

RE: 2412-1523-A - The Farm at Neills Creek Lot 00 Site Information: Project Customer: DRB Raleigh Project Name: The Lot/Block: 00.0045 Subdivision Model: Cooper 3 Address: 530 Winding Creek Dr City: Lillington State: NC General Truss Engineering Criteria & Design Loads Drawings Show Special Loading Conditions): Design Code: IRC2021/TPI2014 Wind Code: ASCE 7-16 Wind Speed: 120 mph Roof Load: 40.0 psf Maan Paof Height (fact): 25	.0045 Roof Farm at Neills Creek Loon: The Farm at Neills 5 (Individual Truss Des Design Program: MiTek Design Method: MWFR Floor Load: N/A psf	Trenco 818 Soundside Rd Edenton, NC 27932 ot 00.0045 Creek sign c 20/20 8.8 cs (Envelope)/C-C hybrid Wind ASCE 7-16
No.Seal#Truss NameDateNo.Seal#1170445462D1 $12/31/24$ 35 17044542170445463VD1 $12/31/24$ 36 17044543170445464VA1 $12/31/24$ 37 17044544170445465V5 $12/31/24$ 37 17044545170445467VA2 $12/31/24$ 38 17044546170445468P1 $12/31/24$ 38 17044547170445469P1G $12/31/24$ 38 17044549170445470PB2 $12/31/24$ $12/31/24$ 11 10170445471V6 $12/31/24$ $12/31/24$ $12/31/24$ 11170445475VA3 $12/31/24$ $12/31/24$ 12170445476C1G $12/31/24$ 14 17170445478C1A $12/31/24$ 16170445478C1A $12/31/24$ 17170445481B1G $12/31/24$ 18170445482B1 $12/31/24$ 20170445483P2 $12/31/24$ 21170445484VA4 $12/31/24$ 22170445485VG4 $12/31/24$ 23170445487PB1 $12/31/24$ 24170445486PB1G $12/31/24$ 25170445487PB1 $12/31/24$ 26170445487PB1 $12/31/24$ 27170445488G1G $12/31/24$ 28170445490G1 $12/31/24$ </td <td>Truss Name Date 96 A1G 12/31/2 97 A1 12/31/2 98 A1A 12/31/2 99 A1T 12/31/2</td> <td></td>	Truss Name Date 96 A1G 12/31/2 97 A1 12/31/2 98 A1A 12/31/2 99 A1T 12/31/2	
The truss drawing(s) referenced above have been prepared Truss Engineering Co. under my direct supervision based of provided by Structural, LLC. Truss Design Engineer's Name: Gilbert, Eric My license renewal date for the state of North Carolina is I IMPORTANT NOTE: The seal on these truss component designs that the engineer named is licensed in the jurisdiction(s) identified and th designs comply with ANSI/TPI 1. These designs are based upon param shown (e.g., loads, supports, dimensions, shapes and design codes), wil given to MiTek or TRENCO. Any project specific information included is TRENCO's customers file reference purpose only, and was not taken in preparation of these designs. MiTek or TRENCO has not independently applicability of the design parameters or the design for any particular b the building designer should verify applicability of design parameters and incorporate these designs into the overall building design per ANSI/TPI 1	by n the parameters December 31, 2025 is a certification the eters ich were s for MiTek's or o account in the verified the uilding. Before use, d properly 1, Chapter 2. Gilbert	SEAL SEAL MGINEER A. GILBERT

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	D1	Common Supported Gable	12	1	Job Reference (optional)	170445462

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:34 ID:rBoVzoIdiLMs6xc8biACoSy5mTJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:21.8

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-2,0-1-0]

		. , ,											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.12 0.03	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-0-3 oc purlins. Rigid ceiling directly bracing. (size) 2=3-0-0, 4 Max Horiz 2=-27 (LC Max Uplift 2=-1 (LC Max Grav 2=-296 (LC 6=307 (LC	athing directly applie applied or 10-0-0 oc I=3-0-0, 6=3-0-0 14) 16), 4=-4 (LC 17) 2 53), 4=296 (LC 61) 2 59)	4) 5) d or 6) 7) 8) 9) 10)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cen Gable requir Gable studs This truss ha	F7-16; $Pr=20.0 \text{ psf}$ 1.15); $Pg=20.0 \text{ psf}$ OL = 1.15); $Is=1.00; Cs=1.00; Ct=1.1snow loads have Ias been designed fpsf or 2.00 times flon-concurrent withted for a plus or mi-ter.es continuous bottspaced at 2-0-0 ofas been designed fad poncoursert$	f (roof Ll Pf=15.4 ; Rough 0 peen cor for great lat roof lu other lin inus 5 du com chor C. for a 10.	: Lum DOL= b psf (Lum DC Cat B; Partia asidered for the er of min roof bad of 15.4 p re loads. egree rotation d bearing. D psf bottom	1.15 DL = Illy f live sf on n					
FORCES	(lb) - Maximum Com Tension 1-2=0/26, 2-3=-140/5 4-5=0/26	pression/Maximum 57, 3-4=-143/51,	11)	* This truss h on the bottor 3-06-00 tall h chord and ar	nas been designed m chord in all area by 2-00-00 wide wi ny other members.	l for a liv s where Il fit betv	e load of 20.0 a rectangle veen the botto	0psf om					
BOT CHORD WEBS NOTES 1) Unbalanc: this design 2) Wind: ASI Vasd=95r II; Exp B; (3E) zone left and rig MWFRS f grip DOL= 3) Truss des	2-6=-8/62, 4-6=-8/62 3-6=-183/2 ed roof live loads have n. CE 7-16; Vult=120mph mph; TCDL=6.0psf; BCI Enclosed; MWFRS (en s; cantilever left and righ ght exposed;C-C for me for reactions shown; Lu =1.60 signed for wind loads in	been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C Co nt exposed ; end vert embers and forces & mber DOL=1.60 plat the plane of the trus	12) 13) cat. rner ical EO e s	All bearings Provide mec bearing plate 4 lb uplift at j joint 4. This truss ha load of 250.0 panels and a Bottom Chor AD CASE(S)	are assumed to be hanical connection capable of withst joint 4, 1 lb uplift at as been designed f Dlb live and 3.0lb d at all panel points at d, nonconcurrent of Standard	SP No. a (by oth anding 1 t joint 2 a for a more ead loca along the with any	2. ers) of truss t Ib uplift at jo and 4 Ib uplift ving concentr ted at all mid Top Chord a other live loa	to vint 2, at rated l and ads.		Juli 1		ORTH CA ORTHESE SEA 0363	ROL NUMBER

3 only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	VD1	Valley	2	1	Job Reference (optional)	170445463

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:43 ID:Y1IaozbFMW2591A_CW8bSDy5mUD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:16.1

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	CSI TC BC WB 14 Matrix-AS	0.26 0.56 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD NOTES 1) Unbalanc	2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=4-0-7, 3 Max Horiz 1=-24 (LC Max Grav 1=334 (LC (Ib) - Maximum Com Tension 1-2=-408/76, 2-3=-4 1-3=-54/306 ed roof live loads have	athing directly applie applied. 3=4-0-7 ; 14) C 47), 3=334 (LC 51) pression/Maximum 08/76 been considered for	9) This tr chord 10) * This on the 3-06-(chord 11) All be 12) This tr load c panels Bottor 13) This tr structr chord the bo	russ has been designer live load nonconcurre truss has been designer bottom chord in all a 00 tall by 2-00-00 wide and any other member arings are assumed to f 250.01b live and 3.01 s and at all panel poin in Chord, nonconcurre russ design requires the ural wood sheathing b and 1/2" gypsum she whom chord. SE(S) Standard	ed for a 10.0 ent with any ned for a liv reas where e will fit betw ers. b be SP No. ed for a mov b dead loca ts along the ent with any hat a minim pe applied di etrock be ap	 a) psf bottom other live load e load of 20. a rectangle veen the bott 3. 3. ying concentited at all mice other live load other live load um of 7/16" rectly to the opplied directl 	ads. Opsf com rated d and ads. top y to						
this desig 2) Wind: AS Vasd=95r II; Exp B; Exterior(2 vertical le forces &	n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) zone; cantilever left ft and right exposed;C- MWFRS for reactions s	(3-second gust) DL=6.0psf; h=25ft; (ivelope) and C-C and right exposed ; C for members and	Cat. end										

DOL=1.60 plate grip DOL=1.60
 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11.

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) Gable requires continuous bottom chord bearing.
- 8) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss		Truss Type		Qty	Ply	The Farm	at Neills	Creek I	Lot 00.0045 Roof	
2412-1523-A	VA1		Valley		2	1	Job Refere	ence (opi	tional)		170445464
Structural, LLC, T	hurmont, MD - 21788,			Run: 8.83 S Dec 4 2 ID:aqjmeG6zsrELWY	024 Print: 8. GeB5kpswy	830 S Dec 4 Fgwv-RfC?Ps	2024 MiTek li sB70Hq3NSgF	ndustries, PqnL8w3u	Inc. Mor	n Dec 30 09:20:42 WrCDoi7J4zJC?f	Page: 1
			ł	4-10-	10						
			ŀ	4-11·	1	 2x4	II				
		2-10-7	-0-0 		7	2	3	2-10-7			
				4x4 💋	9	2x4	II				
Scale = 1:30.2			ł	4-10-	10						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-AS	.59 Vert(.65 Vert(.00 Horiz	L (LL) r (TL) r z(TL) 0.	in (loc) n/a - n/a - 01 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0		1102021/1112014							Weight: 18 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she	athing directly applied	 Gable studs This truss h chord live lo * This truss on the botts 3-06-00 tall chord and a 	s spaced at 4-0-0 oc. has been designed for a bad nonconcurrent with has been designed for om chord in all areas wh by 2-00-00 wide will fit any other members	10.0 psf b any other a live load are a recta between th	oottom live loads. of 20.0psf angle he bottom					

BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 1=4-11-1, 3=4-11-1 Max Horiz 1=63 (LC 13) Max Uplift 3=-2 (LC 16) Max Grav 1=349 (LC 42), 3=349 (LC 41) FORCES (lb) - Maximum Compression/Maximum

Tension 1-2=-518/88, 2-3=-300/83 TOP CHORD BOT CHORD 1-3=-116/446

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-9-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
- 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.

- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 2 lb uplift at joint 3.
- 12) Beveled plate or shim required to provide full bearing surface with truss chord at joint(s) 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	V5	Valley	1	1	Job Reference (optional)	170445465

2-7-2

2-7-2

Structural, LLC, Thurmont, MD - 21788.

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:42 ID:EPzkjBS91muEV?_DOgmdX1yFgwS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-2-4

4x4 =

5-2-4

2-7-2

3

Page: 1

2 12 8 Г 10 11 1-9-0 9 12 13 16 7-0-C 15 14 4 2x4 🍫 2x4 💊 2x4 🛛 5-2-4

Scale - 1:16 3

Scale = 1.10.5													
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.24 0.31 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=5-2-4, 3 Max Horiz 1=-25 (LC Max Uplift 1=-27 (LC Max Grav 1=278 (LC 4=410 (LC	athing directly applied applied. 3=5-2-4, 4=5-2-4 2 12) 2 50), 3=-27 (LC 48) 2 47), 3=278 (LC 51), 2 57)	6) 7) 8) 9) 1. 10) 11) 12)	Plates check about its cen Gable requir Gable studs This truss ha chord live loa * This truss f on the bottor 3-06-00 tall b chord and ar All bearings Provide mec	ed for a plus or miter. es continuous bott spaced at 4-0-0 or is been designed f ad nonconcurrent v has been designed in chord in all area by 2-00-00 wide wi y other members. are assumed to be hanical connectior	inus 5 de com chor c. ior a 10.0 with any I for a liv s where II fit betw SP No. o (by oth	egree rotation d bearing. D psf bottom other live loa e load of 20.1 a rectangle veen the botti 3. ers) of truss i	n ads. Opsf om to					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=-215/178, 2-3=- 1-4=-112/162, 3-4=- 2-4=-305/79 ed roof live loads have	pression/Maximum 215/178 112/162 been considered for	13) 14)	1 and 27 lb u This truss ha load of 250.0 panels and a Bottom Chor This truss de structural wo chord and 1/	is been designed f blb live and 3.0lb d it all panel points a d, nonconcurrent sign requires that od sheathing be a 2" gypsum sheetro	for a move ead location along the with any a minim pplied disock be a	ving concentr ted at all mid Top Chord a other live loa um of 7/16" irectly to the oplied directly	rated and ids. top y to					

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

- chord and 1/2" gyp the bottom chord. im sheetrock be applied directly to
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	PB3	Piggyback	11	1	Job Reference (optional)	170445466

2-6-0

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:40 ID:5Z2h9gGh6fX8kxVNf5?eZNyFgy_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:28.1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20)21/TPI2014	CSI TC BC WB Matrix-AS	0.22 0.33 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 21 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 1=6-0-0, 2 6=6-0-0 Max Horiz 1=-37 (LC Max Uplift 1=-236 (LC Max Grav 1=217 (LC 4=466 (LC 6=328 (LC	athing directly applied. applied. 2=6-0-0, 4=6-0-0, 5=6-1 14) C 46), 2=-27 (LC 16), 17), 5=-234 (LC 47) C 44), 2=476 (LC 46), C 47), 5=219 (LC 56), C 63)	0-0,	 TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen doble studs Gable studs This truss ha chord live loa * This truss ha chord and ar 	7-16; Pr=20.0 ps .15); Pg=20.0 ps DL = 1.15); Is=1.); Cs=1.00; Ct=1. snow loads have ed for a plus or n ter. es continuous bo spaced at 4-0-0 o s been designed ad nonconcurrent has been designed n chord in all area y 2-00-00 wide v y other members	sf (roof LL ff; Pf=15.4 0; Rough 10 been cor ninus 5 de ttom chor oc. I for a 10.1 t with any d for a liv as where will fit betw S.	.: Lum DOL= B psf (Lum DC Cat B; Partia asidered for the egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottom	1.15 DL = Illy his n ds. Opsf om					
TOP CHORD	(Ib) - Maximum Com Tension 1-2=-60/163, 2-3=-1	57/91, 3-4=-157/89,		 All bearings Provide mec bearing plate 	are assumed to b hanical connection capable of withs	be SP No. on (by oth standing 2	3 . ers) of truss t 36 lb uplift at	to t joint					
BOT CHORD WEBS	4-5=-43/161 2-6=-82/54, 4-6=-82/ 3-6=-197/3	/54		1 and 234 lb 13) N/A	uplift at joint 5.								
NOTES 1) Unbalance this design	ed roof live loads have	been considered for		14) This truss ha	s been designed	l for a mov	ving concentr	ated				TH CA	ROUL

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
 15) This truss design requires that a minimum of 7/16"
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MILLER 818 Soundside Road Edenton, NC 27932

Job	Truss		Truss Type	Q	у	Ply	The Farm	at Neills	Creek	Lot 00.0045 Roof	F
2412-1523-A	VA2		Valley	2		1	Job Refer	ence (or	tional)		170445467
Structural, LLC, T	hurmont, MD - 21788,			Run: 8.83 S Dec 4 2024	Print: 8.8	330 S Dec 4	2024 MiTek	Industries	, Inc. Mo	on Dec 30 09:20:43	Page: 1
				7-8-15	ure) i gr		, ,	20110011		1020110120011	
				7-0-13							
				7-9-6							
							2x4 II				
		Т				/	3	Τ			
					12	//					
		2		2x4 II	//			2-			
		4-6	12	10 9				4-6			
			7 - 8								
		4					4				
		ċ	> XXXX	14 5	1	<u>******</u> 5	2×4				
			3,4 4	2x4 II			274 1				
Scale = 1:36.5				7-8-15							
Loading	(psf)	Spacing	2-0-0	CSI	DEFL	<u></u>	in (loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) Snow (Pf/Pg)	20.0 15.4/20.0	Plate Grip DOL Lumber DOL	1.15 1.15	TC 0.46 BC 0.85	Vert(l	LL) i TL) i	n/a - n/a -	n/a n/a	999 999	MT20	244/190
TCDL BCLL	10.0 0.0*	Rep Stress Incr Code	YES IRC2021/TPI2014	WB 0.07 Matrix-AS	Horiz	(TL) 0.	00 4	n/a	n/a		
	10.0		5) Plates check	red for a plus or minus 5 d		otation				Weight: 32 lb	F1 = 20%
TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3		about its cen 6) Gable requir	iter. es continuous bottom cho	rd beari	ng.					
WEBS OTHERS	2x4 SP No.3 2x4 SP No.3		 Gable studs This truss has 	spaced at 4-0-0 oc. as been designed for a 10	0 psf bo	ottom					
BRACING TOP CHORD	Structural wood she	athing directly applied	chord live loa I, 9) * This truss h	ad nonconcurrent with any nas been designed for a li	other li /e load	ive loads. of 20.0psf					
BOT CHORD	except end verticals Rigid ceiling directly	applied.	on the bottor 3-06-00 tall t	n chord in all areas where by 2-00-00 wide will fit bet	a recta ween th	ingle e bottom					
REACTIONS (size) 1=7-9-6, 4 Max Horiz 1=105 (LC	4=7-9-6, 5=7-9-6 C 13)	10) All bearings	are assumed to be SP No	.3.	truss to					
1	Max Uplift 4=-7 (LC Max Grav 1=310 (LC	13), 5=-18 (LC 16) C 43), 4=311 (LC 51),	bearing plate	e capable of withstanding lift at joint 5.	7 lb upli	ft at joint 4					
FORCES	5=443 (LC (Ib) - Maximum Com	C 50) pression/Maximum	12) Beveled plat surface with	e or shim required to prov truss chord at joint(s) 1.	ide full l	bearing					
TOP CHORD	Tension 1-2=-390/150, 2-3=-	101/85, 3-4=-282/82	13) This truss ha load of 250.0	as been designed for a mo Db live and 3.0lb dead loc	ving co ated at a	ncentrated all mid					
BOT CHORD WEBS	1-5=-78/335, 4-5=-6 2-5=-347/142	1/66	panels and a Bottom Chor	at all panel points along th d, nonconcurrent with any	e Top C other li	hord and ive loads.					
NOTES 1) Wind: ASC	E 7-16; Vult=120mph	(3-second gust)	14) This truss de structural wo	esign requires that a minin ood sheathing be applied o	ium of 7 lirectly t	7/16" to the top					
Vasd=95m II; Exp B; E	oh; TCDL=6.0psf; BC nclosed; MWFRS (en	DL=6.0psf; h=25ft; Ca velope) and C-C	at. chord and 1/ the bottom c	hord.	ppilea c	directly to				WHILL CA	Paril
Exterior(2E zone; cantil) 0-0-0 to 3-0-0, Interi ever left and right exp records C C for momb	or (1) 3-0-0 to 7-7-10 posed ; end vertical le	ft	Standard					À	ORTESS	6.3/4/-
MWFRS for arin DOL –1	reactions shown; Lu	mber DOL=1.60 plate)					4	à		MAL
 2) Truss desig only. For s 	ned for wind loads in tuds exposed to wind	the plane of the truss (normal to the face)	;							SEAL	
see Standa or consult o	rd Industry Gable En ualified building desig	d Details as applicable gner as per ANSI/TPI	e, 1.							03632	22
 TCLL: ASC Plate DOL= 	E 7-16; Pr=20.0 psf (1.15); Pg=20.0 psf; F	roof LL: Lum DOL=1. Pf=15.4 psf (Lum DOL	15 . =							·	Rik
1.15 Plate I Exp.; Ce=1	DOL = 1.15); Is=1.0; I .0; Cs=1.00; Ct=1.10	Rough Cat B; Partially	,							A GINE	BERIN
 Unbalanced design. 	t snow loads have be	en considered for this	3							A. G	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

RENCO

818 Soundside Road Edenton, NC 27932

December 31,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	P1	Monopitch	6	1	Job Reference (optional)	170445468

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:37 ID:ECcTJE2ov99Xq08NAf9MbPy5o12-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Plate Offsets (X, Y): [2:0-4-5,0-0-5], [5:0-3-8,Edge]

members and forces & MWFRS for reactions shown;

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

Lumber DOL=1.60 plate grip DOL=1.60

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2)

3)

design.

