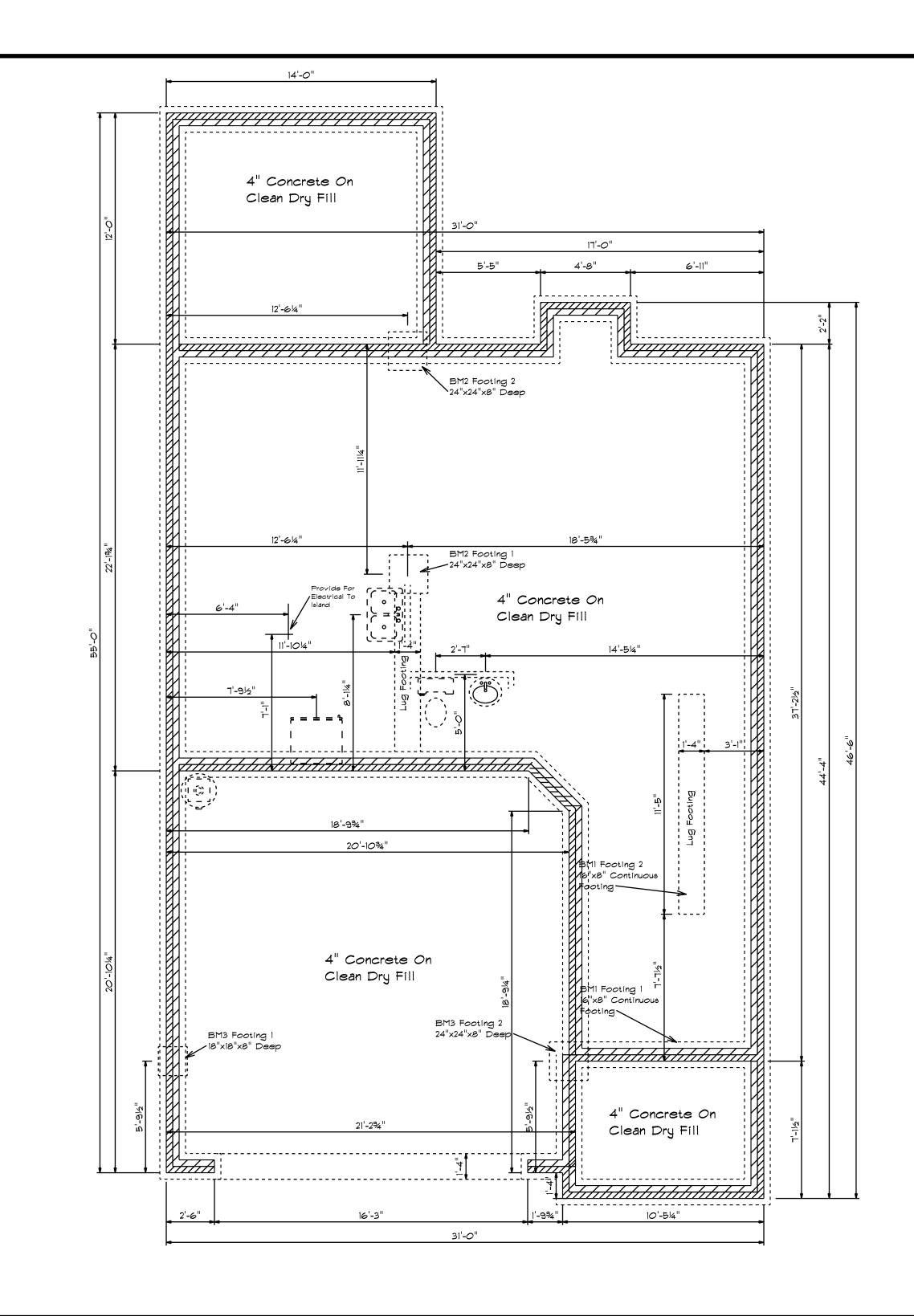
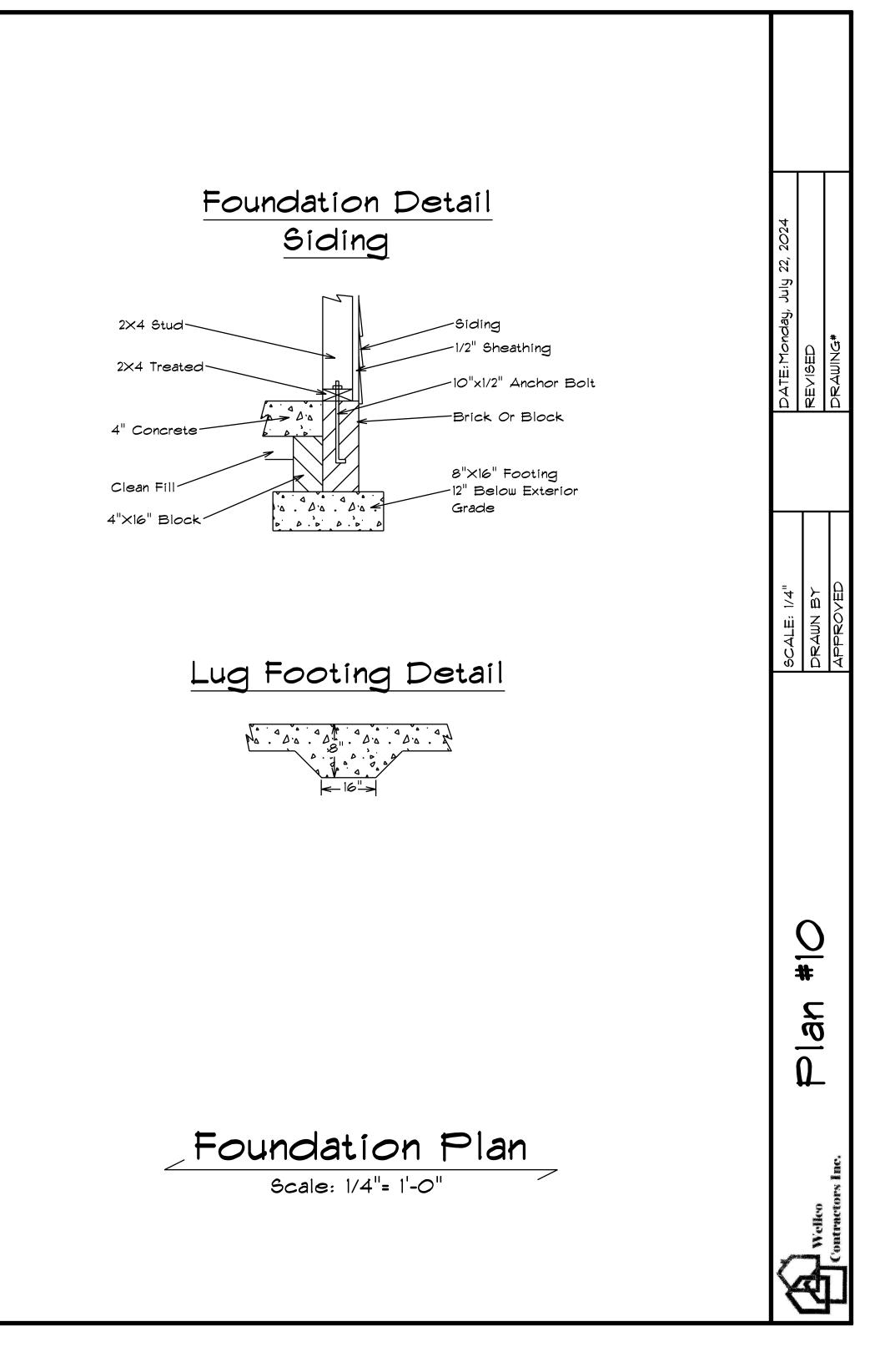


SCALE: 1/4" DRAWN BY APPROVED DR4	DATE:Monday, July 22, 2024	IGED	AUING#
		AUN BY REVISED	PROVED DRAWING#

TURN-DOWN

FOOTING DETAIL




INTEGRAL SLAB FOOTING DETAIL AT BEARING WALL

<u>D</u>[an #]0

J Welleo Contracto

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Contractor

Model: 127 Hidden Lakes - Plan 10 GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

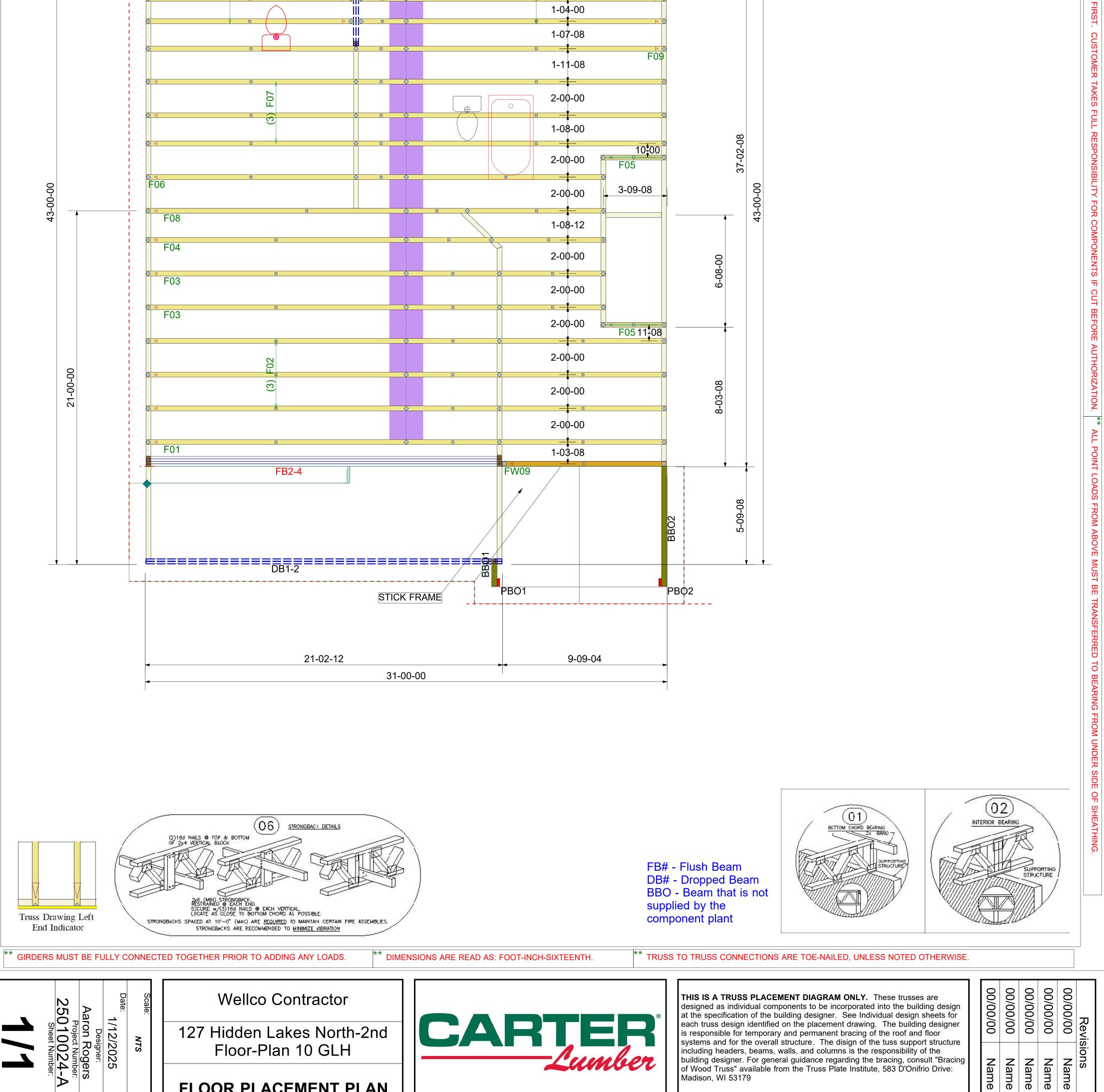
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

	₹31-00-00	
	4-00-00	-00-00
12-00-00	PBO4 PBO3 OB STICK FRAME	KEMPSVILLE BUILDING MATERIALS IS NOT RESPONSIBLE FOR THE DESIGN OR CALCULATION OF ANY AND ALL I-JOIST AND LVL/PSL BEAM MATERIAL. ALL ENGINEERING AND INFORMATION FOR THIS MATERIAL IS TO BE PROVIDED BY THE ENGINEER OF RECORD MARKED ON APPROVED SET OF PLANS. ALL BEAM PLACEMENTS ARE PER THE ENGINEERING RECEIVED. ALL CONNECTION DETAILS TO BE PROVIDED BY ENGINEER OF RECORD. REFER TO ENGINEER OR RECORD FOR ALL MULTI-PLY LVL/ I-JOIST CONNECTION PATTERNS. BUILDER TO VERIFY ALL MATERIAL LENGTHS, QUANTITIES, AND SIZES PRIOR TO ORDERING.
		1-02-12 FW18 1-04-00 FB3-2 14-00-00 2.0 RigidLam DF LVL 1-3/4 x 14 2 2 FF 1-04-00 1-04-00 1.04-00 2.1 RigidLam SP LVL 1-3/4 x 14 4 4 FF 1-04-00 1.04-00 1.04-00 1.04-00 1.04-00 1.04-00 1.04-00 1-04-00 1.04-00 1.04-00 1.04-00 1.04-00 1.04-00 1.04-00 1-04-00 F09 1.04-00 F09 1.04-00 F09 1.04-00 F09 1-04-00 F09 F09 F09 F09 F09 F09 F09 1-11-08 F09 F09 F09 F09 F09 F09 F09 2-00-00 F09 F09 F09 F09 F09 F09 F09 1-11-08 F09 F09 F09 F09 F09 F09 F09 1-07-08 F09 F09 F09 F09 F09 F09 F09 1-11-108 F09 F09 F09 F09 F09 F09 F09

Madison, WI 53179

BUILDER .

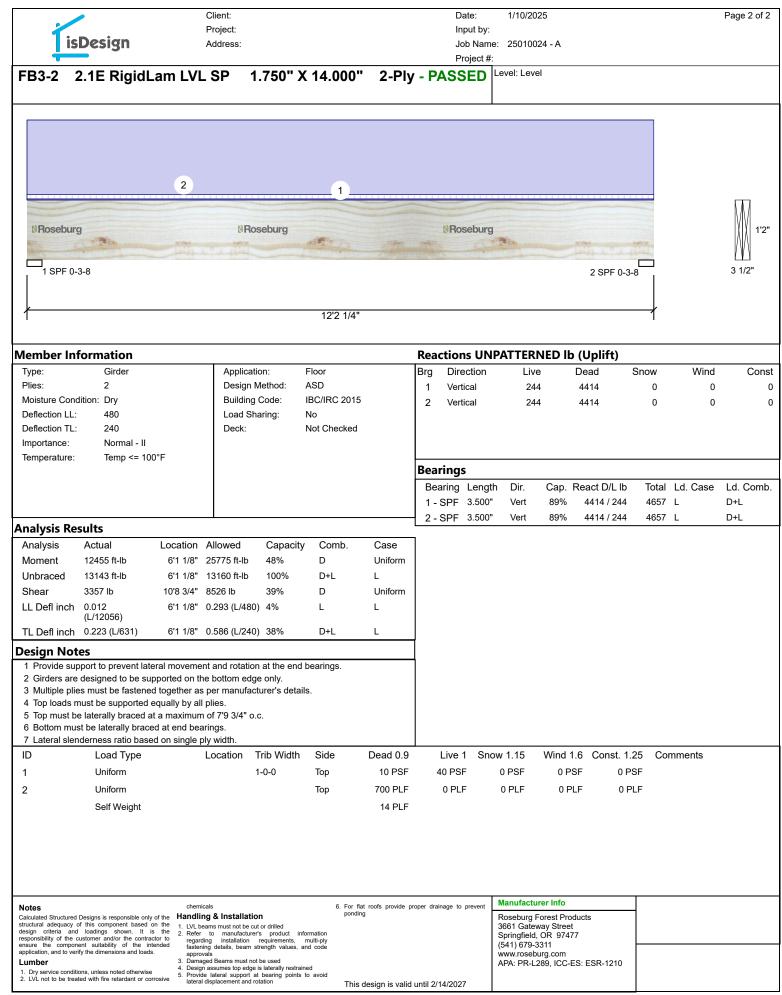
TO VERIFY LOCATIONS BEFORE SETTING

TRUSSES

*

REFER TO FINAL TRUSS ENGINEERING SHEETS FOR PLY TO PLY CONNECTIONS

 \triangleright

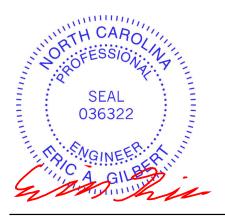

FLOOR PLACEMENT PLAN

General Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER

is	Design		Project: Address:						ame: 2501	0024 - A				
FB2-4 2	2.1E Rigid	Lam LVI	LSP 1	.750" >	(14.000"	4-Ply	/ - P/	Projec		evel				
						3				2				
			1											
₿ Roseburg	a ritte	NRoseburg	17.0	Roseburg	al # lac you	NRoseb	urg		NRose	burg		NRos	eburg	1
1 SPF 0-3	-8						8:-1931	e, Sanasa Sakat			2	SPF 0-3	3-8 	(¥¥¥) 7"
						-								
1					21'1 3/4'	•							1	
ember In	formation						Read	ctions U	JNPATTE	RNED Ib	(Uplif	t)		
Гуре:	Girder		Applicati	on:	Floor		Brg	Directio		ive	Dead	-, Sno	w Wind	С
Plies:	4		Design N		ASD		1	Vertical		423	4236		0 0	
Moisture Con			Building		IBC/IRC 2015		2	Vertical		123	5272		0 0	
Deflection LL: Deflection TL:			Load Sha Deck:	•	Yes Not Checked									
mportance:	Normal - II		Deck.		NOL CHECKEU									
emperature:	Temp <= 1													
ionipolataro.	iemp i						Bear	rings						
								aring Ler	ngth Dir.	Cap.	React D/	L lb '	Total Ld. Case	Ld. Co
								SPF 3.5	-	45%	4236 /		4659 L	D+L
							2-	SPF 3.5	00" Vert	55%	5272 /	423	5695 L	D+L
nalysis Re	sults						<u> </u>							
Analysis	Actual	Location		Capacity		Case								
<i>l</i> oment	41614 ft-lb		53613 ft-lb	78%	D	Uniform								
Inbraced	43707 ft-lb		43947 ft-lb	99%	D+L	L								
Shear	5111 lb		17052 lb	30%	D	Uniform								
	0.051 (L/4826)				L	L								
L Defl inch	0.884 (L/281)	11'1 1/8"	1.034 (L/240)	85%	D+L	L	1							
esign Not	es													
	oport to prevent la				bearings.									
	designed to be s must be fasten		•		s									
	nust be supported	•	•											
-	e laterally braced			C .										
	st be laterally brac iderness ratio bas		-											
D	Load Type		-	rib Width	Side	Dead 0.9		Live 1 S	Snow 1.15	Wind 1	.6 Cons	st. 1.25	Comments	
I	Uniform		1	-0-0	Near Face	10 PSF	4	10 PSF	0 PSF	0 P	SF	0 PSF	standard	
2	Uniform				Тор	80 PLF		0 PLF	0 PLF	0 P		0 PLF	wall	
-	Point		12-1-4		Тор	7000 lb		0 lb	0 lb		 Ib	0 lb	girder above	
	Bearing Leng	ıth	0-3-8		.~~			5.15	0.0	0		0.0	9	
	Self Weight	j	0-0-0			29 PLF								
	Gen weignt					29 666								
			lasta		• -				Manufa	turer Info		<u> </u>		
otes	Designs is responsible or		icals ng & Installatio	n	For fla ponding	t roofs provide p g	roper drai	nage to prever		g Forest Pro	ducts			
	of this component based	on the 1 IVI h	eams must not be cut	or drilled						teway Street				
alculated Structured ructural adequacy esign criteria and	loadings shown. It	is the 2 Refer	to manufacturer	s product inf	ormation					Id OR 0747	7			
alculated Structured ructural adequacy esign criteria and sponsibility of the	loadings shown. It	is the 2. Refer ractor to regard intended faster	to manufacturer ding installation ning details, beam st	requirements.	multi-ply				Springfie (541) 67		7	-		
alculated Structured ructural adequacy of sign criteria and sponsibility of the of sure the compor plication, and to ver umber	loadings shown. It	is the 2. Refer ractor to regard intended faster ds. appro 3. Dama	to manufacturer ding installation ning details, beam st	requirements, rength values, a be used	multi-ply nd code				Springfie (541) 67 www.ros			210		

