

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Contractor

Model: 126 Hidden Lakes North - Wellco - Plan 9 GRH

THE PLACEMENT PLAN NOTES:

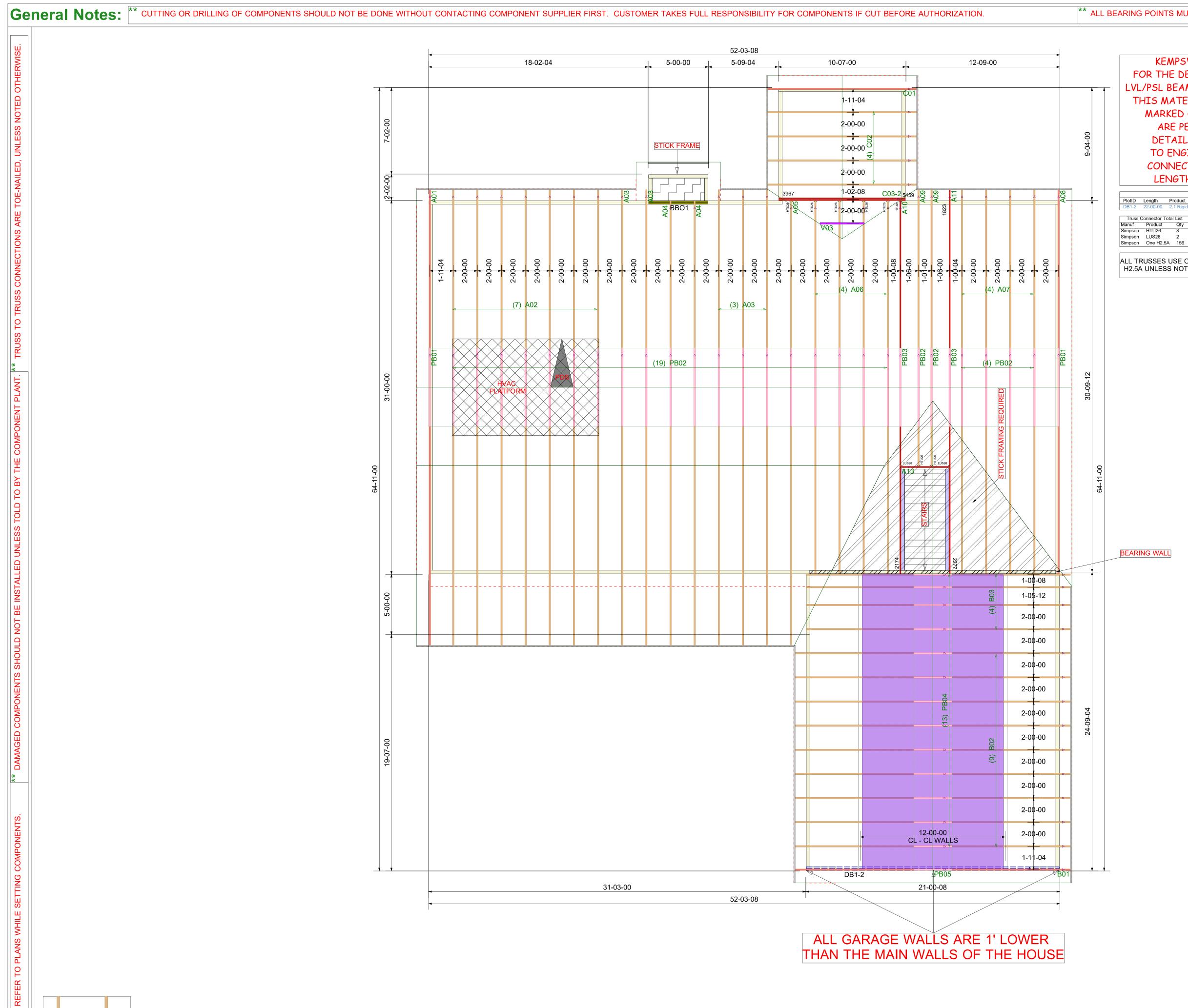
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

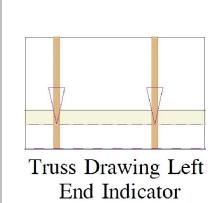
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

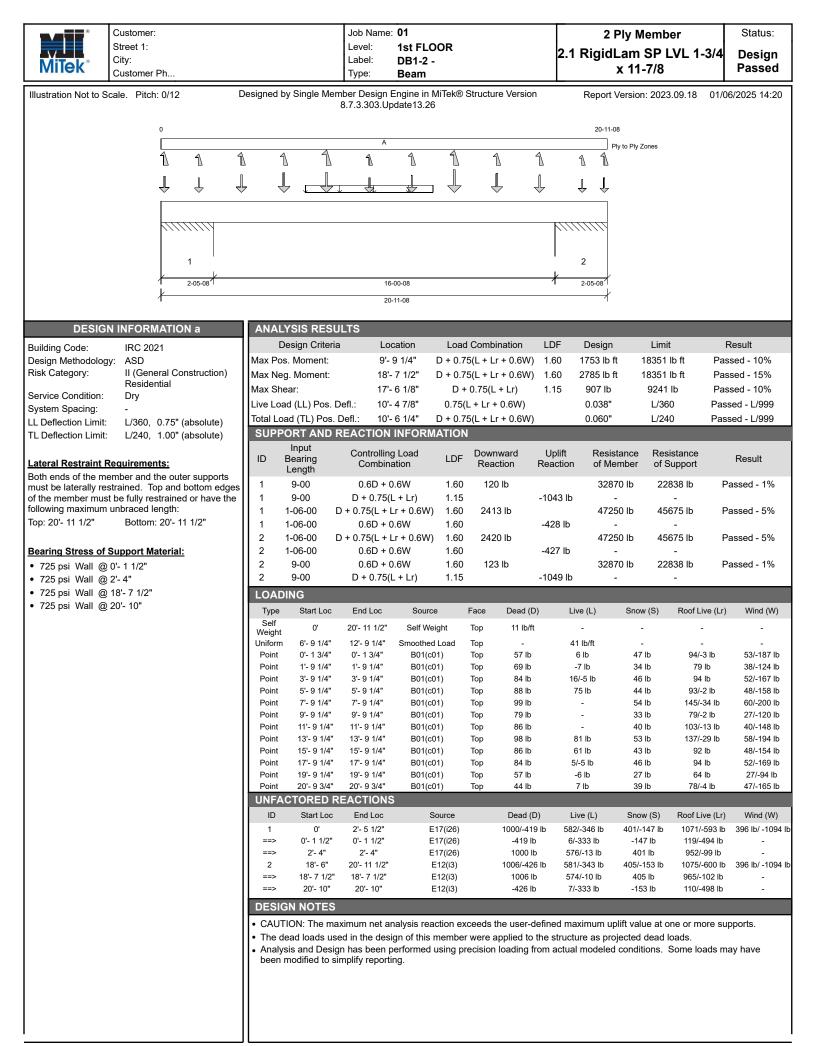

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

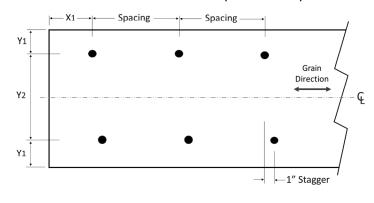

MER MUST

*

** ALL BEARING POINTS MI

FB# - Flush Beam DB# - Dropped Bear BBO - Beam that is supplied by the component plant

uplift connectors shown within these documents are recommendations only. Per /TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design on 0000000000000000000000000000000000	Account of the model of the notation of the building designer 00/0 bracing of the building designer 00/0 bracing of the tuss support structure 00/0 isign of the tuss support structure 00/0 ns is the responsibility of the 00/0 arding the bracing, consult "Bracing te Institute, 583 D'Onifrio Drive: 00/0
shown within these documents are recommendations or onnectors are the responsibilty of the bldg designer and	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design of the building designer. See Individual design sheets for the specification of the building design sheets for the building design	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179 a
shown within these documents are recommendations or onnectors are the responsibilty of the bldg designer and	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design on 0000000000000000000000000000000000	active specimentation of the building designer and floor is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
shown within these documents are recommendations or onnectors are the responsibilty of the bldg designer and	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design on 0000000000000000000000000000000000	active specimentation of the ballding designer each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
shown within these documents are recommendations or onnectors are the responsibilty of the bldg designer and	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY . These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	Madison, WI 53179
shown within these documents are recommendations or onnectors are the responsibilty of the bldg designer and	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179
shown within these documents are recommendatior onnectors are the responsibilty of the bldg designer	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trudesigned as individual components to be incorporated into the at the specification of the building designer. See Individual designed	each truss design identified on the pl is responsible for temporary and perr systems and for the overall structure. including headers, beams, walls, and building designer. For general guidar of Wood Truss" available from the Tr Madison, WI 53179
** All ANSI		
TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.	Wellco Contractor	126 Hidden Lakes North-Roof-Plan 9 GRH ROOF PLACEMENT PLAN
* GIRDERS MUST BE FULLY CONNECTED	2	NTS 1/7/2025 Designer: aron Rogers Project Number: 5010023-01 Sheet Number: 1/1
	s must be fully connected together prior to adding any loads. ** Dimensions are read as: foot-inch-sixteenth. ANSI/	GRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. ** All ANSI/ Scale: Date: Velico Contractor


DESIGN NOTES

- Tributary Loads have been generated based on actual spacing between members in the model which may differ from the default system spacing. The actual loads applied to the member are shown in the Specified Loads table.
- Transfer reactions may differ from design results as allowed per building codes and standard load distribution practices.
- This report is based on modeled conditions input by the user. Source information for the loads and supports are provided for reference only. Verify that all loads and support conditions are correct.
- Review all loads and reactions to ensure that the member/bearing/connector/structure can resist adequately. Unless already
 specified on this report, anchorage for uplift reactions to be specified by others. Installation of member and accessories (if
 required) as per manufacturer's instruction.
- Beam Stability Factor used in the calculation for Allowable Max Pos Moment (CL) = 0.54

PLY TO PLY CONNECTION

- Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 42. Row = 2, Spacing = 12"
 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5"
 Install fasteners from one face.
 - X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

FASTENER INSTALLATION - 2 ROWS (FROM ONE FACE)

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 25010023-01 126 Hidden Lakes North-Roof-Plan 9 GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I70597118 thru I70597141

My license renewal date for the state of North Carolina is December 31, 2025.

North Carolina COA: C-0844

January 8,2025

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:47 ID:MUrpfgleVEIYrWDGpMPyWvzy8VI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

-0-11-0 	<u>12-2-8</u> 12-2-8		18-8-8 6-6-0	21-11-8	30-9-4 8-9-12	<u>35-11-8</u> 36-10-0 5-2-4 0-10-8
0-11-0	12-2-0	4x6 -		x6 ₂	0-9-12	5-2-4 0-10-8
		^{3x6} ≠ 1054	11 12 13 551			
10-7-8 10-7-8	$9^{12} 6$ 52^{53}			4 15 3x6 167 17 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	19 20 21 12 16	22 23 24 25 5x8 II 26 27 27 27 27 27 27 27 20 27 27 20 27 20 27 20 20 20 27 20 20 20 20 20 20 20 20 20 20 20 20 20
4x5 u	+7 +0 +3 +4	45 42	3x6=	3x6=	33 32 3	4x5=
⊢—			30-9-4			35-11-8
Scale = 1:70.5			30-9-4			5-2-4
ate Offsets (X, Y): [2:0-3-0,0-1-	2], [10:0-2-2,Edge], [14:Edge,0)-2-13]		r		1
bading (psf) CLL (roof) 20.0 now (Pf) 20.0 CDL 10.0 CLL 0.0° CDL 10.0 CDL 10.0	Spacing1-11-4Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCodeIRC20	21/TPI2014	CSI TC 0.88 BC 0.39 WB 0.26 Matrix-MSH	DEFL in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.02	- n/a 999 - n/a 999	PLATES GRIP MT20 244/190 Weight: 295 lb FT = 20%
SP No.2 RACING DP CHORD Structural wood sl 9-3-2 oc purlins, of 2-0-0 oc purlins, of 2-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	y applied or 6-0-0 oc 13-38, 15-37, 16-35, 12-40, 11-41, 9-42, 7-43) 1-0, 33=30-11-0, 1-0, 35=30-11-0, 1-0, 41=30-11-0, 1-0, 43=30-11-0, 1-0, 45=30-11-0, 1-0, 45=30-11-0, 1-0, 47=30-11-0, 1-0, 47=30-11-0, 1-0, 45=30-11-0, 1-0, 45=30-10-0, 1-0, 45=30-10-0, 1-0, 45=30-10-0, 1-0, 45=30-10-0, 1-0, 45=30	FORCES (II T T OP CHORD 2- 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	34=181 (LC 49) 37=323 (LC 22) 40=195 (LC 42) 42=314 (LC 1), 44=227 (LC 46)	1, 33=187 (LC 49), 1, 35=147 (LC 57), 1, 38=316 (LC 22), 1, 41=320 (LC 22), 1, 41=320 (LC 22), 1, 41=320 (LC 22), 1, 41=320 (LC 25), 1	16-33 20-33 22-33 26-22 11-4 ² 6-44 3-47 30-49 26-50 NOTES	B=-277/28, 15-37=-285/58, 5=-131/150, 18-34=-140/72, B=-155/73, 21-32=-174/86, I=-27/73, 24-49=-23/57, 25-50=-59/42 P=-119/148, 12-40=-158/76, I=-281/31, 9-42=-275/18, 7-43=-177/ P=-306/346, 49-50=-313/344, D=-306/349 live loads have been considered for SEAL 036322

