0 or a 10.0 s where I fit betw (by oth anding 4 o uplift a	:: Lum DOL=' IL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing.) psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 0 lb uplift at ju t joint 4.	1.15); ds.)psf om o						
 Unbalance 	ed root live loads have	been considered for											11.	

 Unbalanced roof live load this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-6-8 to 3-6-8, Exterior(2R) 3-6-8 to 5-8-1, Exterior(2E) 5-8-1 to 8-8-1 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322 January 9,2025

3

3x5 👟

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	V03	Valley	1	1	Job Reference (optional)	170611597

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:s4830kpuEyfGYY0FFsf?6bzxS0r-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

 1-2-6
 2-0-3

 1-2-6
 0-9-13

2x4 🧳 2x4 🔪

2-4-13

Scale = 1:23.6

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-MP	0.03 0.05 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 7 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural w 2-4-13 oc pu Rigid ceiling bracing. (size) 1= Max Horiz 1= Max Uplift 3= Max Grav 1=	2 	athing directly applied applied or 10-0-0 oc 3=2-4-13 10) 15) 20), 3=99 (LC 21)	7) 8) 9) 1 or 10) LOA	Gable studs : This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Provide meci bearing plate	spaced at 4-0-0 oc s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide will y other members. nanical connection capable of withsta Standard	e. or a 10.0 vith any for a liv s where I fit betw (by oth anding 8) psf bottom other live loae e load of 20.0 a rectangle even the botto ers) of truss to Ib uplift at joi	ds. Dpsf om o int 3.					
FORCES	(lb) - Maximu Tension	um Com	pression/Maximum											
TOP CHORD	1-2=-120/47	, 2-3=-13	32/51											
NOTES	1-5=-20/90													
1) Unbalanc	ed roof live load	ds have	been considered for											
this desig	n.													
 Wind: AS Vasd=103 II; Exp B; and C-C I exposed members Lumber E 	CE 7-16; Vult= 3mph; TCDL=6. Enclosed; MWI Exterior(2E) zor ; end vertical let and forces & N OOL=1.60 plate	130mph .0psf; BC FRS (en ne; cantil ft and rig /WFRS f grip DOI	(3-second gust) CDL=6.0psf; h=25ft; (velope) exterior zone lever left and right ht exposed;C-C for for reactions shown; L=1.60	Cat.							4	- AL	ORTH CA	BQUILITY I
3) Truss des	signed for wind	loads in	the plane of the truss	6							-			
only. For	studs exposed	to wind	(normal to the face),	<u> </u>							=	:	SEA	L : F
or consult	t qualified buildi	ing desig	ner as per ANSI/TPI	e, 1							= =	- 1	0363	22 : E
4) TCLL: AS Plate DO DOL=1.1 Cs=1.00;	SCE 7-16; Pr=20 L=1.15); Pf=20. 5); Is=1.0; Rouç Ct=1.10	0.0 psf (r .0 psf (Lu gh Cat B	roof LL: Lum DOL=1. um DOL=1.15 Plate ; Fully Exp.; Ce=0.9;	15							111.		S. ENGIN	EPA
5) Unbalanc design.	ed snow loads	have be	en considered for this	6								1	A. G	ILBEIT
6) Gable rec	quires continuou	us botton	n chord bearing.										in nu	(TITE)

January 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	V02	Valley	1	1	Job Reference (optional)	170611598

2-7-0

2-7-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-7-13

0-0-4

1-11-8

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:s483OkpuEyfGYY0FFsf?6bzxSOr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-9-7

2-2-7

2 9 Г

5-2-1

4x5 =

2x4 🍫

Scale = 1:24.8

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.12 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-2-1 oc purlins. Rigid ceiling directly bracing. (size) 1=5-2-1, 3 Max Horiz 1=-41 (LC Max Uplift 3=-9 (LC Max Grav 1=58 (LC (LC 20) (lb) - Maximum Com	athing directly applie applied or 6-0-0 oc 3=5-2-1, 4=5-2-1 ; 10) 15), 4=-29 (LC 14) 20), 3=89 (LC 21), 4 pression/Maximum	5 6 7 8 ed or 9 1 1 4=312 L	 Unbalanced design. Gable require Gable studs 1 This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Provide mech bearing plate and 29 lb upl OAD CASE(S) 	snow loads have to es continuous bott spaced at 4-0-0 or s been designed fut nonconcurrent van as been designed n chord in all areas y 2-00-00 wide wi y other members. nanical connectior capable of withsta ift at joint 4.	obeen cor c. for a 10.0 with any f for a liv s where ill fit betw n (by oth anding 9	sidered for th d bearing.) psf bottom other live load of 20.0 a rectangle veen the botto ers) of truss to lb uplift at joi	nis ds. Jpsf om o int 3						
TOP CHORD BOT CHORD WEBS	Tension 1-2=-65/114, 2-3=-8 1-4=-96/88, 3-4=-96/ 2-4=-228/102	4/115 /88												
NOTES 1) Unbalanci this design 2) Wind: AS(Vasd=103 II; Exp B; and C-C E exposed ; members Lumber D 3) Truss des only. For see Stando or consult 4) TCLL: AS	ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Be Enclosed; MWFRS (en Exterior(2E) zone; canti end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO igned for wind loads in studs exposed to wind lard Industry Gable Em qualified building desig CE 7-16; Pr=20.0 psf (been considered fo (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor ilever left and right ght exposed;C-C for for reactions shown vL=1.60 the plane of the true (normal to the face) d Details as applicat gner as per ANS/ITF roof LL: Lum DOL=1	r Cat. le ss , , , , , , , , , , , , , , , , , ,							Vanimus.		SEA 0363	R0/11/1	. Manunun

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Januar

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United and the component development development and the prevent of the storage of the prevention and the fabrication. Storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	V01	Valley	1	1	Job Reference (optional)	170611599

4-1-11

4-1-11

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-9-13

0-0-4

3-1-8

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:p0MYzOLdR_Wkb?IRqlC4ntzxSiq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11

4x5 = 2

8-3-6

7-10-13

3-9-2

8-3-6

0-4-10

12 3

3x5 💊

Page: 1

,12 9 Г 19 ŀ 1 4 3x5 🍫 2x4 🛛

10

Scale = 1:29.5

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-MP	0.34 0.32 0.11	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 30 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No. 2x4 SP No. 2x4 SP No. Structural N 8-3-6 oc pu Rigid ceilin bracing. (size) Max Horiz Max Uplift Max Grav (lb) - Maxin Tension	2 2 3 wood shea rifins. g directly 1=8-3-6, 3 1=-66 (LC 1=-45 (LC 4=-77 (LC 1=65 (LC LC 20) num Com	athing directly applie applied or 6-0-0 oc 3=8-3-6, 4=8-3-6 10) 21), 3=-33 (LC 20), 14) 20), 3=87 (LC 21), 4 pression/Maximum	4) 5) d or 6) 7) 8) 9) =618 10	TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. Gable requird Gable studs : This truss ha chord live loa * This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an) Provide mecl bearing plate 1, 33 lb uplift DAD CASE(S)	7-16; Pr=20.0 psf. 15); Pf=20.0 psf (s=1.0; Rough Cat 1.10 snow loads have b es continuous bott spaced at 4-0-0 oc s been designed f id nonconcurrent v as b	f (roof LL 'Lum DC B; Fully been cor om chor 2. or a 10.0 with any f for a liv s where Il fit betw h (by oth anding 4 b uplift a	.: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.9 asidered for th d bearing. D psf bottom other live loa e load of 20.0 a rectangle even the botto ers) of truss t 5 lb uplift at ji t joint 4.	1.15); ds.)psf om o					
BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 5-3-12,	1-4=-231/1 2-4=-497/2 ed roof live loo n. CE 7-16; Vult: Smph; TCDL= Enclosed; MV Exterior(2E) 0 Exterior(2E)	58, 3-4=-2 08 ads have =130mph 6.0psf; B0 VFRS (en -5-4 to 3-5 5-3-12 to	231/158 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 5-4, Exterior(2R) 3-5 8-3-12 zone; cantile	Cat. e -4 ver							4	rul i	OR FESS	ROLIN
left and rig exposed;C reactions s DOL=1.60 3) Truss desi only. For see Stand or consult	ght exposed ; C-C for memb shown; Lumb) igned for wind studs expose lard Industry (qualified buil	end vertio ers and fo er DOL=1 d loads in d to wind Gable End ding desig	cal left and right prces & MWFRS for .60 plate grip the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	s , le, l 1.							HILLING.		SEA 0363	EER. Kunning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 9,2025

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	PB02	Piggyback	11	1	Job Reference (optional)	170611600

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:OXxYLKnyUXqTDLRjCo6rdSzxSQB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-2-0

	3-2-0	
Scale = 1:29.3		1
Plate Offsets (X, Y): [2:0-2-4,0-1-0], [4:0-2-4,0-1-0]		

	(, .). [==,],	[-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	1/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.04 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-4-7 oc purlins. Rigid ceiling directly bracing. (size) 2=3-2-0, 4 Max Horiz 2=42 (LC Max Uplift 2=-15 (LC (LC 14) Max Grav 2=135 (LC 6=104 (LC (lb) - Maximum Com Tension 1-2=0/23, 2-3=-66/5: 2-6=-10/53, 4-6=-10, 3-6=-40/0 	athing directly applie applied or 10-0-0 oc 13) : 14), 4=-20 (LC 15), 2 21), 4=135 (LC 22) 2 22) pression/Maximum 2, 3-4=-66/52, 4-5=0, /53	4) 5) d or 6) 7) 8) 9) 9) 9) 10 , 11	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa) * This truss ha chord live loa) * This truss ha chord live loa) * On the bottor 3-06-00 tall h chord and ar) N/A	7-16; Pr=20.0 ps .15); Pf=20.0 ps ls=1.0; Rough Ca =1.10 snow loads have us been designed psf or 1.00 times on-concurrent wi es continuous bo spaced at 4-0-0 us been designed ad nonconcurrent n chord in all are n chord in all are y 2-00-00 wide v hy other members	sf (roof LL f (Lum DC at B; Fully e been cor l for great flat roof le th other li vittom chor oc. I for a 10.1 t with any ed for a liv as where will fit betv s.	:: Lum DOL= L=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 p <i>re</i> loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle <i>veen</i> the bott	1.15 9; his f live sf on dds. 0psf					
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10: II; Exp B; and C-C I exposed ; members Lumber D 3) Truss des only. For see Stanc or consult	eed roof live loads have n. GE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bu Enclosed; MWFRS (er Exterior(2E) zone; canti ; end vertical left and rig and forces & MWFRS OOL=1.60 plate grip DO Signed for wind loads in studs exposed to wind dard Industry Gable End t qualified building design	been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon- lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	12 LC Cat. e s fle, 11.) See Standar Detail for Co consult quali DAD CASE(S)	d Industry Piggyt nnection to base fied building desi Standard	oack Trus truss as a igner.	s Connection			Continues.		SEA 0363	L 22 LBERT