Trenco 818 Soundside Rd Edenton, NC 27932

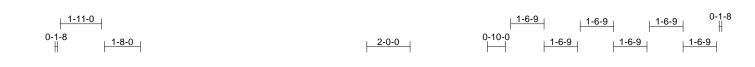

Re: 25010024-A 127 Hidden Lakes North-2nd Floor-Plan 10 GLH

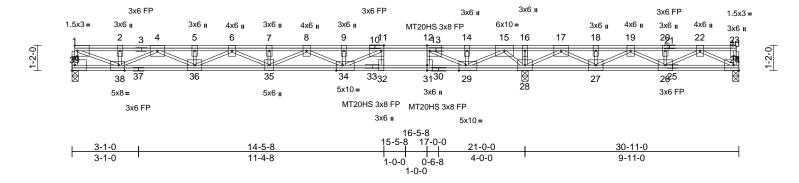
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I70700750 thru I70700763

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


January 13,2025


Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F01	Floor	1	1	I70700750 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:37 ID:LzpTTEzOVRJI4PL9deHypFzwi?H-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:53.4

Plate Offsets ((X, Y): [1:0-1-8,0-0-8]	, [11:0-1-8,Edge], [1:	2:0-1-8,E	dge], [29:0-3-1	2,Edge], [31:0-3-0	,Edge], [3	4:0-3-8,Edge], [38:0-3	3-4,Edge	e], [40:0-	1-8,0-0	0-8]	-
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.82	Vert(LL)	-0.35		>711	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.85	Vert(CT)	-0.48		>520	360	MT20HS	187/143
BCLL	0.0	Rep Stress Incr	YES		WB	0.75	Horz(CT)	0.04	28	n/a	n/a		
BCDL	5.0	Code	IRC20	21/TPI2014	Matrix-MSH	-	-					Weight: 242 lb	FT = 20%F, 11%E
UMBER			١	WEBS	11-32=-627/0, 12		,	,					
TOP CHORD	2x4 SP No.2(flat)		~ .		11-34=0/2230, 9		,	/0,					
BOT CHORD	()	Except* 37-30,33-25:	2x4		8-35=0/274, 7-3 6-36=-561/0, 5-3								
VEBS	SP No.1(flat) 2x4 SP No.3(flat) *E	voont*			4-38=-1365/0, 2-	,	,	9					
WEB3	34-11,38-1,29-15:2x				12-29=-3120/0,			.0,					
OTHERS	2x4 SP No.3(flat)				15-29=0/2158, 1								
BRACING					17-28=-1550/0,	17-27=0/1	279, 18-27=-	170/0,					
TOP CHORD	Structural wood she	eathing directly applie	ed or		19-27=-930/0, 19			1/0,					
	6-0-0 oc purlins, ex				22-26=-542/279,	22-24=-6	44/468						
BOT CHORD	Rigid ceiling directly	/ applied or 6-0-0 oc		NOTES									
	bracing.			,	d floor live loads h	ave been	considered f	or					
REACTIONS		, 28=0-3-8, 39=0-3-8	3	this design									
	Max Uplift 24=-210	· /	4		re MT20 plates ur re 3x6 MT20 unle			ea.					
	Max Grav 24=402 (I 39=982 (I		17.	4) One H2.5A	Simpson Strong-	Tie conne	ctors						
FORCES	(lb) - Maximum Com Tension	npression/Maximum		UPLIFT at	ded to connect tru jt(s) 24. This conn	ection is f							
TOP CHORD	1-39=-964/0, 23-24=	-68/0 1-2-1987/0			onsider lateral for								
	2-4=-1986/0, 4-5=-4				nd 2x6 strongback								
	6-7=-4727/0, 7-8=-4	, ,			c and fastened to								
	9-11=-4135/0, 11-12	2=-2256/0, 12-14=0/	974,		b") nails. Strongba er ends or restrair			alls					115
	14-15=0/974, 15-16		866, ₍		Do not erect trus							11''' CA	1111
	17-18=-347/2119, 1			LOAD CASE(S		Dackwar	15.					TH UA	Roilly
	19-20=-802/878, 20		-0/0	LUAD CASE(S) Stanuaru						15	(Hisision	Dollin
BOT CHORD	38-39=0/0, 36-38=0									L	11		No and
	34-35=0/4542, 32-3 29-31=0/2256, 28-2		2256,									in the second	1. 2
	27-28=-2858/0, 26-2									1	()		1 1 1 E
	24-26=-407/560	,										SEA	L : =
										=	:	0363	• -
										-		0303	
											-	N	- 1 E
											2.	N. En	Riki
											25	SEA 0363	EF. AN
											1	CA -	IL BEIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Stability and proponent of the component description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G minim January 13,2025

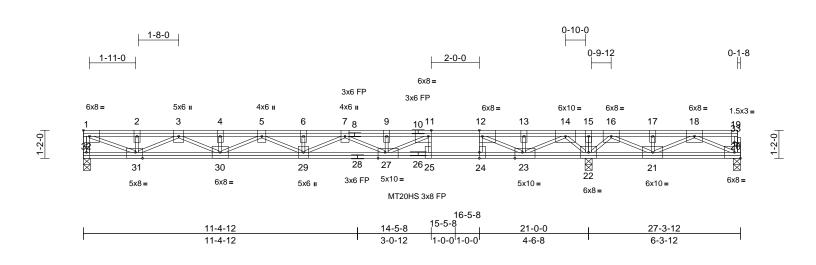
Jo	b	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25	5010024-A	F02	Floor	3	1	I70700751 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:38 ID:7JtmrPhPcZINfTLVaXroihzwi_M-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:53.4

Plate Offsets ((X, Y): [11:0-1-8,Edge], [12:0-1-8,Edge], [2	29:0-3-12	2,Edge], [31:0-3	-0,Edge], [34:0-3-8	,Edge], [38:0-3-4,Edg	e], [40:0	-1-8,0-0	-8]			
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC20)21/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.85 0.75	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 34-35 34-35 28	l/defl >710 >520 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 242 lb	GRIP 244/190 187/143 FT = 20%F, 11%B
LUMBER FOP CHORD SOT CHORD WEBS DTHERS BRACING FOP CHORD REACTIONS FORCES FOP CHORD	SP No.1(flat) 2x4 SP No.3(flat) *E 34-11,38-1,29-15:2x 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing.	xcept* 4 SP No.2(flat) athing directly applie cept end verticals. applied or 6-0-0 oc , 28=0-3-8, 39=0-3-8 (LC 3) _C 4), 28=2246 (LC _C 3) _C 4), 28=2246 (LC _C 3) apression/Maximum =-68/0, 1-2=-1985/0, 074/0, 5-6=-4074/0, 727/0, 8-9=-4135/0, 2=-2256/0, 12-14=0/4 =-/3867, 16-17=0/33 8-19=-347/2119, -22=-802/878, 22-23 (3192, 35-36=0/457(4=0/2256, 31-32=0/2 9=-2644/0,	2x4 ed or 1), 975, 367, =0/0	NOTES 1) Unbalancec this design. 2) All plates ar 3) All plates ar 4) One H2.5A recommenc UPLIFT at j does not co 5) Recommen 10-00-00 co (0.131" X 3' at their oute	11-32=-627/0, 12- 11-34=0/2230, 9-3 8-35=0/274, 7-35= 6-36=-561/0, 5-36 4-38=-1366/0, 2-3 12-29=-3120/0, 14 15-29=0/2158, 15- 17-28=-1550/0, 17 19-27=-930/0, 19- 22-26=-542/279, 2 If floor live loads have the MT20 plates unless Simpson Strong-Ti- led to connect truss t(s) 24. This conne- nsider lateral force d 2x6 strongbacks, and fastened to et ') nails. Strongbac tr ends or restraine Do not erect truss to) Standard	44=-466// -176/0, i =-163/0, 8 =-206/0, -29=-69, -28=-172 -27=0/11 26=0/68: :2-24=-6: ve been ess otherwi e connels s to bear s to bear s to bear ction is fit s. on edge ach truss ks to be d by other	9, 8-34=-518, 5-35=0/178, 4-36=0/998, 1, 1-38=0/216 285, 4/0, 279, 18-27=- 3, 20-26=-15 14/468 considered for wise indicated. ctors ng walls due or uplift only a e, spaced at with 3-10d attached to w or means.	/0, 55, 170/0, 1/0, or ed. ed.		6	25	SEA 0363	22 ER Chill


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G minim January 13,2025

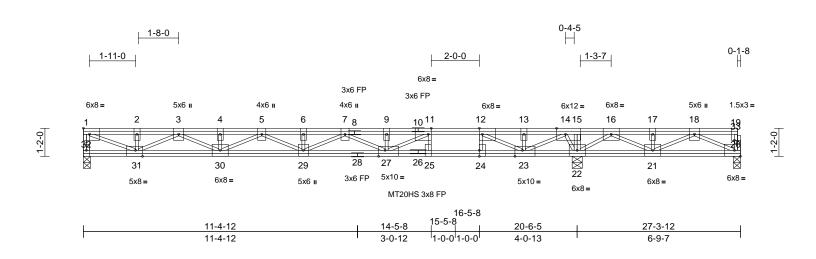
Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F03	Floor	2	1	I70700752 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:38 ID:BkLl79H83cwQ1?bwyKDHB0zwhzb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:47.9

Plate Offsets (X, Y): [11:0-1-8,Edge	e], [12:0-1-8,Edge], [23:0-3-12	,Edge], [24:0-3	-0,Edge], [27:0-3	-8,Edge], [31:0-3-8,Edg	je], [33:0	-1-8,0-0	-8]			
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL	40.0	Plate Grip DOL	1.00		TC	0.88	Vert(LL)	-0.35	27-29	>725	480	MT20	244/190
CDL	10.0	Lumber DOL	1.00		BC	0.83	Vert(CT)		27-29	>528	360	MT20HS	187/143
CLL CDL	0.0 5.0	Rep Stress Incr	YES		WB Matrix-MSH	0.76	Horz(CT)	0.04	22	n/a	n/a	Waisht 014 lb	ET 200/E 440/
JDL	5.0	Code	IRC20	21/TPI2014	Matrix-MISH							Weight: 214 lb	FT = 20%F, 11%
MBER				IOTES									
P CHORD	2x4 SP No.2(flat)			 Unbalanced this design. 	l floor live loads h	nave been	considered f	or					
T CHORD	2x4 SP No.2(flat) *E SP No.1(flat)	:xcept" 28-20,26-20:	2X4 2	0	e MT20 plates ur	nless other	wise indicate	he					
BS	2x4 SP No.3(flat) *E	xcept*	3		e 3x6 MT20 unle								
	27-11,31-1,23-14:2>		4		chanical connecti								
HERS	2x4 SP No.3(flat)	()		bearing plat	e capable of with	standing 5	522 Ib uplift a	t joint					
RACING				20.									
P CHORD		athing directly applie	ed or 5		d 2x6 strongback								
	6-0-0 oc purlins, ex				and fastened to								
DT CHORD	Rigid ceiling directly	applied or 10-0-0 o	С		 nails. Strongba r ends or restrair 			valis					
	bracing, Except: 6-0-0 oc bracing: 22	0 00 01 00 00 01	F		Do not erect trus								
ACTIONS	-	, 22=0-3-8, 32=0-3-8		OAD CASE(S									
	Max Uplift 20=-522	, ,	,										
	Max Grav 20=152 (· /	1).										
	32=968 (<i>,,</i>	-),										
RCES	(lb) - Maximum Con	npression/Maximum											
	Tension	74/0 4 0 4050/0											
P CHORD	1-32=-949/0, 19-20=	=-71/0, 1-2=-1953/0, 3990/0, 4-5=-3990/0,											
	,	1590/0, 7-9=-3944/0,											
	,	2=-2019/0, 12-13=0/										minin	unin.
		5=0/3997, 15-16=0/3										"TH CA	Rollin
	16-17=0/2128, 17-1	8=0/2128, 18-19=0/	0								x	R	11/2
DT CHORD	31-32=0/0, 30-31=0	,	,								5.	0.5555	Vil Vil
	,	7=0/2019, 24-25=0/2	2019,							-			R
	23-24=0/2019, 22-2									-		.Q.	
EBS	21-22=-3305/0, 20-2	21=-1029/121 4=0/669, 15-22=-163	2/0							=		SEA	L 1
	,	=-468/0, 7-27=-523/	,							- E		0202	•
	7-29=-3/287, 6-29=-	,	0,							1		0363	22 :
	5-30=-525/0, 4-30=-										2		
	3-31=-1334/0, 2-31=	=-207/0, 1-31=0/213	1,							1	5	·	airs
	12-23=-3142/0, 13-2										15	S GINI	EFICAN
	14-23=0/2163, 14-2										11	10	BEIN
	18-20=-137/1165, 1		102/0							CONTRACTION OF CONTRACT		11, A. G	ILDIN
	17-21=-100/0, 16-2	1=0/1562, 16-22=-11	103/0									1111 A. G	innin.
													40.0005

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com) January 13,2025


Page: 1

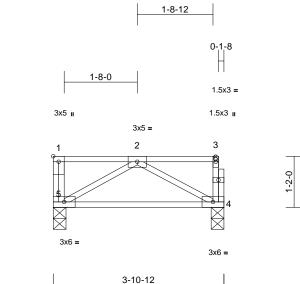
Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F04	Floor	1	1	I70700753 Job Reference (optional)

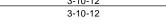
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:38 ID:JW9eQQey?qiAdcuhidJPLzwhz7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:47.9

$\frac{3 \text{Cale} = 1.47.9}{\text{Plate Offsets (}}$	(X, Y): [11:0-1-8,Edge	1 [12:0-1-8 Edge] [1]	5·0-4-8 F		2 Edge] [24:0-3-0	Edge] [27:0-3-4 Eda	o] [31·0	-3-8 Edd	10] [33.0)_1_8 O	-0-81		
	(A, T). [11.0-1-6,Edge	i, [12.0-1-0,⊏uge], [1: T	5.0-4-0,E	zugej, [23.0-3-1/	z,Eugej, [24.0-3-0	,⊏ugej, [27.0-3-4,⊏uy I	ej, [31.0	-3-0,⊑uį	jej, [33.0	J-1-6,0	-0-0] T		
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00		TC	0.94	Vert(LL)		27-29	>739	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00		BC	0.81	Vert(CT)		27-29	>538	360	MT20HS	187/143	
BCLL	0.0	Rep Stress Incr	YES		WB	0.99	Horz(CT)	0.03	22	n/a	n/a			
BCDL	5.0	Code	IRC20	21/TPI2014	Matrix-MSH							Weight: 214 lb	FT = 20%F, 11%E	
LUMBER				NOTES										
TOP CHORD BOT CHORD		xcept* 28-20,26-20:2		this design.	floor live loads ha	ve been	considered to	or						
	SP No.1(flat)			/ !	MT20 plates unle			ed.						
WEBS	2x4 SP No.3(flat) *E SP No.2(flat)	xcept* 27-11,23-14:2			3x6 MT20 unless hanical connection			to						
OTHERS	2x4 SP No.3(flat)				capable of withst									
BRACING	()			20.										
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	athing directly applied	d or 5		2x6 strongbacks, and fastened to e									
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		(0.131" X 3")	nails. Strongbac ends or restraine	ks to be	attached to w	alls						
	bracing, Except: 6-0-0 oc bracing: 22	-23.21-22.20-21.	6		o not erect truss l									
REACTIONS	•	22=0-5-1, 32=0-3-8	L	OAD CASE(S)	Standard									
	Max Uplift 20=-428 (
	Max Grav 20=200 (I	_C 4), 22=2201 (LC 1),											
	32=952 (l	,												
FORCES	(lb) - Maximum Com	pression/Maximum												
	Tension	70/0 4 0 4040/0												
TOP CHORD	1-32=-932/0, 19-20= 2-3=-1913/0, 3-4=-3													
	5-6=-4432/0, 6-7=-4	, ,										NITH CA		
		2=-1752/0, 12-13=0/1	328,									minin	unin.	
		5=0/3690, 15-16=0/3										W'TH CA	Rollin	
	16-17=-59/1775, 17	-18=-59/1775, 18-19=	=0/0								S'	R	ALIN'L	
BOT CHORD	31-32=0/0, 30-31=0	/3064, 29-30=0/4327	,								1.	O FESS	Str. Lin	
		7=0/1752, 24-25=0/1	752,							4	ŨĎ		1.4.	
	23-24=0/1752, 22-2											.Q.	1 1 1 2	
WEBS	21-22=-2802/0, 20-2	21=-854/211 1=0/686, 15-22=-182/	0							CHILLING.		SEA	1 7 7	
WEB5		+=0/686, 15-22=-182/ =-473/0, 7-27=-550/0								Ξ		OLA	• -	
	7-29=0/316, 6-29=-1	,	,							Ξ.		0363	22 : E	
	5-30=-491/0, 4-30=-									-	- 8	N (1997)	1 I I	
		=-205/0, 1-31=0/2086	,								5	1 A	all S	
	12-23=-3217/0, 13-2										2.5	NGIN	FERMAN	
	14-23=0/2139, 14-2										11	710	attin	
	18-20=-238/967, 18		-7/0									11. A. G	ILP	
	17-21=-176/0, 16-21	1=0/1357, 16-22=-135	57/0									A. G	IIIII.	
												January	/ 13,2025	
													- ,—	


TRENCO


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F05	Floor	2	1	I70700754 Job Reference (optional)

1-2-0

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:38 ID:NPZJaYqMTRb2wwXZ4GXrWWzwhyu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:26.3

Plate Offsets (X, Y): [1:Edge,0-1-8]

	, 1 - 3 - , 1				_							
Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.55	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.27	Vert(CT)	-0.03	4-5	>999	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.14	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MP							Weight: 22 lb	FT = 20%F, 11%E
LUMBER												

TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) BRACING TOP CHORD

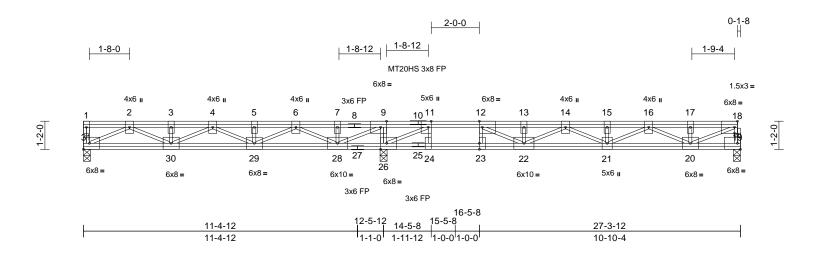
BOT CHORD	3-10-12 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.
REACTIONS	(size) 4=0-3-8, 5=0-3-8
	Max Grav 4=458 (LC 1), 5=474 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-5=-171/0, 3-4=-171/0, 1-2=0/0, 2-3=-10/0
BOT CHORD	4-5=0/490
WEBS	2-5=-567/0, 2-4=-550/0