Scale = 1:26.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.65 0.87 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.21 0.03 0.07	(loc) 5-11 5-11 2 5-11	l/defl >607 >441 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 36 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shear except end verticals. Rigid ceiling directly (size) 2=0-3-0, 1 Max Horiz 2=59 (LC Max Uplift 2=-62 (LC Max Grav 2=451 (LC	I-6-0 athing directly applied applied. 13=0-1-8 12) 12), 13=-53 (LC 12) 2 47), 13=375 (LC 43)	4) 5) 6) 7) i, 8) 9)) 10)	This truss ha load of 12.0 overhangs m All plates are Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are SP No.3. Bearing at jo	s been designed for option 2.00 times file on-concurrent with MT20 plates unles ed for a plus or mir ter. s been designed for ad nonconcurrent w has been designed in chord in all areasin y 2-00-00 wide will by other members. assumed to be: Jo int(s) 13 considers	or greate to roof lo other live so other hus 5 de or a 10.0 for a live where fit betwo int 2 SF parallel	er of min roof aad of 15.4 p ve loads. wise indicate egree rotation 0 psf bottom other live loa e load of 20.0 a rectangle veen the bott ^o No.2 , Joint to grain valu	f live sf on ed. n ads. Opsf om t 13 ue						
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS(Vasd=95r II; Exp B; Exterior(2 zone; can	(lb) - Maximum Com Tension 1-2=0/26, 2-4=-396/2 4-6=-194/326 2-5=-163/202 4-13=-382/46 CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en b) -1-0-0 to 2-0-0, Inter tilever left and right exp	pression/Maximum 224, 5-6=-65/331, (3-second gust) DL=6.0psf; h=25ft; C- ivelope) and C-C rior (1) 2-0-0 to 7-6-4 osed ; end vertical le	11) 12) at. 13)	using ANSI/J designer sho Provide mect bearing plate One H2.5A S recommende UPLIFT at jt(and does noi This truss ha load of 250.0 panels and a Bottom Chor	PI 1 angle to grain uld verify capacity hanical connection a t joint(s) 13. Simpson Strong-Tie d to connect truss s) 2 and 13. This cit t consider lateral fo s been designed fc lb live and 3.0lb de t all panel points al d, nonconcurrent w	formula of beari (by oth connection consctiin cress. or a movi ad location ong the ith any	a. Building ng surface. ers) of truss I ctors ng walls due on is for uplif ving concentr ted at all mid Top Chord a other live loa	to to t only rated d and ads.		U	- Trul	TH CA	ROUNT	2

14) This truss design requires that a minimum of 7/16" and right exposed; porch left and right exposed;C-C for structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	P1G	Monopitch Supported Gable	1	1	Job Reference (optional)	5469

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:38 ID:i7eQymsmgF8pwZwIEItcy1y5o1I-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale =	1:26.9	

Plate	Offsets	(X, Y):	[2:0-4-5,0-0-5], [8:Edge,0-3-8]	

or consult qualified building designer as per ANSI/TPI 1.

			_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.54 0.58 0.06	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.10 -0.15 0.03 0.09	(loc) 10-11 10-11 2 10-11	l/defl >989 >616 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shee except end verticals. Rigid ceiling directly (size) 2=0-3-0, 1 Max Horiz 2=59 (LC Max Uplift 2=-62 (LC Max Grav 2=451 (LC	-6-0 athing directly applied applied. 9=0-1-8 12), 19=-53 (LC 12); 53), 19=-375 (LC 65)	3) 4) 5) i, 6) 7) 8)	TCLL: ASCE Plate DOL=1 1.15 Plate DOL Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 overhangs n Plates check about its cen Gable studs This truss ha chord live loa	7-16; Pr=20.0 p .15); Pg=20.0 ps OL = 1.15); Is=1. b; Cs=1.00; Ct=1. snow loads have as been designed psf or 2.00 times on-concurrent wi ed for a plus or r ter. spaced at 2-0-0 of s been designed ad nonconcurrent	sf (roof LL f; Pf=15.4 0; Rough 10 been cor l for great flat roof ld th other livin ninus 5 de oc. 1 for a 10.0 t with any to far a livin	.: Lum DOL= psf (Lum DC Cat B; Partia isidered for t er of min rool bad of 15.4 p re loads. egree rotation 0 psf bottom other live loa	e1.15 OL = ally this f live osf on n ads.					
FORCES	(lb) - Maximum Com	pression/Maximum	, 9)	on the bottor	n chord in all are	as where	a rectangle	iom					
TOP CHORD	1-2=0/26, 2-4=-243/1 5-6=-240/90, 6-7=-17 7-12=-42/148	139, 4-5=-243/69, 74/102, 8-12=-104/31	9, 10) Bearings are SP No 3	assumed to be:	s. Joint 2 SF	P No.2 , Joint	t 19					
BOT CHORD	2-11=-151/203, 10-1 9-10=-151/203, 8-9=	1=-151/203, -151/203	11) Bearing at jo	int(s) 19 conside	rs parallel	to grain valu Building	le				SAMP	
WEBS	6-9=-103/145, 5-10= 7-19=-269/150	-134/116, 4-11=-118/	′131, 12	designer sho) Provide med	uld verify capaci hanical connection	ty of beari on (by oth	ng surface. ers) of truss	to			15	"H CA	Ro
NOTES				bearing plate	at joint(s) 19.	(.)	,				15	1 iico	D. Anter
 Wind: ASC Vasd=95n II; Exp B; Exterior(2l zone; cant and right e members Lumber D Truss desi only. For see Stand 	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) -1-0-0 to 1-11-8, Inte tilever left and right exp exposed; porch left and and forces & MWFRS f OL=1.60 plate grip DOU igned for wind loads in studs exposed to wind lard Industry Gable Enc	(3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C erior (1) 1-11-8 to 7-6 oosed; end vertical le right exposed;C-C fo for reactions shown; L=1.60 the plane of the truss (normal to the face), d Details as applicabil	13 -4 .ft 14 or 5 15 e,) One H2.5A S recommende UPLIFT at jt(and does not) This truss ha load of 250.0 panels and a Bottom Chor) This truss de structural wo chord and 1/	Simpson Strong-T ed to connect trus s) 2 and 19. This t consider lateral ts been designed lib live and 3.0lb t all panel points d, nonconcurrem sign requires tha od sheathing be 2" gypsum sheet	Tie connections to bear a connection forces. I for a move dead locate along the t with any tt a minime applied direct be applied direct be applied direct took be applied by the took of took of the took of	ctors ng walls due on is for uplif ving concentri ted at all mic Top Chord a other live loa um of 7/16" rectly to the oplied directly	e to it only rated d and ads. top y to		WYTHINK.		SEA 0363	

structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

A. GILB A. GILD

December 31,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	PB2	Piggyback	3	1	Job Reference (optional)	170445470

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:40 ID:rrCa0fvkGRryDpWiAxUgc2yFh?2-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