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United and the component development development and the prevent of the storage of the prevention and the fabrication. Storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	PB01	Piggyback	1	1	Job Reference (optional)	170611601

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:UP3vgui7SBc52f8dVc0zWhzxSRa-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 🛛 2x4 =

3-2-0

	3-2-0	
Scale = 1:29.3		I
Plate Offsets (X, Y): [2:0-2-4,0-1-0], [4:0-2-4,0-1-0]		

	(, .). [==,],	[
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MP	0.04 0.04 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD FORCES TOP CHORD BOT CHORD WEBS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat 4-4-7 oc purlins. Rigid ceiling directly bracing. (size) 2=3-2-0, 4 Max Horiz 2=41 (LC Max Uplit 2=-15 (LC (LC 14) Max Grav 2=130 (LC 6=101 (LC (lb) - Maximum Common Tension 1-2=0/22, 2-3=-64/51 2-6=-10/51, 4-6=-9/5 3-6=-39/0 	athing directly applie applied or 10-0-0 oc 13) : 14), 4=-20 (LC 15), 2 21), 4=130 (LC 22) 2 22) pression/Maximum 1, 3-4=-64/51, 4-5=0 i1	4) 5) d or 6) 6=-1 10 , /22	TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa) * This truss ha chord live loa) * This truss ha chord live loa) * This truss ha chord and ar) N/A	7-16; Pr=20.0 ps .15); Pf=20.0 psf Is=1.0; Rough Car =1.10 snow loads have us been designed psf or 1.00 times f on-concurrent with es continuous bot spaced at 4-0-0 o us been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members	f (roof LL (Lum DC t B; Fully been cor for great lat roof k n other lin tom chor c. for a 10.1 with any d for a liv is where ill fit betv	L: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof bad of 20.0 ps re loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle reen the bottom	1.15 e); live sf on ds. Dpsf						
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C exposed members Lumber [3) Truss des only. For see Standor or consul	ced roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; BC Enclosed; MWFRS (en Exterior(2E) zone; canti ; end vertical left and rig and forces & MWFRS (DOL=1.60 plate grip DO DOL=1.60 plate grip DO DOL=1.60 plate grip DO and for wind loads in r studs exposed to wind dard Industry Gable End t qualified building desig	been considered for (3-second gust) CDL=6.0psf; h=25ft; welope) exterior zon lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as application gner as per ANSI/TP	12 LC Cat. e s , le, 11.) See Standar Detail for Co consult quali DAD CASE(S)	d Industry Piggybi nnection to base t fied building desig Standard	ack Trus iruss as a jner.	s Connection applicable, or			Withham		SEA 0363	ROLINI L 22 LBERINI	A ANULTING

GI minim January 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	D03	Common Girder	1	2	Job Reference (optional)	170611602

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:08 ID:2kM3r7M7enKtRTyvOpyZR4zxSO8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [6:Edge,0-2-8], [7:0-3-8,0-6-0], [9:0-3-8,0-6-0]

Scale = 1:51.8

Loading	(psf)	Spacing	1-11-4		CSI	0.40	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15			0.48	Vert(LL)	-0.06	7-8	>999	240	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.25	Vert(CT)	-0.11	7-8	>999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.84	Horz(CT)	0.01	6	n/a	n/a			
BCLL	0.0	* Code	IRC202	21/TPI2014	Matrix-MSH									
BCDL	10.0											Weight: 266 lb	FT = 20%	
LUMBER			2) All loads are	considered equally	/ applie	d to all plies,			Vert: 1-	3=-58,	3-5=-58, 6-10=-1	9	
TOP CHORD	2x4 SP No.2			except if note	ed as front (F) or ba	ack (B)	face in the LC	DAD	Co	oncentra	ted Lo	ads (lb)		
BOT CHORD	2x8 SP 2400F 2.0)E		CASE(S) see	ction. Ply to ply con	nection	s have been			Vert: 9=	-1282	(F), 7=-1282 (F),	8=-1282 (F),	
WEBS	2x4 SP No.3 *Exc	cept* 10-1,6-5:2x6 SP	No.2,	provided to d	listribute only loads	s noted	as (F) or (B),			13=-128	32 (F),	14=-1282 (F), 15	=-1282 (F), 16=	-1417
	8-3:2x4 SP No.2			unless other	wise indicated.					(F), 17=	-1423	(F)		
BRACING			3) Unbalanced	roof live loads have	e been	considered fo	r						
TOP CHORD	Structural wood s	heathing directly app	lied or	this design.										
	4-11-14 oc purlin	s, except end vertica	ls. 4) Wind: ASCE	7-16; Vult=130mpl	h (3-seo	cond gust)	-						
BOT CHORD	Rigid ceiling dired	ctly applied or 10-0-0	ос	Vasd=103mp	oh; TCDL=6.0psf; E	BCDL=6	0.0psf; h=25ft;	Cat.						
	bracing.			II; EXP B; En	closed; MVVFRS (e	nvelope	e) exterior zor	ne;						
REACTIONS	(size) 6=0-3-	8, 10=0-3-8		cantilever lef	t and right exposed	1; end \	ertical left an	d						
	Max Horiz 10=17) (LC 11)		ngni exposed	a; Lumber DOL=1.0	ou plate	grip DOL=1.	60						
	Max Uplift 10=-34	8 (LC 12)	F		7 16. Dr. 20.0 pof	(reaf)		1 1 5						
	Max Grav 6=674	2 (LC 22), 10=5813 (L	.C 21)	Ploto DOI -1	15): Pf=20.0 psf (L LUIII DOLE	1.15						
FORCES	(lb) - Maximum C	ompression/Maximun	'n		.15), FI=20.0 pSI (I	B. Fully	$E_{\text{VD}} \cdot C_{\text{O}} = 0.0$.						
	Tension			Cs=1.00: Ct-	-1 10, Rough Cat	D, T ully	Lxp., 0e=0.3	,						
TOP CHORD	1-2=-6204/375, 2	-3=-4873/323,	6) Unbalanced	snow loads have b	een cor	nsidered for th	nis						
	3-4=-4873/324, 4	-5=-6209/71,		design		00.1 00.								
	1-10=-4759/294,	5-6=-4753/94	7) This truss ha	s been designed fo	or a 10.	0 psf bottom							
BOT CHORD	9-10=-200/1042,	7-9=-310/5000, 6-7=0)/958	chord live loa	ad nonconcurrent w	vith anv	other live loa	ds.						
WEBS	1-9=-192/4112, 5	-7=-124/4079,	8) * This truss h	as been designed	for a liv	e load of 20.0)psf					11	
	2-9=-135/1698, 2	-8=-1540/243,		on the bottor	n chord in all areas	where	a rectangle					1111 CA	- 11, m	
	3-8=-302/5556, 4	-8=-1567/0, 4-7=0/17	04	3-06-00 tall b	y 2-00-00 wide wil	l fit betv	veen the botto	om				I'TH UA	ROUL	
NOTES				chord and ar	y other members.						1	A STOR	D. Chill	
1) 2-plv truss	to be connected to	aether with 10d	9) One H2.5A S	Simpson Strong-Tie	e conne	ctors			/	~ >	FESS	N. S.	-
(0.131"x3") nails as follows:	0		recommende	ed to connect truss	to bear	ing walls due	to		4			Che la company	/
Top chord	s connected as follo	ows: 2x4 - 1 row at 0-	9-0	UPLIFT at jt(s) 10. This connec	tion is f	or uplift only a	and		-	- 18	.4-	· ·	-
oc, 2x6 - 2	rows staggered at	0-9-0 oc.		does not con	sider lateral forces					-		SEA	L 🗼	=
Bottom ch	ords connected as	follows: 2x8 - 2 rows	1	Use Simpsor	n Strong-Tie HTU2	6 (10-10	6d Girder,			=				=
staggered	at 0-6-0 oc.			14-10dx1 1/2	2 Truss) or equivale	ent space	ed at 2-0-0 o	С		-		0363	22 :	Ξ.
Web conn	ected as follows: 2>	(4 - 1 row at 0-9-0 oc,		max. starting	at 2-0-12 from the	left en	d to 16-0-12 to	C		-	- 3			3
Except me	ember 2-9 2x4 - 1 ro	w at 0-6-0 oc, Except	t,	connect truss	s(es) to front face of	DT DOttor	n chord.				1	·	~ · ·	1
member 4	-7 2x4 - 1 row at 0-	6-0 oc.	1	1) Fill all nail ho	nes where hanger i	is in cor	itact with lum	ber.			2.0	N. SNOW	ERIX	2
			L	OAD CASE(S)	Standard						1	S. GIN	1. 45°	
			1) Dead + Sno	w (balanced): Lum	nber Inc	rease=1.15, F	late			1	CA C	II BEIN	
				Increase=1	.15							1117. 0	in in it	
				Uniform Loa	ads (Ib/ft)							201111	Tree	

January 9,2025

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	D02	Common	1	1	Job Reference (optional)	170611603

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:07 ID:eu8WeH7aLepj2OR3DcbtdszxSOS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-3-12

Page: 1

8-3-12

Plate Offsets (X, Y): [7:0-4-0,0-3-0]