NOTES

- Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 2) CAUTION, Do not erect truss backwards.
- In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (lb/ft)
 - Vert: 4-5=-10, 1-3=-250 (F=-150)


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F06	Floor	1	1	I70700755 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:38 ID:FisgYYHCW6NfUmRtJFCl2Wzwhyl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

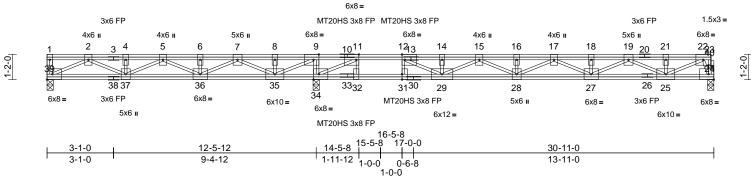
Scale = 1:47.9														
Plate Offsets ((X, Y): [9:0-3-0,Edge]	, [11:0-3-0,Edge], [12	2:0-1-8,Ed	ge], [18:0-1-8,E	dge], [18:0-1-8,0-	0-8], [23	:0-3-0,Edge]	, [26:0-3-	0,Edge]					
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.78 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.24 0.02	(loc) 22-23 22-23 19	l/defl >999 >741 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 214 lb	GRIP 244/190 187/143 FT = 20%F, 11%	έE
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 19=0-3-8,	y applied or 6-0-0 oc , 26=0-3-8, 31=0-3-8	L	All plates are Recommend 10-00-00 oc a (0.131" X 3") at their outer	MT20 plates unle 3x6 MT20 unless 2x6 strongbacks, and fastened to e nails. Strongbac ends or restraine o not erect truss l Standard	s otherwi on edge ach truss ks to be d by othe	se indicated. e, spaced at s with 3-10d attached to v er means.					·		
	Max Grav 19=734 (I 31=595 (I		1),											
FORCES	(lb) - Maximum Com Tension	npression/Maximum												
TOP CHORD	,	543/0, 4-5=-1608/49 248/658, 7-9=-248/6 =-1077/354, 14=-2487/0, 16=-2562/0,	,											
BOT CHORD	30-31=0/974, 29-30 28-29=-320/1096, 2 24-26=-354/1077, 2 22-23=-354/1077, 2 20-21=0/2114, 19-2	6-28=-1795/0, 3-24=-354/1077, 1-22=0/2640,									- A	OR FESS	ROUN	/
WEBS NOTES 1) Unbalance this design	9-26=-792/0, 11-24= 2-31=-1094/0, 2-30= 4-30=-228/90, 4-29= 6-29=0/687, 6-28=- 9-28=0/1650, 11-26 13-22=-434/0, 14-22 15-21=-181/0, 16-2' 17-20=-186/0, 18-20 ed floor live loads have	=0/481, 12-23=-487/C =0/644, 3-30=-161/0, =-262/0, 5-29=-166/0 1063/0, 7-28=-196/0, =-2620/0, 12-22=0/1 2=-256/0, 14-21=-88 1=0/507, 16-20=-865 D=0/1484), 759, /96, /0,							U TITITU		SEA 0363 A. GINI	22 ER &	Lanning .

January 13,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F07	Floor	3	1	I70700756 Job Reference (optional)

1-8-0


Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:39 ID:ZPPSs?OvrOzbXuTYiasKnwzwhws-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

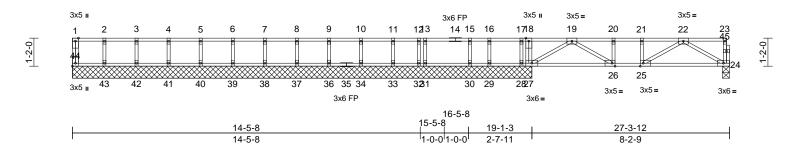
0-1-8 ∦

0-3-0

Ĥ

Scale = 1:53.4													
Plate Offsets ((X, Y): [9:0-3-0,Edge],	[11:0-1-8,Edge], [12	2:0-1-8,Edge], [31:0-3-0,E	dge], [34:0-3-	0,Edge], [40	:0-1-8,0-0-8]						
Loading TCLL TCDL BCLL BCDL	(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 YES IRC2021/TP	12014	CSI TC BC WB Matrix-MSH	0.95 0.94 0.89	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.28 -0.38 0.03	(loc) 28-29 28-29 24	l/defl >789 >582 n/a	L/d 480 360 n/a	PLATES MT20 MT20HS Weight: 242 lb	GRIP 244/190 187/143 FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	No.1(flat) 2x4 SP No.2(flat) 2x4 SP No.3(flat) *E: No.2(flat) 2x4 SP No.3(flat) *E: Structural wood shea 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 24=0-3-8,	xcept* 29-12:2x4 SF athing directly applie cept end verticals. applied or 6-0-0 oc 34=0-3-8, 39=0-3-8	WEBS ed or 1) Un this ; 2) All	9 2 5 7 9 1 1 1 1 2 5 8 balanced f s design. plates are		11-32=0/616, 2, 2-37=-118, 3, 5-36=-429, -35=-1227/0, 11-34=-3441 15-29=-664, 17-28=-67/7 19-27=0/81; 22-25=0/156 s have been unless other	(605, 4-37=- (0, 6-36=-16; 8-35=-205/(0, 10, 12-29=0) (0, 15-28=0/- (1, 17-27=-36; 3, 19-25=-11 30, 22-24=-1 considered f wise indicate	162/0, 7/0, 0, 2604, 480, 7/0, 90/0, 010/0 for					
FORCES TOP CHORD	2-4=-1473/133, 4-5= 5-6=-1471/670, 6-7= 7-8=-42/1583, 8-9=- 11-12=-727/435, 12- 14-15=-2926/0, 15-1 16-17=-3821/0, 17-1	C 3) pression/Maximum //83, 1-2=0/0, 1473/133, 1471/670, 42/1583, 9-11=0/287, -14=-2926/0, 8=-3421/0, 8=-3491/0,	4) Re 10- (0. 211 5) CA LOAD	commend -00-00 oc a 131" X 3") their outer	3x6 MT20 ur 2x6 strongba and fastened nails. Strong ends or restra o not erect tru Standard	cks, on edge to each truss backs to be ained by othe	e, spaced at s with 3-10d attached to v er means.					WITH CA	Bo
BOT CHORD	18-19=-3491/0, 19-2 21-22=-1722/0, 22-2 37-39=-29/938, 36-3 35-36=-1094/923, 3 32-34=-435/727, 31- 29-31=-435/727, 28- 27-28=0/3815, 25-27	23=0/0 97=-366/1639, 4-35=-2874/0, -32=-435/727, -29=0/3458,	326							Contraction of the second seco		SEA 0363	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



G 11111111 January 13,2025

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F08	Floor	1	1	I70700757 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:39 ID:tNVfkGjHBti75fJVbzJuivzwhv9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

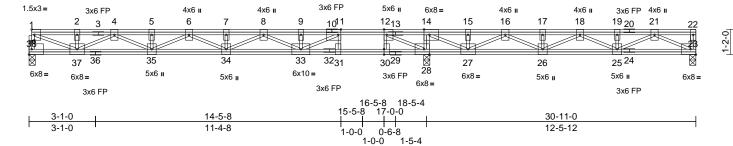
Scale = 1:47.9

Plate Offsets	(X, Y): [25:0-1-8,Edge	e], [26:0-1-8,Edge], [44:Edge	,0-1-8]									
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES		CSI TC BC WB	0.17 0.25 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 25-26 24-25 24	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2	021/TPI2014	Matrix-MSH	-			-			Weight: 123 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 24=0-3-8 29=19-1-	ccept end verticals. applied or 10-0-0 o , 27=19-1-3, 28=19- 3, 30=19-1-3, 31=19	ю 1-3, 9-1-3,	WEBS	43-44=0/0, 42-43: 39-40=0/0, 38-39: 34-36=0/0, 33-34: 30-31=0/0, 29-30: 26-27=0/585, 25-3 12-32=0/12, 15-30 19-27=-677/0, 22- 22-25=0/292, 20-5 2-43=-142/0, 3-42 5-40=-133/0, 6-39 8-37=-134/0, 9-36 11-33=-124/0, 13- 17-28=-103/89	=0/0, 37- =0/0, 32- =0/0, 28- 26=0/865 0=-147/0 -24=-707 26=-152/ 2=-131/0, 3=-133/0, 5=-133/0,	38=0/0, 36-3 33=0/0, 31-3 29=0/0, 27-2 24-25=0/61 , 18-27=-205 /0, 19-26=0/3 0, 21-25=-12 4-41=-134/0 7-38=-133/0 10-34=-136/	7=0/0, 2=0/0, 3=0/0, 5 /0, 327, 3/0, , , 0,					
	36=19-1- 39=19-1- 42=19-1- Max Uplift 28=-141 Max Grav 24=439 (28=70 (L 30=161 (32=-6 (L 34=149 (37=147 (39=147 (41=147 (Ð-1-3, Ð-1-3, Ð-1-3 1) ₽),),),),),	NOTES 1) Unbalanced this design. 2) All plates ar 3) Truss to be braced again 4) Gable studs 5) N/A 6) Recommend 10-00-00 cc	floor live loads ha e 1.5x3 MT20 unle fully sheathed fror nst lateral movem spaced at 1-4-0 c d 2x6 strongbacks and fastened to e	ess other n one fac ent (i.e. c oc. s, on edge each truss	wise indicate e or securely liagonal web) e, spaced at s with 3-10d	d.			- MIL	ORTH CA	ROLIN
FORCES	(lb) - Maximum Con	npression/Maximum) nails. Strongbac r ends or restraine			valls		4	Ø		Mar L
TOP CHORD	Tension 1-44=-47/0, 23-24=- 3-4=0/0, 4-5=0/0, 5- 8-9=0/0, 9-10=0/0, ' 12-13=0/0, 13-15=0 17-18=0/0, 18-19=0 20-21=-865/0, 21-2:	6=0/0, 6-7=0/0, 7-8= 10-11=0/0, 11-12=0/ /0, 15-16=0/0, 16-17 /0, 19-20=-865/0,	=0/0, ′0, 7=0/0,		Do not erect truss					("1111111VV"		111111	22 EER. Kuun

January 13,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affili 818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F09	Floor	1	1	I70700758 Job Reference (optional)

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S. Dec. 5 2024 MiTek Industries. Inc. Fri Jan 10 17:18:39 ID:twYWtv7cAK_JAtv1a6ws44zwhud-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

1-2-0

Scale = 1:53.4

Plate Offsets (X, Y)): [1:0-1-8,0-0-8],	, [11:0-1-8,Edge], [1:	2:0-3-0,Edge], [14:0-3-0	,Edge], [28:0-3-0,E	Edge], [30:	:0-3-0,Edge]						
Loading	(psf)	Spacing	1-4-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.80	Vert(LL)	-0.20	33-34	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.67	Vert(CT)	-0.27	33-34	>827	360	MT20HS	187/143
BCLL	0.0	Rep Stress Incr	YES	WB	0.83	Horz(CT)	0.02	28	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH							Weight: 242 lb	FT = 20%F, 11%E
LUMBER			NOTES									

TOP CHORD 2x4 SP No.2(flat) 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.3(flat) WEBS 2x4 SP No.3(flat) OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. REACTIONS (size) 23=0-3-8, 28=0-3-8, 38=0-3-8 23=384 (LC 4), 28=1367 (LC 1), Max Grav 38=593 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-38=-581/0, 22-23=-52/0, 1-2=-1184/0, 2-4=-1184/0, 4-5=-2350/0, 5-6=-2350/0, 6-7=-2557/0, 7-8=-2557/0, 8-9=-1948/0, 9-11=-1948/0, 11-12=-479/289, 12-14=0/1936, 14-15=-27/1069, 15-16=-27/1069, 16-17=-979/457, 17-18=-979/457, 18-19=-981/93, 19-21=-981/93, 21-22=0/0 BOT CHORD 37-38=0/0, 35-37=0/1874, 34-35=0/2562, 33-34=0/2315, 31-33=-289/479, 30-31=-289/479 28-30=-289/479 27-28=-1936/0, 26-27=-742/615, 25-26=-252/1093, 23-25=-22/625 WEBS 11-31=-450/0, 12-30=0/440, 14-28=-532/0, 12-28=-2311/0, 21-23=-702/24, 21-25=-81/403, 19-25=-107/0, 18-25=-126/179, 18-26=-289/0, 17-26=-111/0, 16-26=0/572, 16-27=-818/0, 15-27=-138/0, 14-27=0/1249, 11-33=0/1738, 9-33=-357/0, 8-33=-456/0, 8-34=0/320, 7-34=-123/0, 6-34=-53/0, 6-35=-240/0, 5-35=-112/0, 4-35=0/539, 4-37=-781/0, 2-37=-126/0,

1-37=0/1286

NOTES

1) Unbalanced floor live loads have been considered for

this design.

All plates are MT20 plates unless otherwise indicated. 2)

3) All plates are 3x6 MT20 unless otherwise indicated.

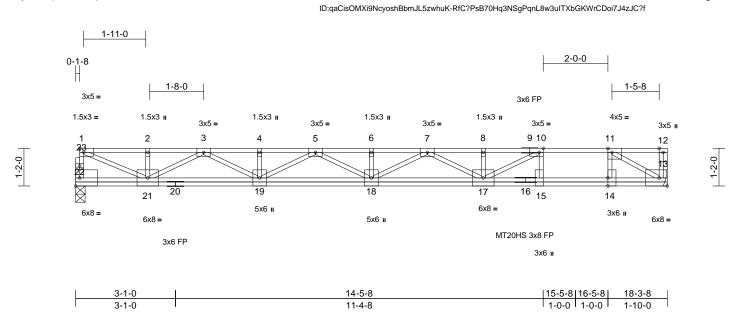
4) Recommend 2x6 strongbacks, on edge, spaced at

10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F10	Floor	8	1	I70700759 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:39

Page: 1

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:35.6

Plate Offsets (X, Y): [10:0-1-8,Edge], [11:0-1-8,Edge], [14:0-3-0,Edge]

	(, .). [],[:::::::;=:];];[
Loading	(psf)	Spacing	1-4-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL	40.0	Plate Grip DOL	1.00	TC	0.66	Vert(LL)	-0.28	17-18	>774	480	MT20	244/190	
TCDL	10.0	Lumber DOL	1.00	BC	0.79	Vert(CT)	-0.38	17-18	>562	360	MT20HS	187/143	
BCLL	0.0	Rep Stress Incr	YES	WB	0.64	Horz(CT)	0.03	13	n/a	n/a			
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MSH	-			_			Weight: 118 lb	FT = 20%F, 11%E	
LUMBER													
TOP CHORD	2x4 SP No.2(flat)												
BOT CHORD	2x4 SP No.2(flat) *E	xcept* 20-13,16-13:	2x4										
	SP No.1(flat)												
WEBS	2x4 SP No.3(flat)												
OTHERS	2x4 SP No.3(flat)												
BRACING													
TOP CHORD			ed or										
BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		C										
BOT CHORD	bracing.		C										
REACTIONS	U	nanical, 22=0-3-8											
	Max Grav 13=662 (I	,)										
FORCES	(lb) - Maximum Com	pression/Maximum											
	Tension		_										
TOP CHORD													
	2-3=-1260/0, 3-4=-2 5-6=-3009/0, 6-7=-3	, ,											
	8-10=-2660/0, 10-11												
BOT CHORD													
	17-18=0/2933, 15-1												
	13-14=0/1523												
WEBS	10-15=-644/0, 11-14	,	,								ORTH CA	D'III	
	8-17=-170/0, 7-17=-		,								TH UA	ROIL	
	6-18=-105/0, 5-18=0 4-19=-105/0, 3-19=0									1	ONVESS	D. A.	
	2-21=-139/0, 1-21=0	, ,	2/0						1	SA	10TLO	Nin	
NOTES	2 21 - 100/0, 1 21-0	, 1002, 11 10 <u>–</u> 1112	2/0						2	a la		1 the second	
	ed floor live loads have	been considered f	or						-		0.54		
	 1) Unbalanced floor live loads have been considered for this design. 2) All plates are MT20 plates unless otherwise indicated. 3) Refer to girder(s) for truss to truss connections. 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d 												
	are MT20 plates unles	s otherwise indicate	d.						=	8	0363	22 E	
	irder(s) for truss to trus								-			- j E	
	end 2x6 strongbacks, o									5	1. Sec. 1. Sec	1 3	
10-00-00	oc and fastened to eac	ch truss with 3-10d								-	A. En	Riki	

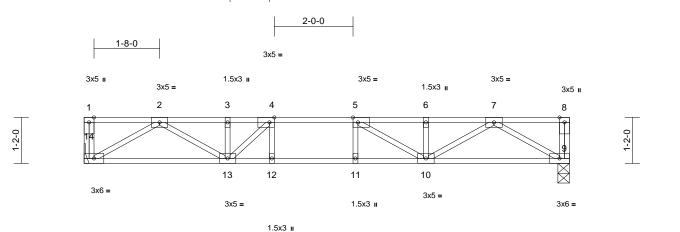
10-000-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

A. GILBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	F11	Floor	8	1	I70700760 Job Reference (optional)

1-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:39 ID:4Cx4j9vpZUWSJTelhU3KX4zwhsK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

<u> 12-4-0</u> 12-4-0

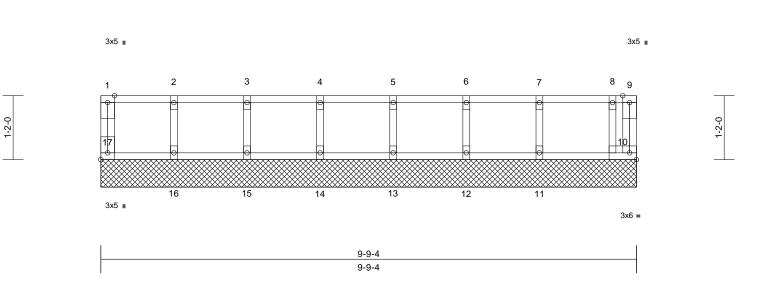
Plate Offsets (X, Y): [4:0-1-8,Edge], [5:0-1-8,Edge]

Scale = 1:29.3

	(∧, 1). [4.0-1-0,⊏uye]	, [5.0-1-6,Euge]										
Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-4-0 1.00	CSI TC	0.34	DEFL Vert(LL)	in -0.07		l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.52	Vert(CT)	-0.10	10-11	>999	360		
BCLL BCDL	0.0 5.0	Rep Stress Incr Code	YES IRC2021/TPI2014	WB Matrix-MSH	0.23	Horz(CT)	0.02	9	n/a	n/a	Weight: 64 lb	FT = 20%F, 11%E
	0.0	0000									Wolght. OT ID	11 - 20/01, 11/02
LUMBER												
TOP CHORD	()											
BOT CHORD WEBS	()											
BRACING	2x4 SP No.3(flat)											
TOP CHORD	Structural wood she	athing directly appli	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly	/ applied or 10-0-0 o	с									
	bracing.											
REACTIONS	()	14= Mechanical										
	Max Grav 9=443 (L0	,, (,										
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD)/0 1-2=0/0 2-3=-10	065/0									
	3-4=-1065/0, 4-5=-1											
	6-7=-1081/0, 7-8=0/	0										
BOT CHORD	,		258,									
WEBS	10-11=0/1258, 9-10											
WEB5	7-9=-764/0, 2-14=-7 2-13=0/471, 6-10=-1											
	5-10=-330/0, 4-13=-											
	5-11=-51/41										TH CA	1775
NOTES											1111 CA	
	ed floor live loads have	e been considered fo	or								THUT	ROM
this design										<u> </u>	ONEESS	Alle
	are 3x5 MT20 unless o irder(s) for truss to trus									in	20	Visto
	end 2x6 strongbacks, c								3		:2	K. 1.
	oc and fastened to eac								-		SEA	r 1 €
(0.131" X	3") nails. Strongbacks	s to be attached to w	alls						=	:	SEA	<u>└</u> : =