January 8,2025 NGINEERING F

E

Page: 1

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and RCSI Building Component Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Safety (Information available from the Structural Building Component Association (www shearcomponent Association) (www shearcomponent Association) (wow shearco and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170597118

- Wind: ASCE 7-16: Vult=130mph (3-second aust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 2-8-2, Exterior(2N) 2-8-2 to 8-7-6, Corner(3R) 8-7-6 to 18-8-8, Corner(3E) 18-8-8 to 21-11-8, Exterior(2N) 21-11-8 to 33-2-14, Corner(3E) 33-2-14 to 36-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 5) design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 12) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 560 lb uplift at joint 48.
- 14) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 38, 35, 34, 33, 32, 31, 40, 41, 43, 44, 45, 46, 47, and 30. This connection is for uplift only and does not consider lateral forces.
- 15) Non Standard bearing condition. Review required.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue Jan 07 17:06:47 ID:MUrpfgleVEIYrWDGpMPyWvzy8VI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A02	Piggyback Base	7	1	Job Reference (optional)	170597119

10-7-8

10-7-8

Scale = 1:74.2

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

2-5-4

8-2-4

Ϋ́

8-2-

-0-11-0

0-11-0

4x5

3x5 II

2

(psf)

20.0

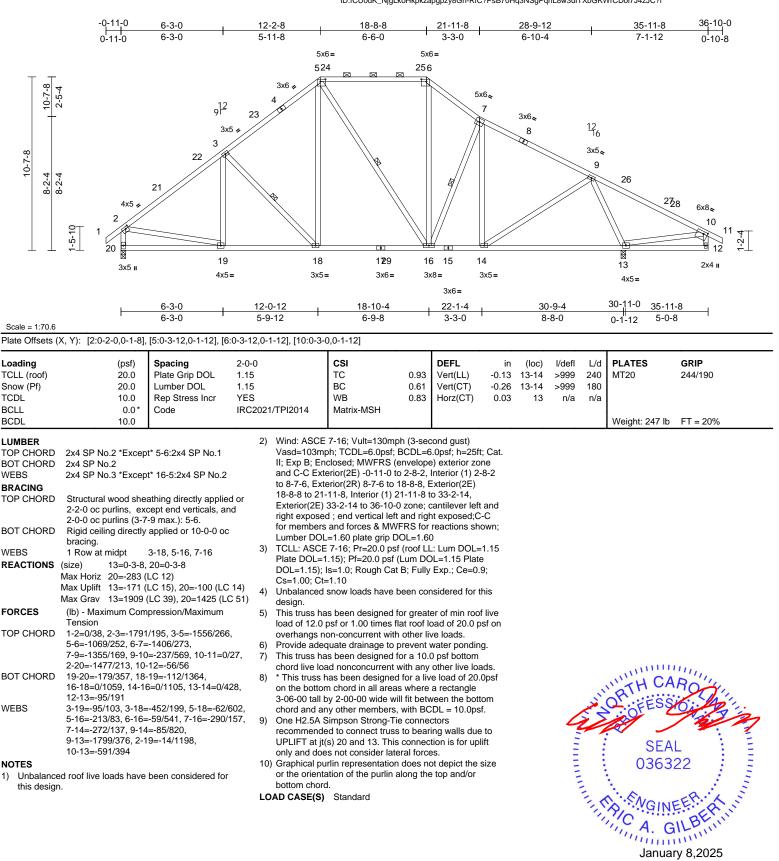
20.0

10.0

0.0

10.0

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue, Jan 07 17:06:49 Page: 1 ID:1ayK79nSd2o4qxKJSsuafdzy8RO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 36-10-0 6-3-0 12-2-8 15-5-8 18-8-8 21-11-8 28-9-12 35-11-8 5-11-8 3-3-0 6-10-4 6-3-0 3-3-0 3-3-0 7-1-12 0-10-8 5x6= 4x5= 5x6= 530 317 6 ⊠ 3x6 🖌 5x6👟 _12 9Г 8 29 3x6 👟 12 16 3x5 . 9 3 3x5. 28 10 32 27 3**3**4 6x8. 11 12 ķ Ъř 孈 13 Ř 18 17 36 21 20 35 19 16 15 14 2x4 ı 4x5= 3x5= 3x8= 3x6= 4x5= 4x5= 4x5 =4x5 =2x4 II 2x4 II 5x8= 4x5= 30-11-0 22-1-4 35-11-8 6-3-0 10-11-8 13-11-8 16-11-8 19-11-8 30-9-4 4-8-8 3-0-0 3-0-0 2-1-12 8-8-0 6-3-0 3-0-0 0-1-12 5-0-8 Plate Offsets (X, Y): [2:0-2-0,0-1-8], [5:0-3-0,0-2-2], [7:0-3-0,0-2-2], [11:0-3-0,0-1-12], [16:0-3-12,0-3-0] Spacing 2-0-0 CSI DEFL in l/defl L/d PLATES GRIP (loc) Plate Grip DOL 1.15 тс 0.93 Vert(LL) -0.11 14-15 >999 240 MT20 244/190 Lumber DOL 1.15 BC 0.61 Vert(CT) -0.24 14-15 >999 180 Rep Stress Incr WB 0.87 Horz(CT) YES 0.04 14 n/a n/a IRC2021/TPI2014 Matrix-MSH Code Weight: 287 lb FT = 20% 1) Unbalanced roof live loads have been considered for LOAD CASE(S) Standard


LUMBER this design. TOP CHORD 2x4 SP No.2 *Except* 5-7:2x6 SP No.2 Wind: ASCE 7-16; Vult=130mph (3-second gust) BOT CHORD 2x4 SP No.2 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. WEBS 2x4 SP No.3 *Except* 20-6,6-16,16-7,20-5:2x4 SP No.2 II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-8-2. Interior (1) 2-8-2 BRACING to 8-7-6, Exterior(2R) 8-7-6 to 18-8-8, Exterior(2E) TOP CHORD Structural wood sheathing directly applied or 18-8-8 to 21-11-8. Interior (1) 21-11-8 to 33-2-14. 2-2-0 oc purlins, except end verticals, and Exterior(2E) 33-2-14 to 36-10-0 zone; cantilever left and 2-0-0 oc purlins (6-0-0 max.): 5-7 right exposed ; end vertical left and right exposed;C-C BOT CHORD Rigid ceiling directly applied or 10-0-0 oc for members and forces & MWFRS for reactions shown; bracing. Lumber DOL=1.60 plate grip DOL=1.60 WEBS 1 Row at midpt 6-20, 6-16, 23-24 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) REACTIONS 14=0-3-8, 22=0-3-8 (size) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate Max Horiz 22=-282 (LC 12) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Max Uplift 14=-71 (LC 15) Cs=1.00; Ct=1.10 Max Grav 14=1907 (LC 47), 22=1451 (LC 43) 4) Unbalanced snow loads have been considered for this FORCES (Ib) - Maximum Compression/Maximum design. Tension 5) This truss has been designed for greater of min roof live TOP CHORD 1-2=0/38, 2-3=-1651/66, 3-5=-1496/133, load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on 5-6=-1038/178, 6-7=-963/138, overhangs non-concurrent with other live loads. 7-8=-1343/136, 8-10=-1251/44, 200.0lb AC unit load placed on the bottom chord, 15-5-8 6) 10-11=-237/569, 11-12=0/27, from left end, supported at two points, 5-0-0 apart. 2-22=-1388/115, 11-13=-55/58 Provide adequate drainage to prevent water ponding. 7) 21-22=-176/360, 20-21=-7/1242, BOT CHORD All plates are 4x5 MT20 unless otherwise indicated. 8) 19-20=0/1098, 17-19=0/1451, 15-17=0/1109, 9) This truss has been designed for a 10.0 psf bottom 14-15=0/409, 13-14=-94/192 chord live load nonconcurrent with any other live loads. WEBS 3-21=-129/64, 8-15=-317/92, 10-15=-4/808, 10) * This truss has been designed for a live load of 20.0psf 10-14=-1800/265, 2-21=0/1143, on the bottom chord in all areas where a rectangle 11-14=-593/394, 20-23=-344/109, 3-06-00 tall by 2-00-00 wide will fit between the bottom 6-23=-180/211. 6-24=-263/139. chord and any other members. 16-24=-419/39, 7-16=0/562, 5-20=0/493, 11) One H2.5A Simpson Strong-Tie connectors 3-20=-371/219. 8-16=-260/182. recommended to connect truss to bearing walls due to 23-26=-673/0 25-26=-672/0 24-25=-673/0 UPLIFT at jt(s) 14. This connection is for uplift only and 17-25=0/50, 17-24=0/577, 19-26=0/42, does not consider lateral forces. 19-23=0/576 12) Graphical purlin representation does not depict the size NOTES or the orientation of the purlin along the top and/or bottom chord.

MITTIN CAR STITUTE CONTRACTOR SEAL 036322 GI mmm January 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A03	Piggyback Base	5	1	Job Reference (optional)	

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:49 ID:fCU0dK_NjqLkoHkpkzapgpzy8Gn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A04	Piggyback Base	2	1	Job Reference (optional)	

1

18

1-5-10

10-7-8 2-5-4

8-2-4 8-2-4

10-7-8

Scale = 1:70.6

1-2-4

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:49 Page: 1 ID:kLDpbDel9yxfZx_v3T?A2_zy8DM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 36-10-0 6-3-0 12-2-8 18-8-8 21-11-8 28-9-12 35-11-8 6-3-0 5-11-8 6-6-0 3-3-0 6-10-4 7-1-12 0-10-8 5x6= 5x6= 322 234 \boxtimes \boxtimes Æ 5x6 👟 ,<u>12</u> 5 21 3x6 👟 12 16 3x5 6 2 3x5 👟 20 7 19 24 25 4x6 6x8👟 8 9 10 × Ø 17 16 126 14 13 12 11 2x4 II 3x5 II 4x5= 3x5= 3x6= 3x8= 3x5= 4x5= 3x6= 30-11-0 6-3-0 12-0-12 18-10-4 22-1-4 30-9-4 35-11-8 _ 0-1-12 6-3-0 5-9-12 6-9-8 3-3-0 8-8-0 5-0-8 Plate Offsets (X, Y): [3:0-3-12,0-1-12], [4:0-3-12,0-1-12], [8:0-3-0,0-1-12]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC202 ⁴	I/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.61 0.83	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 245 lb	GRIP 244/190 FT = 20%
	 2-2-0 oc purlins, exit 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing. 1 Row at midpt 	t* 14-3:2x4 SP No.2 athing directly applied cept end verticals, and -8 max.): 3-4. applied or 10-0-0 oc 2-16, 3-14, 5-14 18=0-3-8 LC 10) LC 15), 18=-79 (LC 14	3)	Vasd=103mp II; Exp B; En and C-C Extt to 8-7-6, Exte 18-8-8 to 21- Exterior(2E) right exposed for members Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct=	7-16; Vult=130mpf bh; TCDL=6.0psf; B closed; MWFRS (el erior(2E) 0-1-12 to 3 erior(2R) 8-7-6 to 11 11-8, Interior (1) 21 33-2-14 to 36-10-0 d; end vertical left a and forces & MWF =1.60 plate grip DC 7-16; Pr=20.0 psf (L s=1.0; Rough Cat B =1.10 snow loads have be	CDL=6 nvelope 3-8-14, 8-8-8, E -11-8 t zone; c and righ RS for DL=1.6((roof LL .um DC 3; Fully	.0psf; h=25ft; e) exterior zor Interior (1) 3- Exterior(2E) o 33-2-14, antilever left the exposed;C- reactions sho) :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5	ne -8-14 -C own; 1.15 9;					
FORCES	(lb) - Maximum Com Tension		5)	This truss ha	s been designed fo osf or 1.00 times fla								
TOP CHORD	1-2=-1791/194, 2-3= 3-4=-1070/253, 4-5= 5-7=-1357/170, 7-8= 1-18=-1431/169, 8-1	-1407/274, -237/559, 8-9=0/27,	6) 7)	overhangs n Provide adeo This truss ha	on-concurrent with quate drainage to pl s been designed fo ad nonconcurrent w	other li revent r a 10.	ve loads. water ponding) psf bottom	g.					11
BOT CHORD	17-18=-141/331, 16- 14-16=0/1060, 12-14 10-11=-95/183	17=-112/1370, 4=0/1106, 11-12=0/429	8) 9,	* This truss h on the bottor	has been designed n chord in all areas by 2-00-00 wide will	for a liv where	e load of 20.0 a rectangle	Opsf				"HTH CA	Routin
	2-17=-99/100, 2-16= 3-14=-214/83, 4-14= 5-12=-272/137, 7-12 7-11=-1800/377, 1-1 8-11=-576/394 ed roof live loads have	7=-54/1230,	57, 9)	chord and ar One H2.5A S recommende UPLIFT at jt(only and doe) Graphical pu or the orienta	y other members, Simpson Strong-Tie ed to connect truss is s) 18 and 11. This (is not consider later rlin representation (ation of the purlin al	with BC conne to bear connec al force does no	DL = 10.0psf ctors ing walls due tion is for upli es. ot depict the s	f. to ift			1	OR EE 89 SEA 0363	• -
this desigr	ι.		LC	bottom chord AD CASE(S)								S. SNGINI	ERIX