_oading FCLL (roof) Snow (Pf) FCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.33 0.63 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.18 0.01	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exu Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=180 (LC Max Uplift 6=-48 (LC Max Grav 6=709 (LC	athing directly applie cept end verticals. applied or 10-0-0 or 3=0-3-8 C 11) 15), 8=-48 (LC 14) C 21), 8=709 (LC 20)	4) 5) ed or 2 7)	Unbalanced design. This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does no DAD CASE(S)	snow loads have b s been designed f ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide wi by other members. Simpson Strong-Tie do connect truss (s) 8 and 6. This co t consider lateral for Standard	or a 10. with any I for a liv s where II fit betw e conne to bear onnectio orces.	nsidered for t O psf bottom other live loa e load of 20. a rectangle veen the bott ctors ing walls due n is for uplift	this ads. Opsf tom e to only						
	(lb) - Maximum Com Tension	pression/Maximum												
	1-2=-221/59, 2-3=-6 4-5=-197/74, 1-8=-2 6-8=-88/557	52/141, 3-4=-652/14 17/67, 5-6=-199/67	1,											
WEBS	3-7=-65/437, 4-7=-20 2-8=-672/96, 4-6=-6	07/168, 2-7=-207/16 72/57	68,											
NOTES												mun	111.	
I) Unbalance	ed roof live loads have	been considered for	r									"H CA	ROUL	
this design). CE Z 16: \/ult_120	(2 accord quat)									Nº.	R	a Line	
2) VVIND: ASC	JE 7-10; Vult=130mpn	(3-second gust)									~ 1	D' VESK	de lair	

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 5-3-12, Exterior(2R) 5-3-12 to 11-3-12, Interior (1) 11-3-12 to 13-5-12, Exterior(2E) 13-5-12 to 16-5-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

SEAL 036322 January 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	D01	Common Supported Gable	1	1	Job Reference (optional)	170611604

Scale = 1:49.1

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:07 ID:I6v?ov43IPJHZn7H_mXxT0zxSOW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [14:0-3-0,0-3-0]]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MR	0.14 0.10 0.27	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 10=16-7-8 13=16-7-8 16=16-7-8 Max Horiz 18=175 (L Max Uplift 10=-65 (LI 12=-54 (LI 15=-65 (LI 17=-117 (I Max Grav 10=138 (L 12=204 (L 14=197 (L	athing directly applied cept end verticals. applied or 10-0-0 oc 3, 11=16-7-8, 12=16-7 3, 14=16-7-8, 15=16-7 3, 17=16-7-8, 18=16-7 .C 13) C 11), 11=-115 (LC 15 C 15), 13=-65 (LC 14) LC 14), 16=-53 (LC 14) LC 14), 16=-53 (LC 14) LC 14), 18=-76 (LC 10 .C 21), 13=259 (LC 22) .C 15), 15=259 (LC 22)	-8, -8, -8, -8, -3, -8, -3, -3, -3, -4) -0, -0, -0, -0, -0, -0, -0, -0, -0, -0,	Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; Enn and C-C Cor 3-1-12 to 5-3 (2N) 11-3-12 zone; cantile and right exp MWFRS for I grip DOL=1.6 Truss design only. For stu see Standarc or consult qu TCL: ASCE Plate DOL=1.15); Cs=1.00; Ct= Unbalanced	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e ner(3E) 0-1-12 to 3 -12, Corner(3R) 5- to 13-5-12, Corne ver left and right ez osed;C-C for merr reactions shown; L 50 ed for wind loads i ds exposed to wind l ndustry Gable E alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (s=1.0; Rough Cat 1.10	e been of h (3-sec 3CDL=6 envelope 3-1-12, I 3-12 to r(3E) 13 kposed libers an umber I umber I n the pla d (norm nd Deta signer as (roof LL Lum DC B; Fully ween cor	considered fo ond gust) .0psf; h=25ft; .) exterior zor exterior(2N) 11-3-12, Exterior(2N) 11-3-12, Exterior(2N) 11-3-12, Exterior -5-12 to 16-5 .end vertical d forces & DOL=1.60 pla ane of the true; al to the face; ls as applicat s per ANSI/TF .: Lum DOL=' DL=1.15 Plate Exp.; Ce=0.9 isidered for th	r Cat. ne erior i-12 left tte ss ble, PI 1. 1.15 ; ;	LOAD (CASE(S)	Star	ndard		
FORCES TOP CHORD BOT CHORD WEBS NOTES	16=204 (L 18=146 (L (lb) - Maximum Com Tension 1-18=-106/59, 1-2=- 3-4=-108/218, 4-5=- 9-10=-99/54 17-18=-83/90, 16-17 13-15=-83/90, 16-17 13-15=-83/90, 12-13 10-11=-83/90 5-14=-275/80, 4-15= 2-17=-169/142, 6-13 7-12=-167/103, 8-11	C 20), 17=239 (LC 25 C 20), 17=239 (LC 25 C 30) pression/Maximum 120/106, 2-3=-92/141, 143/290, 5-6=-143/290 84/142, 8-9=-110/94, '=-83/90, 15-16=-83/90 :=-83/90, 11-12=-83/90 :=-220/97, 3-16=-167/10 :=-220/97, 3-16=-167/10 :=-220/97, 3-16=-167/10	,, 6) 7) 8) , 9) 0, 10) 0, 11) 0, 11) 0, 12)	design. All plates are Gable required Truss to be fi braced again Gable studs. This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and ar Provide mecl bearing plate 18, 65 lb upli uplift at joint joint 13, 54 lb	2x4 MT20 unless as continuous botto ully sheathed from st lateral movement spaced at 2-0-0 oc s been designed fr d nonconcurrent v ias been designed in chord in all areas by 2-00-00 wide will y other members. hanical connection o capable of withsta ft at joint 10, 65 lb 16, 117 lb uplift at o uplift at joint 12 a	otherwi om chor one fac nt (i.e. d or a 10. vith any for a liv s where I fit betw (by oth anding 7 uplift at joint 17, nd 115	se indicated. d bearing. e or securely iagonal web). D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 6 lb uplift at join 5 lb uplift at join	ds. Dpsf om oint o t t t11.		Contraction of the second seco		SEAI 03632	22 E.P.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.	Mounda

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	C03	Common Girder	1	2	Job Reference (optional)	170611605

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:07 ID:6pBSHpwX7jo_7xC_HFJ6_UzxSOi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

L	6-3-8	12-7-0	
Г	6-3-8	6-3-8	
Scale = 1:41.3			
Plate Offsets (X, Y): [1:Edge,0-4-4], [5:Edge,0-4-4]			

Loading		(psf)	Spacing	1-11-4		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.15		TC	0.95	Vert(LL)	-0.08	6-7	>999	240	MT20	244/190	
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.66	Vert(CT)	-0.15	6-7	>999	180	MT18HS	244/190	
TCDL		10.0	Rep Stress Incr	NO		WB	0.92	Horz(CT)	0.02	6	n/a	n/a			
BCLL		0.0*	Code	IRC202	1/TPI2014	Matrix-MSH									
BCDL		10.0											Weight: 162 lb	FT = 20%	
				4)	Wind [.] ASCE	7-16: Vult=130mp	h (3-sec	cond gust)							
	2v4 SP No	2		•,	Vasd=103mr	h^{-} TCDI =6 0psf F	BCDI =f	0 nsf h=25ft	Cat						
BOT CHORD	2x4 OF 140	00F 2 0F			II: Exp B: En	closed: MWFRS (e	envelope	e) exterior zor	ne:						
WERS	2x4 SP No	3 * Excen	t* 8-1 6-5:2v4 SP No	2	cantilever lef	t and right exposed	d:end	ertical left an	d						
DRACING	274 01 110	.0 LACOP	1 0 1,0 0.274 01 100	.2	right exposed	: Lumber DOL=1.	60 plate	arip DOL=1.	60						
	Structural	wood abo	othing directly opplie	dor	0 1	,	•	0 1							
TOP CHORD	5-8-6 oc p	urlins, exc	cept end verticals.	5)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof Ll	: Lum DOL=	1.15						
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 oc	;	Plate DOL=1	.15); Pf=20.0 psf (Lum DC	L=1.15 Plate							
	bracing.				DOL=1.15); I	Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;						
REACTIONS	(size)	6=0-3-8, 8	3=0-3-8	6)	Unhalanced	snow loads have h	een cor	sidered for th	nis						
	Max Horiz	8=-108 (L	C 8)	0)	design		0011 001		10						
	Max Uplift	6=-498 (L	C 13), 8=-394 (LC 1	2) 7)	All plates are	MT20 plates unle	ss othe	wise indicate	d.						
	Max Grav	6=5531 (L	.C 22), 8=4342 (LC 2	21) ^{1,} 8)	This truss ha	s been designed for	or a 10.) psf bottom							
FORCES	(lb) - Maxi	mum Com	pression/Maximum	0)	chord live loa	ad nonconcurrent v	vith anv	other live loa	ds.						
	Tension			9)	* This truss h	as been designed	for a liv	e load of 20.0	Opsf						
TOP CHORD	1-2=-1301	/143, 2-3=	-4871/473,	- /	on the botton	n chord in all areas	s where	a rectangle							
	3-4=-4871	/473, 4-5=	-1464/157,		3-06-00 tall b	y 2-00-00 wide wil	I fit betv	veen the botto	om						
	1-8=-763/	102, 5-6=-8	845/109		chord and an	y other members.									
BOT CHORD	7-8=-372/3	3800, 6-7=	-343/3760	10) One H2.5A S	Simpson Strong-Tie	e conne	ctors							
WEBS	2-8=-3518	/321, 4-6=	-3363/307,		recommende	ed to connect truss	to bear	ing walls due	to						
	3-7=-412/4	4672, 4-7=	-96/627, 2-7=-98/65	7	UPLIFT at jt(s) 8 and 6. This co	onnectio	n is for uplift o	only				minin	1111	
NOTES					and does not	t consider lateral fo	orces.						WHI CA	Pall	
1) 2-ply truss	s to be conne	ected toget	her with 10d	11) Use Simpsor	Strong-Tie HTU2	6 (10-10	6d Girder,				1	alfion	10/11/	•
(0.131"x3'	") nails as fol	lows:			14-10dx1 1/2	2 Truss) or equivale	ent spac	ed at 2-0-0 o	С			1	OCEESS	in the	-
Top chord	ds connected	as follows	: 2x4 - 1 row at 0-9-	0	max. starting	at 2-0-12 from the	e left en	d to 12-0-12 t	0		/	\mathbb{S}		NA.	/
OC.					connect truss	s(es) to back face	of botto	n chord.				g e	6/ 1	4.0	_
Bottom ch	nords connec	ted as follo	ows: 2x6 - 3 rows	12) Fill all nail no	les where hanger	is in cor	itact with lum	ber.		-	() (-
staggered	at 0-8-0 oc.			LC	DAD CASE(S)	Standard					=	:	SEA		1
Web conn	nected as foll	ows: 2x4 -	1 row at 0-9-0 oc,	1)	Dead + Sno	w (balanced): Lun	nber Inc	rease=1.15, I	Plate		=	:	0262	22 :	-
Except me	ember 3-7 2>	(4 - 1 row a	at 0-6-0 oc.		Increase=1.	.15					1		0363	~~ :	-
2) All loads a	are considere	ed equally	applied to all plies,		Uniform Loa	ads (Ib/ft)									-
except if r	ioled as from		ск (в) face in the LO	AD	Vert: 1-3	=-58, 3-5=-58, 6-8=	=-19				5	-	·	airs	-
CASE(S)	Section. Ply 1	o piy conn	neted on (E) or (D)		Concentrate	ed Loads (lb)						20	NGINE	ENAS	
provided t	io distribute (niny ioads i	noted as (F) or (B),		Vert: 7=-	1291 (B), 11=-129	1 (B), 12	2=-1291 (B),				11	710	The second	
3) Linbalance	ed roof live k	aleu.	been considered for		13=-1291	і (В), 14=-1291 (В)), 15=-1	297 (B)				1	A G	ILD	
this design	n	Jaus nave											111111	inni	
una ucargi														C. C	