(0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



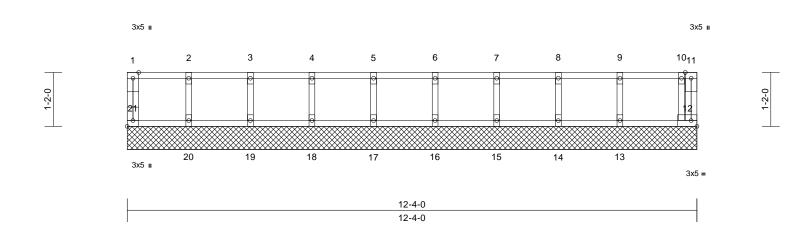
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 (
25010024-A	FW09	Floor Supported Gable	1	1	Job Reference (optional)	170700761
Carter Components (Sanford, NC	C), Sanford, NC - 27332,	Run: 8.73 S Dec 5 2	024 Print: 8.	730 S Dec 5	2024 MiTek Industries, Inc. Fri Jan 10 17:18:39	Page: 1

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:39 ID:vAtehfba7?hMfDVFXyahL5zwhrR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:21

Plate Offsets (X, Y): [17:Edge,0-1-8]


Plate Offsets ((X, Y): [17:Edge,0-1-8]										
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.09 0.03 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MR				-			Weight: 44 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	13=9-9-4, 16=9-9-4, Max Grav 10=95 (LC 12=143 (L 14=146 (L	cept end verticals. applied or 10-0-0 oc 11=9-9-4, 12=9-9-4 14=9-9-4, 15=9-9-4 17=9-9-4	; ,),	Standard								
FORCES	(lb) - Maximum Com Tension											
TOP CHORD	1-17=-60/0, 9-10=0/- 3-4=-17/0, 4-5=-17/0 7-8=-17/0, 8-9=0/0	, ,	,									
BOT CHORD	16-17=0/17, 15-16=0 13-14=0/17, 12-13=0 10-11=0/17										TH CA	Rogin
WEBS	2-16=-126/0, 3-15=- 5-13=-134/0, 6-12=- 8-10=-96/0	, , ,							4	à	OWFESS	Then
 2) Gable req 3) Truss to b braced ag 4) Gable stud 5) Recomme 10-00-00 (0.131" X = 	are 1.5x3 MT20 unless uires continuous bottor e fully sheathed from c ainst lateral movement ds spaced at 1-4-0 oc. end 2x6 strongbacks, o oc and fastened to eac 3") nails. Strongbacks ter ends or restrained l	m chord bearing. one face or securely t (i.e. diagonal web). In edge, spaced at th truss with 3-10d to be attached to wa									SEA 0363 NGIN A. C	22

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

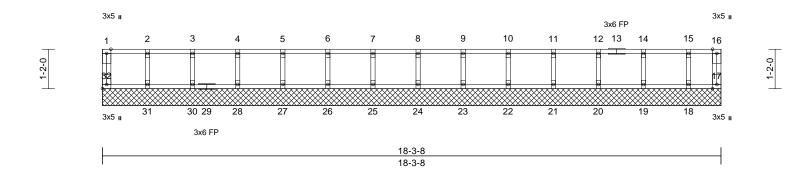
Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	FW12	Floor Supported Gable	1	1	I70700762 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:39 ID:JIZmJgdSQw3xWhEqC48OzkzwhrO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:24.9

Plate Offsets (X, Y): [21:Edge,0-1-8]

Plate Offsets (X, Y): [21:Edge,0-1-8	3]										
Loading TCLL TCDL BCLL	(psf) 40.0 10.0 0.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.00 1.00 YES	CSI TC BC WB	0.08 0.02 0.03	Vert(TL)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MR							Weight: 54 lb	FT = 20%F, 11%E
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	6-0-0 oc purlins, ex Rigid ceiling directly		10-00-00 oc (0.131" X 3" at their oute LOAD CASE(S)	d 2x6 strongbacks and fastened to e) nails. Strongbac r ends or restraine Standard	each truss cks to be	s with 3-10d attached to w	valls					
REACTIONS	bracing.	0, 13=12-4-0, 14=12	4.0									
	18=12-4- 21=12-4- Max Grav 12=86 (L0 14=143 (I 16=146 (I 18=146 (I		-4-0,),),									
FORCES	(lb) - Maximum Com	npression/Maximum										
TOP CHORD	Tension 1-21=-59/0, 11-12=(2-3=-15/0, 3-4=-15/0 6-7=-15/0, 7-8=-15/0 10-11=-3/0	0, 4-5=-15/0, 5-6=-15								a la	""TH CA	Rout
BOT CHORD	20-21=0/15, 19-20= 17-18=0/15, 16-17= 14-15=0/15, 13-14=	0/15, 15-16=0/15, 0/15, 12-13=0/15							4	i	O PESS	
WEBS	2-20=-127/0, 3-19=- 5-17=-133/0, 6-16=- 8-14=-131/0, 9-13=-	133/0, 7-15=-134/0,							11111		SEA 0363	• –
 2) Gable required 3) Truss to be braced again 	are 1.5x3 MT20 unless uires continuous botto e fully sheathed from o ainst lateral movemen ds spaced at 1-4-0 oc.	m chord bearing. one face or securely t (i.e. diagonal web).							(11) (11)		A.C.A.C	EERRAL


January 13,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-2nd Floor-Plan 10 GLH
25010024-A	FW18	Floor Supported Gable	1	1	I70700763 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 17:18:39 ID:CWoH92gzU9aM?IXbRwCL7azwhrK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:34.1

Plate Offsets (X, Y): [32:Edge,0-1-8]

Fiale Oliseis (A, T). [32.Euge,0-1-6											
Loading TCLL TCDL	(psf) 40.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.00	CSI TC BC	0.08 0.01	DEFL Vert(LL) Vert(TL)	in n/a n/a	(loc) -	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190
BCLL	0.0	Rep Stress Incr	YES	WB	0.01	Horiz(TL)	0.00	- 17	n/a	999 n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-MR	0.03	TION2(TL)	0.00	17	n/a	n/a	Weight: 78 lb	FT = 20%F, 11%E
	5.0	Code	11(02021/11 12014	WIGUIX-IVIIX							Weight. 70 lb	TT = 2070T, TT70L
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 17=18-3-5 20=18-3-5 23=18-3-5 26=18-3-5 30=18-3-5 30=18-3-5 17=40 (LC 21=147 (L 25=147 (L 25=147 (L 27=147 (L	applied or 10-0-0 oc 8, 18=18-3-8, 19=18- 8, 24=18-3-8, 22=18- 8, 24=18-3-8, 25=18- 8, 27=18-3-8, 28=18- C 1), 18=120 (LC 1), LC 1), 20=145 (LC 1), LC 1), 22=147 (LC 1), C 1), 24=147 (LC 1), C 1), 26=147 (LC 1), LC 1), 28=147 (LC 1), LC 1), 31=147 (LC 1)	 2) Gable requi 3) Truss to be braced agai 4) Gable studs 5) Recommendary 10-00-00 oc (0.131" X 3" at their oute 3-8, 3-8,	e 1.5x3 MT20 unless res continuous bottor fully sheathed from on that lateral movement spaced at 1-4-0 oc. d 2x6 strongbacks, or and fastened to eac) nails. Strongbacks r ends or restrained to Standard	m chor one fac t (i.e. d n edge th truss to be	d bearing. e or securely iagonal web). e, spaced at s with 3-10d attached to wa						
FORCES	(lb) - Maximum Com Tension	,								J.	OR EES	ROLIN
TOP CHORD	3-4=-7/0, 4-5=-7/0, 5	9-10=-7/0, 10-11=-7/0	,							2	12-1	and the second s
BOT CHORD	31-32=0/7, 30-31=0/ 26-27=0/7, 25-26=0/ 22-23=0/7, 21-22=0/ 18-19=0/7, 17-18=0/		=0/7,						1.1111111.		0363	
WEBS	,	, ,								A MARINE STREET	100000	13,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Contractor

Model: 127 Hidden Lakes - Plan 10 GLH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

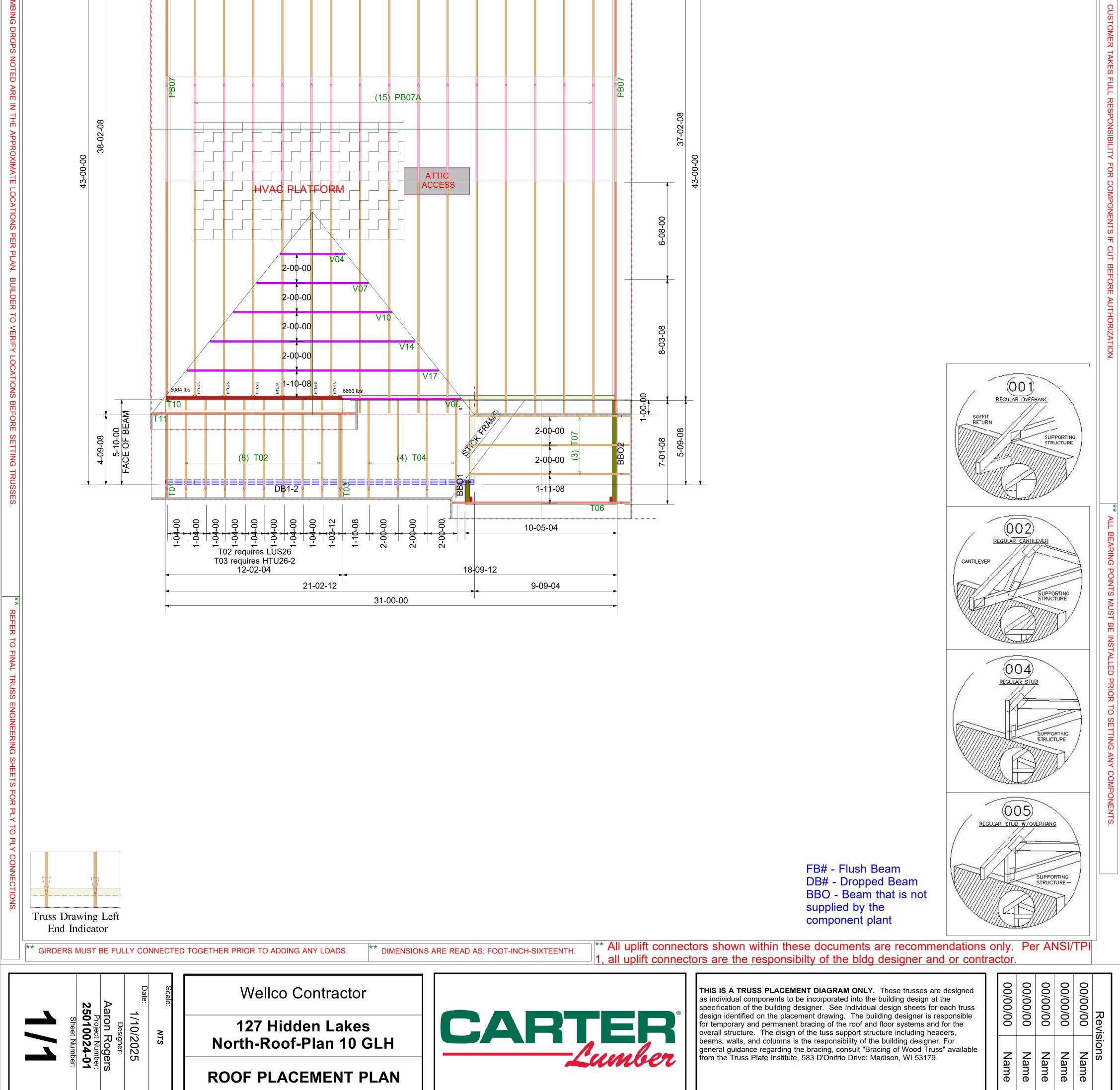
4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

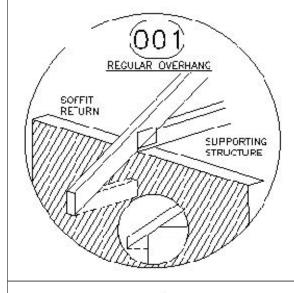
5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

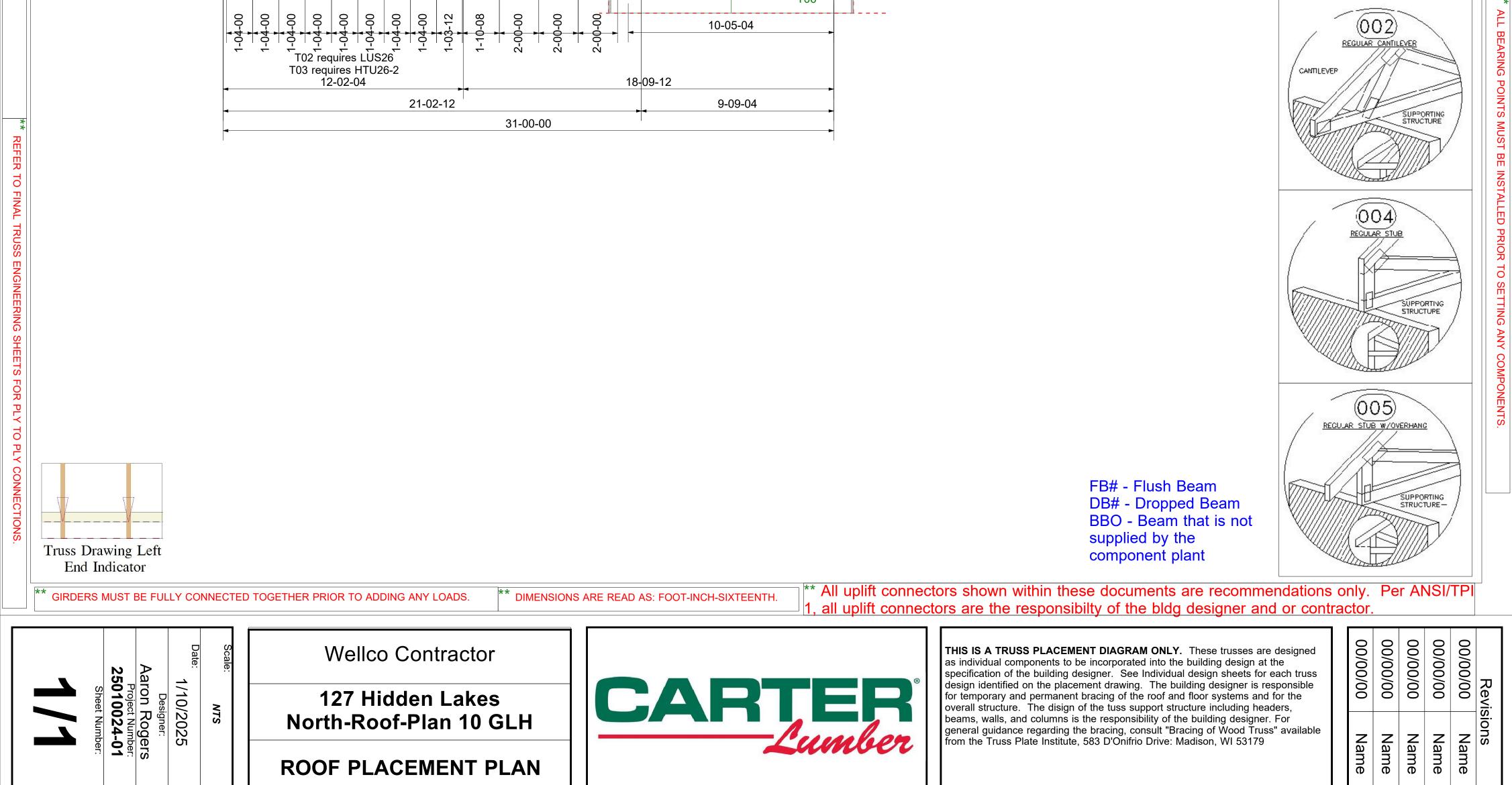
6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

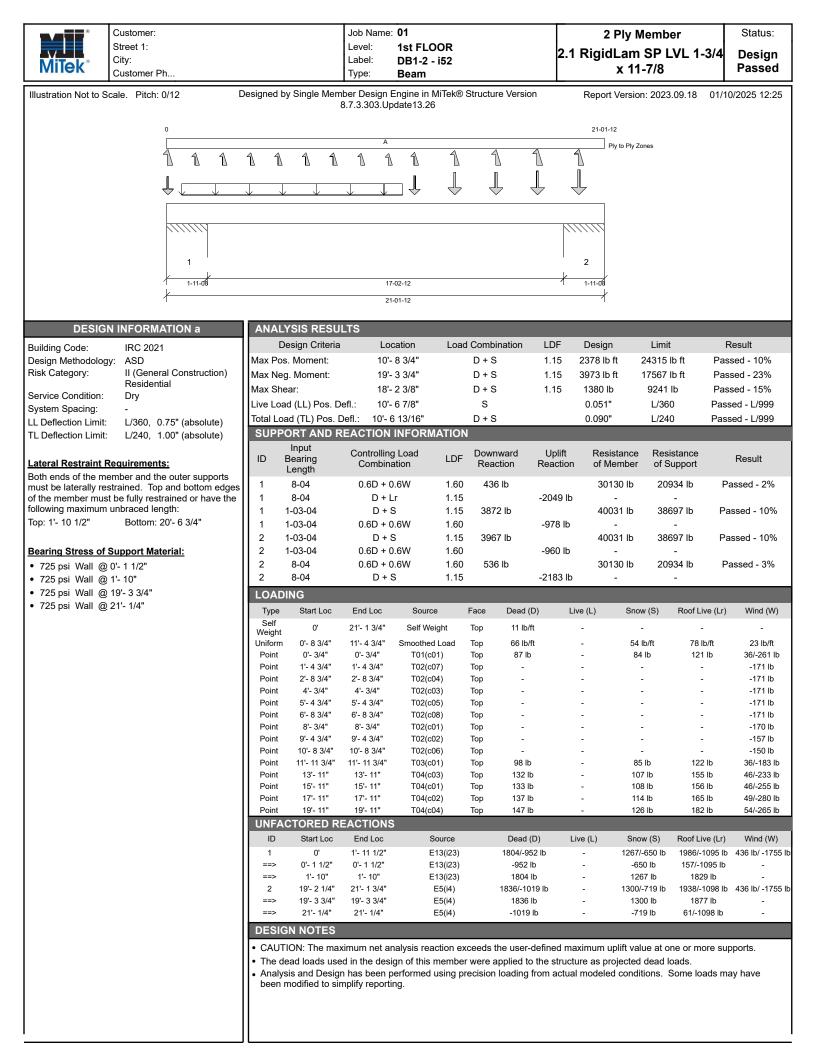
7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

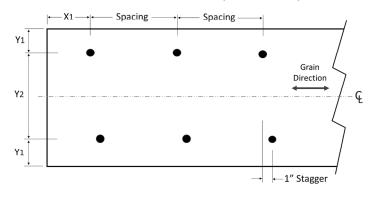

Approved By: _____




Date: _____


	31-00-00	
- 14-00-00	17-00-00	
T08 2-00-00		KEMPSVILLE BUILDING MATERIALS IS NOT RESPONSIBLE FOR THE DESIGN OR CALCULATION OF ANY AND ALL I-JOIST AND
2-00-00		LVL/PSL BEAM MATERIAL. ALL ENGINEERING AND INFORMATION FOR THIS MATERIAL IS TO BE PROVIDED BY THE ENGINEER OF RECORD MARKED ON APPROVED SET OF PLANS. ALL BEAM PLACEMENTS
2-00-00		ARE PER THE ENGINEERING RECEIVED. ALL CONNECTION DETAILS TO BE PROVIDED BY ENGINEER OF RECORD. REFER
(e) 10 (e) 10 (e	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TO ENGINEER OR RECORD FOR ALL MULTI-PLY LVL/ I-JOIST CONNECTION PATTERNS. BUILDER TO VERIFY ALL MATERIAL
2-00-00		LENGTHS, QUANTITIES, AND SIZES PRIOR TO ORDERING.
		PlotID Length Product Plies Net Qty Fab Type DB1-2 22-00-00 2.1 RigidLam SP LVL 1-3/4 x 11-7/8 2 2 FF
	T14-B T14-B T15 T15	Truss Connector Total ListManufProductQtySimpsonHTU266SimpsonLUS269SimpsonHTU26-21SimpsonOne H2.5A134
		1-06-04
		TO 2-00-00 2-00-00 0 2-00-00 0 0 0 0 0 0 0 0 0 0 0 0

DESIGN NOTES


- Tributary Loads have been generated based on actual spacing between members in the model which may differ from the default system spacing. The actual loads applied to the member are shown in the Specified Loads table.
- Transfer reactions may differ from design results as allowed per building codes and standard load distribution practices.
- This report is based on modeled conditions input by the user. Source information for the loads and supports are provided for reference only. Verify that all loads and support conditions are correct.
- Review all loads and reactions to ensure that the member/bearing/connector/structure can resist adequately. Unless already
 specified on this report, anchorage for uplift reactions to be specified by others. Installation of member and accessories (if
 required) as per manufacturer's instruction.
- Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.99

PLY TO PLY CONNECTION

Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 44. Row = 2, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face.