			8-3-6										
		H	8-3-6	 2x4	и								
	0-0-4	1	7 ¹² 2x4 II	4 14 14 16 2x4 = 8-3-6	2 -1-8 								
		0-9-8	<u>7-11-1</u> 7-2-5	4									
S Lo TC Sn TC BC	ading SLL (roof) ow (Pf/Pg) SDL	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-AS	46 Vert(LL) 35 Vert(CT) 07 Horz(CT)	in n/a 0.00	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
	MBER MBER MP CHORD T CHORD EBS HERS ACING P CHORD T CHORD ACTIONS MRCES MP CHORD EBS MTES	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she except end vertical: Rigid ceiling directh (size) 2=7-2-5, Max Horiz 2=115 (L Max Uplift 5=-6 (LC Max Grav 2=315 (L 6=436 (L (lb) - Maximum Cor Tension 1-2=0/21, 2-3=-174 5-7=0/0, 4-5=-283/6 2-6=-72/78, 5-6=-72 3-6=-343/126	eathing directly applie s. y applied. 5=7-2-5, 6=7-2-5, 7= C 15) 13), 6=-24 (LC 16) C 47), 5=313 (LC 53) C 52) npression/Maximum /150, 3-4=-101/87, 59 2/78	 d) Unbalanced design. 5) This truss ha load of 12.0 overhangs n 6) Plates check dabut its cer 7) Gable requir 8) Gable studs 9) This truss ha chord live loa 10) * This truss h on the bottor 3-06-00 tall th chord and ar 11) All bearings 12) Provide mecc bearing plate 13) N/A 	as been designed for g psf or 2.00 times flat ro on-concurrent with oth keed for a plus or minus iter. es continuous bottom spaced at 4-0-0 oc. as been designed for a ad nonconcurrent with has been designed for m chord in all areas wh by 2-00-00 wide will fit ny other members. are assumed to be SP shanical connection (by e capable of withstandi	eater of min roo of load of 15.4 p r live loads. 5 degree rotation hord bearing. 10.0 psf bottom any other live load a live load of 20. ere a rectangle between the bott No.3 . others) of truss ig 6 lb uplift at jo	f live psf on n ads. Opsf com to bint 5.						
1) 2) 3)	Wind: ASC Vasd=95n II; Exp B; Exterior(2 zone; can and right e MWFRS f grip DOL= Truss des only. For see Stand or consult TCLL: AS Plate DOL 1.15 Plate Exp.; Ce=	CE 7-16; Vult=120mpl nph; TCDL=6.0psf; BC Enclosed; MWFRS (e E) 0-3-11 to 3-3-11, Ir tillever left and right ey- exposed;C-C for mem or reactions shown; L =1.60 igned for wind loads in studs exposed to win- lard Industry Gable Er qualified building des CE 7-16; Pr=20.0 psf; = DOL = 1.15); Pg=20.0 psf; = DOL = 1.15); Is=1.0; 1.0; Cs=1.00; Ct=1.10	h (3-second gust) CDL=6.0psf; h=25ft; C nvelope) and C-C tterior (1) 3-3-11 to 8- kposed; end vertical h bers and forces & umber DOL=1.60 plat in the plane of the trus d (normal to the face) id Details as applicab igner as per ANSI/TP (roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO Rough Cat B; Partiall)	 Cat. 14) This truss ha load of 250.0 2-1 panels and a set of 250.1 2-	as been designed for a Db live and 3.0lb dead at all panel points along rd, nonconcurrent with ssign requires that a m bod sheathing be applie (2" gypsum sheetrock t hord. rd Industry Piggyback T innection to base truss ified building designer. Standard	moving concent ocated at all min the Top Chord any other live loa nimum of 7/16" d directly to the e applied directl russ Connectior as applicable, o	rated d and ads. top y to n		UN TITLET		SEA 0363	L 22 ILBER I	
	Design a truss s	NING - Verify design paramet valid for use only with MiTel system. Before use, the buil design. Bracing indicated i	ters and READ NOTES ON 7 (® connectors. This design ding designer must verify th s to prevent buckling of indi	THIS AND INCLUDED MITEK R is based only upon parameters ie applicability of design parameters vidual truss web and/or chord r	EFERENCE PAGE MII-7473 shown, and is for an individu eters and properly incorporat members only. Additional ter	ev. 1/2/2023 BEFOR al building compone this design into the porary and permane	E USE. nt, not overall						

Design valid for use only with Mi lex® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	V6	Valley	1	1	Job Reference (optional)	170445471

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:42 ID:e_esMCV1KhGpMTjo3pJK9gyFgwP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-8-4

Scale - 1.20 7

TOP CHORD

BOT CHORD

this design.

grip DOL=1.60

WEBS

NOTES

1)

2)

3)

4)

Tension

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

2-4=-781/140

1-2=-296/673, 2-3=-127/674

1-4=-554/242, 3-4=-556/121

Unbalanced roof live loads have been considered for

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

Wind: ASCE 7-16; Vult=120mph (3-second gust)

II; Exp B; Enclosed; MWFRS (envelope) and C-C

Exterior(2E) 0-0-6 to 3-0-6, Interior (1) 3-0-6 to 4-4-8, Exterior(2R) 4-4-8 to 7-4-8, Interior (1) 7-4-8 to 8-8-10 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

00010 - 1.20.1														
Loading	(psf)	Spacing	2-0-0		CSI	0.54	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP	
Snow (Pf/Pg) TCDL BCLL BCDL	15.4/20.0 10.0 0.0* 10.0	Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2021	I/TPI2014	BC WB Matrix-AS	0.34 0.73 0.17	Vert(TL) Horiz(TL)	n/a -0.01	3	n/a n/a	999 n/a	Weight: 30 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea Rigid ceiling directly a (size) 1=8-8-4, 3= Max Horiz 1=-44 (LC Max Uplift 1=-251 (LC Max Grav 1=252 (LC (LC 51)	thing directly applied applied. =8-8-4, 4=8-8-4 12) 5 51), 3=-2 (LC 51) 47), 3=5 (LC 54), 4=	5) 6) 7) 8) 9) 10 853 11	Unbalanced design. Plates check about its cen Gable requirn Gable studs This truss ha chord live loa) * This truss h on the bottor 3-06-00 tall b chord and ar) All bearings a	snow loads have ed for a plus or i ter. es continuous bo spaced at 4-0-0 is been designer ad nonconcurren nas been designer n chord in all are by 2-00-00 wide y other member are assumed to	e been cor minus 5 de ottom chor oc. d for a 10.0 t with any ed for a liv eas where will fit betw s. be SP No.	nsidered for t egree rotation d bearing. D psf bottom other live loa e load of 20. a rectangle ween the bott 3.	his n ads. Opsf com						
FORCES	(lb) - Maximum Comp	pression/Maximum	12) Provide med	hanical connecti	on (hy oth	o . ers) of truss	to						

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 251 lb uplift at joint 1, 2 lb uplift at joint 3 and 2 lb uplift at joint 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO A MiTek Affiliat

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	P2A	Monopitch	1	1	Job Reference (optional)	170445472

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:38 ID:f3q1W3ILCJhiE5gDLsW2Pdy5o0k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:41.5

Plate Offsets (X, Y): [2:0-4-5,0-0-5]

Loading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL BCDL	(pst) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	2014	TC BC WB Matrix-AS	0.48 0.64 0.23	Vert(LL) Vert(CT) Horz(CT) Wind(LL)	-0.07 -0.09 0.01 0.02	(IOC) 7-12 7-12 2 7-12 7-12	/defi >999 >999 n/a >999	L/d 360 240 n/a 240	Weight: 49 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD 30T CHORD SLIDER BRACING TOP CHORD 30T CHORD 30T CHORD 30T CHORD 30T CHORD WEBS 10 Wind: ASK Vasd=95m II; Exp B; Exterior(2 zone; can and right e members Lumber D 21 TCLL: AS Plate DOL 1.15 Plate Exp; Ce= 31 Unbalance design.	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood shea except end verticals. Rigid ceiling directly (size) 2=0-3-0, 6 Max Horiz 2=96 (LC Max Uplift 2=-80 (LC Max Grav 2=487 (LC (lb) - Maximum Com Tension 1-2=0/26, 2-4=-522/ 5-6=-289/73 2-7=-323/460, 6-7=-: 4-6=-502/316, 4-7=- CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter tilever left and right exp exposed; porch left and and forces & MWFRS (en E) -1-0-0 to 2-0-0, Inter tilever left and right exp exposed; porch left and and forces & MWFRS (en E) -1-0; pg=20.0 psf; F DOL = 1.15); Is=1.0; F 1.0; Cs=1.00; Ct=1.10 ed snow loads have be	I-6-0 athing directly applied applied. 5= Mechanical 15) 12), 6=-64 (LC 12) 240), 6=441 (LC 44) pression/Maximum 247, 4-5=-87/55, 323/460 58/325 (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C ior (1) 2-0-0 to 9-9-1 bosed ; end vertical le right exposed; C-C f for reactions shown; L=1.60 roof LL: Lum DOL=1. If=15.4 psf (Lum DOI Rough Cat B; Partiall en considered for thi	 5) Plate abou abou 6) This chorn 7) * Thi on the second of the s	es checku tits cent truss har d live loa is truss h ne bottom i-00 tall b d and an rings are er to girdde ride mech ing plate H2.5A S mmende IFT at jt(s s not com truss har of 250.0 els and al om Chordo ctural wood d and 1/2 bottom ch casE(S)	ed for a plus or mir ter. s been designed fo d nonconcurrent w as been designed n chord in all areas y 2-00-00 wide wil y other members. assumed to be: Jo r(s) for truss to tru- nanical connection capable of withsta impson Strong-Tie d to connect truss s) 2. This connecti- sider lateral forces is been designed fo b live and 3.0lb de t all panel points al d, nonconcurrent w sign requires that a od sheathing be ap " gypsum sheetro nord. Standard	nus 5 de or a 10.0 vith any for a liv where I fit betw bint 2 SF ss conne to bear on is for or a move ad loca ong the vith any a minim oplied di ck be ap	egree rotation opsf bottom other live loa e load of 20.0 a rectangle veen the botto P No.2 . ections. ers) of truss t 4 lb uplift at ju- ctors ng walls due uplift only ar ving concentri- ted at all mid Top Chord a other live loa um of 7/16" rectly to the t oplied directly	ds.)psf om oint to ated und ds. op r to		W. HILLING		SEA 0363	ROLU 22	Mannung

- Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G 11111111

December 31,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	P2G	Monopitch Supported Gable	1	1	Job Reference (optional)	70445473

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:39 ID:biTCVZXGj84?00dtyLMVgdy5o0R-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:41.5

Plate Offsets (X, Y): [2:0-4-5,0-0-5]