January 9,2025

Page: 1

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	C02	Common	1	1	Job Reference (optional)	170611606

Scale = 1:40.2

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:07 ID:2fFMZtYTfumXH0mqPXkchlzxSPC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	, , ,	[
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.71 0.34 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 70 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103/ II; Exp B; E and C-C E to 3-3-8, E 10-6-0, Ex: and right e C for mem shown; Lui 3) TCLL: ASC Plate DOL DOL=1.15/ Cs=1.00; C	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exc Rigid ceiling directly bracing. (size) 6=0-3-8, 8 Max Horiz 8=-129 (L Max Grav 6=646 (LC (lb) - Maximum Com Tension 1-2=0/32, 2-3=-603/ 4-5=0/32, 2-8=-591/ 7-8=-145/362, 6-7=- 3-7=0/231, 2-7=-41/2 droof live loads have the comparison of the loa	t* 8-2,6-4:2x4 SP No athing directly applie cept end verticals. applied or 10-0-0 od 3=0-3-8 C 12) (15), 8=-63 (LC 14) (22), 8=-646 (LC 21) pression/Maximum 109, 3-4=-603/109, 161, 4-6=-59/1057 106/362 281, 4-7=-45/281 been considered for (3-second gust) CDL=6.0psf; h=-25ft; ivelope) exterior zon 2-1-0, Interior (1) 2-1 3-8, Interior (1) 9-3-5 I-6-0 zone; cantileve left and right expose (FRS for reactions grip DOL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9	4) 5).2 ed or 6) 7 8)) Lt r e 1-0 3 to r left d;C- 1.15 ;	Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall t chord and ar One H2.5A S recommende UPLIFT at jtt and does no DAD CASE(S)	snow loads have I is been designed f paf or 1.00 times fi on-concurrent with is been designed n chord in all area by 2-00-00 wide wi yy other members. Simpson Strong-Ti ed to connect truss (s) 8 and 6. This co t consider lateral fo Standard	opeen cor or great lat roof lo o ther liv o ra 10.0 with any I for a liv s where Il fit betw e connec to bear onnectio orces.	asidered for t er of min roo aad of 20.0 p ve loads.) psf bottom other live loa e load of 20. a rectangle veen the bott ctors ng walls due n is for uplift	his f live ssf on ads. Opsf to only		Number of the second seco		SEA 0363	L EER.K	- Manuning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component duration development and the prevent of the truster and property damage. Component Advance intervention, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Create the fabrication and the fabrication of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-21 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILIN January 9,2025

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	C01	Common Supported Gable	1	1	Job Reference (optional)	170611607

6-3-8

6-3-8

Carter Components (Sanford, NC), Sanford, NC - 27332

-0-11-0

0-11-0

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Wed Jan 08 10:14:07 ID:5?bAaNJY72NDV5pBn1v9PkzxSPV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-7-0

6-3-8

Page: 1

11111111111

13-6-0

0-11-0

4x5 = 5 12 7 Г 6 4 3 7 4-9-6 17 18 2 8 9 1-1-5 16 10 15 14 13 12 11 12-7-0 Scale = 1:35.1 Loading Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) n/a n/a 999 MT20 244/190 BC Snow (Pf) 20.0 Lumber DOL 1 15 0.04 Vert(CT) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.06 Horz(CT) 0.00 10 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-MR BCDL 10.0 Weight: 67 lb FT = 20%LUMBER Wind: ASCE 7-16; Vult=130mph (3-second gust) LOAD CASE(S) Standard 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP No.2 II; Exp B; Enclosed; MWFRS (envelope) exterior zone BOT CHORD 2x4 SP No.2 and C-C Corner(3E) -0-11-0 to 2-3-8, Exterior(2N) 2-3-8 2x4 SP No 3 WFBS to 3-3-8, Corner(3R) 3-3-8 to 9-3-8, Exterior(2N) 9-3-8 to OTHERS 2x4 SP No.3 10-3-8, Corner(3E) 10-3-8 to 13-6-0 zone; cantilever left BRACING and right exposed ; end vertical left and right exposed;C-TOP CHORD Structural wood sheathing directly applied or C for members and forces & MWFRS for reactions 6-0-0 oc purlins, except end verticals. shown; Lumber DOL=1.60 plate grip DOL=1.60 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 3) Truss designed for wind loads in the plane of the truss **REACTIONS** (size) 10=12-7-0, 11=12-7-0, 12=12-7-0, only. For studs exposed to wind (normal to the face), 13=12-7-0, 14=12-7-0, 15=12-7-0, see Standard Industry Gable End Details as applicable, 16=12-7-0 or consult qualified building designer as per ANSI/TPI 1. Max Horiz 16=125 (LC 13) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Max Uplift 10=-34 (LC 14), 11=-69 (LC 15), Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 12=-46 (LC 15), 14=-45 (LC 14), DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 15=-71 (LC 14), 16=-37 (LC 15) Cs=1.00; Ct=1.10 Max Grav 10=153 (LC 22), 11=223 (LC 22), 5) Unbalanced snow loads have been considered for this 12=244 (LC 22), 13=150 (LC 21), design. 14=244 (LC 21), 15=223 (LC 21), 6) This truss has been designed for greater of min roof live 16=153 (LC 21) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on FORCES (lb) - Maximum Compression/Maximum overhangs non-concurrent with other live loads. Tension All plates are 2x4 MT20 unless otherwise indicated. 2-16=-135/150, 1-2=0/31, 2-3=-71/70, TOP CHORD Gable requires continuous bottom chord bearing. 8) 3-4=-60/137, 4-5=-89/199, 5-6=-89/199, Truss to be fully sheathed from one face or securely 9) 6-7=-59/139, 7-8=-63/66, 8-9=0/31, braced against lateral movement (i.e. diagonal web). 8-10=-135/142 10) Gable studs spaced at 2-0-0 oc. Variation BOT CHORD 15-16=-58/68, 14-15=-58/68, 13-14=-58/68, 11) This truss has been designed for a 10.0 psf bottom 12-13=-58/68, 11-12=-58/68, 10-11=-58/68 chord live load nonconcurrent with any other live loads. WEBS 5-13=-126/3, 4-14=-207/100, 3-15=-180/111, SEAL 12) * This truss has been designed for a live load of 20.0psf 6-12=-207/97, 7-11=-180/121 on the bottom chord in all areas where a rectangle 036322 NOTES 3-06-00 tall by 2-00-00 wide will fit between the bottom 1) Unbalanced roof live loads have been considered for chord and any other members. this design. 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 37 lb uplift at joint 16, 34 lb uplift at joint 10, 45 lb uplift at joint 14, 71 lb uplift at joint 15, 46 lb uplift at joint 12 and 69 lb uplift at G joint 11. mmm January 9,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	B03	Attic	10	1	Job Reference (optional)	170611608

Scale = 1:70.1

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:07 ID:oegX6_D9nvUD90nqt3HWdGzxSPc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.52 0.35 0.36	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.13 -0.19 0.00 -0.11	(loc) 10-11 10-11 9 10-11	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 214 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x6 SP 2400F 2.0E No.2 2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 3-2,6-7:2x6 SP No.2 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing, 1 Brace at Jt(s): 13 (size) 9=0-3-8, ' Max Horiz 12=-261 (Max Grav 9=1415 (I (Ib) - Maximum Corr Tension 1-2=-1440/0, 2-3=-1 4-5=-59/763, 5-6=-2 7-8=-1443/0, 1-12=- 9-12=-263/959 2-11=-51/489, 7-10= 3-13=-1818/231, 6-1 1-11=-4/954, 8-10=- 5-13=-149/262	*Except* 4-5:2x6 SP ot* 11-10:2x12 SP 24(ot* 3-6:2x4 SP No.2, athing directly applied cept end verticals, an 0-0 max.): 4-5. applied or 10-0-0 oc 12=0-3-8 (LC 10) _C 47), 12=1415 (LC npression/Maximum 027/133, 3-4=-239/58 (39/598, 6-7=-1032/12 1479/0, 8-9=-1491/0 =-51/489, 13=-1827/231, 6/956, 4-13=-149/262 been considered for	2) DOF dor d 3) 47) 5) 98, 7) 28, 7) 26, 8) 22, 10 11 L	 Wind: ASCE Vasd=103mg II; Exp B; En and C-C Ext to 4-6-6, Ext 17-4-10 to 11 cantilever laf cantilever laf right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Provide aded This truss ha chord live loa This truss ha chord live loa This truss ha chord live loa This truss ha chord and ar Ceiling dead 6-13; Wall d Bottom chore chord dead I Graphical pu or the orientz bottom chore Attic room chord 	7-16; Vult=130m; h; TCDL=6.0psf; closed; MWFRS (erior(2R) 4-6-6 to 3-9-4, Exterior(2R) t and right exposed d;C-C for member shown; Lumber D 7-16; Pr=20.0 psf ls=1.0; Rough Cat =1.10 snow loads have l ad nonconcurrent has been designed ad nonconcurrent has been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w hy other members. load (5.0 psf) on ead load (5.0 psf) on ead load (5.0 psf) apli live load (40.0 ps oad (5.0 psf) apli lirin representation at becked for L/360 d Standard	oh (3-sec BCDL=6 envelope) 3-1-12, 17-4-10,) 18-9-4 d; end v s and fo DCL=1.6(f (roof LL (Lum DC s B; Fully been con prevent t for a 10.1 with any d for a liv s where ill fit betw member on mem sf) and a ed only t a does no along the leflection	cond gust) .0.psf; h=25ft a) exterior zoo Interior (1) 3 Interior (1) 3 Interior (1) to 21-9-4 zon vertical left ar cress & MWFF D plate grip .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.1 sidered for t water pondin D psf bottom other live loa e load of 20.1 a rectangle veen the bott (s). 2-3, 6-7, ; ber(s).2-11, 7 to room. 10-1 bt depict the si e top and/or h.	;; Cat. ne -1-12 he; nd RS (1.15 9; his g. ads. 0psf om 3-13, 7-10 tom 1 size				SEA 0363	ROLVER L 22 EERCHART