X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

FASTENER INSTALLATION - 2 ROWS (FROM ONE FACE)

Trenco 818 Soundside Rd Edenton, NC 27932

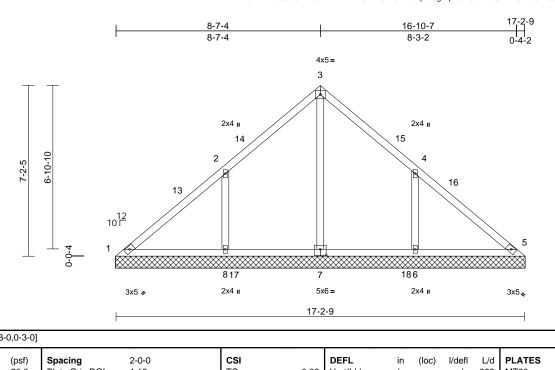
Re: 25010024-01 127 Hidden Lakes North-Roof-Plan 10 GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I70688890 thru I70688913

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844


January 13,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

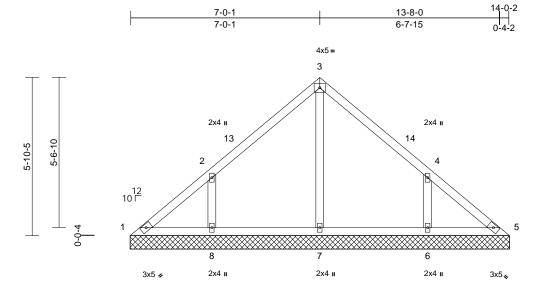
Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	V17	Valley	1	1	I70688890 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:38 ID:TamHZwbISeR3hNAsvmFIWzzwnCt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	-			
Plate Offsets	(X)	∕\· [7	7.0-3-0 0	^_(

Scale = 1:48.5

): [7:0-3-0,0-3-0]											-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.36 0.20 0.24	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
BOT CHORD 2x4 OTHERS 2x4 BRACING TOP CHORD Str 6-C BOT CHORD Rig bra REACTIONS (size Max Max Max FORCES (b) Te TOP CHORD 1-2 4-5 BOT CHORD	0-0 oc purlins. gid ceiling directly acing. e) 1=17-3-2, 7=17-3-2, (Horiz 1=164 (LC U) Uplift 1=-21 (LC 8=-190 (L 6=522 (LC 8=541 (LC 0) - Maximum Com ension 2=-201/219, 2-3=- 5=-97/162 8=-93/169, 6-8=-9 7=-267/0, 2-8=-40. of live loads have -16; Vult=130mph ; TCDL=6.0psf; B0 cosed; MWFRS (en ior(2E) 0-0-0 to 3-i (2R) 5-7-9 to 11-7- ior(2E) 13-10-5 to and right exposed	 10), 6=-193 (LC 15) C 14) C 25), 5=123 (LC 36) C 25), 7=447 (LC 24) C 24) C 24) D pression/Maximum 137/160, 3-4=-149/1 3/127, 5-6=-93/127 2/224, 4-6=-393/225 been considered for (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon 0-0, Interior (1) 3-0-0 -9, Interior (1) 175 16-10-5 zone; ; end vertical left and forces & MWFR3 	5, 677), 9), 9), 41, 41, 41, 1 41, 1 L Cat. e 0 to 0 to 0 to	 only. For sti see Standar, or consult qu TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: Unbalanced design. Gable requir Gable studs This truss ha chord live loo; * This truss ha chord live loo; 3-06-00 tall h chord and ar Provide mec bearing plate 1, 190 lb upl Beveled plate 	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w y other members hanical connection e capable of withst if at joint 8 and 15 e or shim requirec truss chord at join	nd (norm ind Deta signer a: f (roof LL (Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betv , with BC n (by oth canding 2 3 lb uplii I to provi	al to the face Is as applica s per ANSI/TI :: Lum DOL= :L=1.15 Plate Exp.; Ce=0.9 asidered for the d bearing.) psf bottom other live load e load of 20.0 a rectangle veen the bottom DL = 10.0psf ers) of truss t 1 buplift at j t at joint 6.), ble, PI 1. 1.15 e 9; his opsf om f. to joint				SEA 0363	EER A LUN


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

January 13,2025

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	V14	Valley	1	1	I70688891 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:38 ID:Dvvc1cqq1BXPh9x7QGXNimzwn7P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

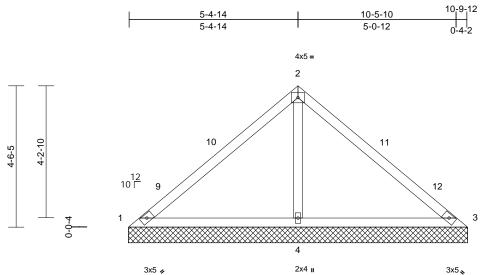
Page: 1

14-0-2

Scale	- 1.	127
Scale	= 1.4	42.7

Loading TCLL (roof) Snow (Pf) TCDL		(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.34 0.11 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL		0.0* 10.0	Code		1/TPI2014	Matrix-MSH	0.10	110112(112)	0.00	0	n/u	Π/α	Weight: 60 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	o.2 lo.3 l wood she purlins. ing directly 1=14-0-12 7=14-0-12 1=-133 (L 1=-25 (LC 8=-153 (L 1=116 (LC	: 10), 6=-150 (LC 15 C 14) C 25), 5=92 (LC 24), C 21), 7=296 (LC 20)	ed or 5) 0-12, 6) 7)), 8) 9)	only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha	eed for wind loads ids exposed to wind d Industry Gable E alified building de 7-16; Pr=20.0 ps .15); Pf=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have I es continuous bott spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w yy other members.	nd (norm ind Deta signer as f (roof LL (Lum DC is B; Fully been cor tom chor c. for a 10.1 with any d for a liv s where s where	al to the face ils as applica is per ANSI/TI :: Lum DOL= :: Lum DOL= : L1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. 0 psf bottom other live load of 20.0 a rectangle), ble, PI 1. 1.15 9; his ds. Dpsf					
FORCES TOP CHORD	Tension 1-2=-146	/126, 2-3=-	pression/Maximum 183/117, 3-4=-183/1		bearing plate	hanical connection capable of withst ift at joint 8 and 15	anding 2	25 lb uplift at j						
BOT CHORD WEBS	5-6=-54/9	117, 7-8=-5 94	4/94, 6-7=-54/94, 4/194, 4-6=-374/192	L		e or shim required truss chord at join Standard			g				TH CA	RO
NOTES	ad roof live	loads have	been considered for	r								()	OR	i An

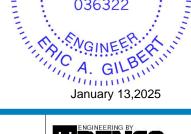
- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-6, Interior (1) 3-0-6 to 4-0-6, Exterior(2E) 4-0-6 to 10-0-6, Interior (1) 10-0-6 to 11-0-6, Exterior(2E) 11-0-6 to 14-0-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	V10	Valley	1	1	I70688892 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:38 ID:Dvvc1cqq1BXPh9x7QGXNimzwn7P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1



3x5 🍫

10-9-12

Scale = 1:36.9												-		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.58 0.51 0.27	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=10-10-1 Max Horiz 1=-102 (L Max Uplift 1=-81 (LC 4=-139 (L Max Grav 1=67 (LC (LC 20) (lb) - Maximum Com Tension 1-2=-149/465, 2-3=-	6, 3=10-10-6, 4=10-1 C 12) 2 21), 3=-81 (LC 20), C 14) 20), 3=67 (LC 21), 4 npression/Maximum 149/465	5) d or 6) 7) 8) 0-6 9) =919 10]	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Provide mec bearing plate 1, 81 lb uplift Beveled plat	snow loads have es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area y 2-00-00 wide w y other members hanical connectio e capable of withs: at joint 3 and 133 e or shim required truss chord at join	(Lum DC t B; Fully been cor tom chor ic. for a 10.0 with any d for a liv is where ill fit betv n (by oth tanding 8) lo uplift d to provi	DL=1.15 Plate Exp.; Ce=0.1 Isidered for t d bearing. D psf bottom other live loa e load of 20. a rectangle veen the bott ers) of truss 1 1 lb uplift at j at joint 4.	e 9; his ads. Opsf om to joint				weight. 41 m	FT = 20%	
this desig 2) Wind: AS Vasd=103 II; Exp B; and C-C I to 7-10-6, cantilever right expo	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) 0-0-0 to 3- Exterior(2E) 7-10-6 to left and right exposed used;C-C for members ons shown; Lumber DC	(3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zon 0-0, Exterior(2R) 3-0 10-10-6 zone; ; end vertical left and and forces & MWFR:	Cat. e -0							1	U	SEA 0363	L	

Truss designed for wind loads in the plane of the truss 3) only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	V08	Valley	1	1	I70688893 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:38 ID:Dvvc1cqq1BXPh9x7QGXNimzwn7P-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

8-1-8 4 2x4 🛛 3 10 2x4 II 6-9-8 2 6-9-8 9 8 12 10 Г 0-0-4 4 5 11 2x4 🛛 2x4 II 2x4 🍫

8-1-8

Scale = 1:41.6

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYE	15	CSI TC BC WB Matrix-MP	0.68 0.19 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
6-0-0 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 1=8-1-13, Max Horiz Max Horiz 1=223 (LC Max Uplit) 1=-18 (LC 5=-157 (LC Max Grav 1=185 (LC 5=524 (applied or 10-0-0 oc 4=8-1-13, 5=8-1-13 (211) (10), 4=-56 (LC 11), (C 14) (25), 4=196 (LC 5), (C 12), (C 14) (25), 4=196 (LC 5), (C 12), (C 12)	 Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Provide mec bearing plate 4, 18 lb upiff Beveled plate 	snow loads have les continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w by 2-00-00 wide w by other members hanical connection e capable of withst at joint 1 and 157 e or shim required truss chord at join	(Lum DC B; Fully been con tom chor c. for a 10.0 with any d for a liv s where ill fit betw , with BC h (by oth anding 2 r lb uplift I to provi	 L=1.15 Plate Exp.; Ce=0.5 asidered for the distance b psf bottom o ther live load e load of 20.0 a rectangle veen the botto DL = 10.0psf pers) of truss t a to joint 5.); ds.)psf om o o		4		ORTH CA OFESS SEA 0363	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

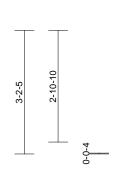
GI //////// January 13,2025

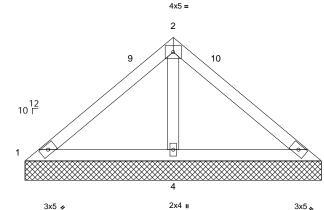
Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	V07	Valley	1	1	I70688894 Job Reference (optional)

3-9-11

3-9-11

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:38 ID:o7uIAWxTBLFIrFLHnz6txFzwn26-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


7-3-4

3-5-9

3

Page: 1

7-7-6

WFBS

NOTES

this design

DOL=1.60

1)

2)

3)

2-4=-472/222

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-0 to 3-0-0, Exterior(2R) 3-0-0

to 4-7-15, Exterior(2E) 4-7-15 to 7-7-15 zone; cantilever

Wind: ASCE 7-16; Vult=130mph (3-second gust)

left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

Loading 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.30 Vert(LL) n/a 999 MT20 244/190 n/a 20.0 1 15 BC Snow (Pf) Lumber DOL 0.30 Vert(TL) n/a n/a 999 TCDL 10.0 Rep Stress Incr YES WB 0.10 Horiz(TL) 0.00 4 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-MP BCDL 10.0 Weight: 28 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 LUMBER 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; 2x4 SP No.3 Cs=1.00; Ct=1.10 OTHERS Unbalanced snow loads have been considered for this 5) BRACING desian. TOP CHORD Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7-7-6 oc purlins. 7) Gable studs spaced at 4-0-0 oc. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc 8) This truss has been designed for a 10.0 psf bottom bracing. chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf **REACTIONS** (size) 1=7-7-15, 3=7-7-15, 4=7-7-15 9) Max Horiz 1=-71 (LC 10) on the bottom chord in all areas where a rectangle 1=-29 (LC 21), 3=-29 (LC 20), Max Uplift 3-06-00 tall by 2-00-00 wide will fit between the bottom 4=-83 (LC 14) chord and any other members. Max Grav 1=102 (LC 20), 3=102 (LC 21), 10) Provide mechanical connection (by others) of truss to 4=588 (LC 20) bearing plate capable of withstanding 29 lb uplift at joint FORCES (lb) - Maximum Compression/Maximum 1, 29 lb uplift at joint 3 and 83 lb uplift at joint 4. Tension 11) Beveled plate or shim required to provide full bearing TOP CHORD 1-2=-104/263, 2-3=-104/263 surface with truss chord at joint(s) 1, 3. 1-4=-205/165, 3-4=-205/165 BOT CHORD

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	V04	Valley	1	1	Job Reference (optional)

12 10 ∟

2-2-8

2-2-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:38 ID:o7uIAWxTBLFIrFLHnz6txFzwn26-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 2

4-0-13

1-10-6

4-4-15

3

2x4 💊

2x4 🍫

0-0-4

1-6-10

1-10-5

Scale = 1:25.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB Matrix-MP	0.07 0.09 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 16 lb	GRIP 244/190 FT = 20%
l	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-4-15 oc purlins. Rigid ceiling directly bracing. (size) 1=4-5-9, : Max Horiz 1=-39 (LC Max Uplift 3=-7 (LC Max Grav 1=83 (LC (LC 20) (lb) - Maximum Corr Tension	v applied or 6-0-0 oc 3=4-5-9, 4=4-5-9 C 10) 15), 4=-28 (LC 14) 20), 3=83 (LC 21), 4	4=264 desigr 6) Gable 7) Gable 8) This tr chord 9) * This on the 3-06-0 chord 10) Provid bearin and 2t Surfac	anced snow loads have requires continuous be studs spaced at 4-0-0 uss has been designed live load nonconcurrer truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other member e mechanical connecti g plate capable of with 3 lb uplift at joint 4. ed plate or shim require e with truss chord at jo SE(S) Standard	ottom chor oc. d for a 10. tt with any ed for a liv eas where will fit betw rs. on (by oth standing 7 ed to provi	rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle ween the botto rers) of truss to 7 lb uplift at joi de full bearing	ds.)psf om o int 3					
TOP CHORD BOT CHORD WEBS	1-2=-76/89, 2-3=-76 1-4=-73/77, 3-4=-73 2-4=-181/80											
this design 2) Wind: ASC Vasd=1037 II; Exp B; E and C-C E: exposed ; e members a Lumber DC 3) Truss desig only. For s see Standa or consult o	d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er xterior(2E) zone; cant end vertical left and ri and forces & MWFRS DL=1.60 plate grip DC gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi 2E 7-16; Pr=20.0 psf (h (3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zor iliever left and right ght exposed;C-C for for reactions shown DL=1.60 the plane of the trust d normal to the face) d Details as applicat igner as per ANSI/TF	Cat. ne ; ; ss), ble, PI 1.						U , 111111	A A A A A A A A A A A A A A A A A A A	SEA 0363	• –

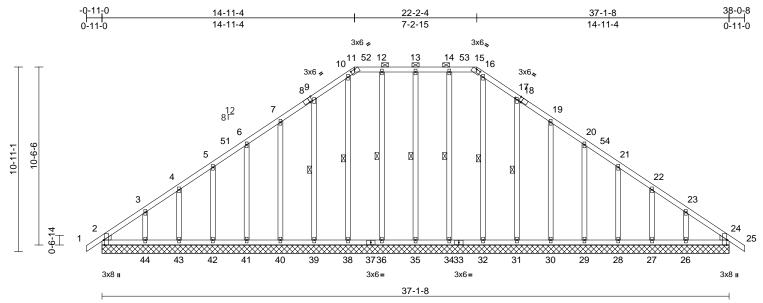
TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

818 Soundside Road Edenton, NC 27932

A. GILB

A. GILD January 13,2025

C


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

1 0 4 2x4 🛛

4-4-15

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T16	Piggyback Base Supported Gable	1	1	Job Reference (optional)

Run: 8,73 E Nov 16 2023 Print: 8,730 E Nov 16 2023 MiTek Industries, Inc. Mon Jan 13 09:10:31 ID:1TBkY_oeWsuG414YKOK8E1zwmxq-pYdKIVL2VmQVNaJn8wFnr9GF1ooT9t49EWvB5Yzw_xc