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.54	DEFL Vert(LL)	in -0.12	(loc) 12-13	l/defl >997	L/d 360	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.61	Vert(CT)	-0.19	12-13	>609	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.20	Horz(CT)	0.04	2	n/a	n/a			
BCLL	0.0*	Code	IRC202	I/TPI2014	Matrix-AS		Wind(LL)	0.10	12-13	>999	240			
BCDL	10.0											Weight: 55 lb	FT = 20%	
			3)	TCLL: ASCE	7-16: Pr=20.0 p	sf (roof LL	: Lum DOL=	1.15						
TOP CHORD	2x4 SP No.2		-,	Plate DOL=1	.15); Pg=20.0 ps	sf; Pf=15.4	psf (Lum D0	OL =						
BOT CHORD	2x4 SP No.2			1.15 Plate D	OL = 1.15); Is=1.	.0; Rough	Ċat B; Partia	ally						
WEBS	2x4 SP No.3			Exp.; Ce=1.0	; Cs=1.00; Ct=1	.10								
OTHERS	2x4 SP No.3		4)	Unbalanced	snow loads have	e been cor	sidered for t	his						
SLIDER	Left 2x4 SP No.3 1	1-6-0		design.										
BRACING			5)	This truss ha	s been designed	d for greate	er of min root	f live						
TOP CHORD	Structural wood she	athing directly applie	d,	load of 12.0 overhangs ne	osf or 2.00 times on-concurrent wi	s flat roof lo ith other liv	ad of 15.4 p e loads.	sf on						
BOT CHORD	Rigid ceiling directly	applied.	6)	Plates check	ed for a plus or r	minus 5 de	gree rotation	n						
REACTIONS	(size) 2=0-3-0.9	= Mechanical		about its cen	ter.									
	Max Horiz 2=96 (LC	15)	7)	Gable studs	spaced at 2-0-0	00.								
	Max Uplift 2=-80 (LC	(12) 9=-64 (I C 12)	8)	This truss ha	s been designed	1 for a 10.0	pst bottom							
	Max Grav 2=487 (LC	C 55). 9=441 (LC 47)	0)	* This truck h	a nonconcurren	d for a liv	other live loa	aus. Opef						
FORCES	(lb) - Maximum Com	pression/Maximum	9)	on the bottor	n chord in all are	as where	e luau ul 20.	opsi						
	Tension			3-06-00 tall b	v 2-00-00 wide v	will fit betw	een the bott	om						
TOP CHORD	1-2=0/26, 2-4=-391/	154, 4-5=-381/165,		chord and ar	v other member	S.	0011 110 2011							
	5-6=-364/181, 6-7=-3	337/198, 7-8=-76/64	, 10) Bearings are	assumed to be:	Joint 2 SF	P No.2 .							
	8-9=-210/124		11) Refer to gird	er(s) for truss to	truss conr	ections.							
BOT CHORD	2-13=-242/338, 12-1	3=-242/338,	12) Provide mec	hanical connecti	on (by oth	ers) of truss	to						
	11-12=-242/338, 10-	11=-242/338,		bearing plate	capable of with	standing 6	4 lb uplift at j	joint					1111	
	9-10=-242/338			9.								White CA	Dalle	
WEBS	7-10=-186/389, 6-11	=-120/129,	13) One H2.5A S	Simpson Strong-	Tie conneo	ctors					athor	10/11	•
	5-12=-132/118, 4-13	=-108/141, 7-9=-682	2/413	recommende	d to connect tru	ss to beari	ng walls due	e to			1	OTIESS	in all	-
NOTES				UPLIFT at jt(s) 2. This conne	ction is for	uplift only a	nd		/	$\leq \leq$	in the second	Mail	
1) Wind: AS	CE 7-16; Vult=120mph	(3-second gust)		does not con	sider lateral forc	es.		اممدمه		4	V	K /	-	*
Vasd=95r	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; C	Cat. 14) This truss ha	s been designed		ing concenti			-				-
II; Exp B;	Enclosed; MVVERS (en	ivelope) and C-C	A 4 0	nanels and a	t all nanel nointe	along the	Ton Chord	and		=	:	SEA	L :	1
Exterior(2	\equiv) - 1-U-U to 1-11-8, Inter-	enor (1) 1-11-8 to 9-9	g−1Z oft	Bottom Chor	d nonconcurren	t with any	other live los	ads		E		0363	22	5
and right	exposed porch left and	right exposed C-C	for 15) This truss de	sian requires the	at a minim	um of 7/16"			-		. 0505		- 5
membere	and forces & MW/FRS	for reactions shown	0 10	structural wo	od sheathing be	applied di	rectly to the	top				N		-
Lumber D	OL=1.60 plate grin DO	L=1.60		chord and 1/	2" gypsum sheet	trock be a	plied directly	y to		S	2.	N.E.	-Rick	2
2) Truss des	ianed for wind loads in	the plane of the trus	s	the bottom cl	nord.						25	GIN	EFICA	
	stude exposed to wind	(normal to the face)	ິ ເ		Standard						11	10	" OF N	

 Iruss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

LOAD CASE(S) Standard

December 31,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	T2	Common	3	1	Job Reference (optional)	170445474

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:42 ID:whJC00A9KZe7_10?4iloOFyFglo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:50.3 Plate Offsets (X, Y): [1:Edge,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.70 0.49 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.20 -0.27 0.00 0.01	(loc) 4-5 4-5 4 4-5	l/defl >601 >440 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 72 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 4=0-3-8, 6 Max Horiz 6=146 (LC Max Grav 4=475 (LC (lb) - Maximum Com Tension 1-2=-336/86, 2-3=-1 3-4=-293/103 5-6=-210/204, 4-5=- 2-4=-361/158, 2-5=-	athing directly applied applied. 6=0-3-8 C 13) C 33), 6=457 (LC 34) pression/Maximum 55/137, 1-6=-593/62, 122/248 45/161, 1-5=0/335	 6) This truss ha chord live los chord live los on the botton 3-06-00 tall l chord and an al end of 250. 9) This truss ha load of 250. 9) This truss ha bottom Chord and a a Bottom Chord and a l the bottom chord and 1/ the bottom chord and 1/ the bottom chord and 1/ 	as been designed for as been designed m chord in all areas by 2-00-00 wide wil by other members, are assumed to be as been designed for bib live and 3.0lb do at all panel points a id, nonconcurrent w sign requires that a cod sheathing be ap 2" gypsum sheetro hord. Standard	or a 10. vith any for a liv s where I fit betw with BC SP SS or a more ead locas long the vith any a minim oplied d ck be a	D psf bottom other live loa e load of 20. a rectangle veen the bott DL = 10.0ps	ads. Opsf f. rated d and ads. top y to					

 Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 4-8-15 to 7-8-15, Interior (1) 7-8-15 to 10-7-11, Exterior(2R) 10-7-11 to 13-7-11, Interior (1) 13-7-11 to 14-6-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.

SEAL 036322 December 31,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	VA3	Valley	2	1	Job Reference (optional)	170445475

10-7-3

Structural, LLC, Thurmont, MD - 21788,

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:43 ID:SKQrvqypwsbBSYn8xs?mqByFgx6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

43 Page: 1 ?f

10-7-3

Scale = 1:50.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-AS	0.42 0.79 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 1=10-7-1 7=10-7-1 Max Horiz 1=146 (LI Max Uplift 1=-2 (LC (LC 16), I Max Grav 1=291 (LI 6=440 (LI	eathing directly applied , , , , , , , , , , , , ,	3) 4) 5) -10, 7) 8) =-24	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen Gable requir Gable studs This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and an	E 7-16; Pr=20.0 ps 1.15); Pg=20.0 ps OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.7 snow loads have ted for a plus or m ter. tes continuous bot spaced at 4-0-0 o us been designed ad nonconcurrent has been designed and honconcurrent has been designed and honconcurrent has been designed and honconcurrent has been designed and honconcurrent has been designed the hord in all areas by 2-00-00 wide w by other members are assumed to by	f (roof LL ; Pf=15.4 ; Rough 0 been cor inus 5 de tom chor c. for a 10.1 with aniv s where ill fit betv , with BC a SP No	L: Lum DOL= 4 psf (Lum DC Cat B; Partia asidered for the egree rotation rd bearing. 0 psf bottom other live load of 20.0 a rectangle veen the bottod DL = 10.0psf 3	1.15 DL = Illy nis ds. Dpsf om				vveignt: 48 ib	FT = 20%
FORCES TOP CHORD	(lb) - Maximum Con Tension 1-2=-300/185, 2-3=- 4-5=-284/76 1-7=-90/253, 6, 7= 9	npression/Maximum 209/159, 3-4=-121/9	5,) Provide mec bearing plate 5, 2 lb uplift a at joint 7. 	hanical connectio e capable of withs at joint 1, 24 lb up	n (by oth anding 1 ift at join	ers) of truss t 0 lb uplift at j t 6 and 8 lb u	o oint plift					
WEBS	3-6=-338/146, 2-7=-	·323/95	12) Beveled plat surface with) This truss be	e or shim required truss chord at join as been designed	to provi t(s) 1. for a mov	de tull bearing	g ated				mm	000

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 10-5-14 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affi 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof
2412-1523-A	C1G	Common Supported Gable	1	1	Job Reference (optional)

Scale = 1:43.7

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:34 ID:kBRUa_tw3u5VYfBhwF2?4VyFgXN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