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component duration development and the prevent of the truster and property damage. Component Advance intervention, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Create the fabrication and the fabrication of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-21 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A. GILB

A. GILD January 9,2025

C

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	B02	Attic	1	1	Job Reference (optional)	170611609

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:07 ID:sjVwZgoaFryKrU0wmVd4AgzxSQA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.1 Plate Offsets (X, Y): [2:0-3-0,0-1-12], [5:0-3-0,0-2-12], [6:0-3-0,0-2-12], [9:0-3-0,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	1.00 0.38 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.16 -0.22 0.00	(loc) 13-14 12-13 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2021	/TPI2014	Matrix-MSH		Attic	-0.13	12-13	>999	360	Weight: 220 lb	FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x6 SP No.2 2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 4-3,7-8:2x6 SP No.2 Structural wood shea except end verticals, (6-0-0 max.): 5-6. Rigid ceiling directly bracing. 1 Brace at Jt(s): 15 (size) 11=0-3-8, Max Horiz 14=-284 (I Max Grav 11=1469 ((Ib) - Maximum Com Tension 1-2=0/43, 2-3=-1440 4-5=-230/625, 5-6=-4 7-8=-1030/130, 8-9= 2-14=-1521/16, 9-11 11-14=-283/963 3-13=-47/491, 8-12= 4-15=-1852/237, 7-1 2-13=-12/954, 9-12= 6-15=-142/256 ed roof live loads have h.	t* 13-12:2x12 SP 240(t* 4-7:2x4 SP No.2, athing directly applied, and 2-0-0 oc purlins applied or 9-11-7 oc 14=0-3-8 LC 12) (LC 48), 14=1469 (LC pression/Maximum //0, 3-4=-1025/136, 47/801, 6-7=-230/626, -1433/5, 9-10=0/43, =-1533/0 -47/491, 5=-1868/237, -14/956, 5-15=-142/25 been considered for	2) OF , , , , , , , , , , , , , , , , , ,	Wind: ASCE Vasd=103mp II; Exp B; En- and C-C Exte to 4-6-6, Exte to 4-6-6, Exte to 4-6-6, Exte to 4-6-6, Exte to 17-4-10 to 19 zone; cantile and right exp MWFRS for 1 grip DOL=1.6 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 1 overhangs n Provide aded This truss ha chord live loa * This truss ha chord and ar Ceiling dead 7-15; Wall d Bottom chord chord dead lu 0 Graphical pu or the orienta bottom chord Attic room ch	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-11-0 to erior(2R) 4-6-6 to 1 9-10-0, Exterior(2E) vor left and right ex- bosed;C-C for mem reactions shown; L: 60 7-16; Pr=20.0 psf .15); Pf=20.0 psf (I Is=1.0; Rough Cat I =1.10 snow loads have b is been designed for pafor 1.00 times fit on-concurrent with guate drainage to p uste been designed for ad nonconcurrent with guate drainage to p us been designed for ad nonconcurrent with guate drainage to p ad nonconcurrent with guate drainage to	a (3-sec SCDL=6 ACDL	cond gust) .0psf; h=25ft; e) exterior zor Interior (1) 2- Interior (1)	; Cat. ne 1-0 left 1.15 9; his flive sf on g. ds. Dpsf om 4-15, 				SEA 0363	ROUNT L 22 EREAL	and an
												1, 7. 0	1-11	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minim January 9,2025

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	B01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	170611610

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:06 ID:RoBf5ajN_ospHzI?c12Rc6zxSRY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

<u>Scale = 1:70.9</u> Plate Offsets (X, Y): [7:0-3-8,0-2-0], [10:0-3-8,0-2-0], [29:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TP	12014	CSI TC BC WB Matrix-MR	0.33 0.26 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 184 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (10 Rigid ceiling directly bracing. 1 Row at midpt (size) 17=21-11 24=21-11 24=21-11 24=21-11 24=21-11 25=73 (L 22=-70 (L 25=-73 (L 27=-69 (L 29=-623) Max Grav 17=246 (I 19=236 (L 29=-623) Max Grav 17=246 (I 22=223 (I 24=456 (L 26=270 (L) 26=270 (I) 26=270 (I) 26=270 (L) 27=-69 (L) 22=223 (I) 24=456 (I) 24=456 (I) 26=270 (I) 26=270 (I) 26=270 (I) 26=270 (I) 26=270 (I) 27=26 (I) 27=26 (I) 27=26 (I) 28=270 (I	eathing directly applied cept end verticals, an -0-0 max.): 7-10. r applied or 6-0-0 oc 8-24, 6-25, 9-23, 11- -0, 28=21-11-0, -0, 29=21-11-0, -0, 29=210, 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2	TOP C d or BOT C d BOT C 22 WEBS 10), 1) Ur), 2) Wi), 2) Wi), 2) Wi), 2) 1), 11; 1), 2) Wi 3), 16 6), ca 1), rig 1), for 1), for	HORD 2 3 4 5 HORD 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2-29=-466/433, 1-2= 3-4=-183/197, 4-5=- 5-7=-146/428, 7-8=- 3-10=-117/352, 10-1 1-12=-121/365, 12 3-14=-54/178, 14-1 5-17=-161/122 28-29=-96/100, 25-2 24-25=-96/100, 23-2 22-23=-96/100, 23-	=0/47, 2 168/26 117/35 11=-14(-13=-8(1) 28=-96/ 22=-96/ 22=-96/ 22=-96/ 9=96/ 9=98/ 9=384/ 2=-189/ 19=-15 been of (3-sec CDL=6 velope 2-1-0, E -1-12, E -1-12, F =0-1-2,	2-3=-413/404 9, 5-6=-149/3 2, 8-9=-117/3 5/428, 5/269, 7/126, 15-16= 100, 100, 100, 100, 100, 100, 100, 0, 5-26=-214, 356, 86, 36/111, considered fo cond gust) .0psf; h=25ft; c) exterior zor xterior(2N) 2- Exterior(2N) 2-	, 365, 352, =0/42, /121, /121, r c Cat. ne -1-0 cone; d S	4) T(PI D C: 5) U(6) Ti lo o V 7) PI 8) AI 9) G 10) Ti br 11) G 12) Ti br 11) G 12) Ti br c t 13) * - c c	CLL: ASC ate DOL= OL=1.15); s=1.00; Ci hbalancec esign. had of 12.0 verhangs r rovide ade l plates ar able requi russ to be aced agai able stude his truss h nord live lb This truss n the botto 06-00 tall nord and a	E 7-16 for the second s	; Pr=20.0 psf (ror Pf=20.0 psf (Lur); Rough Cat B; loads have beer en designed for g 1.00 times flat r ncurrent with oth drainage to prev MT20 unless oth minuous bottom neathed from on eral movement (da at 2-0-0 oc. en designed for rd in all areas wi 0-00 wide will für er members, with OFFESS SEA 036.3	of LL: Lum DC n DOL=1.15 F Fully Exp.; Ce n considered f reater of min oof load of 20 ter live loads. rent water por terwise indica chord bearing e face or secc i.e. diagonal v n 10.0 psf bott any other live a live load of nere a rectang between the h BCDL = 10.	DL=1.15 Plate ⊫0.9; for this roof live .0 psf on roding. ted.
FORCES	25=660 (i (lb) - Maximum Con Tension	LC 12), 29=077 (LC 1 ppression/Maximum	3) Tri on se or	uss design ly. For stu e Standard consult qu	ed for wind loads in ds exposed to wind I Industry Gable En alified building desi	the pla l (norm d Detai gner as	ane of the trus al to the face ils as applicat s per ANSI/TF	ss), ble, PI 1.		115.		A.C.A.C	EER.	in in it.