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GILB A. GILDIN January 8,2025

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH
25010023-01	A05	Piggyback Base	1	1	I70597122 Job Reference (optional)

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue, Ian 07 17:06:49 Page: 1 ID:D4q2xB3iviLiGJ9dcJ7NzNzy8Cp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 36-10-0 6-3-0 12-2-8 18-8-8 21-11-8 28-9-12 35-11-8 6-3-0 5-11-8 3-3-0 7-1-12 6-6-0 6-10-4 0-10-8 5x6= 5x6= 322 234 10-7-8 2-5-4 5x6. 1<u>2</u> 5 21 3x6. 12 16 3x5 6 2 3x5 10-7-8 20 7 19 8-2-4 24 8-2-25 4x6 6x8👟 8 -5-10 9 -2-4 Ϋ́ 10 X 17 16 126 14 13 12 3x5 II 11 2x4 II 4x5= 3x5= 3x6= 3x8 3x5= 4x5= 3x6 =30-11-0 35-11-8 6-3-0 12-0-12 18-10-4 22-1-4 30-9-4 6-3-0 5-9-12 6-9-8 3-3-0 8-8-0 0-1-12 5-0-8 Scale = 1:70.6 Plate Offsets (X, Y): [3:0-3-12,0-1-12], [4:0-3-12,0-1-12], [8:0-3-0,0-1-12] Loading Spacing 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.92 Vert(LL) -0.13 11-12 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.61 Vert(CT) -0.26 11-12 >999 180 TCDL 10.0 Rep Stress Incr WB 0.83 Horz(CT) YES 0.03 11 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-MSH Weight: 245 lb 10.0 FT = 20% 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) LUMBER Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x4 SP No.2 *Except* 3-4:2x4 SP No.1 II; Exp B; Enclosed; MWFRS (envelope) exterior zone BOT CHORD 2x4 SP No.2 and C-C Exterior(2E) 0-1-12 to 3-8-14, Interior (1) 3-8-14 WEBS 2x4 SP No.3 *Except* 14-3:2x4 SP No.2 to 8-7-6, Exterior(2R) 8-7-6 to 18-8-8, Exterior(2E) BRACING 18-8-8 to 21-11-8. Interior (1) 21-11-8 to 33-2-14. TOP CHORD Structural wood sheathing directly applied or Exterior(2E) 33-2-14 to 36-10-0 zone; cantilever left and 2-2-0 oc purlins, except end verticals, and right exposed : end vertical left and right exposed:C-C 2-0-0 oc purlins (3-6-8 max.): 3-4. for members and forces & MWFRS for reactions shown; BOT CHORD Rigid ceiling directly applied or 10-0-0 oc Lumber DOL=1.60 plate grip DOL=1.60 bracing. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 WEBS 1 Row at midpt 2-16, 3-14, 5-14 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate REACTIONS 11=0-3-8, 18= Mechanical (size) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Max Horiz 18=-277 (LC 10) Cs=1.00; Ct=1.10 Max Uplift 11=-170 (LC 15), 18=-79 (LC 14) 4) Unbalanced snow loads have been considered for this Max Grav 11=1910 (LC 39), 18=1371 (LC 51) desian. FORCES (lb) - Maximum Compression/Maximum 5) This truss has been designed for greater of min roof live Tension load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on TOP CHORD 1-2=-1791/194, 2-3=-1560/269, overhangs non-concurrent with other live loads. 3-4=-1070/253, 4-5=-1407/274, Provide adequate drainage to prevent water ponding. 6) 5-7=-1357/170, 7-8=-237/559, 8-9=0/27, This truss has been designed for a 10.0 psf bottom 7) 1-18=-1431/169, 8-10=-56/56 chord live load nonconcurrent with any other live loads. MILLIN BOT CHORD 17-18=-141/331, 16-17=-112/1370, This truss has been designed for a live load of 20.0psf 8) ORTH 14-16=0/1060, 12-14=0/1106, 11-12=0/429, 0 on the bottom chord in all areas where a rectangle 10-11 = -95/1833-06-00 tall by 2-00-00 wide will fit between the bottom 2-17=-99/100, 2-16=-458/200, 3-16=-63/607, chord and any other members, with BCDL = 10.0psf. ۹) Refer to girder(s) for truss to truss connections.

WEBS 3-14=-214/83, 4-14=-58/540, 5-14=-289/157, 5-12=-272/137, 7-12=-85/820, 7-11=-1800/376, 1-17=-54/1230, 8-11=-576/394

NOTES

BCDL

Unbalanced roof live loads have been considered for 1) this design.

18. 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 11. This connection is for uplift only and does not consider lateral forces.

10) Provide mechanical connection (by others) of truss to

bearing plate capable of withstanding 79 lb uplift at joint

- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

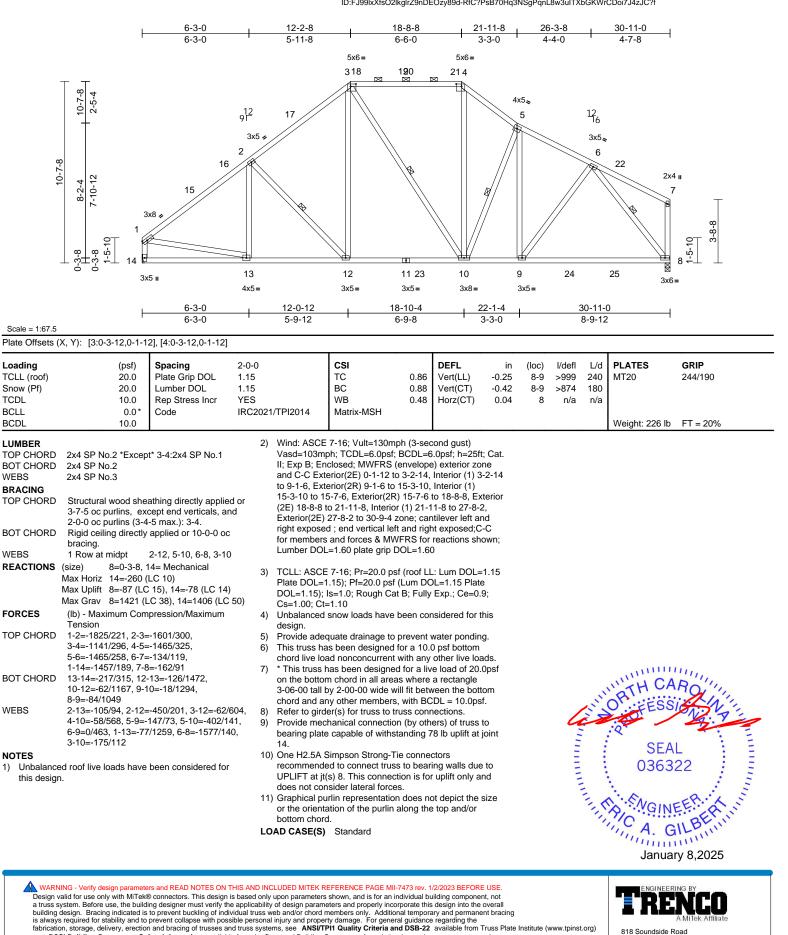
Mananana . 036322 GI mmm January 8,2025

SEAL

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A06	Piggyback Base	4	1	I70597123 Job Reference (optional)	5

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue Jan 07 17:06:50 ID:FJ99lxXfsO2lkglrZ9nDEOzy89d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A07	Piggyback Base	4	1	Job Reference (optional)	

12-2-8

5-11-8

18-8-8

6-6-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

WEBS

NOTES

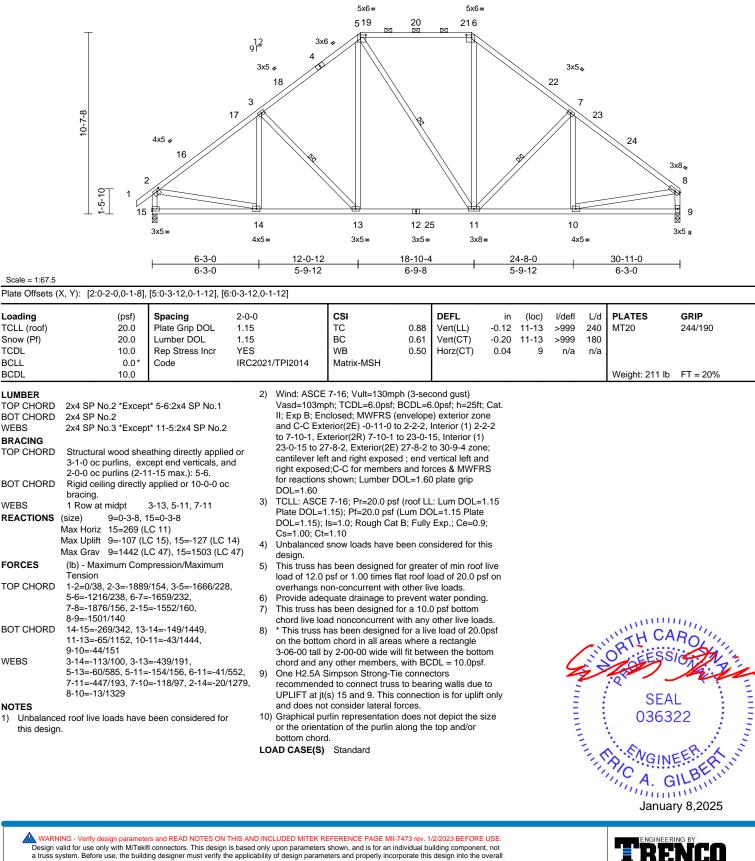
LUMBER

-0-11-0

6-3-0

6-3-0

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:50 ID:40ZH8c0lSg54XppXvZVbsqzy89?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


24-8-0

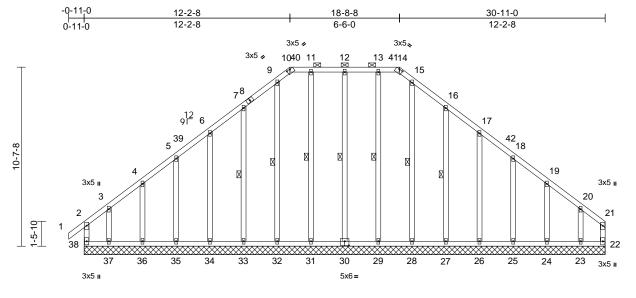
5-11-8

30-11-0

6-3-0

Page: 1

bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH
25010023-01	A08	Piggyback Base Supported Gable	1	1	I70597125 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:50 ID:fiQa4PBX9_s5DztDkVltQnzy88n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

30-11-0

Scale = 1:68.4 Plate Offsets (X, Y): [10:0-2-8,0-0-5], [14:0-2-8,0-0-5], [30:0-3-0,0-3-0]