Scale = 1:68.2

Scale = 1.00.2														
Plate Offsets ((X, Y): [2:0-3-8,Edge]	, [8:0-2-1,Edge], [9:0-1-	-8,0-1-0]	, [11:0-3-0,0-0	-2], [15:0-3-0,0-0-2	2], [17:0-	1-8,0-1-0], [18	8:0-2-1,	,Edge], [2	24:0-3-8,	Edge]			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.09 0.08 0.20	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	-	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 288 lb	GRIP 244/190 FT = 20%	
(lb) - FORCES NOTES 1) Unbalance	6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt All bearings 37-1-8. Max Horiz 2=-249 (L Max Uplift All uplift 1 2, 24, 26, 36, 38, 33 except 44 Max Grav All reactio (s) 2, 24, 34, 35, 36 44, 45, 48 (lb) - Max. Comp./M (lb) or less except w	0-0 max.): 11-15. y applied or 10-0-0 oc 13-35, 12-36, 10-38, 9-39, 14-34, 16-32, 17 LC 12), 45=-249 (LC 12 100 (lb) or less at joint(s ,27, 28, 29, 30, 31, 34, 9, 40, 41, 42, 43, 45, 48 H=-109 (LC 14) ons 250 (lb) or less at jo 26, 27, 28, 29, 30, 31, 3 6, 38, 39, 40, 41, 42, 43 8 lax. Ten All forces 250 yhen shown.	or 3) 35, 5) 35, 5) 0 32, 6) 32, 6) 32, 7) 0 10 11	Vasd=103mp II; Exp B; En and C-C Cor 2-6-12 to 11. Exterior(2N) 38-0-8 zone; vertical left a forces & MW DOL=1.60 pl Truss desig only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader All plates are Gable studis) This truss ha chord live loa	snow loads have h is been designed f psf or 1.00 times fl on-concurrent with quate drainage to p 2 2x4 MT20 unless es continuous bott spaced at 2-0-0 or is been designed to ad nonconcurrent	BCDL=6 envelope 2-6-12, 11-2-12 15, Corm 1 right ex C-C for r shown; in the p nd (norm ind Deta signer a: f (roof LL (Lum DC B; Fully been cor for great lat roof la o ther lip prevent is otherwis com chor c. for a 10.1 with any	6.0psf; h=25ft; a) exterior zorn Exterior (2N) to 25-10-12, ter(3E) 34-3-1 sposed ; end nembers and Lumber lane of the true al to the face) ills as applicat s per ANSI/TF 2.1 Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9 histered for the er of min roof poad of 20.0 ps water ponding se indicated. rd bearing. 0 psf bottom other live loav	ne 5 to 1ss), ble, Pl 1. 1.15); his live sf on g. ds.	or ti bott	he orien tom chor CASE(S)	tation (d.) Sta	ORTH CA	g the top and/o	r ·
this desigr	n.			on the bottor 3-06-00 tall t	has been designed in chord in all area by 2-00-00 wide wi by other members.	s where ill fit betv	a rectangle			HILLS.		SEA 0363	22 EER.A	and

G minim January 13,2025

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job		Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
250	10024-01	T15	Piggyback Base	2	1	I70688897 Job Reference (optional)

Carter Components (San

10-11-1

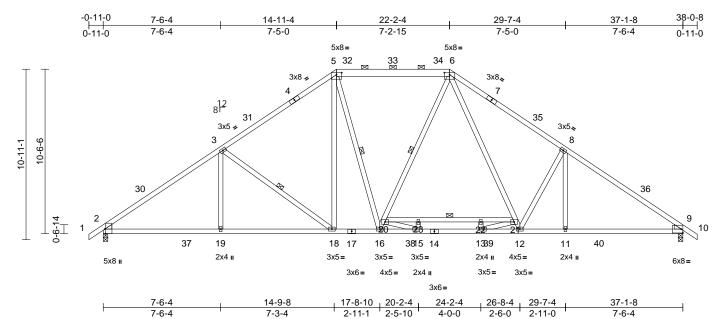
Page: 1

						Job Reference (opt	lonaly	
Sanford, NC)	, Sanford, NC -	27332,				Dec 5 2024 MiTek Industries, RfC?PsB70Hq3NSgPqnL8w3u		
	-0-11-0	7-6-4	14-11-4	20-11-14	23-2 22-2-4	30-0-11	37-1-8	38-0-8
	0-11-0	7-6-4	7-5-0	6-0-10	1-2-6 1-0-	6-9-13 10 _{3×6ջ}	7-0-13	0-11-0
					MT18HS 10	0x12 =		
				5x8=	2x4 I			
	1 2	27	3x8 = 4 3x5 = 28 3 3	5 29 30 5 20 5 5 20 5 20	631 7 16 16 6x10 10x12= 1714	8 9 32 3x1 33 45 33	0. s 10 34	11

	1	- <u>/</u>		e			¥		1714		<u> </u>		12
	T _ 2_		35	20		19	18	36	2x4 II 2x4 II	37	13		\mathbb{B}
		5x6=		2x4 u		5x1	0=				5x6=		5x8 II
							3x6=						
		L	7-6-4	1	14-9-8		2	1-1-10	23-1-2	30-0-11	1	37-1-8	
		1	7-6-4	I	7-3-4	1		6-4-2	1-11-8	6-11-9	I	7-0-13	I
Scale = 1:80													

Plate Offsets (X, Y): [5:0-4-0,0-1-9], [7:0-9-8,0-2-8], [11:0-3-8,Edge], [15:0-5-8,0-5-0], [16:0-2-8,0-4-4]

		1			1								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.74		-0.37	13-14	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.89	Vert(CT)	-0.64	13-14	>697	180	MT18HS	244/190
TCDL	10.0	Rep Stress Incr	YES		WB	0.91	Horz(CT)	0.53	11	n/a	n/a		
BCLL	0.0*	Code	IRC202	21/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 260 lb	FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD WEBS REACTIONS	10.0 2x4 SP 2400F 2.0E No.2 2x4 SP No.2 *Excep No.3, 16-15:2x6 SP 2x4 SP No.3 *Excep 16-5,15-7,13-15,15- Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 2-6-11 oc purlins, ev 2-0-0 oc purlins (3-4 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, ' Max Horiz 2=-248 (L Max Uplift 2=-158 (L Max Grav 2=1791 (L (lb) - Maximum Com Tension 1-2=0/31, 2-3=-2899 5-6=-4324/225, 6-7= 7-8=-5992/330, 8-10 10-11=-2909/220, 1' 2-20=-226/2318, 19 17-19=0/16, 16-17=1	*Except* 5-7:2x6 SP t* 17-6,8-14:2x4 SP No.2 t* 10:2x4 SP No.2 athing directly applied ccept -6 max.): 5-7. applied or 10-0-0 oc 3-19, 5-19 I1=0-3-8 C 12) C 14), 11=-158 (LC 1 .C 51), 11=1782 (LC pression/Maximum y/224, 3-5=-2290/249 -4331/225,)=-6158/222, 1-12=0/31 :20=-226/2318, 0/140, 6-16=-534/187 5=0/164, 8-15=-372/2	N 1) 2) d or (5) 3) 53) , 4) , 5) 7, 6) 7, 6)	/EBS OTES) Unbalanced this design.) Wind: ASCE Vasd=103mg II; Exp B; En and C-C Ext to 9-8-4, Ext to 9-8-4, Ext to 34-3-15, E cantilever lef right exposer for reactions DOL=1.60) TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=) Unbalanced design.) This truss ha load of 12.0 overhangs n) Provide adec) All plates are) This truss ha	3-20=0/319, 3-19=- 16-19=-57/2376, 5- 7-16=-176/606, 7-1 13-15=-86/3083, 1(10-13=-1814/134 roof live loads have 7-16; Vult=130mpl oh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-11-0 to erior(2R) 9-8-4 to 2 :xterior(2E) 34-3-15 t and right exposed d;C-C for members shown; Lumber DC 5-7-16; Pr=20.0 psf [.15); Pf=20.0 psf [.15); Pf=20.0 psf (l ls=1.0; Rough Cat	16=0/30 5=-183, 0-15=0/2 e been of n (3-sec 3CDL=6 nvelope 2-9-9, 7-5-4, I 5 to 38-0 1; end v 1; end v 1; end v 0DL=1.60 (roof LL um DC B; Fully een cor or great at roof lo other lin revent v so sother or a 10.0	337, (2981, 2654, considered fo cond gust) .0psf; h=25ft; a) exterior zor Interior (1) 2-1 therior (1) 2-2- therior (1) 2-2- certical left an ces & MWFR b) plate grip .: Lum DOL=: b) L=1.15 Plate Exp.; Ce=0.9 considered for the er of min roof pad of 20.0 psi water ponding water ponding water ponding the considered for the past of the considered for the past of the considered for the past of 20.0 psi water ponding the considered for the past of the considered for the considered for the considered for the past of the considered for the past of the considered for the past of the considered for the considered for	r 9-9 5-4 d S 1.15 9; his live sf on g. d.	on t 3-0 cho 10) Ond rec: UP and 11) Gra or t bott LOAD (the botto 6-00 tall ord and a e H2.5A ommend LIFT at ji I does no ophical p	m cho by 2-0 iny oth Simps led to o t(s) 2 a ot cons- urlin re- tation o rd.) Stal	en designed for rd in all areas wh 0-00 wide will fit er members, witt on Strong-Tie co connect truss to b and 11. This conn ider lateral force: of the purlin along indard	a live load of 20.0psf livere a rectangle between the bottom n BCDL = 10.0psf. nnectors bearing walls due to liection is for uplift only s. as not depict the size g the top and/or
												January	/ 13,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH			
25010024-01	T14-B	Piggyback Base	2	1	I70688898 Job Reference (optional)			

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:37 ID:AI1MRIs5Zoo7wT5WXhZrnBzwn7N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

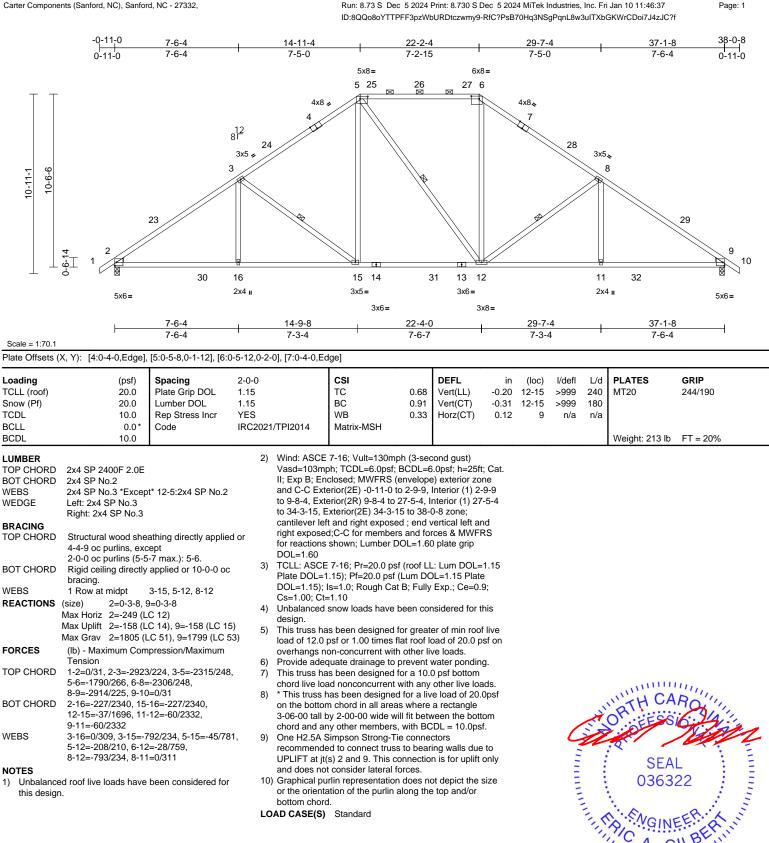
Scale = 1:73.8

Plate Offsets (X, Y): [2:0-3-8,Edge], [5:0-4-0,0-1-9], [6:0-4-0,0-1-9]

	(X, T). [2.0 0 0,Euge],	[0.0 + 0,0 1 0], [0.0	- 0,0 1 0]									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc	c) l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.68	Vert(LL)	-0.15	18-1	9 >999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.97	Vert(CT)	-0.29	18-1	9 >999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.47	Horz(CT)	0.12		9 n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL	10.0					-						Weight: 249 lb	FT = 20%
LUMBER TOP CHORD	2x4 SP 2400F 2.0E	*Except* 5-6:2x6 SP		EBS	3-19=0/332, 3-18 8-11=0/249, 6-21	=-43/965	, 12-21=-154/	770,	ćc	hord live lo	bad no		any other live loads.
	No.2				20-23=-623/0, 22-			3/0,					a live load of 20.0psf
BOT CHORD	2x4 SP No.2				13-22=0/18, 15-23	,	,					rd in all areas wh	U
WEBS	No.1				13-21=0/573, 8-12 16-20=-216/154, (6/302	С	hord and a	any oth	er members, with	between the bottom h BCDL = 10.0psf.
WEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3		N 1)	OTES Unbalance	d roof live loads ha	ve been	considered fo	r				on Strong-Tie co connect truss to b	onnectors bearing walls due to
BRACING			.,	this design									ection is for uplift only
TOP CHORD	Structural wood she	athing directly applie	ed or 2)		E 7-16; Vult=130m	ph (3-se	cond gust)					sider lateral force	
	3-11-4 oc purlins, ex			Vasd=103r	nph; TCDL=6.0psf;	BCDL=6	6.0psf; h=25ft;	Cat.					es not depict the size
	2-0-0 oc purlins (4-9	9-8 max.): 5-6.		II; Exp B; E	inclosed; MWFRS	(envelop	e) exterior zor	ne				of the purlin along	g the top and/or
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0		xterior(2E) -0-11-0					ottom cho			
	bracing, Except:				xterior(2R) 9-8-4 to			-5-4	LOAI	D CASE(S) Sta	ndard	
	2-2-0 oc bracing: 2-	,		,	Exterior(2E) 34-3-		,						
WEBS		3-18, 20-21, 6-16, 5	-16		eft and right expose								
REACTIONS	()				ed;C-C for membe			(5					
	Max Horiz 2=248 (LC	/		DOL=1.60	ns shown; Lumber [JUL=1.0	o plate grip						
	Max Uplift 2=-77 (LC		5a) 3)		E 7-16; Pr=20.0 ps	f (roof L		1 1 5					
	Max Grav 2=1848 (I	<i>.</i>	53) ³⁾		=1.15); Pf=20.0 psf								115
FORCES	(lb) - Maximum Corr	pression/Maximum			; Is=1.0; Rough Ca							1111 00	in the
	Tension			Cs=1.00; C		it D, i uny	Exp., 00-0.0	,				"TH UA	ROUL
TOP CHORD	1-2=0/31, 2-3=-3000		4)		d snow loads have	been co	nsidered for th	nis			15	At .::	the last
	5-6=-1900/121, 6-8=		•,	design.				-			55	FESP	Ni zan
8-9=-3051/26, 9-10=0/31					has been designed	for great	er of min roof	live		Z.	a la	1	2 and a second
BOT CHORD 2-19=-137/2400, 18-19=-112/2400,					0 psf or 1.00 times					-		.4	1: =
	16-18=0/1760, 15-1			overhangs	non-concurrent wit	h other li	ve loads.			-	:	SEA	L : -
	12-13=0/1818, 11-12=0/2444, 9-11=-1/2444				unit load placed of	tom chord, 22	-2-4		-		JLA	5 5 5	

from left end, supported at two points, 5-0-0 apart.

7) Provide adequate drainage to prevent water ponding.


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

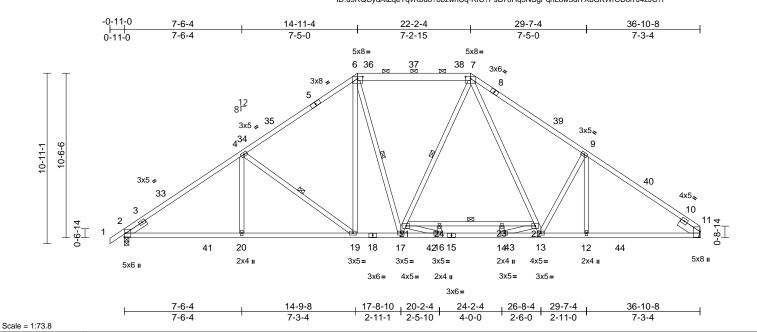
Job	Truss	Truss Type		Ply	127 Hidden Lakes North-Roof-Plan 10 GLH		
25010024-01	T14	Piggyback Base	5	1	I70688899 Job Reference (optional)		

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:37

1) Unbalanced roof live loads have been considered for this design.

10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



GI mmm January 13,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T13	Piggyback Base	6	1	I70688900 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:36 ID:u9RQCydAlZqeYqvRbuo?8bzwnCq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [6:0-4-0,0-1-9], [7:0-4-0,0-1-9], [11:0-4-6,0-0-1]

				-									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.84	Vert(LL)	-0.13		>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.51	Vert(CT)	-0.26	19-20	>999	180		211/100
TCDL	10.0	Rep Stress Incr	YES		WB	0.41	Horz(CT)	0.10	11	n/a	n/a		
BCLL	0.0*	Code		1/TPI2014	Matrix-MSH	0		00					
BCDL	10.0	0000										Weight: 251 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP 2400F 2.0E No.2, 7-8:2x4 SP No 2x4 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 1-6-0 Structural wood she except 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 7	0.1 t* 17-7,7-13,17-6:2x4 1-6-0, Right 2x6 SP N athing directly applie -15 max.): 6-7. applied or 10-0-0 oc 4-19, 7-17, 21-22, 6- 11= Mechanical	No.2 d, 3)	this design. Wind: ASCE Vasd=103mg II; Exp B; En and C-C Ext to 9-8-11, Ex 27-4-13 to 33 cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	roof live loads have 7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-11-0 tc tterior(2E) -0-31-0 tand right exposed 3-2-4, Exterior(2E) t and right exposed d;C-C for members shown; Lumber Du 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b	h (3-sec BCDL=6 envelope > 2-9-4, o 27-4- 33-2-4 d; end v s and fo OL=1.6((roof LI Lum DC B; Fully	cond gust) 0.0psf; h=25ft; a) exterior zor Interior (1) 2-5 (3, Interior (1) 2-5 (3, Interior (1) 2-5 (3, Interior (1) 2-5 (3, Interior (2) 2-5 (3	(Cat. 9-4 ne; d 8S 1.15 9;	rec UP doe 14) Gra or t bot	ommeno LIFT at j es not co aphical p	led to o t(s) 2. nsider urlin re tation o rd.	on Strong-Tie co connect truss to t This connection i lateral forces. presentation doe of the purlin along	nnectors bearing walls due to s for uplift only and es not depict the size
	Max Horiz 2=242 (LC Max Uplift 2=-79 (LC Max Grav 2=1838 (L	C 14), 11=-17 (LC 15) C 51), 11=1819 (LC		design.5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on									
FORCES	(lb) - Maximum Com Tension	pression/Maximum			on-concurrent with			2.4					
TOP CHORD	1-2=0/35, 2-4=-2904 6-7=-1863/122, 7-9= 9-11=-2917/31		6) 7) 8)	from left end Provide adeo	Init load placed on , supported at two quate drainage to p a 3x5 MT20 unless	points, prevent	5-0-0 apart. water ponding					OR EESE	ROLIN
BOT CHORD	2-20=-124/2320, 19- 17-19=0/1722, 16-1 13-14=0/1785, 12-1 11-12=-92/2330	7=0/1734, 14-16=0/2	9) 227,	This truss ha chord live loa) * This truss h	is been designed for ad nonconcurrent v has been designed n chord in all areas	or a 10. vith any for a liv	0 psf bottom other live load re load of 20.0			4	i i	A PERSON	No. 20
WEBS NOTES	4-20=0/315, 4-19=-7 9-12=-11/191, 17-21 7-21=-78/303, 7-22= 13-22=-149/728, 21 23-24=-609/0, 22-23 16-24=0/9, 16-21=0/ 6-17=-52/294, 9-13=	=-207/153, 41/916, -24=-609/0, 3=-609/0, 14-23=0/13 /583, 14-22=0/550,	11	3-06-00 tall t chord and ar) Refer to gird) Provide mec	y 2-00-00 wide wil y other members, er(s) for truss to tru hanical connection a capable of withsta	II fit betw with BC uss conr (by oth	veen the botto DL = 10.0psf nections. ers) of truss to	0		ATTUMA.		in num	22 EERER HUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T12	Piggyback Base Supported Gable	1	1	I70688901 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:36 ID:bpWnkZYnOQxeDIt5gwAML7zwnCx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH		
25010024-01	T12	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170688901	
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S Dec 5 2	2024 MiTek Industries, Inc. Fri Jan 10 11:46:36	Page: 2			

ID:bpWnkZYnOQxeDlt5gwAML7zwnCx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