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oucliapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com) ENGINEERING BY A MiTek Affiliate

818 Soundside Road Edenton, NC 27932

January 9,2025

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	B01	Piggyback Base Structural Gable	1	1	Job Reference (optional)	170611610
Carter Components (Sanford, NC), Sanford, NC - 27332,	Run: 8.73 S Dec 5 2	024 Print: 8.7	730 S Dec 5	2024 MiTek Industries, Inc. Wed Jan 08 10:14:06	Page: 2

- 14) Bearing at joint(s) 29 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 15) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 623 lb uplift at joint 29, 216 lb uplift at joint 17, 20 lb uplift at joint 24, 73 lb uplift at joint 25, 93 lb uplift at joint 26, 69 lb uplift at joint 27, 568 lb uplift at joint 28, 70 lb uplift at joint 22, 93 lb uplift at joint 20, 79 lb uplift at joint 19 and 229 lb uplift at joint 18.
- 16) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 29.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:06 ID:RoBf5ajN_ospHzI?c12Rc6zxSRY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A12	Flat Girder	1	1	Job Reference (optional)	170611611

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:06 ID:AASGDpA57TkzwIWP68IQQ7zxSTY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-6-4

Scale = 1:55.6

	1 <u>1</u>
Loading (psf) Spacing 1-11-4 CSI DEFL in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.99 Vert(LL) -0.03 3-4 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.54 Vert(CT) -0.06 3-4 TCDL 10.0 Rep Stress Incr NO WB 0.15 Horz(CT) 0.00 3 BCLL 0.0* Code IRC2021/TPI2014 Matrix-MP Vertice Vert	I/defi L/d PLATES GRIP >999 240 MT20 244/190 >868 180 n/a n/a Weight: 55 lb FT = 20%
 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD 2-0-0 co purlins: 1-2, except end verticals. Row at midpt 1-4, 2-3, 1-3 REACTIONS (size) 3=0-4.8, 4= Mechanical Max horiz 4-286 (LC 8) Max lopift 3=-435 (LC 9), 4=-379 (LC 8) Max lorg at -286 (LC 8) Max lorg at -286 (LC 8) Max lorg at -284 (LC 1), 4=831 (LC 22) FORCES (b) Attack at a -285 (LC 9), 4=-379 (LC 8) Max lorg at -284 (LC 1), 4=831 (LC 22) FORCES (b) Attack at a -285 (LC 9), 4=-379 (LC 8) Max drav 3=1248 (LC 21), 4=831 (LC 22) FORCES (b) Attack at a -285 (JC 9), 4=-379 (LC 8) Max drav 3=1248 (LC 21), 4=831 (LC 22) FORCES (b) Attack at a -285 (JC 9), 4=-379 (LC 8) Max drav at -284 (JC 21), 4=831 (LC 22) FORCES (b) Attack at a -285 (JC 9), 4=-379 (LC 8) Max drav at -286 (JC 8), 5=-257 (JC 8) Max drav at -286 (JC 9), 4=-379 (LC 8) Max drav at -286 (JC 9), 5=-257 (JC 8) Max drav at -286 (JC 9), 5=-257 (JC 8) MAX drav at -286 (JC 9), 5=-257 (JC 8) MAX drav at -286 (JC 9), 5=-2660 (B), 7=-666 (B) 2) TCLL: ASCE 7-16; Pr=20.0 psf (rum DL=-1.5) Plate DOL=-1.15; Plate DOL=-1.60 psi proDL=-1.60 3) Unbalanced snow loads have been considered for this design. 4) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) This truss has been designed for a live load of 20.0 psf on the bottom chord in all areas where a rectangle 3-06-00 til by 2-0-000 wide will fit between the bottom <!--</td--><td>SEAL 036322</td>	SEAL 036322

January 9,2025

Page: 1

TRENCO A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A11	Monopitch Supported Gable	1	1	Job Reference (optional)	170611612

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:06 ID:f_ACr1Qht7jMn7uCfH5a5rzxSRx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

17-3-8 -17-3-8 3x5 💋 123 11 3x5 💋 26⁹¹⁰ 712 71 8 7 11-2-6 11-2-6 6 Ø 5 ⊠ 4 25 3 1-1-5 4 21 20 18 17 16 15 23 22 19 3x5= 6x12 II 3x5= 17-3-8 || 0-3-4 17-0-4 \mathbf{F} 17-0-4

Scale = 1:67.7

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.94 0.39 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.03	(loc) - - 13	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 138 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Exc 2x4 SP No.3 *Exc 2x4 SP No.3 Structural wood s 6-0-0 oc purlins, Rigid ceiling direc bracing. 1 Row at midpt (size) 13=17- 17=17- 20=17- 23=17- Max Horiz 24=383 Max Uplift 13=-13 15=-68 18=-52 20=-47 22=-18 24=-20 Max Grav 13=180 15=233 18=161 20=161 22=165 24=424	ept* 12-14:2x4 SP No.2 heathing directly applied except end verticals. tly applied or 10-0-0 oc 12-14, 11-15, 10-17 3-8, 14=17-3-8, 15=17-3 3-8, 24=17-3-8, 19=17-3 3-8, 24=17-3-8, 22=17-3 3-8, 24=17-3-8, 22=17-3 9 (LC 14), 17=-43 (LC 14 (LC 14), 17=-43 (LC 14 (LC 14), 21=-56 (LC 14 (LC 14), 23=-301 (LC 1 9 (LC 12), 17=223 (LC 2 (LC 21), 19=162 (LC 22) (LC 21), 23=270 (LC 12) (LC 21), 23=270 (LC 12)	B(W l or 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8,	DT CHORD 2 2 1 1 2 2 1 1 2 2 2 1 1 1 2 2 2 2 2 1 1 2	23-24=-131/206, 2 21-22=-131/206, 1 9-20=-131/206, 1 4-15=-131/206 1-15=-214/83, 10 3-18=-137/81, 7-1 5-21=-138/86, 4-2 7-16; Vult=130mg th; TCDL=6.0psf; closed; MWFRS (ner(3E) -0-11-0 to le; cantilever left a dright exposed; FRS for reactions ate grip DOL=1.6 ed for wind loads ds exposed to win I ndustry Gable E alfifed building de 7-16; Pr=20.0 psf s=1.0; Rough Cai :1.10 snow loads have s been designed	22-23=-1: 20-21=-1: 18-19=-1: 18-19=-1: 15-17=-18 9=-136/8 2=-136/8 2=-126/7 ph (3-sec 9 b CDL=6 2-1-0, E and right C-C for n s shown; 0 in the pl nd (norm End Deta signer a: f (roof LL (Lum DC t B; Fully been cor for great	31/206, 31/206, 31/206, 31/206, 31/206, 31/206, 4/112, 15, 6-20=-135; 9, 3-23=-266 cond gust) 0.0psf; h=25ft 2) exterior zor ixterior(2N) 2 exposed; er nembers and Lumber ane of the tru al to the face is as applica is per ANSI/TI .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 asidered for the er of min roof	5/84, 5/193 ; Cat. ne -1-0 nd ss ss ble, Pl 1. 1.15 9; his f live of on	 11) * Th on t 3-06 20 Beaa usir des 13) Prov 13) Prov beaa 24, upliti 18, upliti 18, upliti 18, 18, 18, 10AD C 	is truss he botto 5-00 tall rd and a ring at j g ANSL gner sh vide me ring plat 139 lb u t at join 48 lb up t at join 23. CASE(S	has be m cho by 2-0 iny oth criptints; rTPI 1. ould vic chanici te capae polifit at jo t 21, 12 i 15, 42 i 15, 42 i 15, 43 i 15, 45, 45, 45, 45, 45, 45, 45, 45, 45, 4	een designed for rd in all areas wh 0-00 wide will fit er members. 13 considers pa angle to grain foi erify capacity of l al connection (b) able of withstand joint 13, 266 lb u 3 lb uplift at joint bint 19, 47 lb upli 8 lb uplift at joint ndard	a live load of 20.0ps iere a rectangle between the bottom rallel to grain value mula. Building pearing surface. / others) of truss to ing 208 lb uplift at join plift at joint 14, 68 lb 22 and 301 lb uplift at	sf I int b nt at
FORCES TOP CHORD	(lb) - Maximum C Tension 2-24=-293/352, 1- 3-4=-294/378, 4-6 6-7=-225/307, 7-6 10-11=-192/237, 12-13=-152/90, 1:	ompression/Maximum 2=0/31, 2-3=-391/493, =-274/361, 5-6=-246/33 =-212/281, 8-10=-197/2 11-12=-134/163, 2-14=-261/177	6) 3, 7) 54, 8) 9) 10	All plates are Gable require Truss to be fu braced again Gable studs s)) This truss ha chord live loa	verhangs non-concurrent with other live loads. Il plates are 2x4 MT20 unless otherwise indicated. Sable requires continuous bottom chord bearing. russ to be fully sheathed from one face or securely raced against lateral movement (i.e. diagonal web). Sable studs spaced at 2-0-0 oc. his truss has been designed for a 10.0 psf bottom hord live load nonconcurrent with any other live loads.								EER. K	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENGINEERING BY A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

January 9,2025

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A10	Monopitch	3	1	Job Reference (optional)	170611613

Run; 8.73 S Dec 5 2024 Print; 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:06 ID:7vC9UZEfeCidsgf7jwpqRTzxSSB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-3-8

H 0-3-4

17-0-4

8-4-8

Page: 1

Scal	e –	1.70	

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.78	Vert(LL)	-0.23	9-11	>888	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.83	Vert(CT)	-0.34	9-11	>591	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.66	Horz(CT)	0.02	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 116 lb	FT = 20%
			4) This truss h	has been designed	for great	er of min roo	flive					

TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3 *Except* 6-9:2x4 SP No.2
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
WEBS	1 Row at midpt 6-9, 4-9
REACTIONS	(size) 9=0-3-8, 12=0-3-8
	Max Horiz 12=395 (LC 11)
	Max Uplift 9=-175 (LC 14), 12=-62 (LC 14)
	Max Grav 9=924 (LC 25), 12=822 (LC 30)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/32, 2-3=-417/120, 3-4=-828/160,
	4-6=-216/178, 6-7=-13/0, 6-9=-261/69,
	2-12=-397/137
BOT CHORD	11-12=-168/976, 9-11=-123/591, 8-9=0/0
WEBS	3-11=-283/195, 4-11=-61/637, 4-9=-804/216,
	3-12=-710/65

NOTES

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 14-3-8, Exterior(2E) 14-3-8 to 17-3-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.