	, , .	,,]; [: <u>=</u> e;e e e]; [e	,										
Loading TCLL (roof) Snow (Pf) TCDL BCLL		(psf) 20.0 20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	014	CSI TC BC WB Matrix-MR	0.28 0.15 0.17	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 22	n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0											Weight: 254 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	SP No.2 Structural 6-0-0 oc p 2-0-0 oc p	o.2 o.3 o.3 *Excep I wood she purlins, exp purlins, (6-0	t* 30-12,31-11,29-13 athing directly applie cept end verticals, ar -0 max.): 10-14. applied or 6-0-0 oc	d or	6	26=23 28=20 30=23 32=210 34=23 36=16	5 (LC 22) 3 (LC 41) 5 (LC 55) 3 (LC 40) 0 (LC 57) 3 (LC 41) 9 (LC 21) 6 (LC 31) 5 ompressi	25=200 (LC 27=234 (LC 29=222 (LC 31=222 (LC 33=234 (LC 35=200 (LC 37=276 (LC	C 53), C 41), C 40), C 40), C 40), C 41), C 51), C 51), C 12),	Va II; an to 21 ca rig for DC 3) Tri on	sd=103n Exp B; E d C-C Cc 9-1-6, Cc -9-10 to 2 ntilever le ht expose reaction DL=1.60 uss desig ly. For si	nph; T(nclose orner(3 orner(3 27-5-8, eft and ed;C-C s show gned fo tuds ex	d; MWFRS (enve E) -0-11-0 to 2-2- R) 9-1-6 to 21-9- Corner(3E) 27-5 right exposed ; e for members an m; Lumber DOL= r wind loads in th posed to wind (n	DL=6.0psf; h=25ft; Cat. lope) exterior zone -2, Exterior(2N) 2-2-2 10, Exterior(2N) -8 to 30-9-4 zone; nd vertical left and d forces & MWFRS -1.60 plate grip e plane of the truss ormal to the face),
WEBS	1 Row at	midpt	12-30, 11-31, 9-32,			3-4=-137/141, 4-								Details as applicable,
WEBO	i now at		13-29, 15-28, 16-27	, 66,		6-7=-135/242, 7-9		,	1/280,					er as per ANSI/TPI 1.
	Max Horiz	24=30-11 26=30-11 28=30-11 30=30-11 34=30-11 36=30-11 38=269 (L 22=-163 (24=-51 (L 26=-62 (L 30=-41 (L 33=-91 (L 33=-91 (L 35=-72 (L		5), 5), 4), WEBS 4), 10) NOTES		10-11=-151/289, 12-13=-151/289, 14-15=-161/280, 16-17=-135/242, 16-17=-135/242, 13-38=-123/122, 35-36=-123/122, 33-34=-123/122, 28-29=-123/122, 24-25=-123/122, 24-25=-123/122, 19-32=-170/12, 7-5 5-35=-173/93, 4-5 13-29=-182/24, 1 16-27=-214/116, 18-25=-173/92, 1 20-23=-165/136 1 roof live loads ha	13-14=-1 15-16=-1 17-18=-1 9-20=-10 21-22=-1 36-37=-1 34-35=-1 29-31=-1 29-31=-1 23-28=-1 23-24=-1 1-31=-18 33=-214/' 36=-150/t 5-28=-16 17-26=-1 9-24=-15	51/289, 75/323, 07/180, 3/103, 24/104 23/122, 23/122, 23/122, 23/122, 23/122, 23/122, 23/122, 23/122, 23/122, 23/122, 23/122, 23/122, 23/125, 6, 3-37=-16 5/0, 99/87, 0/86,	0/150,	Pla DC Cs 5) Ur	ate DOL= DL=1.15); =1.00; C	=1.15); ; Is=1.0 t=1.10 d snow	Pf=20.0 psf (Lurr); Rough Cat B; F loads have beer ESS SEA 0363	22 EER. A.
				design.								10000	ry 8,2025	

NOTES

Continued on page 2

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A08	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170597125

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 7)
- All plates are 2x4 MT20 unless otherwise indicated. 8)
- 9) Gable requires continuous bottom chord bearing.
- 10) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 11) Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 206 lb uplift at joint 38, 163 lb uplift at joint 22, 41 lb uplift at joint 30, 3 lb uplift at joint 31, 91 lb uplift at joint 33, 62 lb uplift at joint 34, 72 lb uplift at joint 35, 47 lb uplift at joint 36, 208 lb uplift at joint 37, 92 lb uplift at joint 27, 62 lb uplift at joint 26, 71 lb uplift at joint 25, 51 lb uplift at joint 24 and 178 lb uplift at joint 23.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue Jan 07 17:06:50 ID:fiQa4PBX9_s5DztDkVltQnzy88n-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH
25010023-01	A09	Piggyback Base	2	1	I70597126 Job Reference (optional)

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:50 ID:QFvbm8HYGRsyACUICAvIITzy88f-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:67.8 Plate Offsets (X, Y): [2:0-2-0,0-1-12], [5:0-3-12,0-1-12], [6:0-3-7,0-2-6]

Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	1.00 0.50 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.15 0.01	(loc) 9-11 9-11 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 175 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood shea 5-3-6 oc purlins, exc 2-0-0 oc purlins: 5-6 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 8-5 1 Row at midpt	athing directly applied cept end verticals, and applied or 10-0-0 oc	or 3)	Vasd=103mj II; Exp B; En and C-C Ext to 7-11-9, Ex 18-8-8 to 21- exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	7-16; Vult=130mp oh; TCDL=6.0psf; I closed; MWFRS (e erior(2E) -0-11-0 tt tterior(2R) 7-11-9 t 10-4 zone; cantile d vertical left and d forces & MWFRS =1.60 plate grip D 7-16; Pr=20.0 psf .15); Pf=20.0 psf (is=1.0; Rough Cat =1.10	CDL=6 nvelope 2-1-0, o 18-8-8 ver left a ight exp S for rea OL=1.60 (roof LL Lum DC B; Fully	:.0psf; h=25ft s) exterior zoi Interior (1) 2- 8, Exterior(2E and right bosed;C-C foi ctions showr) :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.9	ne 1-0 2) r 1,15 9;					
	Max Horiz 13=340 (L Max Uplift 8=-90 (LC Max Grav 8=982 (LC	14), 13=-98 (LC 14)	5)	design. This truss ha	show loads have t s been designed f psf or 1.00 times fl	or great	er of min rool	f live					
ORCES	(lb) - Maximum Com	pression/Maximum		overhangs n	on-concurrent with	other liv	/e loads.						
OP CHORD	Tension 1-2=0/37, 2-3=-1174 5-6=-297/186, 6-7=-4 2-13=-1004/130, 7-8	425/216,	6) 7) 8)	This truss ha	quate drainage to p is been designed f ad nonconcurrent v nas been designed	or a 10. vith any) psf bottom other live loa	ads.					1.55
BOT CHORD	12-13=-340/397, 11- 9-11=-152/721, 8-9=	12=-201/1069,	0)	on the bottor	n chord in all areas	where	a rectangle	•				"TH CA	ROUL
WEBS	,	-492/190, 5-11=-59/6 234/118, 7-9=-106/90	5, 9)	chord and ar Refer to gird	by other members, er(s) for truss to tru hanical connection	with BC	DL = 10.0ps nections.	f.		6	X	OH	China and a
NOTES			,	bearing plate	capable of withsta	anding 9	0 lb uplift at	joint				ie -	
 Unbalance this design 	ed roof live loads have n.	been considered for	,	recommende UPLIFT at jt(does not con Graphical pu	Simpson Strong-Tig d to connect truss s) 13. This connec sider lateral forces rlin representation ation of the purlin a standard	to bear tion is fo does no	ing walls due or uplift only a ot depict the s	and		11111VV	A A A A A A A A A A A A A A A A A A A	SEA 0363	• •

- recommended to connect truss to bearing walls due to UPLIFT at jt(s) 13. This connection is for uplift only and does not consider lateral forces.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

G

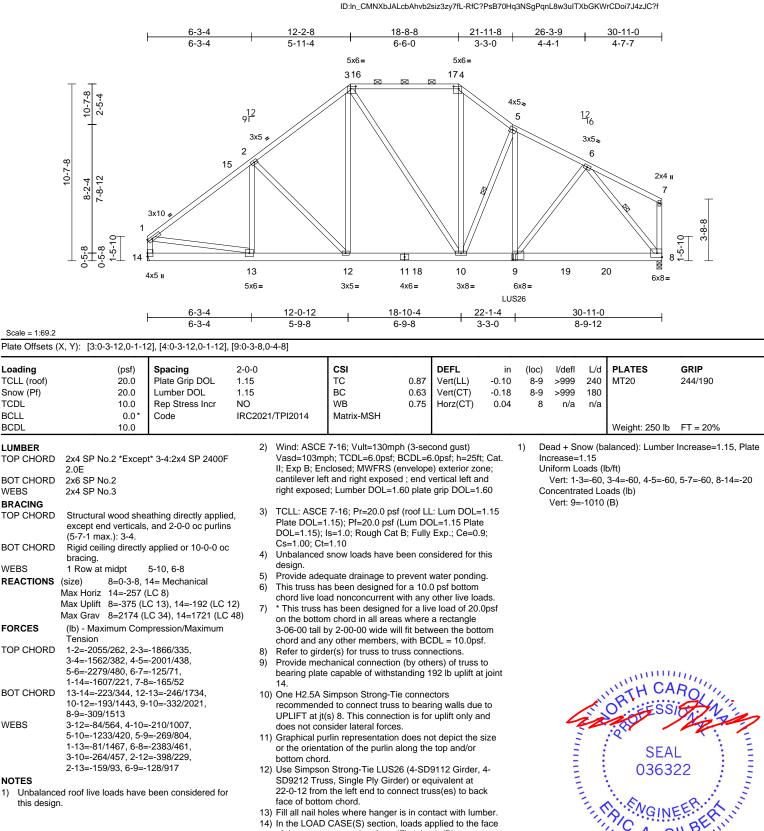
minin January 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A10	Piggyback Base Girder	1	1	I7 Job Reference (optional)	70597127

TCDL

BCLL


BCDL

WEBS

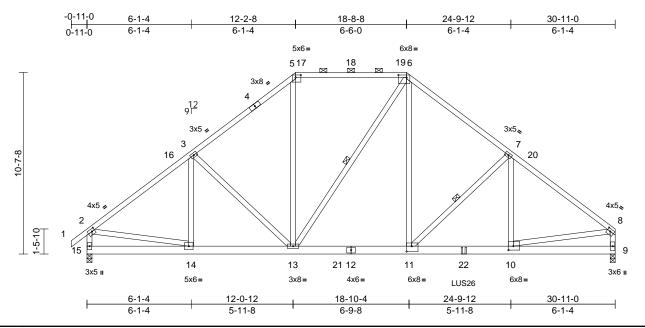
WEBS

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:51

Page: 1

- 1) this design.
- 13) Fill all nail holes where hanger is in contact with lumber. 14) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G mmm

January 8,2025

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A11	Piggyback Base Girder	1	1	I70597128 Job Reference (optional)	

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:51 ID:eeLQT?PIMHQOEEClpA8auFzy7eD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [5:0-3-12,0-1-12], [6:0-5-12,0-1-12], [8:0-2-4,0-1-12], [10:0-3-8,0-2-12], [11:0-3-8,0-3-12]

			-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.86 0.74 0.88	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.14 -0.25 0.03	(loc) 10-11 10-11 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 235 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD			2) 3)	Vasd=103m II; Exp B; En cantilever lef right expose TCLL: ASCE	7-16; Vult=130mp bh; TCDL=6.0psf; I closed; MWFRS (e t and right exposed d; Lumber DOL=1. 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf (BCDL=6 envelope d ; end v 60 plate (roof Ll	:.0psf; h=25ft e) exterior zon vertical left ar grip DOL=1. .: Lum DOL=	, Ui	crease= niform Lo	1.15 bads (I 2=-60, ited Lo	b/ft) 2-5=-60, 5-6=-60 ads (lb)	Increase=1.15, Plate	
	(6-0-0 max.): 5-6. Rigid ceiling directly bracing. 1 Row at midpt (size) 9=0-3-8, ' Max Horiz 15=266 (I Max Uplift 9=-395 (L	applied or 10-0-0 oc 6-13, 7-11 15=0-3-8		Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide adeo	Is=1.0; Rough Cat =1.10 snow loads have b as been designed fi psf or 1.00 times fl on-concurrent with quate drainage to p is been designed fi	or great or great at roof lo other lin	nsidered for the er of min roof bad of 20.0 p ve loads. water ponding	his live sf on					
FORCES	(lb) - Maximum Com Tension	<i>,</i>	, 1)	chord live loa	ad nonconcurrent v	vith any	other live loa						
TOP CHORD	1-2=0/38, 2-3=-2111 5-6=-1397/354, 6-7= 7-8=-2900/567, 2-15	,	8)	on the bottor 3-06-00 tall t chord and ar	nas been designed n chord in all areas by 2-00-00 wide wil ny other members, Simpson Strong-Tie	s where Il fit betv with BC	a rectangle veen the bott DL = 10.0ps	om				mm	uun.
BOT CHORD	7-8=-2900/567, 2-15=-1714/270, 8-9=-2258/454 DT CHORD 14-15=-275/366, 13-14=-274/1775, 11-13=-220/1705, 10-11=-379/2243,				ed to connect truss (s) 15 and 9. This c	to bear connecti	ing walls due				and the	ORTH CA	ROLIN
,	2-14=-92/1507, 8-10=-343/2196, 6-13=-604/293, 3-13=-398/210, 3-14=-161/88, 7-11=-875/339, 7-10=-144/574				 and does not consider lateral torces. 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 11) Use Simpson Strong-Tie LUS26 (4-SD9112 Girder, 4-SD9212 Truss, Single Ply Girder) or equivalent at 22-0-12 from the left end to connect truss(es) to front face of bottom chord. 								• –
, v	una design.				oles where hanger	is in cor	tact with lum	ber.			5	A . A.	-a:1 :