6-0-0	12-0-0	
6-0-0	6-0-0	7

Plate Offsets (X, Y): [2:0-2-0,0-1-12], [8:0-2-0,0-1-12], [10:Edge,0-1-8]

zone; cantilever left and right exposed ; end vertical left

and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

		, 3,1	0,									-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) S 20.0 P 15.4/20.0 Lu 10.0 R 0.0* C 10.0	pacing Plate Grip DOL umber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.51 0.52 0.12	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.09 -0.11 0.01 0.04	(loc) 14-15 14-15 10 14-15	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 67 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheathi except end verticals. Rigid ceiling directly app (size) 10=0-3-0, 16 Max Horiz 16=95 (LC 16) 	ing directly applied plied. ≔0-3-0 5)	3) 4) , 5) 6)	Truss design only. For stu see Standar or consult qu TCLL: ASCE Plate DOL=' 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0	hed for wind loads uds exposed to wir d Industry Gable E alified building des 7-16; Pr=20.0 psf; OL = 1.15); Is=1.0 0; Cs=1.00; Ct=1.1 snow loads have t as been designed f psf or 2.00 times fi	in the pl nd (norm nd Deta signer a f (roof Ll Pf=15.4 ; Rough 0 peeen con or great lat roof l	ane of the tru al to the face ils as applica s per ANSI/T :: Lum DOL= 4 psf (Lum DC Cat B; Partia asidered for t er of min rool bad of 15.4 p	lss), ble, PI 1. 1.15 OL = ally his f live sf on					
FORCES	(lb) - Maximum Compre	ession/Maximum	7)	overhangs n Plates check	on-concurrent with ted for a plus or mi	i other li inus 5 d	ve loads. egree rotatior	n					
TOP CHORD	2-16=-449/180, 1-2=0/5 3-4=-408/189, 4-5=-397 6-7=-408/189, 7-8=-462 8-10=-449/180	52, 2-3=-462/167, 7/224, 5-6=-397/223 2/167, 8-9=0/52,	8) 3, 9)	Truss to be f braced again Gable studs	iuly sheathed from ist lateral moveme spaced at 2-0-0 or on been designed f	n one fac ent (i.e. c c.	e or securely liagonal web)	/).					
BOT CHORD	15-16=-74/313, 14-15=- 13-14=-74/313, 12-13=- 11-12=-74/313, 10-11=-	-74/313, -74/313, -74/313	11)	chord live loa * This truss l	ad nonconcurrent v nas been designed	with any I for a liv	other live load e load of 20.0	ads. Opsf					
WEBS	5-13=-139/319, 4-14=-1 3-15=-125/125, 6-12=-1 7-11=-125/125	143/105, 143/105,	12)	3-06-00 tall I chord and and All bearings	by 2-00-00 wide wi by other members. are assumed to be	Il fit betv	veen the bott	om			mi	WITH CA	ROUT
NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=95r II; Exp B; Exterior(2 Exterior(2)	ced roof live loads have bee gn. ICE 7-16; Vult=120mph (3- mph; TCDL=6.0psf; BCDL= Enclosed; MWFRS (envel 2E) -1-0-0 to 2-0-0, Interior 2R) 6-0-0 to 2-0-0, Interior	en considered for second gust) =6.0psf; h=25ft; Ca lope) and C-C (1) 2-0-0 to 6-0-0, (1) 9-0-0 to 13-0-0	13) t. 14)	This truss ha load of 250.0 panels and a Bottom Chor This truss de structural wo chord and 1/ the bottom c	as been designed f Dib live and 3.0lb d at all panel points a d, nonconcurrent i sign requires that bod sheathing be a '2" gypsum sheetro hord.	or a mo ead loca along the with any a minim pplied d ock be a	ving concentr ated at all mice Top Chord a other live loa um of 7/16" irrectly to the pplied directly	rated I and ads. top y to		V. contraction	a de	SEA 0363	L 22

LOAD CASE(S) Standard

December 31,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	C1	Common	4	1	Job Reference (optional)	170445477

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:33 ID:0SGQn78fQ9P9kH0yrxSh6eyFgYK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-0-0	12-0-0
Γ	6-0-0	6-0-0

Scale = 1:43.7 Plate Offsets (X, Y): [6:Edge,0-1-8]

Loading ICLL (roof) Snow (Pf/Pg) ICDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.80 0.76 0.12	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.14 0.00 0.02	(loc) 7-8 7-8 6 7-8	l/defl >999 >977 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS 3RACING TOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 6=0-3-0, 8 Max Horiz 8=95 (LC Max Grav 6=537 (LC	athing directly applied applied. 3=0-3-0 15) C 2), 8=537 (LC 2)	5) 6) 1, 7) 8) 9)	This truss ha load of 12.0 overhangs n Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar	is been designed f psf or 2.00 times fl on-concurrent with ed for a plus or mi ter. Is been designed f ad nonconcurrent v as been designed n chord in all areas by 2-00-00 wide wi by other members. are assumed to be	or greate at roof lo other liv nus 5 de or a 10.0 with any l for a liv s where Il fit betw s SP No.	er of min rooi oad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott 2.	f live osf on n ads. Opsf tom						
FORCES FOP CHORD BOT CHORD WEBS NOTES I) Unbalance this design	(lb) - Maximum Com Tension 1-2=0/52, 2-3=-484/ 4-5=0/52, 2-8=-482/ 7-8=-130/323, 6-7=- 3-7=-79/314, 2-7=-7 ed roof live loads have	199, 3-4=-484/199, 198, 4-6=-482/198 98/323 1/216, 4-7=-71/216 been considered for	5) 10) 11) LO	 This truss has load of 250.0 panels and a Bottom Chor This truss de structural wo chord and 1/ the bottom c Charl CASE(S) 	is been designed f bib live and 3.0lb d it all panel points a d, nonconcurrent v sign requires that od sheathing be a 2" gypsum sheetro hord. Standard	or a move ead location along the with any a minim pplied di ock be a	ving concentured at all mice ted at all mice Top Chord a other live loa um of 7/16" rectly to the oplied directly	rated d and ads. top ly to						

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0. Interior (1) 2-0-0 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 13-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	C1A	Common	1	1	Job Reference (optional)	170445478

Scale = 1:41.8

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:34 ID:nvekBcQ0YjrgX3RQKLNdg_yFgZG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1	6-0-0	12-0-0
I	6-0-0	6-0-0

Plate Offsets (X, Y): [1:Edge,0-1-12], [3:Edge,0-1-12], [4:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.76 0.84 0.12	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.12 -0.14 0.00 0.02	(loc) 5-6 5-6 4 5-6	l/defl >999 >977 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 65 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sheat except end verticals. Rigid ceiling directly (size) 4=0-3-0, 6 Max Horiz 6=82 (LC Max Uplift 4=-36 (LC Max Grav 4=487 (LC	athing directly applie applied. 56) 50), 6=-36 (LC 51) 290), 6=487 (LC 87)	5) 6) 7) ed, 8) 9)	Plates check about its cen This truss ha chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a One H2.5A S recommende UPLIFT at jt(and does not	ed for a plus or r ter. s been designed ad nonconcurren nas been designed n chord in all are by 2-00-00 wide v yo other member are assumed to l Simpson Strong- id to connect tru: s) 6 and 4. This	ninus 5 de l for a 10.0 t with any ed for a liv as where will fit betw s. be SP No. Fie connec ss to beari connection forces	egree rotation) psf bottom other live loa e load of 20.0 a rectangle veen the botto 2. ctors ng walls due n is for uplift	n ods. Opsf om to only					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	(lb) - Maximum Com Tension 1-2=-492/215, 2-3=-4 3-4=-433/196 5-6=-179/259, 4-5=- 2-5=-68/311, 1-5=-94 ed roof live loads have	pression/Maximum 492/218, 1-6=-433/1 152/259 4/227, 3-5=-97/227 been considered for	10 92, 11	This truss ha load of 250.0 panels and a Bottom Chor This truss ha Ib. Lumber D truss to resis to 12-0-0 for This truss de	s been designed lb live and 3.0lb t all panel points d, nonconcurren s been designed OL=(1.33) Plate t drag loads alor 8.3 plf. sign requires that	I for a mov dead loca along the t with any I for a tota grip DOL: ag bottom	ring concentr ted at all mid Top Chord a other live loa I drag load of =(1.33) Conr chord from 0 um of 7/16"	rated and ads. f 100 nect -0-0				24444	

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-12 to 3-1-12, Interior (1) 3-1-12 to 6-0-0, Exterior(2R) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.

) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	B2	Monopitch	7	1	Job Reference (optional)	170445479

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:32 ID:Abdury0Ft4E7cEZ7X_IQzWyFgb4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.2

Plate Offsets (X, Y): [2:0-5-8,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-AS	0.71 0.91 0.51	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.16 -0.20 0.01 0.00	(loc) 7-8 7-8 7 8-9	l/defl >857 >698 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except Structural wood sheat except end verticals. Rigid ceiling directly (size) 7= Mechaat Max Horiz 9=157 (LC Max Uplift 7=-40 (LC Max Grav 7=536 (LC	* 9-2:2x6 SP No.2 athing directly applied applied. nical, 9=0-3-8 2 16) 16) 2 23), 9=538 (LC 2)	5) 6) 7) 1, 8) 9) 10)	Plates check about its cen This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an Bearings are Refer to girda Provide mecl bearing plate 7	ed for a plus or min ter. s been designed fo id nonconcurrent wi as been designed f n chord in all areas y 2-00-00 wide will y other members. assumed to be: Joi er(s) for truss to trus nanical connection capable of withstar	us 5 de r a 10.0 ith any or a liv where fit betv int 9 SI ss conr (by oth nding 4	egree rotation opsf bottom other live loa e load of 20.0 a rectangle veen the botto P No.2. nections. ers) of truss t 0 lb uplift at j	ds.)psf om o					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=0/51, 2-3=-517/0 4-5=-11/0, 2-9=-485/ 8-9=-268/333, 7-8=-1 3-8=0/346, 3-7=-543, 4-7=-304/77	pression/Maximum 0, 3-4=-115/71, 48 117/438, 6-7=0/0 /145, 2-8=-37/300,	11) 12)	This truss ha load of 250.0 panels and a Bottom Chorr This truss de structural wo chord and 1/2 the bottom ch	s been designed fo lb live and 3.0lb dea t all panel points ald d, nonconcurrent wi sign requires that a od sheathing be ap "gypsum sheetroo ord.	r a mov ad loca ong the th any minim plied d k be a	ving concentra ted at all mid Top Chord a other live loa um of 7/16" rectly to the t oplied directly	ated Ind ds. op to					
1) Wind: ASC Vasd=95m	CE 7-16; Vult=120mph hph; TCDL=6.0psf; BCI	(3-second gust) DL=6.0psf; h=25ft; Ca	LO/ at.	AD CASE(S)	Standard							WH CA	ROUL

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 12-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

G

December 31,2024

mmm

SEAL

036322

WALLARD I I

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

CITICO MANDALINE

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	B2G	Monopitch	1	1	Job Reference (optional)	70445480