- load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 5)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 6)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 12. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

8-7-12

8-7-12

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A09	Monopitch Girder	1	1	Job Reference (optional)	170611614

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:06 ID:AASGDpA57TkzwIWP68IQQ7zxSTY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

17-3-8 || 0-3-4

Page: 1

8-7-0	17-0-4
8-7-0	8-5-4

$\partial u = 1.7 $

Loa TCL Sno ^r TCD	ding L (roof) w (Pf) L	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO		CSI TC BC WB	0.68 0.68 0.44	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.22 -0.27 0.01	(loc) 9-11 9-11 9	l/defl >940 >744 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCL	L	0.0* 10.0	Code	IRC2021	I/TPI2014	Matrix-MSH							Weight: 131 lb	FT = 20%
LUM TOP BOT WEE COTH BRA TOP BOT WEE REA FOR TOP DOT NOT 1)	IBER CHORD CHORD SS ERS CHORD CHORD SS CTIONS CES CHORD CHORD SS CES Wind: ASC Vasd=103 I; Exp B; f cantilever right expos TCLL: ASC Plate DOL DOL=1.15 CS=1.0; C	2x4 SP No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 5-2-8 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-3-8, Max Horiz 12=392 (Max Uplift 9=-485 (I Max Grav 9=1549 ((lb) - Maximum Con Tension 1-2=0/32, 2-3=-322, 4-6=-216/125, 6-7= 2-12=-354/166 11-12=-322/1163, 9 3-12=-1157/201, 4- 4-11=-276/1057, 3- CE 7-16; Vult=130mpf mph; TCDL=6.0psf; B Enclosed; MWFRS (e left and right exposed sed; Lumber DOL=1.6 CE 7-16; Pr=20.0 psf (L :); Is=1.0; Rough Cat I Ct=1.10	L bt* 6-9:2x4 SP No.2 eathing directly applie (cept end verticals. y applied or 8-6-8 oc 6-9, 3-12, 4-9 12=0-3-8 LC 33) C 12), 12=-143 (LC LC 22), 12=984 (LC 3 appression/Maximum (185, 3-4=-1224/279, -13/0, 6-9=-261/70, -11=-210/671, 8-9=0 9=-1018/353, 11=-202/232 n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 (roof LL: Lum DOL=1 Lum DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 each considered for th	4) 5) 6) 6) 2) 22) 9) 10 11 /0 LC 1) Cat. e; d 50 .15 ; is	This truss ha load of 12.0 J overhangs n All plates are This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar One H2.5A S recommende UPLIFT at jt(and does no Use Simpson Truss, Single the left end t chord. Fill all nail hol fill all nail hol fin the LOAD of the truss a DAD CASE(S) Dead + Sno Increase=1 Uniform Lo: Vert: 15=	s been designed f per or 1.00 times fl per or 1.00 times fl on-concurrent with MT20 plates unle is been designed f ad nonconcurrent v has been designed in chord in all areas y 2-00-00 wide wi by other members, Simpson Strong-Tie do connect truss s) 9 and 12. This of to consider lateral fc in Strong-Tie LUS2 e Ply Girder) or equid to connect truss(es bles where hanger CASE(S) section, re noted as front (Standard bw (balanced): Lun 15 ads (lb/ft) =-60, 2-6=-60, 6-7: ed Loads (lb) -594 (B)	for greats at roof k other lines so there or a 10.0 with any if or a live s where the so where t	er of min roof pad of 20.0 p: re loads. wise indicate 0 psf bottom other live loa e load of 20.0 a rectangle ing walls due pon is for uplift I Girder, 3-10 at 13-6-12 fro c face of botto tact with lum oplied to the f ck (B). rease=1.15, F	live sf on ds. Dpsf om f. to to to only dom ber. face Plate				SEA 0363	ROUNING 22
-,	design.											14	C A	BELIN

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

G١ 111111111 January 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component duration development and the prevent of the truster and property damage. Component Advance intervention, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Create the fabrication and the fabrication of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-21 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A08	Jack-Closed	2	1	Job Reference (optional)	170611615

12 7Γ 3x5 🍫

6-9-0

6-9-0

Carter Components (Sanford, NC), Sanford, NC - 27332

Scale = 1:57.3

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD BOT CHORD

2x4 SP No 2

2x4 SP No 2

2x4 SP No.3

bracing.

Tension

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

DOI = 1.60

design.

Cs=1.00: Ct=1.10

WEBS

NOTES

2)

3)

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Wed. Jan 08 10:14:06 ID:PdzFY44300k6z3useTcY5RzxSTg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4x6 🎜

3x5 II 5

13-6-0

6-9-0

12 11

Page: 1

818 Soundside Road

Edenton, NC 27932

3 8-11-13 10 8-11-13 4x5 🍫 2 1-1-5 8 6 × 7 3x5= 2x4 II 4x5= 6-9-0 13-6-0 6-9-0 6-9-0 Plate Offsets (X, Y): [2:0-2-0,0-1-12], [4:0-3-0,Edge] PLATES Spacing 2-0-0 CSI DEFL in l/defl L/d GRIP (psf) (loc) 20.0 Plate Grip DOL 1.15 тс 0.87 Vert(LL) -0.05 6-7 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.44 Vert(CT) -0.10 6-7 >999 180 10.0 Rep Stress Incr YES WB Horz(CT) 0.76 0.01 6 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MSH Weight: 86 lb 10.0 FT = 20% 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads. 6) * This truss has been designed for a live load of 20.0psf Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 6-0-0 oc purlins, except end verticals. 3-06-00 tall by 2-00-00 wide will fit between the bottom Rigid ceiling directly applied or 10-0-0 oc chord and any other members. All bearings are assumed to be User Defined . 1 Row at midpt 5-6 8) Refer to girder(s) for truss to truss connections. 6= Mechanical, 8=0-3-8 9) Provide mechanical connection (by others) of truss to Max Horiz 8=316 (LC 11) bearing plate capable of withstanding 79 lb uplift at joint Max Uplift 6=-79 (LC 11), 8=-42 (LC 14) Max Grav 6=680 (LC 21), 8=630 (LC 21) 10) One H2.5A Simpson Strong-Tie connectors (lb) - Maximum Compression/Maximum recommended to connect truss to bearing walls due to UPLIFT at jt(s) 8. This connection is for uplift only and 2-8=-571/135, 1-2=0/32, 2-3=-670/96, does not consider lateral forces. 3-5=-209/160, 5-6=-269/72 LOAD CASE(S) Standard 7-8=-308/490, 6-7=-109/575 2-7=-34/349, 3-7=0/279, 3-6=-605/128 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 9-1-5, Exterior(2R) 9-1-5 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for SEAL reactions shown; Lumber DOL=1.60 plate grip 036322 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Unbalanced snow loads have been considered for this G mmm January 9,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the state of the system and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A07	Monopitch	5	1	Job Reference (optional)	170611616

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:06 ID:bTczH0?IQAzyF8RjICV8rAzxSTm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Loading	(psf)	Spacing	2-0-0	cs		DEFL		in (oc)	l/defl	L/d	PLATES
Plate Offsets (X, Y):	[2:0-2-0,0-1-8],	[4:0-3-0,Edge]										
Scale = 1:60.3	-			00				0	-3-4			
				6-9-	12	1	6-6-8	0				
				0.5	. 2		10 4 4					

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(pst) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	TC BC WB Matrix-MSH	0.79 0.44 0.78	Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.09 0.01	(IOC) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	MT20 Weight: 87 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE WEBS REACTIONS FORCES TOP CHORE BOT CHORE WEBS NOTES 1) Wind: AS Vasd=10	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she: 6-0-0 oc purlins, exi Rigid ceiling directly bracing. 1 Row at midpt (size) 8=0-3-8, 1 Max Horiz 10=318 (L Max Grav 8=705 (LC (lb) - Maximum Com Tension 1-2=0/32, 2-3=-658/ 5-6=-13/0, 5-8=-294/ 9-10=-311/567, 8-9= 3-9=0/278, 3-8=-634 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Ro	athing directly applie cept end verticals. applied or 10-0-0 oc 5-8 (0=0-3-8 C 13) C 14), 10=-50 (LC 1: 221), 10=626 (LC 2: pression/Maximum 117, 3-5=-210/167, /73, 2-10=-565/158 108/606, 7-8=0/0 /189, 2-9=-48/321 (3-second gust) CDL=6.0psf; h=25ft;	4) 5) d or 6) 5 7) 4) LC	This truss ha load of 12.0 overhangs m This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar One H2.5A S recommende UPLIFT at jt(and does not AD CASE(S)	is been designed for psf or 1.00 times fit non-concurrent with is been designed for dia nonconcurrent with as been designed in chord in all areas by 2-00-00 wide will y other members. Simpson Strong-Tie do to connect truss s) 10 and 8. This c t consider lateral for Standard	or greate at roof lk other liv or a 10.0 vith any for a liv s where I fit betw e connection orces.	er of min roo' bad of 20.0 p re loads. 0 psf bottom other live loa e load of 20. a rectangle veen the bott ctors ng walls due on is for uplif	f live sisf on ads. Opsf com e to it only				WITH CA	ROLIN	
 II; Exp B; and C-C to 10-7-8 left and ri exposed; reactions DOL=1.6 TCLL: AS Plate DO DOL=1.1 Cs=1.00; Unbaland design. 	Enclosed; MWFRS (en Exterior(2E) -0-11-0 to 2 , Exterior(2E) 10-7-8 to ght exposed ; end vertic C-C for members and fr shown; Lumber DOL=1 0 CC 7-16; Pr=20.0 psf (L L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat B Ct=1.10 eed snow loads have be	velope) exterior zon 2-1-0, Interior (1) 2-1 13-7-8 zone; cantile cal left and right prces & MWFRS for I.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate i; Fully Exp.; Ce=0.9 een considered for th	e -0 ver .15 ; is							Within		SEA 0363	L 22 ILBER	Manunnan an

January 9,2025

ENGINEERING BY AMITEK Affiliation

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A06	Common	3	1	Job Reference (optional)	170611617

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

TOP CHORD 2x4 SP No 2 BOT CHORD II; Exp B; Enclosed; MWFRS (envelope) exterior zone 2x4 SP No.2 and C-C Exterior(2E) -0-11-0 to 2-8-14, Interior (1) WEBS 2x4 SP No.3 *Except* 15-6:2x4 SP No.2 2-8-14 to 14-7-10, Exterior(2R) 14-7-10 to 21-11-6, BRACING Interior (1) 21-11-6 to 33-10-2, Exterior(2E) 33-10-2 to TOP CHORD Structural wood sheathing directly applied or 37-6-0 zone; cantilever left and right exposed ; end 4-5-9 oc purlins, except end verticals. vertical left and right exposed;C-C for members and BOT CHORD Rigid ceiling directly applied or 2-2-0 oc bracing. WEBS 1 Row at midpt 4-15, 8-13, 3-18 3) **REACTIONS** (size) 13=0-3-8, 18=0-3-8 Max Horiz 18=-284 (LC 12) Max Uplift 13=-192 (LC 15), 18=-132 (LC 14) Cs=1.00; Ct=1.10 Max Grav 13=2126 (LC 3), 18=1185 (LC 25) 4) FORCES (Ib) - Maximum Compression/Maximum desian. Tension 5) TOP CHORD 1-2=0/31, 2-3=-495/150, 3-4=-1560/215, 4-6=-844/183, 6-8=-844/208, 8-9=-208/760, 9-10=-266/231, 10-11=0/31, 2-18=-444/155, 6) 10-12=-320/188 BOT CHORD 17-18=-220/1369, 15-17=-102/1033, 7) 13-15=-70/254, 12-13=-393/275 WEBS 3-17=-223/187, 4-17=-50/598, 4-15=-741/234, 6-15=-93/428, 8-15=-31/755, 8-13=-1779/301, 9-13=-434/211, 8) 3-18=-1224/35, 9-12=-437/693 NOTES 1) Unbalanced roof live loads have been considered for this design.