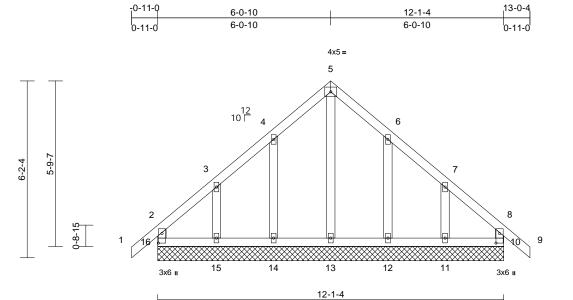
Carter Components (Sanford, NC), Sanford, NC - 27332,

- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

13) N/A

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

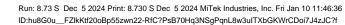
LOAD CASE(S) Standard


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

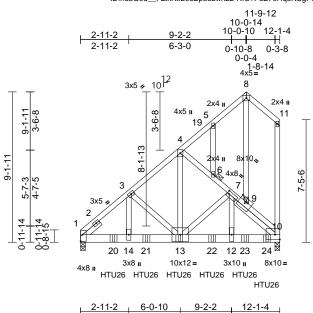
Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T11	Common Supported Gable	1	1	I70688902 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:36 ID:?addf8zgiguRSNCttrJ6P?zwnDh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Scale = 1:40.3 Plate Offsets (X, Y): [10]	0-4-0,0-1-8	, [16:0-4-0,0-1-8]								
	(0	0.0.0	001	DEEL	 (1)	1/-1-41	1. (-1	0010	

	,, , ,, [10.0	, 10,010], [10:0 1 0,0 1 0]												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	21/TPI2014	CSI TC BC WB Matrix-MR	0.15 0.05 0.12	Vert(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 71 lb	GRIP 244/190 FT = 20%	
	6-0-0 oc p Rigid ceili bracing. (size) Max Horiz Max Uplift	2.2 2.3 2.3 wood she uurlins, ex ng directly 10=12-1 16=2-1 16=2-1 16=2-1-2 (10=-23 (L 12=-72 (L 15=-106 (10=-48 (L) 10=-277 (L)	LC 12) C 11), 11=-103 (LC 1 C 15), 14=-71 (LC 1 LC 14), 16=-42 (LC 2 .C 37), 11=188 (LC 2 .C 22), 13=175 (LC 2 .C 21), 15=188 (LC 2	d or 1-4, 1-4, 15), 4), 10) 22), 23,	Vasd=103mj II; Exp B; En and C-C Cor 2-0-10 to 3-C (2N) 9-0-10 ti cantilever lef right expose for reactions DOL=1.60 3) Truss design only. For stu see Standar 00L=1.15); Cs=1.00; Ct: DOL=1.15); Cs=1.00; Ct: 0) Unbalanced design. 6) This truss ha	7-16; Vult=130m oh; TCDL=6.0psf closed; MWFRS ner(3E) -0-11-0 t)-0, Corner(3R) to 10-0-4, Corner t and right exposs d;C-C for membe shown; Lumber I ned for wind loads ds exposed to w d Industry Gable ualified building dr ;7-16; Pr=20.0 psf Is=1.0; Rough Ca =1.10 snow loads have	BCDL=6 (envelope o 2-0-10, 3-0-10 to (3E) 10-0 ed; end v rs and fo DOL=1.6(s in the pl ind (norm End Deta esigner a: s f (root LL (Lum DC at B; Fully been con for great	6.0psf; h=25ft; a) exterior zon Exterior (2N) 9-0-10, Exteri- 4 to 13-0-4 z vertical left and rcces & MWFR 0 plate grip ane of the trust all to the face) ils as applicat s per ANSI/TF b1=1.15 Plate Exp.; Ce=0.9 hsidered for the er of min roof	ne ior ione; d Ss ss), ble, Pl 1. 1.15 1.15); live	bea 16, uplit	ring plat 23 lb up ft at join t 11.	te capa olift at jo t 15, 72	able of withstand oint 10, 71 lb upli 2 lb uplift at joint	vothers) of truss to ing 42 lb uplift at jo ft at joint 14, 106 lt 12 and 103 lb uplif	bint b
FORCES TOP CHORD	Tension 2-16=-134	l/111, 1-2=	pression/Maximum =0/41, 2-3=-101/90, 18/225, 5-6=-118/22	3	overhangs n 7) All plates are 3) Gable requir	on-concurrent wite 2x4 MT20 unles es continuous bo	th other links otherwi ttom chor	ve loads. se indicated. d bearing.				11	ORTH CA	ROLIN	
BOT CHORD WEBS	6-7=-72/12 8-10=-130 15-16=-66 13-14=-66 11-12=-66 5-13=-205	22, 7-8=-8)/108 5/139, 14-1 5/139, 12-1 5/139, 10-1 5/50, 4-14= 3/156, 6-12	1/66, 8-9=0/41, 5=-66/139, 3=-66/139, 1=-66/139 -236/137, 2=-236/136,		braced agair braced agair b) Gable studs b) This truss ha chord live loa chord chord live loa chord live loa ch	ully sheathed from stateral movem spaced at 2-0-0 of so been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide v	ent (i.e. c cc. for a 10. with any d for a liv as where vill fit betw	liagonal web). 0 psf bottom other live load re load of 20.0 a rectangle	ds.)psf						American.
NOTES 1) Unbalance this design	ed roof live lo		been considered for		cnora and ar	ny other members	э.						201111	EEFF. A	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T10	Common Girder	1	2	I70688903 Job Reference (optional)

3-1-8

3-1-8

2-11-2

2-11-2

Scale = 1:70

Plate Offsets (X, Y): [1:Edge,0-1-5], [7:0-1-8,0-2-0], [9:0-5-0,0-2-8], [10:Edge,0-3-8]

Plate Offsets ((X, Y): [1:Edge,0-1-5],	[7:0-1-8,0-2-0], [9:0-5	5-0,0-2-8]	, [10:Edge,0-3	-8]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Rep Stress Incr	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.54 0.38 0.65	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.09 0.01		l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 242 lb	GRIP 244/190 FT = 20%
	4-7-3 oc purlins, exe Rigid ceiling directly bracing. 1 Brace at Jt(s): 6, 9 (size) 1=0-3-8, 1 Max Horiz 1=282 (LC Max Uplift 1=-90 (LC Max Grav 1=5064 (L (lb) - Maximum Com Tension 1-3=-5817/119, 3-4=	1-3-11 athing directly applied cept end verticals. applied or 10-0-0 oc 10=0-3-8 C 11) C 22), 10=-203 (LC 12) C 22), 10=6663 (LC 2 pression/Maximum -4469/116, 4-5=-229/	or 2) 3)) 21) 130,	(0.131"x3") r Top chords o oc. Bottom chord staggered at Web connec Except mem All loads are except if not CASE(S) se provided to c unless other Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En cantilever lef right expose	ted as follows: 2x4 ber 4-13 2x4 - 1 ro considered equall ed as front (F) or b ction. Ply to ply cor distribute only loads wise indicated. roof live loads hav 7-16; Vult=130mp bh; TCDL=6.0psf; I closed; MWFRS (e t and right exposed d; Lumber DOL=1.	vs: 2x4 Illows: 2 - 1 row w at 0-6 y applie ack (B) nnection s noted e been h (3-see BCDL=6 envelop d; end v 60 plate	- 1 row at 0-9-0 x6 - 3 rows at 0-9-0 oc, 5-0 oc. d to all plies, face in the LO. is have been as (F) or (B), considered for cond gust) 5.0psf; h=25ft; a) exterior zonov vertical left and a grip DOL=1.6	AD Cat. e; d	recc UP and 12) Gra or t bott 13) Use 14- ma: con 14) Fill LOAD (1) De In: Ur Co	ommenco LIFT at j I does n uphical p he orien toom choice Simpso 10dx1 1. x. startin nect true all nail h CASE(S card + Sr crease= niform Lo Vert: 1- oncentra 22=-17'	ded to c t(s) 1 a construction construction const	and 10. This conr sider lateral force presentation doe of the purlin along ang-Tie HTU26 (1 ss) or equivalent 0-0 from the left to back face of b there hanger is ir ndard alanced): Lumber b/ft) 4-8=-60, 8-11=-6 ads (lb) 0 (B), 20=-1710 (23=-1710 (B), 22	bearing walls due to hection is for uplift only s. as not depict the size g the top and/or 0-16d Girder, spaced at 2-0-0 oc end to 11-4-0 to ottom chord. a contact with lumber. r Increase=1.15, Plate 50, 10-15=-20 B), 21=-1710 (B),
BOT CHORD WEBS NOTES	5-8=-196/121, 8-11= 4-6=-4413/204, 6-7= 7-9=-6315/270, 9-10 10-11=-236/79 1-14=-214/4424, 13- 12-13=-190/4809, 10 5-6=-144/76, 8-9=-1 3-13=-1254/119, 3-1 7-12=-52/2524, 7-13	4489/253,)=-6320/224, -14=-214/4424, 0-12=-194/5008 48/210, 4-13=-106/53 4=-25/1756,	7) 8) 9)	only. For stu see Standaru or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable studs This truss ha chord live loa 0) * This truss h on the bottor 3-06-00 tall t	ed for wind loads i ds exposed to wind d Industry Gable E ialified building des 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have the spaced at 2-0-0 oc is been designed fad nonconcurrent was been designed n chord in all areas by 2-00-00 wide win y other members.	d (norm nd Deta signer a (roof Ll Lum DC B; Fully been col c. or a 10. with any for a liv s where Il fit betv	al to the face), ils as applicab s per ANSI/TP : Lum DOL=1 DL=1.15 Plate Exp.; Ce=0.9; nsidered for thi 0 psf bottom other live load e load of 20.0 a rectangle	, ole, 11. .15 ; is ds. psf			25	SEA 0363	EER. HUILING

January 13,2025

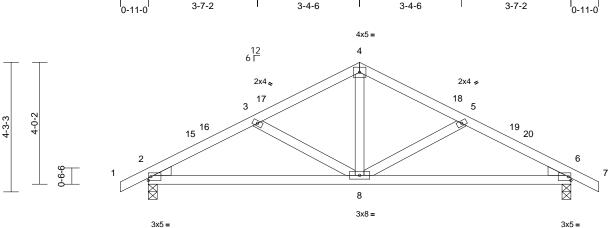
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	Т09	Common	6	1	I70688904 Job Reference (optional)

6-11-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

-0-11-0


3-7-2

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:36 ID:D8Rd?jQ0ceuTjs?TwgXKIDzwnFg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-3-14

14-10-0 13-11-0 3-7-2 0-11-0

Page: 1

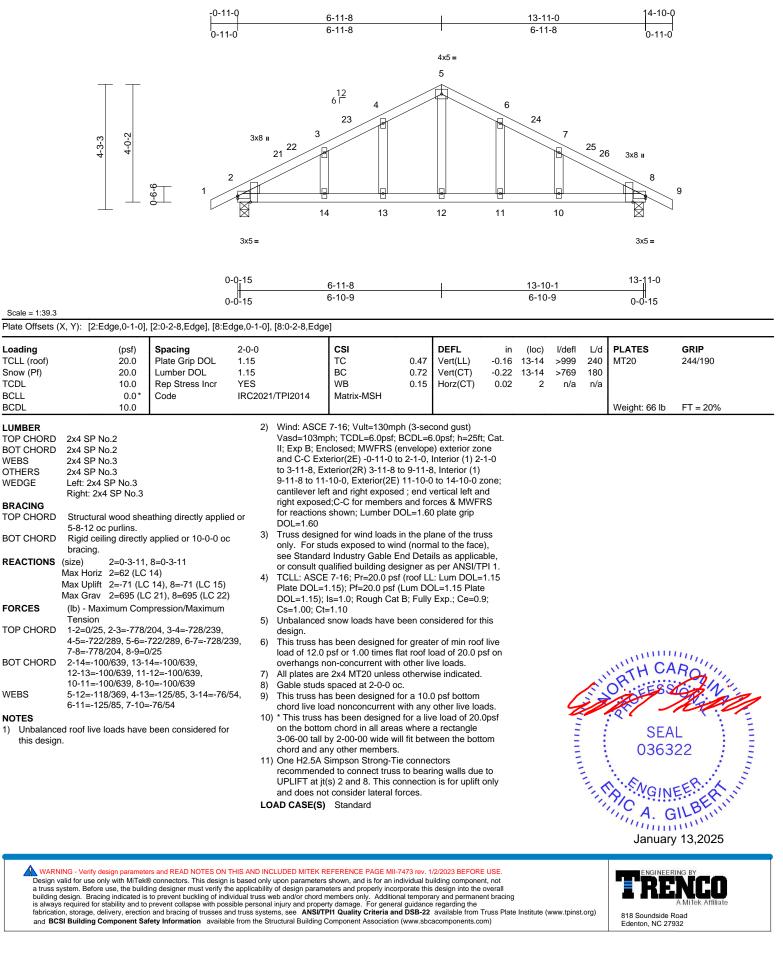
			L		6-11-8				13-	11-0			
Scale = 1:37.9					6-11-8		I		6-1	1-8		1	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MSH	0.23 0.43 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.08 0.02	(loc) 8-14 8-14 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance- this design 2) Wind: ASC Vasd=103r II; Exp B; E and C-C E to 3-11-8, E 9-11-8 to 1 cantilever I right expos for reaction DOL=1.60	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 5-8-1 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=62 (LC Max Uplift 2=-71 (LC Max Uplift 2=-71 (LC Max Grav 2=695 (LC (lb) - Maximum Com Tension 1-2=0/25, 2-3=-1021 4-5=-710/226, 5-6=- 2-8=-178/864, 6-8=- 4-8=-50/374, 3-8=-3 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; Bi inclosed; MWFRS (er xterior(2R) 3-11-8 to 1-10-0, Exterior(2E) 1 eft and right exposed sed; C-C for members is shown; Lumber DO	applied or 10-0-0 or 5=0-3-8 14) 2 14), 6=-71 (LC 15) 2 21), 6=695 (LC 22) pression/Maximum /292, 3-4=-710/226, 1021/292, 6-7=0/25 178/864 43/150, 5-8=-343/15 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 2-1-0, Interior (1) 2-1 9-11-8, Interior (1) 1-10-0 to 14-10-0 zc ; end vertical left and and forces & MWFR L=1.60 plate grip	5) 6) 7) 8) LO 0 Cat. e -0 one; 5 S	design. This truss h load of 12.0 overhangs This truss h chord live le * This truss on the botto 3-06-00 tall chord and a Provide me bearing pla 2 and 71 lb	d snow loads have has been designed) psf or 1.00 times non-concurrent with as been designed bad nonconcurrent has been designe om chord in all are- by 2-00-00 wide v any other members ichanical connection te capable of withs uplift at joint 6.) Standard	l for great flat roof l th other li l for a 10. t with any ed for a liv as where will fit betv s. on (by oth	er of min roo bad of 20.0 p ve loads.) psf bottom other live load e load of 20. a rectangle veen the bott ers) of truss	f live osf on ads. Opsf tom to				ORTH CA	
Plate DOL=	CE 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E Ct=1.10	um DOL=1.15 Plate										A. C	112BER 111

January 13,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	Т08	Common Structural Gable	1	1	I70688905 Job Reference (optional)

TCDL


BCLL

BCDL

WEBS

WEBS

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:36 ID:Zqj4UdHURyNAH049D8KWGhzwnFs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	Т07	Common	3	1	I70688906 Job Reference (optional)

5-2-2

5-2-2

-0-11-0

0-11-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:34

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

WEBS

WEDGE

SLIDER

BRACING

FORCES

WEBS

NOTES

2)

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S. Dec. 5 2024 MiTek Industries. Inc. Fri Jan 10 11:46:35 ID:CtwBRvDLcQltAFBBRbkLZdzwnFx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 4x5 = 3

10-0-12

4-10-10

Page: 1

12 6 Г 15 3x5 👟 14 3-1-7 3-4-8 4 5 2 0-8-2 9-9-(6 2x4 🛛 3x5 II 3x5 = 5-2-2 10-0-12 4-10-10 5-2-2 Plate Offsets (X, Y): [2:Edge,0-0-8], [5:0-2-8,0-3-3] 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (psf) Spacing (loc) 20.0 Plate Grip DOL 1.15 TC 0.51 Vert(LL) -0.03 6-13 >999 240 MT20 244/190 20.0 Lumber DOL 1.15 BC 0.34 Vert(CT) -0.05 6-13 >999 180 10.0 Rep Stress Incr WB Horz(CT) YES 0.08 0.01 2 n/a n/a 0.0 IRC2021/TPI2014 Matrix-MSH Code 10.0 Weight: 40 lb FT = 20% 4) Unbalanced snow loads have been considered for this TOP CHORD 2x4 SP No.2 design. BOT CHORD 2x4 SP No.2 5) This truss has been designed for greater of min roof live 2x4 SP No.3 load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on Left: 2x4 SP No.3 overhangs non-concurrent with other live loads. This truss has been designed for a 10.0 psf bottom Right 2x4 SP No.3 -- 1-6-0 6) chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf TOP CHORD Structural wood sheathing directly applied or on the bottom chord in all areas where a rectangle 6-0-0 oc purlins. 3-06-00 tall by 2-00-00 wide will fit between the bottom BOT CHORD Rigid ceiling directly applied or 10-0-0 oc chord and any other members. bracing. 8) Provide mechanical connection (by others) of truss to REACTIONS (size) 2=0-3-8, 5=0-3-8 bearing plate capable of withstanding 57 lb uplift at joint Max Horiz 2=58 (LC 14) Max Uplift 2=-57 (LC 14), 5=-37 (LC 15) One H2.5A Simpson Strong-Tie connectors 9) Max Grav 2=563 (LC 21), 5=495 (LC 22) recommended to connect truss to bearing walls due to (lb) - Maximum Compression/Maximum UPLIFT at jt(s) 5. This connection is for uplift only and Tension does not consider lateral forces. TOP CHORD 1-2=0/25, 2-3=-592/227, 3-5=-499/234 LOAD CASE(S) Standard BOT CHORD 2-6=-159/428, 5-6=-157/428 3-6=0/213 1) Unbalanced roof live loads have been considered for this design Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone ALTER DATE OF THE STREET and C-C Exterior(2E) -0-11-0 to 2-1-0, Exterior(2R) 2-1-0 SEAL to 7-0-12, Exterior(2E) 7-0-12 to 10-0-12 zone; cantilever left and right exposed ; end vertical left and 036322 right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G

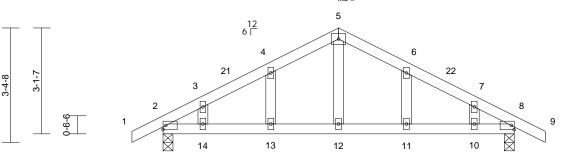
mmm January 13,2025 11111111111

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	Т06	Common Structural Gable	1	1	I70688907 Job Reference (optional)

5-2-2

5-2-2


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:35 ID:wW?YzW8yGGstrA9rWd6in9zwnG2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