7¹²

2x4 II 22 21

2x4 II

11-8-12

11-8-12

0.37

0.19

0.23

2x4 u 5

2x4 🛛

2x4 II Δ 19

16 26 15 27 14 28 13 29 12 30 11 10

2x4 II

CSI

TC

BC

WB

Exp.; Ce=1.0; Cs=1.00; Ct=1.10

Matrix-AS

Wind: ASCE 7-16; Vult=120mph (3-second gust)

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner

(3E) -1-0-0 to 2-0-0, Exterior(2N) 2-0-0 to 12-0-0 zone;

cantilever left and right exposed ; end vertical left and

right exposed;C-C for members and forces & MWFRS

Truss designed for wind loads in the plane of the truss

only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable

or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL =

1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on

for reactions shown; Lumber DOL=1.60 plate grip

3x4 II 3 18 2

3x4 II

20

2x4

2x4 🛚

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

2x4 II

2x4 II 12-0-0

+

0-3-4

in

n/a

n/a

-0.02

(loc)

9

F

8-0-0

Spacing

Code

Structural wood sheathing directly applied,

Max Uplift 9=-39 (LC 46), 10=-232 (LC 60),

Max Grav 9=132 (LC 47), 10=60 (LC 59),

17=314 (LC 62)

(lb) - Maximum Compression/Maximum

1-2=0/47, 2-3=-371/181, 3-4=-265/130,

7-8=-81/64, 8-9=-22/66, 2-17=-296/79

12-13=0/0, 11-12=0/0, 10-11=0/0

4-5=-220/107, 5-6=-162/78, 6-7=-106/73,

16-17=0/0, 15-16=0/0, 14-15=0/0, 13-14=0/0,

7-12=-276/109, 6-13=-279/89, 5-14=-281/91,

4-15=-285/67, 3-16=-283/187, 8-11=-171/44

9=12-0-0, 10=12-0-0, 11=12-0-0,

12=12-0-0, 13=12-0-0, 14=12-0-0,

15=12-0-0, 16=12-0-0, 17=12-0-0

11=-60 (LC 59), 12=-12 (LC 16),

13=-9 (LC 16), 14=-16 (LC 16),

16=-107 (LC 16), 17=-1 (LC 14)

11=415 (LC 60), 12=332 (LC 67)

13=334 (LC 66), 14=333 (LC 65),

15=334 (LC 64), 16=329 (LC 63),

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

10.0

0.0

10.0

15 4/20 0

2x4 SP No.2

2x4 SP No.2

2x4 SP No 3

2x4 SP No.3

Tension

except end verticals

Rigid ceiling directly applied.

Max Horiz 17=158 (LC 16)

2-0-0

1.15

1 15

YES

IRC2021/TPI2014

DOL=1.60

1)

2)

3)

4)

5)

6)

7)

8)

desian.

about its center.

Structural LLC Thurmont MD - 21788

Scale = 1:57.2 Loading

TCLL (roof)

TCDL

BCLL

BCDL

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

REACTIONS (size)

LUMBER

TOP CHORD

BOT CHORD

Snow (Pf/Pg)

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Mon.Dec.30.09:20:33 ID:eWfrUUqDe9DPhnL3bd0gK8yFgbK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

8-0-0

-1-0-0 12-0-0 11-8-12 ++ 11-8-12 1-0-0 0-3-4 12-0-0 2x4 II 9

2x4 u 8 24

7 23 6

Page: 1

14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

Weight: 82 lb

PLATES

MT20

GRIP

244/190

FT = 20%

15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

l/defl

n/a 999

n/a 999

n/a n/a

L/d

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters with Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

overhands non-concurrent with other live loads

Gable requires continuous bottom chord bearing.

Plates checked for a plus or minus 5 degree rotation

Truss to be fully sheathed from one face or securely

- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1 lb uplift at joint 17, 232 lb uplift at joint 10, 39 lb uplift at joint 9, 12 lb uplift at joint 12, 9 lb uplift at joint 13, 16 lb uplift at joint 14, 107 lb uplift at joint 16 and 60 lb uplift at joint 11.
- Varmonter VIIIIIIIIIII SEAL 036322 G mmm December 31,2024

 \cap

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof
2412-1523-A	B1G	Roof Special Supported Gable	1	1	Job Reference (optional)

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:32 ID:MQ5sUhFfRuA6?mQWiSfW1VyFg0d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2-3-8 12-3-8 2-3-8 10-0-0

Scale = 1.34.1

Loading	(psf)	Spacing Blate Grip DOI	2-0-0	CSI	0.59	DEFL	in n/a	(loc)	l/defl	L/d	PLATES	GRIP	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.58	Vert(LL)	n/a	-	n/a	999 999	WI120	244/190	
TCDL	10.0	Rep Stress Incr	YES	WB	0.24	Horiz(TL)	0.00	9	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS									
BCDL	10.0										Weight: 96 lb	FT = 20%	
	2x4 SB No 2		1) Wind: ASC Vasd=95m	E 7-16; Vult=120	mph (3-sec	cond gust)	Cat	13) This	s truss h	as bee	n designed for a	moving concer	ntrated

TOP CHORD BOT CHORD	2x4 SP N 2x4 SP N	o.2 o.2
WEBS	2x4 SP N	o.3 *Except* 15-1:2x4 SP No.2
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural except er	l wood sheathing directly applied, nd verticals.
BOT CHORD	Rigid ceil	ing directly applied.
WEBS	1 Row at	midpt 8-9
REACTIONS	(size)	9=12-3-8, 10=12-3-8, 11=12-3-8, 12=12-3-8, 13=12-3-8, 14=12-3-8, 15=12-3-8
	Max Horiz	15=191 (LC 15)
	Max Uplift	9=-24 (LC 15), 10=-14 (LC 16), 11=-2 (LC 12), 12=-1 (LC 16), 13=-1 (LC 12), 14=-180 (LC 13),
	Max Gray	10=-30(10, 14)
	IVIAX GIAV	11=332 (LC 60), 10=337 (LC 60), 11=332 (LC 64), 12=334 (LC 63), 13=330 (LC 62), 14=345 (LC 61), 15=289 (LC 60)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-15=-61	7/343, 1-2=-323/185, 2-3=-285/175,
	3-4=-246/	/164, 4-5=-207/152, 5-6=-175/146,
	6-7=-173/	/155, 7-8=-100/109, 8-9=-264/51
BOT CHORD	14-15=-4	58/331, 13-14=-110/143,
	12-13=-1	10/143, 11-12=-110/143,
	10-11=-1	10/143, 9-10=-110/143
WEBS	7-10=-279	9/140, 5-11=-276/122,
	4-12=-278	3/101, 3-13=-279/99,
	2-14=-28	5/116, 1-14=-395/681
NOTES		

- II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 7-11-4 to 10-11-4, Exterior(2N) 10-11-4 to 19-11-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing. 6)
- Truss to be fully sheathed from one face or securely 7)
- braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.2 . 12) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 15, 9, 10, 11, 12, 13, and 14. This connection is for uplift only and does not consider lateral forces.

- panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	B1	Roof Special	6	1	Job Reference (optional)	170445482

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:31 ID:YXF0oSNZsHZYqSmdrGM5zqyFg0S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:57

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.62 0.63 0.44	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.33 -0.48 0.00 0.01	(loc) 6-7 6-7 8 6-7	l/defl >433 >299 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 101 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood sheat except end verticals. Rigid ceiling directly (size) 7=0-3-8, 8 Max Horiz 7=114 (LC Max Uplift 8=-28 (LC Max Grav 7=494 (LC	t* 7-1:2x4 SP No.2 athing directly applied applied. i=0-1-8 2 13) 16) 2 48), 8=476 (LC 22)	5) 6) 1, 7) 8) 9) 10)	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and ar Bearings are No.3. Bearing at jo using ANSI/T designer sho Provide med bearing plate bearing plate One H2.5A S	s been designed ad nonconcurrent has been designen n chord in all aree y 2-00-00 wide w y other members assumed to be: , int(s) 8 considers 'PI 1 angle to gra uld verify capacit hanical connectio at joint(s) 8.	for a 10.0 with any d for a liv as where vill fit betw Joint 7 SF parallel t in formula y of beari n (by oth	 psf bottom other live load olad of 20.1 a rectangle reen the bott SS , Joint & o grain value a. Building ng surface. ers) of truss to store 	ids. Opsf om s SP					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-110/63, 2-3=-24 4-5=-131/484, 1-7=-2 6-7=-181/345, 5-6=-4 2-7=-440/56, 2-6=-12 3-5=-515/103, 4-8=-4	pression/Maximum 91/0, 3-4=-110/38, 294/46 57/200 74/173, 3-6=0/428, 493/158	11)	recommende UPLIFT at jt(does not con This truss ha load of 250.0 panels and a Bottom Chor	s) 8. This connect sider lateral force s been designed lb live and 3.0lb of t all panel points d, nonconcurrent	s to beari tion is for s. for a mov dead loca along the with any	ng walls due uplift only an ing concentri ted at all mic Top Chord a other live loa	to nd rated I and uds.					
NOTES 1) Wind: AS(Vasd=95n II; Exp B;	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en	(3-second gust) DL=6.0psf; h=25ft; Ca velope) and C-C	12) at.	This truss de structural wo chord and 1/2 the bottom cl	sign requires that od sheathing be a 2" gypsum sheetr nord.	t a minim applied di rock be ap	um of 7/16" rectly to the oplied directly	top y to				TH CA	RO

- Exterior(2E) 7-11-4 to 10-11-4, Interior (1) 10-11-4 to 19-7-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) Plates checked for a plus or minus 5 degree rotation about its center.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	P2	Monopitch	3	1	Job Reference (optional)	170445483

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:38 ID:QPuKuE0MIR6Kp9hZII4uI3y5o?p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:45.5

Plate Offsets (X, Y): [2:0-4-5,0-0-5]