Scale = 1:67.4

- 12) Fill all nail holes where hanger is in contact with lumber. 13) In the LOAD CASE(S) section, loads applied to the face
- of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

GI A. GIL

January 8,2025

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see <u>ANSI/TPI Quality Criteria and DSB-22</u> available from Truss Plate Institute (www.tpinst.org) and <u>Before Building Component Scient Information</u> available from the Structural Building Component Science (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	A13	Flat Girder	1	1	I70597129 Job Reference (optional)	

3x5=

1

8-1-4

3-11-8

 \bowtie

2x4 II

2

Χ

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue Jan 07 17:06:51 ID:NA4CJSj7nVOrVkFgJkYCC3zy885-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

4 3 5 6 3x6 ı 5x6= HTU26 HTU26 3-11-8 Spacing 1-11-4 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) Plate Grip DOL 20.0 1.15 TC 0.78 Vert(LL) -0.02 3-4 >999 240 MT20 244/190 20.0 Lumber DOL BC 1 15 0 4 4 Vert(CT) -0.03 3-4 >999 180 10.0 Rep Stress Incr NO WB 0.11 Horz(CT) 0.00 3 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 51 lb FT = 20%Refer to girder(s) for truss to truss connections. Provide mechanical connection (by others) of truss to 2x4 SP No.2 8) 2x8 SP 2400F 2.0E bearing plate capable of withstanding 390 lb uplift at joint 2x4 SP No.3 4 and 390 lb uplift at joint 3. Graphical purlin representation does not depict the size 9) or the orientation of the purlin along the top and/or 2-0-0 oc purlins: 1-2. except end verticals. bottom chord. Rigid ceiling directly applied or 10-0-0 oc 10) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 1-1-0 oc 1 Row at midpt 1-3 max. starting at 1-5-4 from the left end to 2-6-4 to 3= Mechanical, 4= Mechanical connect truss(es) to back face of bottom chord. Max Horiz 4=-255 (LC 10) 11) Fill all nail holes where hanger is in contact with lumber. Max Uplift 3=-390 (LC 9), 4=-390 (LC 8) 12) In the LOAD CASE(S) section, loads applied to the face Max Grav 3=1216 (LC 21), 4=1216 (LC 22) of the truss are noted as front (F) or back (B). (Ib) - Maximum Compression/Maximum LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) 1-4=-255/310, 1-2=-95/72, 2-3=-107/44 Increase=1.15 3-4=-222/199 Uniform Loads (lb/ft) 1-3=-295/295 Vert: 1-2=-58, 3-4=-19 Concentrated Loads (lb) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vert: 5=-887 (B), 6=-887 (B) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed : end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 O 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15): Pf=20.0 psf (Lum DOL=1.15 Plate VIIIIIIIIIII DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; the state of the s SEAL Unbalanced snow loads have been considered for this 036322 Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom G۱ chord and any other members. mmm January 8,2025 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Scale = 1:51.6

Loading

TCLL (roof)

Snow (Pf)

LUMBER

WFBS

WEBS

FORCES

WEBS

NOTES

1)

3)

4)

5)

6)

TOP CHORD

BOT CHORD

Cs=1.00: Ct=1.10

desian.

BRACING

TOP CHORD

BOT CHORD

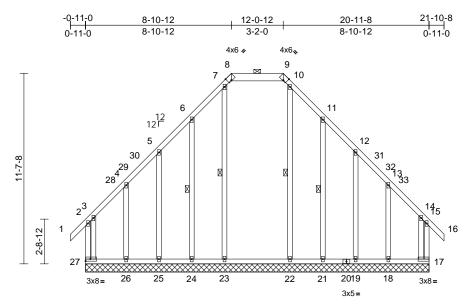
TOP CHORD

BOT CHORD

REACTIONS (size)

bracing.

Tension


TCDL

BCLL

BCDL

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	B01	Piggyback Base Supported Gable	1	1	Job Reference (optional)	597130

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:51 ID:h0vtb3ypMmfY4nvq8HIFWhzy8Xc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

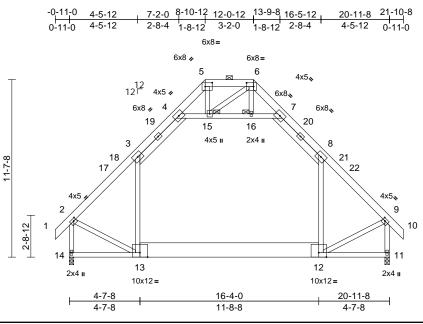
20-11-8

Scale = 1:70.3 Plate Offsets (X, Y): [8:0-2-8,Edge], [9:0-2-8,Edge]

	(i, i): [0:0 ± 0;± ugo]; [0:0 2 0;2dg0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.4 BC 0.1 WB 0.2 Matrix-MR	4 Vert(LL) n/ 9 Vert(CT) n/	a - n	/a 999	PLATES MT20 Weight: 186 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 *Exce No.2 Structural wood sh 6-0-0 oc purlins, e 2-0-0 oc purlins, e 2-0-0 oc purlins (6 Rigid ceiling direct bracing. 1 Row at midpt (size) 17=20-1 22=20-1 24=20-1 24=20-1 26=20-1 Max Horiz 27=-307 Max Uplift 17=-242 19=-55 24=-141 26=-271 Max Grav 17=339 19=250 22=424	y applied or 6-0-0 oc 7-23, 6-24, 10-22, 11-; 1-8, 18=20-11-8, 1-8, 21=20-11-8, 1-8, 23=20-11-8, 1-8, 25=20-11-8, 1-8, 27=20-11-8	NOTES 1) Unbalance 21 this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-CC to 5-10-12 15-0-12 to 0), cantilever i, for reactio 0), DOL=1.60 0), ODL=1.60 0, 3) Truss des 0, only. For 0, see Stand 0, or consult 1, 4) TCLL: ASC	24-25=-159/150, 23-24= 22-23=-159/150, 21-22= 19-21=-159/150, 18-19= 17-18=-159/150 7-23=-294/36, 6-24=-22(5-25=-201/127, 4-26=-20 3-27=-646/617, 10-22=-2 11-21=-222/165, 12-19= 13-18=-279/222, 14-17= ed roof live loads have bee n. CE 7-16; Vult=130mph (3-s mph; TCDL=6.0psf; BCDL Enclosed; MWFRS (enveloc Corner(3E) -0-11-0 to 2-1-0 2, Corner(3E) 5-10-12 to 15 0 18-10-8, Corner(3E) 18-11 left and right exposed; em- sed;C-C for members and ns shown; Lumber DOL=1) igned for wind loads in the studs exposed to wind (no lard Industry Gable End De qualified building designer CE 7-16; Pr=20.0 psf (roof	-159/150, -159/150, -159/150, -159/150, -159/150, -159/150, -159/150, -159/150, -159/150, -159/150, -159/150, -222/98, -624/596 -100, -624/596 -100, -624/596 -100, -624/596 -100, -12, Exterior(2N) -8 to 21-10-8 zone; -100, -12, Exterior(2N) -8 to 21-10-8 zone; -100, -10	 Truss to braced a Gable st This trus chord liv This trus chord liv This tru on the bu 3-06-00 chord an Provide I bearing I 27, 242 I uplift at j joint 21, 18. Graphica or the or bottom c LOAD CASE 	be fully s gainst lat uds spac s has bere e load no iss has b bottom cho tall by 2-0 d any off mechanic blate cap b uplift at coint 25, 2 55 lb upli al purlin re- ientation hord. Sta	teral movement (i ed at 2-0-0 oc. en designed for a nconcurrent with een designed for ord in all areas wh 00-00 wide will fit her members, with sal connection (by able of withstandi t joint 17, 141 lb u .71 lb uplift at join ft at joint 19 and 2 epresentation doe of the purlin along andard	e face or securely .e. diagonal web). 10.0 psf bottom any other live loads. a live load of 20.0psf here a rectangle between the bottom h BCDL = 10.0psf. or others) of truss to ng 252 lb uplift at joint uplift at joint 24, 54 lb t 263 lb uplift at joint es not depict the size g the top and/or
FORCES TOP CHORD	Tension 2-27=-474/421, 1-2 3-4=-243/251, 4-5=	2-13=-105/287, 4-15=-291/327,	 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. All plates are 2x4 MT20 unless otherwise indicated. 						

January 8,2025

Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	B02	Attic	9	1	I705971 Job Reference (optional)	131

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:51 ID:cyHnuR75wMezTZsoo3Yrvrzy8Zz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4

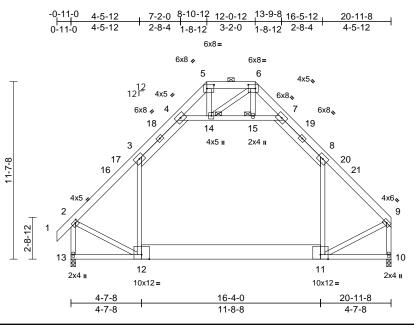
Plate Offsets (X, Y): [2:0-2-0,0-1-12], [5:0-5-8,0-3-0], [6:0-5-8,0-3-0], [9:0-2-0,0-1-12]

			,										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.43 0.34	DEFL Vert(LL) Vert(CT) Horz(CT) Attic		(loc) 13-14 12-13 11 12-13	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 223 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 3-4,8-7:2x6 SP No.2 Structural wood she 5-6-10 oc purlins, e 2-0-0 oc purlins, (6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 15, 16	2 eathing directly applied except end verticals, ar 0-0 max.): 5-6. v applied or 9-1-3 oc	or	 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 5-10-12, Exterior(2R) 5-10-12 to 15-0-12, Interior (1) 15-0-12 to 18-10-8, Exterior(2E) 18-10-8 to 21-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 4) Unbalanced snow loads have been considered for this 									
REACTIONS	Max Horiz 14=-315 (Max Grav 11=1461	(LC 48), 14=1461 (LC	48) ⁵⁾	design. This truss ha	as been designed to psf or 1.00 times f	for great	er of min roof	live					
FORCES	(lb) - Maximum Com	npression/Maximum			on-concurrent with								
TOP CHORD	4-5=-357/103, 5-6=-	-185/248, 6-7=-360/98 =-1356/8, 9-10=0/45,	6) 7) , 8)	This truss ha chord live loa * This truss l	quate drainage to as been designed ad nonconcurrent has been designed as been designed	for a 10. with any d for a liv) psf bottom other live loa e load of 20.0	uds.				ANTH CA	RO
BOT CHORD WEBS	11-14=-318/876 3-13=-98/473, 8-12= 4-15=-1100/182, 15 7-16=-1100/180, 2-1	=-97/473, -16=-1096/180,	-,	 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) Ceiling dead load (5.0 psf) on member(s). 3-4, 7-8, 4-15, 15-16, 7-16; Wall dead load (5.0psf) on member (s).3-13, 8-12 10) Bottom chord live load (40.0 psf) and additional bottom 									
NOTES1) Unbalanced roof live loads have been considered for this design.				 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 12-13 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 20) Atticement presentation for the purlin along the top and/or bottom chord. 									

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOAD CASE(S) Standard

12) Attic room checked for L/360 deflection.