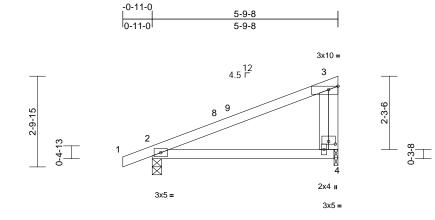
10-4-4 11-3-4 0-11-0 5-2-2 4x5 = 5

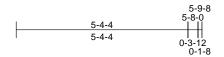
3x5 =

3x5 =

-0-11-0

0-11-0


Scale = 1:34					5-2-2				5-2-2				
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.43 0.09	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.05 -0.07 0.01	(loc) 10-11 10-11 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 46 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 3=0-3-8 : 15) : 14), 8=-58 (LC 15)	5) 6) 7)	only. For st see Standar or consult qr TCLL: ASCI Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss hi load of 12.0 overhangs r All plates ar	ned for wind load uds exposed to v d Industry Gable ualified building of 57-16; Pr=20.0 ps Is=1.0; Rough C =1.10 snow loads hav as been designer psf or 1.00 times ion-concurrent w e 2x4 MT20 unle spaced at 2-0-0	vind (norm End Deta lesigner as ssf (roof LL if (Lum DC at B; Fully e been cor d for great s flat roof k ith other lin ss otherwi	al to the face ils as applica s per ANSI/T .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. hsidered for t er of min roo bad of 20.0 p ve loads.), ble, PI 1. 1.15 9; his f live sf on					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	9)	This truss ha	as been designed ad nonconcurrer	d for a 10.0		ıds.					
TOP CHORD BOT CHORD	1-2=0/25, 2-3=-576/ 4-5=-533/276, 5-6=- 7-8=-576/188, 8-9=0 2-14=-106/460, 13-1	533/276, 6-7=-552/2 //25 4=-106/460,	21,	 * This truss on the botto 3-06-00 tall chord and a 	has been design m chord in all are by 2-00-00 wide ny other membe	ed for a liv eas where will fit betv 's.	re load of 20. a rectangle veen the bott	0psf om					
WEBS	12-13=-106/460, 11- 10-11=-106/460, 8-1 5-12=-97/243, 4-13= 6-11=-110/96, 7-10=	0=-106/460 -110/96, 3-14=-62/5	3,	bearing plat 2 and 58 lb	chanical connecti e capable of with uplift at joint 8.							ORTH CA	Della
NOTES	0 11= 110/00, 7 10=	02/00	LC	DAD CASE(S)	Standard						1	ATHON	19/11
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; E and C-C E to 8-3-4, E and right e C for mem 	ed roof live loads have DE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (en ixterior(2E) -0-11-0 to 2 ixterior(2E) 8-3-4 to 11 ixposed; end vertical I ubers and forces & MW mber DOL=1.60 plate	(3-second gust) CDL=6.0psf; h=25ft; velope) exterior zone 2-1-0, Exterior(2R) 2- -3-4 zone; cantilever eft and right exposed /FRS for reactions	e -1-0 · left									SEA 0363	•



G mmm January 13,2025

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T04	Monopitch	4	1	I70688908 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:35 ID:bOhwYkAHy??dxWwmggCFMUzwnJt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

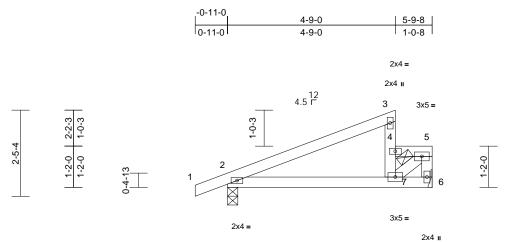
Scale = 1:35.9

Plate Offsets (X, Y): [3:Edge,0-1-5], [4:0-2-8,0-1-0]

Flate Olisets ((A, T). [3.Euge,0-1-5],	[4.0-2-0,0-1-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MP	0.66 0.47 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.12 0.01	(loc) 4-7 4-7 2	l/defl >959 >540 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 2-6-0, E and right e C for mem shown; Lu 2) TCLL: ASC Plate DOL DOL=1.15 CS=1.00; C	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-9-8 oc purlins, exi Rigid ceiling directly bracing. (size) 2=0-3-8, 2 Max Horiz 2=92 (LC Max Uplift 2=-57 (LC Max Uplift 2=-57 (LC Max Grav 2=395 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-3=-83/7: 2-4=-28/114 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (er Exterior(2E) 2-0-10 5-1 exposed; end vertical I bers and forces & MW imber DOL=1.60 plate CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L	cept end verticals. applied or 10-0-0 oc 4=0-1-8 13) 2 10), 4=-41 (LC 14) 2 21), 4=298 (LC 21) pression/Maximum 5, 3-4=-214/113 (3-second gust) CDL=6.0pst; h=25ft; welope) exterior zon 2-1-0, Interior (1) 2-1 6-0 zone; cantilever 1 6-0 zone; cantilever 1 6-0 zone; cantilever 1 6-0 zone; cantilever 1 6-1 zone; cantilever 1 6-2 zone; cantilever 1 6-3 zone; cantilever 1 6-4 zone; cantilever 1 6-5 zone; cantilever 1 6-5 zone; cantilever 1 6-5 zone; cantilever 1 6-7 zone; cantilever	6) d or 7) 8) 9) LO Cat. e -0 eft 1;C- .15	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearing at jo using ANSI/1 designer sho Provide mect Done H2.5A S recommende UPLIFT at jt(Simpson Strong-Tie ed to connect truss s) 2 and 4. This co t consider lateral fo	with any for a live s where Il fit betw parallel of bear of bear of bear of bear of bear of bear of bear onnectio	other live loa e load of 20.0 a rectangle veen the bott o grain value a. Building ng surface. ers) of truss to ctors ing walls due	Opsf om to to		Contraction of the second seco		OR TH CA	• -
,	has been designed for .0 psf or 1.00 times flat	0									1	A. G	ILBEIT

Inis truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

January 13,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	Т03	Half Hip	1	2	I70688909 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:35 ID:MfeWfg3d4EsvM8k1eHY8UbzwnK0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

January 13,2025

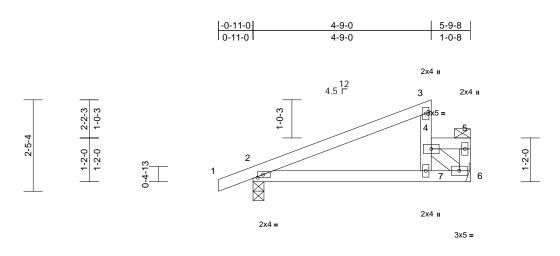
818 Soundside Road Edenton, NC 27932

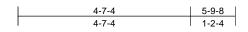
4-7-4 5-9-8

1-2-4

4-7-4

Scale = 1:32.6


Loading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP			
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.33	Vert(LL)	-0.01	7-10	>999	240	MT20	244/190			
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.12	Vert(CT)	-0.02	7-10	>999	180					
TCDL	10.0	Rep Stress Incr	NO		WB	0.10	Horz(CT)	0.00	2	n/a	n/a					
BCLL	0.0*	Code	IRC2021/	TPI2014	Matrix-MP											
BCDL	10.0											Weight: 48 lb	FT = 20%			
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-8 oc purlins, ex 2-0-0 oc purlins: 4-7 Rigid ceiling directly bracing. (size) 2=0-3-8, (Max Horiz 2=62 (LC Max Uplift 2=-7 (LC Max Grav 2=281 (LC	l or d 5) 6)	 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 5-7-12 zone; cantilever left and right exposed; C- for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. 													
FORCES	(lb) - Maximum Com	pression/Maximum		load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on												
	Tension			overhangs non-concurrent with other live loads.												
TOP CHORD					uate drainage to			g.								
	3-4=-51/77, 4-5=-37				s been designed t											
BOT CHORD	,	1			d nonconcurrent											
WEBS	5-7=0/497				as been designed			Opsf								
NOTES					n chord in all area											
	to be connected toge	ther with 10d			y 2-00-00 wide w y other members		veen the botto	om				IIIIII	11111			
) nails as follows:				er(s) for truss to tr		actions					WH CA	Pall			
	s connected as follows	s: 2x4 - 1 row at 0-9-0			Simpson Strong-Ti						1	all				
oc. Bottom ch	ords connected as foll	ows: 2x4 - 1 row at			d to connect truss			to			N'S	O'FESS	ton Vil			
0-9-0 oc.					s) 2. This connect		r uplift only ar	nd		6	15	the 1	City .			
Web conn	ected as follows: 2x4 -	1 row at 0-9-0 oc.			sider lateral force							.0	- T			
2) All loads a	are considered equally	applied to all plies,			1 has/have been					-		SEV.	1 1 2			
	oted as front (F) or ba				st review loads to		at they are co	orrect		=	:	SLA	(는 : =			
	section. Ply to ply conr				ed use of this true					=		0363	22 : =			
	o distribute only loads	noted as (F) or (B),		 does not consider lateral forces. 13) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss. 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s). The design/selection of such connection device(s) is the responsibility of others. 												
	erwise indicated.	have a second dama of dama		bottom chord		along the				-	-	1.	1 1 S -			
 Unbalance this design 	ed roof live loads have	been considered for			other connection	device(s) shall be				20	N.S.Nom	FER. A S			
uns design					icient to support c			The			1	A	5. 64 1			
					ion of such conne						1	A CA	BEN			
				responsibility								1111.0	in in it is a second seco			
												lopuon	12 2025			


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T02	Half Hip	8	1	I70688910 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:35 ID:mhHo83hBNiyJ8Nt4KGVsk2zwnKV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.7

Plate Offsets (X, Y): [2:0-1-11,0-1-0]

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-4-0 1.15 1.15 NO IRC2021,	/TPI2014	CSI TC BC WB Matrix-MP	0.61 0.24 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.00	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; II and C-C E left and rig exposed;C reactions 3 DOL=1.60 3) TCLI: ASC Plate DOL	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 5-9-8 oc purlins, ex 2-0-0 oc purlins; 4-7 Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=62 (LC Max Uplift 2=-16 (LC Max Uplift 2=-16 (LC Max Grav 2=271 (LC (lb) - Maximum Com Tension 1-2=0/18, 2-3=-203/ 3-4=-58/69, 4-5=-7/1 2-7=-8/174, 6-7=0/3 4-6=-442/0 ed roof live loads have n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Exterior(2E) -0-11-0 to pht exposed ; end verti shown; Lumber DOL=	applied or 10-0-0 oc S= Mechanical 14) 2 10) C 38), 6=257 (LC 38) pression/Maximum 0, 4-7=-18/98, 11, 5-6=-30/18 44 been considered for (3-second gust) CDL=6.0psf; h=25ft; 0 ivelope) exterior zone cal left and right orces & MWFRS for 1.60 plate grip roof LL: Lum DOL=1. um DOL=1.15 Plate	6) 7) d or d 8) 9) 10) 11) 12) 13) 22at. 14) er LO. 1)	load of 12.0 overhangs n Provide adeer This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Refer to gird One H2.5A S recommende UPLIFT at jt(does not cor Load case(s; designer mu for the inteno Graphical pu for the inteno Graphical pu for the orients bottom chord Hanger(s) or provided suff design/selec responsibility In the LOAD of the truss a AD CASE(S) Dead + Snc Increase=1 Uniform Lo. Vert: 1-3	other connection ficient to support c tion of such conner of others. CASE(S) section, are noted as front (Standard bw (balanced): Lur .15 ads (lb/ft) =-40, 4-5=-40, 6-8 ed Loads (lb)	lat roof I o other li prevent for a 10. with any d for a liv s where ill fit betw. uss conne s to bear cion is fo s. modifie verify th ss. a does n along the device(s concentr. ection de loads a (F) or ba	bad of 20.0 p ve loads. water pondini 0 psf bottom other live loa ve load of 20.1 a rectangle veen the bott nections. ctors ing walls due r uplift only at d. Building at they are cc bt depict the se e top and/or s) shall be ated load(s) . vice(s) is the pplied to the ck (B).	esf on g. ads. Opsf om e to nd prrect size The face				Weight: 24 lb ORTH CA OFES SEA 0363	
Cs=1.00; (4) Unbalance design.	Ct=1.10 ed snow loads have be	een considered for this	5										ILBERT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	T01	Half Hip Supported Gable	1	1	I70688911 Job Reference (optional)

1-0-3

2

P

2x4 =

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-2-0 2-2-3 1-0-3

1-2-0

0-4-13

2-5-4

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:35 ID:2EcAv09akBQYscVdI1iYymzwnLB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2x4 II 4

Á.

5

2x4 II

2x4 🛚

5

3x5 =

5-9-8

1-2-4

-2-0

2x4 🛛

3

P

P

9

2x4 II

4.5 F

4-7-4

4-7-4

Scale = 1:31.2

_															
Loa	ading	(psf)	Spacing	1-4-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
тс	LL (roof)	20.0	Plate Grip DOL	1.15		тс	0.08	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Sno	ow (Pf)	20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	n/a	-	n/a	999			
TC	DL	10.0	Rep Stress Incr	NO		WB	0.04	Horz(CT)	0.00	2	n/a	n/a			
BC	LL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP									
BC	DL	10.0					-						Weight: 25 lb	FT = 20%	
TO BO WE OT BR TO	MBER P CHORD T CHORD EBS HERS ACING P CHORD	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-9-8 oc purlins, ex 2-0-0 oc purlins: 5-8 Rigid ceiling directly	cept end verticals, ar , 5-6.	5) d or 6) id	 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) Provide adequate drainage to prevent water ponding. 8) Gable requires continuous bottom chord bearing. 										
RE	ACTIONS	Max Horiz 2=62 (LC Max Uplift 2=-23 (LC 9=-37 (LC Max Grav 2=146 (LC	5 10), 7=-11 (LC 11), 5 14)	5-9-8 9) 10 11	 able requires continuous bottom chord bearing. Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 										
	RCES P CHORD	(lb) - Maximum Com Tension 1-2=0/18, 2-3=-65/4 4-5=-151/0, 5-6=-7/1	pression/Maximum 1, 3-4=-32/9, 5-8=-15	12	 Provide mecl bearing plate 	ty other members hanical connection capable of withs at joint 9, 11 lb u	on (by oth standing 2	3 lb uplift at j							
	T CHORD	2-9=-14/44, 8-9=-14 3-9=-159/148, 5-7=-	,	13	3) Load case(s)	 1 has/have bee st review loads to 			rrect				TH CA	um.	
	TES					led use of this tru		at they are co	meor				WH CA	ROUL	
1)	Unbalance this design	ed roof live loads have n. CE 7-16; Vult=130mph		14	4) Graphical pu	rlin representation of the purlin	on does no					OR FESS	River		
_,	Vasd=103 II; Exp B; and C-C C left and rig exposed; C reactions	mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) -0-11-0 to 5 ght exposed ; end verti C-C for members and f shown; Lumber DOL=	CDL=6.0psf; h=25ft; ivelope) exterior zone -7-12 zone; cantileve cal left and right orces & MWFRS for	e er 16	 15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 120 lb down at 4-7-4 on top chord. The design/selection of such connection device(s) is the responsibility of others. 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (Ib/ft) Vict 14, 40, 50, 40, 740, 42 									• -	
3)	only. For see Stand) igned for wind loads in studs exposed to wind lard Industry Gable En- qualified building desi	(normal to the face) d Details as applicab	s 1) le,	Increase=1. Uniform Loa	w (balanced): Lu 15		rease=1.15, I	Plate				A. C	EER KINN	

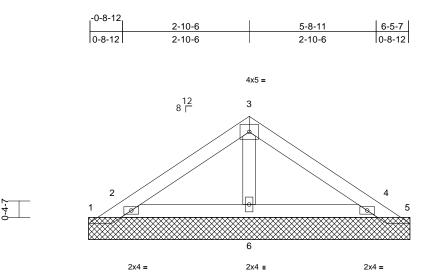
Vert: 1-4=-40, 5-6=-40, 7-10=-13

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone

818 Soundside Road Edenton, NC 27932

GI minim


Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	PB07A	Piggyback	15	1	I70688912 Job Reference (optional)

2-3-6

2-5-0

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:35 ID:3Ryt8403H6K4r2MujCZL5fzwnQX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-8-11

Scale - 1.26

Scale = 1:26					_		<u> </u>						
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.07 0.02	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=7-2-15 5=7-2-15 Max Horiz 1=-52 (LC Max Uplift 1=-144 (L 4=-86 (LC 4=-86 (LC 4=401 (L 6=175 (L (lb) - Maximum Com Tension	LC 21), 2=-94 (LC 14 C 15), 5=-141 (LC 22 : 14), 2=413 (LC 21), C 22), 5=46 (LC 15), C 22) npression/Maximum 110/67, 3-4=-110/67,	5 5 , 6 7 7), 8), 8	only. For s see Standa or consult or TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C Unbalance design. Gable stud This truss f chord live le * This truss on the botto 3-06-00 tall chord and a 0) Provide me bearing pla	aned for wind loads tuds exposed to w ird Industry Gable qualified building di E 7-16; Pr=20.0 pst ; Is=1.0; Rough Ca t=1.10 d snow loads have ires continuous bo is spaced at 4-0-0 has been designed oad nonconcurrent has been designed oad nonconcurrent has been designed oad nonconcurrent has been designed oad nonconcurrent chas been designed oad nonconcurrent has been designed oad nonconcurrent chas been designed oad nonconcurrent has been designed has been	ind (norm End Deta esigner a signer a si (roof Li (Lum DC at B; Fully been co- totom cho- oc. I for a 10. t with any ed for a liv as where will fit betv s. on (by oth	al to the face ills as applica s per ANSI/T : Lum DOL= DL=1.15 Plate • Exp.; Ce=0.1 nsidered for t rd bearing. 0 psf bottom other live loa ve load of 20.1 a rectangle ween the bott uers) of truss	e), ble, Pl 1. 1.15 e 9; his dds. 0psf om to				WITH CA	
NOTES 1) Unbalance	ed roof live loads have	been considered for	r 1:	2) See Standa	ard Industry Piggyt	back Trus	s Connection	ı			Nº.	RTHUR	9Liller

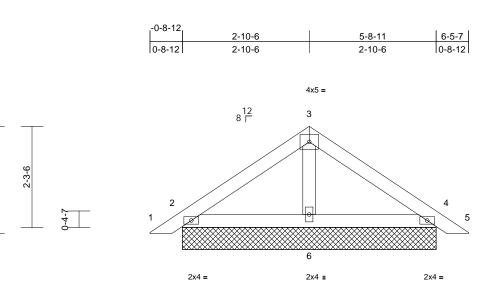
1) this design.

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 3-11-10, Exterior(2E) 3-11-10 to 6-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Job	Truss	Truss Type	Qty	Ply	127 Hidden Lakes North-Roof-Plan 10 GLH
25010024-01	PB07	Piggyback	2	1	I70688913 Job Reference (optional)

2-5-0

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Fri Jan 10 11:46:34 ID:wjKFBa?RoBnOpc07UozVw1zwnLO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-8-11

Scale = 1:26

Scale = 1:26													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.15 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 24 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-8-11, Max Horiz 2=-51 (LC Max Uplift 2=-30 (LC Max Grav 2=-218 (LC 6=200 (LC (lb) - Maximum Com Tension	C 14), 4=-36 (LC 15) C 21), 4=218 (LC 22), C 22) npression/Maximum 74, 3-4=-114/74, 4-5=	6) 7) 8) 9) 10	Plate DOL=1 DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa) * This truss the on the bottor 3-06-00 tall the	7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (ls=1.0; Rough Cat =1.10 snow loads have b as been designed fi psf or 1.00 times fi on-concurrent with es continuous bott spaced at 2-0-0 oc as been designed fi ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members.	Lum DC B; Fully been con or great at roof l o other li om chor c. or a 10. with any l for a liv s where Il fit betv	DL=1.15 Plate Exp.; Ce=0.5 nsidered for th er of min roof oad of 20.0 pp ve loads. rd bearing. 0 psf bottom other live loa e load of 20.0 a rectangle	e); live sf on ds. Dpsf					
WEBS NOTES	2-6=-13/48, 4-6=-3/4 3-6=-87/18 ed roof live loads have		12		d Industry Piggyba nnection to base tr								111

this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-3-5 to 3-3-5, Exterior(2R) 3-3-5 to 3-11-10, Exterior(2E) 3-11-10 to 6-11-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- consult qualified building designer.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