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Unbalanced snow loads have been considered for this
- This truss has been designed for greater of min roof live
- load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle
- 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. One H2.5A Simpson Strong-Tie connectors
- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13 and 18. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A05	Roof Special	2	1	Job Reference (optional)	170611618

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:05 ID:WEZAIqoazSN8FnoVRCiho4zxSVK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A04-B	Roof Special	2	1	Job Reference (optional)	170611619

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:05 ID:1cFyzAx_E7z?n60uQsxaYczxSXk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

Design valid for use only with MITeK so connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclasse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A04	Roof Special	4	1	Job Reference (optional)	170611620

25010026-0	1 A04		Rool Special		4	1	Job Refer	ence (optiona	il)	
Carter Componer	nts (Sanford, NC), Sanford	i, NC - 27332,		Run: 8.	73 S Dec 5 2024	Print: 8.730 S D	ec 5 2024 MiTek	Industries, Inc. \	Wed Jan 08 10:14:05	
				ID:1cFy	zAx_E7z?n60uQs	xaYczxSXk-RfC	PsB70Hq3NSgP?	qnL8w3ulTXbG	KWrCDoi7J4zJC?f	
	-0-11-0 3.	-1-0 . 5-10-15 . 8	8-8-10 13-6	-0 . 18-3	3-8	24-4-3	30-3-8	. 32-8	-4. 36-7-0 37-	6-0
	0-11-0 3-	-1-0 2-9-15	2-9-11 4-9-	6 4-9	-8	6-0-11	5-11-5	2-4-1	2 3-10-12 0-1	⊣ 1-0
					5x6=					
	_				8					
	11-9-6	4x8 = 4x5 4x5 = 4	7^{12} $4x8$ 2x4 65	5x10 . 38 7		41 4xi 42 42	2x4 8 9 10	4x5 s 11	2x4 II > 12	
		3 22 25 2x4 II	23 4 8x10=	22 2x4 ⊪	21 39 20	1940	28	17	4x5 4x5 13 13 16 4x6	4 15 15
	6x10:	=		12	6x8= 8x1	0= 8x10=	2x4=	4x8=		
					2x4=		4x8=		4x5= 36-7-0	
	0-3-83	-1-0 5-10-15 8	8-8-10 13-6	-0 17-1-1	2 19-10-3	22-10-3 26	5-1-2	32-8-4 3	,2-10-0	
Scale = 1:78.5	0-3-82	-9-8 2-9-15 2	2-9-11 4-9-	6 3-7-12	2-8-7	3-0-0 3-	2-15	6-7-2 ()-1-12 3-9-0	
Plate Offsets ()	K, Y): [2:Edge,0-0-0],	[7:0-5-0,0-2-0], [21:	:0-4-0,0-3-8], [23:0	-5-0,0-4-12], [28:	0-5-0,0-2-8], [29	9:0-5-0,0-2-8]				
Loading	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.34	DEFL Vert(LL)	in (loc) -0.20 23	l/defl L/c	HATES	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.81	Vert(CT)	-0.42 22-23	>930 180)	
TCDL	10.0	Rep Stress Incr	YES	14 WB	0.50	Horz(CT)	0.29 16	n/a n/a	1	
BCDL	10.0	Code	IRG2021/1P120	14 Matrix-IV	1911				Weight: 327 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2	· Evcont*	NOTES 1) Unbal this de 2) Wind	anced roof live lo esign.	ads have been	considered for	r			
SLIDER	25-3,3-24,12-16:2x4 Left 2x4 SP No.2 3 1-6-0	SP No.3 -6-1, Right 2x4 SP	Vasd= No.3 II; Exp and C	=103mph; TCDL= B; Enclosed; M -C Exterior(2E) -	:6.0psf; BCDL= WFRS (envelop 0-11-0 to 2-8-14	6.0psf; h=25ft; e) exterior zon 4. Interior (1)	Cat. e			
BRACING TOP CHORD	Structural wood shea	athing directly applie	ed or Interio	4 to 14-7-10, Extended to 14-7-10, Extended to 14-7-10, Extended to 30, 2000 t	rior(2R) 14-7-1 33-10-2, Exterio	0 to 21-11-6, r(2E) 33-10-2 t	to			
BOT CHORD	3-2-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc			vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber						

SLIDER	Left 2x4 S 1-6-0	P No.2	3-6-1, Right 2	2x4 SP No.3		II; E anc
BRACING						2-8
TOP CHORD	Structural	wood she	eathing directl	y applied or		Inte
	3-2-0 oc p	ourlins.	-			37-
BOT CHORD	Rigid ceili	ng directly	applied or 10	0-0-0 oc		ver
	bracing,	Except:				tore
	6-0-0 oc b	oracing: 14	4-16.		~ `	DO
WEBS	1 Row at i	midpt	8-18, 7-21		3)	IC
REACTIONS	(size)	2=0-3-8,	16=0-3-8			Pia
	Max Horiz	2=263 (L	C 13)			00
	Max Uplift	2=-73 (L0	C 14), 16=-38	(LC 15)	4)	Upł
	Max Grav	2=1425 (LC 21), 16=18	829 (LC 1)	4)	des
FORCES	(lb) - Maxi	imum Con	npression/Ma	ximum	5)	Thi
	Tension				0)	loa
TOP CHORD	1-2=0/28,	2-3=-159	1/164, 3-4=-4	726/316,		ove
	4-5=-4843	8/250, 5-7	=-4839/344,		6)	200
	7-8=-1491	/106, 8-1	0=-1674/228,		,	fror
	10-11=-14	34/0, 11-	12=-63/291,		7)	Thi
	12-14=-12	25/342, 14	-15=0/28			chc
BOT CHORD	2-25=-369	9/2970, 24	-25=-381/311	0,	8)	* Tł
	23-24=-36	3/4368, 2	2-23=0/1803,			ont
	21-22=-12	2/1808, 20	-21=0/945, 19	9-20=0/945,		3-0
	18-19=0/9	45, 16-18	=0/628, 14-10	5=-226/155		cho
WEBS	10-18=-60	06/299, 8-	26=-244/430,	07 40/000	9)	Bea
	18-26=-25	07/447,7-	22=0/161, 21	-27 = -43/862,		usir
	8-27=-23/	880, 4-24	=-344/17, 5-2	3=-14Z/131, 19_0/706		des
	4-23=0/13	22/253 27	322/3491, 11· '-2010/84	10=0/700,	10)	On
	28-2010	1/8/ 26-2	-2310/04, 810/8/ 10-	28-0/28		rec
	20-29=0/3	9 11-16=	-1700/2 3-25	=-310/59		OP
	3-24=0/12	22 12-16	=-252/92			
	0 - 1-0/12	, 10			LO	AD (

L=1.60 plate grip DOL=1.60 LL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 te DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate L=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; =1.00; Ct=1.10

- balanced snow loads have been considered for this sign.
- is truss has been designed for greater of min roof live d of 12.0 psf or 1.00 times flat roof load of 20.0 psf on erhangs non-concurrent with other live loads.
- 0.0lb AC unit load placed on the bottom chord, 21-2-0 m left end, supported at two points, 5-0-0 apart.
- s truss has been designed for a 10.0 psf bottom
- ord live load nonconcurrent with any other live loads. his truss has been designed for a live load of 20.0psf the bottom chord in all areas where a rectangle 6-00 tall by 2-00-00 wide will fit between the bottom ord and any other members.
- aring at joint(s) 2 considers parallel to grain value ng ANSI/TPI 1 angle to grain formula. Building signer should verify capacity of bearing surface.
- e H2.5A Simpson Strong-Tie connectors ommended to connect truss to bearing walls due to LIFT at jt(s) 2 and 16. This connection is for uplift only d does not consider lateral forces.

CASE(S) Standard

Page: 1

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A03	Roof Special	2	1	Job Reference (optional)	170611621

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:05 ID:nwKrmf2VwVd5rGIIO4iNJvzxSfL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A02	Common	6	1	Job Reference (optional)	170611622

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:04 ID:HCwwAkMFClebD9JdNSjJJ5zxSip-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

ENGINEERING BY

January 9,2025

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A01	Common Supported Gable	1	1	Job Reference (optional)	170611623

Run; 8,73 S Dec 5 2024 Print; 8,730 S Dec 5 2024 MiTek Industries, Inc. Wed Jan 08 10:14:03 ID:OWv?hUk4IKip2dw78rVBPezxSxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

munn January 9,2025

Job	Truss	Truss Type	Qty	Ply	129 Hidden Lakes North-Roof-Plan 4 GLH	
25010026-01	A01	Common Supported Gable	1	1	Job Reference (optional)	170611623
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S Dec 5 2	024 Print: 8.	730 S Dec 5	2024 MiTek Industries, Inc. Wed Jan 08 10:14:03	Page: 2

ID:OWv?hUk4IKip2dw78rVBPezxSxp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 2-0-0 oc. 9)

chord and any other members.

- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