818 Soundside Road Edenton, NC 27932

GI A. GIL January 8,2025

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	B03	Attic	4	1	Job Reference (optional)	170597132

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:52 ID:qX6mE0bQqLd?k2fOsum3F3zy8by-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.4

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [5:0-5-8,0-3-0], [6:0-5-8,0-3-0]

	A, f). [2.0-2-0,0-1-12	j, [5.0-5-6,0-3-0], [6.0 -	-5-6,0-3-0	וי										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.42 0.33	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	-0.21 0.00	(loc) 12-13 11-12 10 11-12	l/defl >999 >999 n/a >999	L/d 240 180 n/a 360	PLATES MT20 Weight: 220 lb	GRIP 244/190 FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 3-4,8-7:2x6 SP No.2 Structural wood she 5-8-2 oc purlins, exi 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 14, 15 (size) 10=0-3-8, Max Horiz 13=297 (L Max Grav 10=1363) (lb) - Maximum Com Tension 1-2=0/44, 2-3=-1327 4-5=-344/101, 5-6=- 7-8=-985/120, 8-9=- 9-10=-1482/0 10-13=-304/841 3-12=-94/458, 8-11= 4-14=-1074/171, 14- 7-15=-1072/173, 2-1 9-11=-29/898, 5-14= 6-14=-188/180	athing directly applied cept end verticals, an -0 max.): 5-6. applied or 9-4-10 oc 13=0-3-8 .C 11) (LC 48), 13=1417 (LC pression/Maximum 7/0, 3-4=-981/125, 177/245, 6-7=-346/96 1314/0, 2-13=-1511/0 -98/455, -15=-1068/173, 2=-22/909, -91/148, 6-15=-1/53,	00F d 3) (4) (5) (48) 5) (5) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Vasd=103m II; Exp B; En and C-C Ext to 5-10-12, E 15-0-12 to 1 zone; cantile and right exy MWFRS for grip DOL=1. TCLL: ASCE Plate DOL=2 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha chord live loo * This truss ha chord and an Ceiling dead 14-15, 7-15; (s).3-12, 8-1) Bottom chord chord ap loo or the orient bottom chord	 7-16; Pr=20.0 psf 1.15); Pf=20.0 psf 1.15); Pf=20.0 psf 1.10; Rough Cat 1.10; Rough Cat 1.10; Rough Cat 1.10; Rough Cat as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p as been designed f ad nonconcurrent with quate drainage to p as been designed f ad nonconcurrent with quate drainage to p as been designed f ad nonconcurrent with quate drainage to p as been designed f ad nonconcurrent with quate dising display y 2-00-00 wide with y 0 other members. load (5.0 psf) on r Wall dead load (51 d live load (40.0 psional (5.0 psf) applia rrlin representation ation of the purlin a d. necked for L/360 d 	BCDL=6 envelope o 2-1-0, 2 to 15- 3 to 15- 3 to 15- 3 to 15- 3 to 15- 3 to 16- 3 to 16- 3 to 16- 4 (roof LL Lum DC B; Fully been cor or great at roof L other lin prevent or a 10. with an yiv for a liv s where a the between .0psf) o and a ed only to does no along the	0psf; h=25ft p) exterior zor Interior (1) 2- $0-12$, Interior 2 to 20-9-12 r on vertical d forces & DOL=1.60 pla L : Lum DOL= 0L=1.15 Plate Exp.; Ce=0.9 0 sidered for the er of min roof 0 psf bottom other live load a rectangle veen the botth (s), 3-4, 7-8, 4 n member dditional botth o toop inthe set a top and/or	ne 1-0 (1) left 1.15 9; his f live sf on g. ds. Opsf om 4-14, om 2				SEA 0363	L L L L BER L	
												Janua	ry 8,2025	

- 12) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	C01	Common Supported Gable	1	1	Job Reference (optional)	170597133

3-10-0

1-2-8

(psf)

20.0

20.0

10.0

0.0

10.0

Spacing

Code

Plate Grip DOL

Rep Stress Incr

Lumber DOL

-0-11-0

0-11-0

2

16

1.15

1 15

YES

Run: 8 73 S. Dec. 5 2024 Print: 8 730 S.Dec. 5 2024 MiTek Industries. Inc. Tue, Jan 07 17:06:52

Page: 1 ID:BFMJz506bfjIEw0Mkg2Jvozy7dR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 5-3-0 10-6-0 11-5-0 5-3-0 5-3-0 0-11-0 4x5 = 5 12 4 6 17 18 3 7 8 9 10 15 14 13 12 11 10-6-0 1-11-4 CSI DEFL l/defl L/d PLATES GRIP in (loc) TC 0.11 Vert(LL) n/a n/a 999 MT20 244/190 BC 0.03 Vert(CT) n/a n/a 999 WB 0.05 Horz(CT) 0.00 10 n/a n/a IRC2021/TPI2014 Matrix-MR Weight: 54 lb FT = 20%

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 2x4 SP No.3 WFBS OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 10=10-6-0, 11=10-6-0, 12=10-6-0, 13=10-6-0, 14=10-6-0, 15=10-6-0, 16=10-6-0 Max Horiz 16=67 (LC 13) Max Uplift 10=-39 (LC 11), 11=-47 (LC 15), 12=-45 (LC 15), 14=-45 (LC 14), 15=-49 (LC 14), 16=-45 (LC 10)

Scale = 1:31.1 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

BCLL

BCDL

- Max Grav 10=123 (LC 22), 11=160 (LC 22), 12=248 (LC 22), 13=153 (LC 22), 14=248 (LC 21), 15=160 (LC 21), 16=123 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension 1-2=0/28, 2-3=-25/48, 3-4=-30/93, TOP CHORD 4-5=-42/164, 5-6=-42/164, 6-7=-30/94, 7-8=-19/41, 8-9=0/28, 2-16=-116/129, 8-10=-116/113 BOT CHORD 15-16=-34/67, 14-15=-34/67, 13-14=-34/67,
- 12-13=-34/67, 11-12=-34/67, 10-11=-34/67 WEBS 5-13=-115/0, 4-14=-208/134, 3-15=-128/78, 6-12=-208/132, 7-11=-128/95 NOTES
- 1) Unbalanced roof live loads have been considered for this design.

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-11-0 to 2-1-0, Corner(3R) 2-1-0 to 8-5-0, Corner(3E) 8-5-0 to 11-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 11) chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 45 lb uplift at joint 16, 39 lb uplift at joint 10, 45 lb uplift at joint 14, 49 lb uplift at joint 15, 45 lb uplift at joint 12 and 47 lb uplift at ioint 11.
- LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH
25010023-01	C02	Common	4	1	I70597134 Job Reference (optional)

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:52 ID:Q PisA7mTQr0pIC4m3iQnhzy7dI-RfC?PsB70Hd3NSqPonL8w3uITXbGKWrCDoi7.14z.IC?f

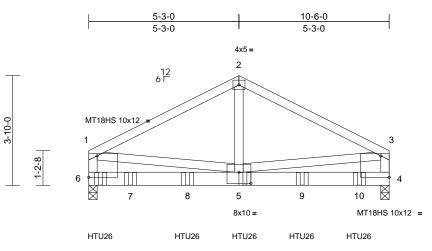
Page: 1

 $ID: Q_PjsA7mTQr0pIC4m3iQnhzy7dI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$ -0-11-0 11-5-0 5-3-0 10-6-0 5-3-0 5-3-0 0-11-0 0-11-0 4x5 =3 12 6Γ 9 10 3-10-0 5x6 🧔 5x6 👟 2 4 5 1-2-8 1.6 • 0 8 6 \mathbb{Z} \square 7 2x4 II 2x4 II 4x8 =

L	5-3-0	10-6-0	
	5-3-0	5-3-0	

Scale = 1:36.2 Plate Offsets (X, Y): [2:0-3-0,0-1-12], [4:0-3-0,0-1-12]

Plate Offsets (X	K, Y): [2:0-3-0,0-1-12], [4:0-3-0,0-1-12]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.23 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.03 0.00	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalanced this design. 2) Wind: ASC Vasd=103n II; Exp B; E and C-C Ex to 8-5-0, Ex and right ey C for memb shown; Lun 3) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 6=0-3-8, £ Max Horiz 8=69 (LC Max Grav 6=574 (LC (lb) - Maximum Com Tension 1-2=0/29, 2-3=-499/ 4-5=0/29, 2-8=-527/ 7-8=-74/214, 6-7=-6 3-7=0/163, 2-7=0/27 d roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; BG inclosed; MWFRS (er kterior(2E) -0-11-0 to xterior(2E) 8-5-0 to 11 xposed; end vertical 1 xposed; end vertical	cept end verticals. applied or 10-0-0 or 3=0-3-8 13) : 15), 8=-58 (LC 14) C 22), 8=574 (LC 21) pression/Maximum 196, 3-4=-499/196, 254, 4-6=-527/248 1/214 '6, 4-7=0/276 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon 2-1-0, Exterior(2R) 2 -5-0 zone; cantileve left and right expose /FRS for reactions grip DOL=1.60 roof LL: Lum DOL=1 um DOL=1.15 Plate s; Fully Exp.; Ce=0.9	6) ed or 7) c 8)) L0 r Cat. he 2-1-0 r left d;C- 1.15	load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall l chord and a One H2.5A s recommende UPLIFT at jt	Is been designed f psf or 1.00 times fi on-concurrent with as been designed f ad nonconcurrent v has been designed n chord in all area y 2-00-00 wide wi hy other members. Simpson Strong-Ti ed to connect truss (s) 8 and 6. This cc Standard	lat roof I o other li for a 10. with any I for a liv s where ill fit betw e conne s to bear connectio	oad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20. a rectangle ween the bott ctors ing walls due	osf on ads. .0psf tom e to		6		SEA 0363	ROCI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
												Janua	ry 8,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	C03-2	Common Girder	1	2	Job Reference (optional)	

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:52 ID:jKKMKZC9qZk19NEQg1K3ZAzy7dB-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

HTU26

Scale = 1:40.3 Plate Offsets (X, Y): [1:Edge,0-9-0], [4:Edge,0-9-0], [5:0-5-0,0-4-12]

Plate Onsets (X, Y): [1:Edge,0-s] Loading (psi TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	f) Spacing 1-1 Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr NC 0* Code IRC	1-4 5 5	CSI TC 0.75 BC 0.93 WB 0.67 Matrix-MSH	DEFL in Vert(LL) -0.06 Vert(CT) -0.11 Horz(CT) 0.00	(loc) l/defl L/c 5-6 >999 240 5-6 >999 180 4 n/a n/a	MT20 244/190 MT18HS 244/190
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 *Ex BRACING TOP CHORD Structural wood 5-9-15 oc purlins BOT CHORD Rigid ceiling dire bracing. REACTIONS (size) 4=0-3 Max Horiz 6=-58 Max Uplift 4=-26 Max Grav 4=396	Accept* 6-1,4-3:2x4 SP No.2 sheathing directly applied or s, except end verticals. ectly applied or 10-0-0 oc -8, 6=0-3-8 (LC 8) 8 (LC 13), 6=-453 (LC 12) 57 (LC 6), 6=5459 (LC 5) Compression/Maximum 2-3=-3968/283, 3-4=-2404/192 -5=-92/820 1-5=-157/2731, ogether with 10d lows: 2x4 - 1 row at 0-9-0 follows: 2x6 - 2 rows ex4 - 1 row at 0-9-0 oc, ows staggered at 0-9-0 oc, ally applied to all plies, r back (B) face in the LOAD connections have been ads noted as (F) or (B),	 Vasd=103mj II; Exp B; Encantilever let right expose 5) TCLL: ASCE Plate DOL=' DOL=1.15); Cs=1.00; Ct: 6) Unbalanced design. 7) All plates are by This truss ha chord live los 9) * This truss by on the bottor 3-06-00 tall I chord and at 10) One H2:5A S recommendd UPLIFT at jit and does no 11) Use Simpso 14-10dx1 1// max. starting connect trus 12) Fill all nail he 13) Hanger(s) or provided suff Ib down and design/selec responsibility LOAD CASE(S) 14) Dead + Snot Increase=1 Uniform Lo 	snow loads have been cor e MT20 plates unless other as been designed for a 10.1 ad nonconcurrent with any has been designed for a liv m chord in all areas where by 2-00-00 wide will fit betw ny other members. Simpson Strong-Tie conne- ed to connect truss to bear (s) 6 and 4. This connection t consider lateral forces. n Strong-Tie HTU26 (10-16 2 Truss) or equivalent spac g at 0-5-0 from the left end s(es) to back face of bottor obles where hanger is in co- los where hanger is in co- sticient to support concentre 199 lb up at 0-1-12 on bo tion of such connection de y of others. Standard ow (balanced): Lumber Inc .15	Suppsf, h=25ft; Cat. a) exterior zone; vertical left and grip DOL=1.60 L: Lum DOL=1.15 DL=1.15 Plate Exp.; Ce=0.9; insidered for this wise indicated. D psf bottom other live loads. e load of 20.0psf a rectangle veen the bottom ctors ing walls due to n is for uplift only Sd Girder, sed at 2-0-0 oc to 9-5-8 to n chord. tact with lumber. b) shall be ated load(s) 1817 ttom chord. The vice(s) is the		oads (lb) 4 (B), 5=-1291 (B), 7=-1291 (B), 9=-1291 (B), 10=-1268 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	PB01	Piggyback	2	1	I70 Job Reference (optional)	0597136

2-5-4

Run: 8,73 S Dec 5 2024 Print: 8,730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:52 ID:RGxTmVNiyPBXw6T0fVpOy9zy8TC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

5-1-5

Scale = 1:26.1

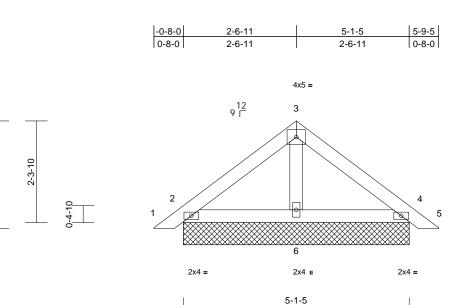
Scale = 1:26.1													
Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.12 0.01	Vert(CT) Horz(CT)	n/a 0.00	2	n/a n/a	999 n/a		
BCLL	0.0*	Code	IRC2021/T	DI2014	Matrix-MP	0.01		0.00	2	n/a	n/a		
BCDL	10.0	Code	11(02021/1	112014	IVIGUIX-IVII							Weight: 22 lb	FT = 20%
		1	E)	Inholonood	l					-			
LUMBER TOP CHORD	2x4 SP No.2			esign.	snow loads have	been cor	isidered for t	nis					
BOT CHORD				0	s been designed	for great	er of min root	f live					
OTHERS	2x4 SP No.3				osf or 1.00 times								
BRACING			0	verhangs n	on-concurrent wit	h other li	ve loads.						
TOP CHORD	Structural wood she	athing directly appli			es continuous bot		d bearing.						
	6-0-0 oc purlins.	aanig areeaj appr	8) G		spaced at 2-0-0 c								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o			s been designed								
	bracing.				ad nonconcurrent								
REACTIONS	(size) 2=5-1-5, 4	4=5-1-5, 6=5-1-5			nas been designe n chord in all area			upst					
	Max Horiz 2=51 (LC		3		y 2-00-00 wide w			om					
	Max Uplift 2=-26 (LC		, c		y other members		veen the bott	om					
	Max Grav 2=199 (L0				Simpson Strong-T		ctors						
	6=172 (L0	,	re	ecommende	ed to connect trus	s to bear	ing walls due	e to					
FORCES	(lb) - Maximum Com	pression/Maximum	0		s) 2 and 4. This c		n is for uplift	only					
TOP CHORD	Tension 1-2=0/24, 2-3=-108/	72 2 4- 109/72			t consider lateral								
TOP CHORD	4-5=0/24	72, 3-4=-100/72,			d Industry Piggyb								
BOT CHORD		45			nnection to base fied building desid		applicable, of						
WEBS	3-6=-71/6			D CASE(S)	0 0	gner.							
NOTES			LUAI	J CASE(S)	Stanuaru								
	ed roof live loads have	been considered fo	or.										
this design			<i>,</i>										1111
	CE 7-16; Vult=130mph	(3-second gust)										WITH CA	ROUL
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	; Cat.								J'	A	Del n'es
	Enclosed; MWFRS (er		ne							/	52	S. OFF	PN. Sin
	Exterior(2E) zone; cant									4	12		1
	end vertical left and right										() ()	:4	
	and forces & MWFRS		1;							=		SEA	
	OL=1.60 plate grip DC igned for wind loads in		100							=			• –
	studs exposed to wind									=		0363	22 ; =
	lard Industry Gable En									-	8	N	1 - E
	qualified building desi										-	A. A.	airs
	CE 7-16; Pr=20.0 psf (15	A VGIN	EELAN
	_=1.15); Pf=20.0 psf (L										11	710	CALIN
DOL=1.15	5); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	9;									A C	ILBEIT

- Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI 11111111


January 8,2025

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	PB02	Piggyback	25	1	Job Reference (optional)	170597137

2-5-4

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:52 ID:9pipHojyapIeMK1YD1peUnzy8RS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:26.1

TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.11 Vert(LL) n/a - n/a 999 MT20 244/190 Snow (P) 20.0 Lumber DOL 1.15 BC 0.11 Vert(LL) n/a - n/a 999 MT20 244/190 Snow (P) 20.0 Lumber DOL 1.15 BC 0.11 Vert(LL) n/a - n/a 999 MT20 244/190 BCL 0.0* Code IRC2021/TPI2014 Matrix-MP Vert(LL) n/a - n/a 999 Model Vert(CT) n/a - n/a 999 Model Vert(CT) n/a - n/a 999 Model Model No 244/190 Vert(CT) n/a - n/a 999 Model 44/190 Vert(CT) n/a - n/a 999 Model 44/190 Vert(CT) n/a - n/a 999 Model 44/190 Vert(CT) n/a - n/a 999 Model - - 60.0 - <	3cale = 1.20.1												
Snow (rpt) 20.0 Lumber DOL 1.15 EC 0.02 Herr(CT) n/a - n/a 999 BCDL 0.00 EC 0.00 EC 0.02 Herr(CT) n/a - n/a 999 BCDL 0.00 EC 0.00 EC 0.02 Herr(CT) n/a - n/a 999 BCDL 0.00 EC 0.00 EC 0.00 EC n/a n/a N/a BCDL 0.00 EC 0.00 EC 0.00 EC n/a	Loading	. ,				0.11	I		(loc)			-	
TCDL 0.0 Rep Stress Incr YES We 0.02 Horz(CT) 0.00 2 n/a Neight: 22 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 5 Unbalanced answ loads have been considered for this design. 6 6 6 0.0 10.0 10 </td <td>. ,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>101120</td> <td>244/190</td>	. ,								-			101120	244/190
BCLL 0.0* Code IRC2021/TPI2014 Matrix-MP Weight: 22 lb FT = 20% BCDL 10.0 Veight: 22 lb FT = 20% UNDERR TOP CHORD 2x4 SP No.2 Sincural Veight: 22 lb FT = 20% OTHERS 2x4 SP No.2 Sincural Veight: 22 lb FT = 20% GTO CHORD Structural wood sheathing directly applied or 10.0-0 oc mirrors file on ocnocurrent with nother live loads. 7 Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0 oc. 9 Max Horiz 2=53 (LC 13) Max Grav 2=205 (LC 21), 4=33 (LC 15) Gable studs spaced at 4-0 oc. 9 Max Horiz 2=253 (LC 14), 4=33 (LC 15) Max Horiz 2=205 (LC 21), 4=30 (LC 22), 6+112/T, 4=5-0205 10 or Hz 500 dottom chord la all areas where a rectangle 3-06-00 tall by 2-00-00 wide will ft between the bottom chord anal areas where a rectangle 3-06-00 tall by 2-00-00 wide will ft between the bottom chord anal areas applicable, or consult qualified building designer. TOP CHORD 10.9 10.04 blacksc 2-7.6 10.04 blacksc 10 roses. 10 Or Hz2-052, S23112/T4, 3-4=-112/T4, 4-5=025 Sea Standard Industry Piggybad. Truss Connection to base true as a splicable, or consult qualified building designer. 10 Unbalanced rool live loads have been considered for this design. Sea Standard Industry Piggybad. Truss Connection to sea tano t					-				-				
BCDL 10.0 Weight: 22 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 5) Unbalanced snow loads have been considered for this design. BOT CHORD 2x4 SP No.3 5) Unbalanced snow loads have been considered for this design. BRACING TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. 5) Unbalanced snow loads have been considered for a 100 get botom coverhangs non-concurrent with other live loads. 60 T CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. This truss has been designed for a 10.0 get botom chord live load onconcurrent with any other live loads. 60 T CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. This truss has been designed for a 10.0 get botom chord live load onconcurrent with any other live loads. 700 CHORD 2-26.51(LC 21), 4-3.31(LC 15) Max Grav 2-205 (LC 21), 4-42.05 (LC 22), cm structure and any other members. This truss has been designed for a 10.0 get botom chord and any other members. 70P CHORD 2-26.51(LC 21), 4-4.205 (LC 22), cm structure and any other members. This truss has been designed for a 10.0 get botom chord in dustry Piggyback Truss Connections to and any other members. 80T CHORD 2-6.514/47, 4-6.5147 Wind: ASCE 7-16, Vul-130mph (3-second gust) Vasat-103mph; ToSLU-60, 0psf; RoDL-60, 0psf; RoHDL-60, 0psf; RoHDL-60, 0psf; RoHDL-60, 0psf; RoHDL-60, 0psf; RoHDL-60, 0psf; RoHDL-61, 0pstex SEAL						0.02		0.00	2	n/a	n/a		
 Ticp Circlin D. 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING TOTOCHORD Structural wood sheathing directly applied or 10-0-0 co bracing. BRACING 120 CHORD Relation of the set of	BCDL		Code	IRG2021/1P12014	IVIAUIX-IVIP							Weight: 22 lb	FT = 20%
Tension and does not consider lateral forces. TOP CHORD 1-2=0/25, 2-3=-112/74, 3-4=-112/74, 4-5=0/25 BOT CHORD 2-6=-14/47, 4-6=-5/47 BOT CHORD 2-6=-14/47, 4-6=-5/47 WEBS 3-6=-736 NOTES LOAD CASE(S) Standard 1) Unbalanced roof live loads have been considered for this design. LOAD CASE(S) Standard 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) LoAD CASE(S) Standard Vasd=103mph; TCDL=6.0pst; BCDL=6.0pst; BCDL=6.0pst; Cat. Li; Exp B; Enclosed; WVFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=-1.60 plate grip DOL=-1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DOL=1.15 Plate DOL=-1.15); Is=-10; Rough Cat B; Fully Exp.; Ce=0.9; Cs=-1.00; Ct=-1.10		2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-1-5, 4 Max Horiz 2=53 (LC Max Uplift 2=-26 (LC Max Grav 2=205 (LC 6=178 (LC	applied or 10-0-0 o 4=5-1-5, 6=5-1-5 13) (14), 4=-33 (LC 15) (14), 4=-35 (LC 22 (1), 4=205 (LC 22 (1))	design. 6) This truss load of 12. overhangs ed or 7) Gable requ 8) Gable stud 9) This truss chord live 10) * This truss on the bott 3-06-00 ta chord and 2), 11) One H2.5/ recommen	has been designed 0 psf or 1.00 times non-concurrent wi itres continuous bo ls spaced at 4-0-0 has been designed oad nonconcurren s has been designed om chord in all are l by 2-00-00 wide any other member A Simpson Strong- ded to connect tru	d for great flat roof I ith other li bottom chol oc. d for a 10. t with any ed for a liv as where will fit betv 's. Tie conne ss to bear	er of min rood oad of 20.0 p ve loads. d bearing. 0 psf bottom other live loa other live loa e load of 20. a rectangle veen the bott ctors ing walls due	f live sf on ds. Opsf om to					
BOT CHORD 2-6=-14/47, 4-6=-5/47 WEBS 3-6=-73/6 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS//TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (root LL: Lum DOL=1.15 Plate DOL=1.15; Its=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10	TOP CHORD		74, 3-4=-112/74, 4-{	and does r 5=0/25 12) See Stand	ot consider lateral ard Industry Piggy	l forces. back Trus	s Connection						
NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Ir=2.0, psf (roof LL: Lum DOL=1.15 Plate DOL=1.15; Ir=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10	BOT CHORD	,	17				applicable, or						
 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; LCat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 	WEBS	3-6=-73/6		LOAD CASE	5) Standard	•							
 this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pl=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); IS=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 	NOTES												
 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 	1) Unbalance	ed roof live loads have	been considered fo	or									11
 Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 	this desigr	า.										111110	ND 111
 II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 												IN TH UP	ROUL
and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10											A	OH WEG	Sin Inter
exposed ; end vertical left and right exposed; C-Č for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (corof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10				ne						/	5.2	FEE	Ni sin
										4			BILL
										-	() j		
				ι,						=	:	SEA	AL : =
				ISS						E		0363	222 =
	only. For:	studs exposed to wind	(normal to the face	e),								. 0505	: : :
										-	-		1 2
	or consult	qualified building desi	gner as per ANSI/TI	PI 1.							- 1	N. ENG	-CRIA S
	4) TCLL: AS	CE 7-16; Pr=20.0 psf (root LL: Lum DOL=	1.15							1	S, GIN	EF. A.S
											1	CA -	BEIN
January 8,2025			s, Fully Exp., Ce=0.8	σ,								11, A. C	212
January 8,2025	03-1.00, 0	00											1111.
												Janua	ary 8,2025


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCE A MITEK Affiliate

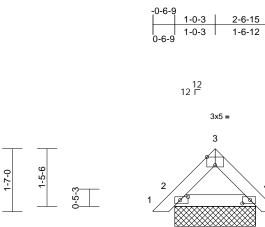
Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	PB03	Piggyback	2	1	Job Reference (optional)	170597138

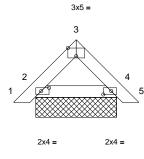
2-5-4

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:52 ID:pOtRxhWKoY5uMsYWUdpEuezy7fN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale	_	1.26	1
Scale	=	1.20.	

Scale = 1:26.1					1								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TF	912014	CSI TC BC WB Matrix-MP	0.11 0.12 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 10-0-0 oc 4=5-1-5, 6=5-1-5 13) ; 14), 4=-33 (LC 15) C 21), 4=205 (LC 22)	de 6) Tr loa ov d or 7) Ga 9) Tr ch 10) * 7 or 3- ch 11) Or	esign. his truss ha ad of 12.0 verhangs nu able required able studs his truss ha hord live loa This truss ha hord live loa this truss ha hord loe loa this truss ha hord loe loa this truss ha hord and ar he H2.5A S	snow loads have show loads have psf or 1.00 times i on-concurrent witt es continuous bot spaced at 4-0-0 o is been designed ad nonconcurrent has been designed n chord in all aree by 2-00-00 wide w y other members Simpson Strong-T	for great flat roof li h other li tom chor ic. for a 10. with any d for a liv as where ill fit betv ie conne	er of min roof oad of 20.0 p ve loads. 'd bearing. 0 psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors	live sf on ds. Opsf om				riogn. 2215	
FORCES TOP CHORD	(lb) - Maximum Com Tension 1-2=0/25, 2-3=-112/	pression/Maximum	UF an =0/25 12) Se	PLIFT at jt(nd does not ee Standar	ed to connect trus s) 2 and 4. This c t consider lateral f d Industry Piggyb nnection to base	onnectio orces. ack Trus	n is for uplift o	only					
 this design Wind: ASC Vasd=1037 II; Exp B; E and C-C E: exposed; or members a Lumber DC Truss designonly. For sister see Standa or consult TCLL: ASC Plate DOL: 	E 7-16; Vult=130mph mph; TCDL=6.0psf; Bt Enclosed; MWFRS (en end vertical left and rig and forces & MWFRS DL=1.60 plate grip DO gned for wind loads in studs exposed to wind ard Industry Gable En- qualified building desig DE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat B	been considered for (3-second gust) CDL=6.0psf; h=25ft; hvelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown; Ju=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate	LOAD Cat. e s, le, 11. .15		fied building desig Standard	gner.				M. CONTRACT		SEA 0363	EEP ER LUU
00-1.00, 0													ry 8,2025




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	PB04	Piggyback	13	1	I70597139 Job Reference (optional)	

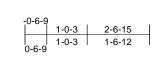
Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:52 ID:kEh7fLqymtejjppZSuijsyzy45k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

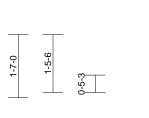
2-0-6

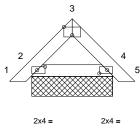
12 12 Г

Scale = 1:28.9


Plate Offsets (X, Y): [2:0-2-6.0-1-0], [3:0-2-8.Edge], [4:0-2-6.0-1-0]

Loading TCLL (roof)(psf) 20.0Spacing Plate Grip DOL2-0-0 1.15CSI TCDEFLin(loc)I/deflL/d MATPLATES MT2OGRIP MT2OSnow (Pf)20.01.15BC0.02Vert(CT)n/a-n/a999MT2O244/190SCDL10.01.0Rep Stress IncrYESWB0.00Horz(CT)0.004n/an/a999MT2O244/190BCL0.0*10.0CodeIRC2021/TPI2014Matrix-MPMatrix-MPMorz(CT)0.004n/an/	Plate Offsets (X, Y): [2:0-2-6,0-7	I-0], [3:0-2-8,Edge], [4:0-2-6,	0-1-0]	-									
TOP CHORD2x4 SP No.2load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.BACING7Gable requires continuous bottom chord bearing.TOP CHORDStructural wood sheathing directly applied or 3-2-0 oc purlins.7BOT CHORDStructural wood sheathing directly applied or bracing.7REACTIONS(size)2=2-0-6, 4=2-0-6 Max Horiz2=-32 (LC 12) Max Uplift7Max Uplift Max Grav2=-12 (LC 14), 4=-12 (LC 22)1010Open H2:5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to100	TCLL (roof) 20. Snow (Pf) 20. TCDL 10. BCLL 0.	0 Plate Grip DOL 1. 0 Lumber DOL 1. 0 Rep Stress Incr YE 0* Code IR	15 15 ES	TC BC WB	0.02	Vert(LL) Vert(CT)	n/a n/a	-	n/a n/a	999 999	MT20	244/190	
Terision TOP CHORD 1:2=0/22, 2:3=-58/39, 3:4=-58/39, 4:5=0/22 BOT CHORD 2:4=-054 NOTES 1) Unbalanced root live loads have been considered for this design. 2) Wind: ASCE 7:16; Vult=130mph (3-second gust) Vasd=1:06:0sed; EMVERS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DU=1:6.0 pts; EDCI=6.00; fb. EDCI=6.00; see Standard Industry Gable Erio Details as applicable, or consult qualified building designer as per ANS/TP1 1. 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable Erio Details as applicable, or consult qualified building designer as per ANS/TP1 1. 4) TCLL: ASCE 7:16; PUE20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Cuel 1.10 5) Unbalanced snow loads have been considered for this design. 4) Unbalanced snow loads have been considered for this design. 4) Unbalanced snow loads have been considered for this 4) Unbalanced	 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING 2x4 SP No.2 BRACING TOP CHORD Structural wood 3-2-0 oc purlins. BOT CHORD Rigid ceiling dire bracing. REACTIONS (size) 2=2-0 Max Horiz 2=-32 Max Upit 2=-12 Max Grav 2=126 FORCES (b) - Maximum 0 Tension TOP CHORD 1-2=0/22, 2-3=-5 BOT CHORD 2-4=-6/54 NOTES 1) Unbalanced roof live loads h this design. 2) Wind: ASCE 7-16; Vult=1300 Vasd=103mph; TCDL=6.0ps II; Exp B; Enclosed; MWFRS and C-C Exterior(2) zone; o exposed ; end vertical left ar members and forces & MWF Lumber DOL=1.60 plate grip 3) Truss designed for wind load or consult qualified building of see Standard Industry Gable or consult qualified building of Plate DOL=1.15); Is=1.0; Rough C 5) Unbalanced snow loads haw 	actly applied or 10-0-0 oc 1-6, 4=2-0-6 2 (LC 12) 2 (LC 14), 4=-12 (LC 15) 3 (LC 21), 4=126 (LC 22) Compression/Maximum 58/39, 3-4=-58/39, 4-5=0/22 ave been considered for mph (3-second gust) 4; BCDL=6.0pst; h=25ft; Cat. 6 (envelope) exterior zone cantilever left and right ad right exposed; C-C for FRS for reactions shown; b DCL=1.60 ds in the plane of the truss wind (normal to the face), a End Details as applicable, designer as per ANSI/TPI 1. psf (roof LL: Lum DCL=1.15 sf (Lum DOL=1.15 Plate cat B; Fully Exp.; Ce=0.9;	 load of 12.0 overhangs n 7) Gable requir 8) Gable studs 9) This truss has chord live lo 10) * This truss has chord live lo 10) * This truss lo 3-06-00 tall chord and at 11) One H2.5A structure recommend UPLIFT at jt and does no 12) See Standar Detail for Cc consult qual LOAD CASE(S) 	psf or 1.00 times fla on-concurrent with es continuous botto spaced at 4-0-0 oc. as been designed fo ad nonconcurrent w has been designed in m chord in all areas by 2-00-00 wide will ny other members. Simpson Strong-Tie ed to connect truss f (s) 2 and 4. This cor t consider lateral for d Industry Piggybac innection to base tru- fied building design	at roof k other liv or a 10.0 ith any for a liv where l fit betw connection rces. ck Truss uss as a	bad of 20.0 ps ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift of s Connection	sf on Ids. Dpsf om to only			> -			Manuality.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	PB05	Piggyback	1	1	I70597 Job Reference (optional)	140

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:53 ID:a4Hna9tCe_UA5xI7IWyMnNzy3kR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

12 12 Г

3x5 =

2-0-6

Scale = 1:28.9

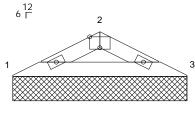
Plate Offsets (X, Y): [2:0-2-6,0-1-0], [3:0-2-8,Edge], [4:0-2-6,0-1-0]

Plate Offsets (X, Y): [2:	0-2-6,0-1-0],	[3:0-2-8,Edge], [4:0-	-2-6,0-1-0									-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.02 0.02 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
 BOT CHORD BOT CHORD Rigid ce bracing. REACTIONS (size) Max Hori. Max Uplif Max Grav. FORCES (lb) - Ma Tension TOP CHORD 1-2=0/2 BOT CHORD 2-4=-6/5 NOTES 1) Unbalanced roof live this design. 2) Wind: ASCE 7-16; W Vasd=103mph; TCD II; Exp B; Enclosed; and C-C Exterior(2E exposed ; end vertio members and forces Lumber DOL=1.60 p 3) Truss designed for w only. For studs export 	No.2 ral wood she c purlins. ieling directly z 2=2-0-6, 4 z 2=31 (LC ft 2=-11 (LC v 2=122 (LC aximum Com 1, 2-3=-56/3 52 e loads have /ult=130mph DL=6.0psf; Br MWFRS (er E) zone; cant al left and rit s & MWFRS olate grip DC wind loads in osed to wind try Gable En- building desip Pr=20.0 psf (L Rough Cat E	13) : 14), 4=-11 (LC 15) : 21), 4=122 (LC 22) pression/Maximum 8, 3-4=-56/38, 4-5=0 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon lever left and right ght exposed;C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate ;; Fully Exp.; Ce=0.9	7) ed or 8) 9) 10 11 11 11 12 12 12 12 12 12 12 12 12 12	load of 12.0 overhangs n Gable requir Gable studs This truss ha chord live loa) * This truss l on the bottoo 3-06-00 tall h chord and a) One H2.5A s recommend UPLIFT at jt and does no) See Standar Detail for Co	as been designed psf or 1.00 times f on-concurrent with es continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed n chord in all area by 2-00-00 wide w ny other members Simpson Strong-Ti ed to connect truss (s) 2 and 4. This c t consider lateral f d Industry Piggyb nnection to base t fied building desig Standard	ilat roof lin n other lin tom chor c. for a 10. with any d for a liv is where ill fit betw ie conne s to bear onnectio orces. ack Trus aruss as a	bad of 20.0 ps ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ctors ing walls due n is for uplift of s Connection	sf on Ids. Opsf om to only				SEA 0363	EER AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	126 Hidden Lakes North-Roof-Plan 9 GRH	
25010023-01	V03	Valley	1	1	I705 Job Reference (optional)	597141

Run: 8.73 S Dec 5 2024 Print: 8.730 S Dec 5 2024 MiTek Industries, Inc. Tue Jan 07 17:06:53 ID:IIeEhXAGXeMSIwWr?vnMxXzy7dE-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


2-11-13

1-2-7

3-6-12

0-7-3 0-10-15 0-0-4

2x4 🍃

3x5 =

1-9-6

1-9-6

2x4 👟

3-6-12

Plate Offsets (X, Y): [2:0-2-8,Edge]

LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied of 3-612 coe purifis. BOT CHORD Structural wood sheathing directly applied or 3-612 coe purifis. BOT CHORD Structural wood sheathing directly applied or 3-612 coe purifis. BOT CHORD Structural wood sheathing directly applied or 10-00 co bracing. BOT CHORD Structural wood sheathing directly applied or 10-00 co bracing. Max Horiz 1=-111 (LC 19) Max Grav 1=154 (LC 20), 3=154 (LC 21) PORCES (b): Maximum Tension TOP CHORD 1-2-258/114, 2-3-2-328/114 BOT CHORD 1-2-2-258/114, 2-3-2-328/114 BOT CHORD 1-2-2-58/114, 2-3-2-328/114 BOT CHORD 1-3-8-99/22 NOTES -10 10 Trust designed for wind loads in the plane of the trusts on by, For trust descored coefficients applicable, or consult qualified building designer as per ANS/TP1 1. 10 Trust designed for wind loads in th	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.09 0.10 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) Gable requires continuous bottom chord bearing. 	LUMBER TOP CHORD 2x4 SP BOT CHORD 2x4 SP BRACING TOP CHORD Structu 3-6-12 BOT CHORD Rigid c bracing REACTIONS (size) Max Hor Max Upli Max Gra FORCES (lb) - M Tensior TOP CHORD 1-2=-25 BOT CHORD 1-2=-25 BOT CHORD 1-2=-25 BOT CHORD 1-3=-85 NOTES 1) Unbalanced roof liv this design. 2) Wind: ASCE 7-16; ' Vasd=103mph; TCI II; Exp B; Enclosed; and C-C Exterior(21 exposed; end vertii members and force Lumber DOL=1.60 3) Truss designed for only. For studs exp see Standard Indus	No.2 No.2 ral wood she oc purlins. eiling directly. 1=3-6-12 iz 1=-11 (L0 ft 1=-14 (L0 v 1=154 (L aximum Con b 38/114, 2-3= b/222 e loads have /ult=130mpf DL=6.0psf; E MWFRS (e E) zone; can cal left and ri s & MWFRS plate grip DO wind loads ir osed to wing try Gable Er	y applied or 10-0-0 or , 3=3-6-12 C 19) C 14), 3=-14 (LC 15) C 20), 3=154 (LC 21) npression/Maximum -258/114 a been considered fo n (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zor tilever left and right ight exposed;C-C for of or reactions shown DL=1.60 n the plane of the true d (normal to the face) d Details as applical	8) This truss chord live 9) * This tru ed or on the boc c chord an c 10) Provide r bearing p 1 and 14 LOAD CASE) r c Cat. he ; ss), ble,	thas been designed load nonconcurren ss has been designed tom chord in all are all by 2-00-00 wide d any other member hechanical connecti- late capable of with buplift at joint 3.	d for a 10. t with any ed for a liv eas where will fit betw s. on (by oth	other live load re load of 20. a rectangle veen the bott ers) of truss	.0psf tom to				ORTH CA	ROLIN
	Plate DOL=1.15); P DOL=1.15); Is=1.0; Cs=1.00; Ct=1.10 Unbalanced snow lo design.	f=20.0 psf (L Rough Cat I pads have b	Lum DOL=1.15 Plate B; Fully Exp.; Ce=0.9 een considered for th);								NGIN NC A. C	EER. MILLING

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