											_			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.65 0.85 0.49	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.14 -0.18 0.01 0.03	(loc) 6-7 6-7 2 7-13	l/defl >999 >856 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 68 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood she except end verticals Rigid ceiling directly (size) 2=0-3-0, 1 Max Horiz 2=95 (LC Max Uplift 2=-87 (LC Max Grav 2=593 (LC	I-6-0 athing directly applie applied. 15=0-1-8 12) : 12), 15=-92 (LC 12) 2 2), 15=515 (LC 23)	4) 5) 6) d, 7) 8) 9)	This truss ha load of 12.0 y overhangs nu Plates check about its cen This truss ha chord live loa * This truss h on the botton 3-06-00 tall b chord and an Bearings are SP No.3. Bearing at jo using ANSI/T	s been designed f por-concurrent with ed for a plus or m ter. is been designed f ad nonconcurrent has been designed in chord in all area by 2-00-00 wide wi yo other members. assumed to be: J int(s) 15 considers FPI 1 angle to grai	for greate lat roof lo n other liv inus 5 de for a 10.0 with any d for a live s where ill fit betw loint 2 SF s parallel n formula	er of min roo bad of 15.4 p re loads. agree rotation op sf bottom other live loa e load of 20. a rectangle reen the bott P No.2, Join to grain valu a. Building	f live lisf on n ads. Opsf com t 15 ue						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=0/26, 2-4=-738/2 6-8=-157/444, 5-8=- 2-7=-313/658, 6-7=- 4-7=-64/354, 4-6=-6	pression/Maximum 228, 4-5=-152/10, 157/444 313/658 43/306, 5-15=-518/2	10) 11) 11	designer sho Provide mect bearing plate One H2.5A S recommende UPLIFT at jt(uld verify capacity hanical connection at joint(s) 15. Simpson Strong-Ti ad to connect truss s) 2 and 15. This	y of beari n (by othe ie connections to beari connections	ng surface. ers) of truss ctors ng walls due on is for uplif	to e to it only						
NOTES 1) Wind: AS Vasd=95r II; Exp B; Exterior(2 zone; can and right members Lumber D 2) TCLL: AS	CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (er E) -1-0-0 to 2-0-0, Inter tilever left and right exp exposed; porch left and and forces & MWFRS IOL=1.60 plate grip DO CC 7-16: Pr=20.0 psf ((3-second gust) DL=6.0psf; h=25ft; C velope) and C-C rior (1) 2-0-0 to 12-6- bosed ; end vertical lid right exposed;C-C f for reactions shown; L=1.60 roof LL: Lum DOL=1	12) at. 4 5ft 13) or 15 LO	and does not This truss ha load of 250.0 panels and a Bottom Chor This truss de structural wo chord and 1// the bottom cl AD CASE(S)	t consider lateral fe s been designed f lb live and 3.0lb d t all panel points a d, nonconcurrent sign requires that od sheathing be a 2" gypsum sheetre hord. Standard	orces. for a mov lead loca along the with any a minimu applied di ock be ap	ting concent ted at all mic Top Chord a other live lor um of 7/16" rectly to the oplied direct	rated d and ads. top y to		Marinin V		SEA 0363	ROUN L	Mannin

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- LOAD CASE(S) Standard

(III) IIIIIII G 11111111 December 31,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof
2412-1523-A	VA4	Valley	1	1	Job Reference (optional)

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:43 ID:tAeP6fBMD?6MsdJ_63MTePyFgwo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

13-5-8

Scale = 1:57.1

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0 15.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2027	I/TPI2014	TC BC WB Matrix-AS	0.52 0.58 0.17	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.01	- 5	n/a n/a n/a	999 999 n/a	MT20 Weight: 64 lb	244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 1=13-5-8, 7=13-5-8 Max Horiz 1=187 (LC Max Uplift 5=-15 (LC 7=-21 (LC Max Grav 1=343 (LC 6=419 (LC	athing directly applied. 5=13-5-8, 6=13-5-8, C 13) 13), 6=-22 (LC 16), 16), 5=321 (LC 55), C 5), 7=535 (LC 33)	3) 4) 6) 7) 8) 9)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cer Gable requir Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tall it chord and ar	: 7-16; $Pr=20.0$ p (.15); $Pg=20.0$ p ($OL = 1.15$); $Is=$ ($CL = 1.00$; $CL =$ ($CL = 1.00$	psf (roof LL psf; Pf=15.4 1.0; Rough te been cor minus 5 de oottom chor o c. d for a 10.0 nt with any ead sor a 10.0 nt with any eas where will fit betw rs, with BC	:: Lum DOL= psf (Lum DC Cat B; Partia sidered for th egree rotation d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the bottv DL = 10.0psf 2	1.15 DL = Illy ds. Dpsf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	11) Provide mec bearing plate	hanical connect	tion (by oth	ers) of truss t 5 lb uplift at i	o oint					
TOP CHORD BOT CHORD WEBS	1-2=-485/257, 2-3=- 4-5=-286/69 1-7=-140/414, 6-7=- 3-6=-326/140, 2-7=-	214/183, 3-4=-126/11 102/114, 5-6=-102/11 367/133	5, 12 4	5, 22 lb uplift) This truss ha load of 250.0 panels and a	t at joint 6 and 2 as been designe Olb live and 3.01 at all panel point	a lb uplift a d for a mov dead loca s along the	it joint 7. ving concentr ited at all mid Top Chord a	ated					

NOTES

- Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-7 to 3-0-7, Interior (1) 3-0-7 to 13-4-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Bottom Chord, nonconcurrent with any other live loads. 13) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof
2412-1523-A	VG4	Valley	1	1	Job Reference (optional)

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:43 ID:DbNS0IrA25STt9bPvTLfzHyFgxF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

13-5-8

Scale = 1:57.1

L oading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 15.4/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.54 0.27 0.22	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0											Weight: 82 lb	FT = 20%	
LUMBER FOP CHORD 30T CHORD WEBS DTHERS 3RACING FOP CHORD 30T CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sheat except end verticals. Rigid ceiling directly (size) 1=13-5-15 10=13-5-1 12=13-5-1 Max Horiz 1=187 (LC Max Uplift 8=-20 (LC 10=-9 (LC 12=-29 (LC Max Grav 1=311 (LC 9=338 (LC 11=339 (L 13=406 (L	athing directly applied applied. 5, 8=13-5-15, 9=13-5- 5, 11=13-5-15 5, 13=13-5-15 7 (13), 9=-12 (LC 16), 16), 11=-10 (LC 16) C 55), 13=-3 (LC 16) C 55), 13=-3 (LC 67), C 64), 12=309 (LC 6 C 64), 12=309 (LC 6 C 55)	1) 1, 2) -15, 3) , 4) 3), 5) 3), 6)	Wind: ASCE Vasd=95mph II; Exp B; Enc (3E) 0-0-0 to cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. Plates check about its cen	7-16; Vult=120mpl ; TCDL=6.0psf; BC closed; MWFRS (e 3-0-0, Exterior(2N) and right exposed l;C-C for members shown; Lumber DC ed for wind loads in ds exposed to winu I ndustry Gable Er alified building des 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 show loads have b ed for a plus or mir ter.	h (3-sec CDL=6.0 nvelope) 3-0-0 t d ; end v and for DL=1.60 h the pla d (norm nd Deta igner as (roof LL Pf=15.4 Rough) een cor	ond gust) Opsf; h=25ft; (J and C-C Cc o 13-4-3 zone retrical left an- rcces & MWFR b plate grip ane of the trus al to the face) ils as applicat s per ANSI/TF psf (Lum DCL=1 psf (Lum DCL=1 sidered for the asidered for the agree rotation	Cat. ormer e; d SS ss ble, e 1.15 DL = lly nis	13) This load pan Bott 14) This stru cho the LOAD (s truss h d of 250. lels and tom Chos s truss d icctural w rd and 1 bottom c	as bee Olb live at all p rd, nor esign r cod sh /2" gyp chord.) Star	n designed for a e and 3.0lb dead anel points along aconcurrent with equires that a m eathing be applie usum sheetrock b ndard	moving conc located at all j the Top Cho any other live nimum of 7/1 ad directly to f is applied directly to f	entrated mid ırd and ! loads. 6" the top ectly to
FORCES	(lb) - Maximum Com	pression/Maximum	6) 7)	Gable require Gable studs	es continuous botto spaced at 2-0-0 oc	om chor	d bearing.							
TOP CHORD	1-2=-400/286, 2-3=-3 4-5=-233/192, 5-6=-7 7-8=-264/41	338/239, 3-4=-287/22 183/173, 6-7=-93/108	8) 21, ^{3,} 9)	This truss ha chord live loa * This truss h on the bottom	s been designed fo d nonconcurrent w as been designed b chord in all areas	or a 10.0 vith any for a liv) psf bottom other live load e load of 20.0 a rectangle	ds.)psf				TH CA	Ropin	,
BOT CHORD	1-13=-151/316, 12-1 11-12=-106/139, 10- 9-10=-106/139, 8-9=	3=-106/139, 11=-106/139, -106/139	10	3-06-00 tall b chord and an All bearings a	y 2-00-00 wide will y other members. are assumed to be	I fit betv	veen the botto	m		4	i)	O FERS	A.	
NEBS NOTES	6-9=-279/154, 5-10= 3-12=-274/78, 2-13=	-278/100, 4-11=-284 -318/110	/84, 11) Provide mecl bearing plate 8, 12 lb uplift joint 11, 29 lb	nanical connection capable of withsta at joint 9, 9 lb uplif uplift at joint 12 a	(by oth inding 2 it at join nd 3 lb i	ers) of truss to 0 lb uplift at jo t 10, 10 lb upl uplift at joint 1	o pint lift at 3.		111111		SEA 0363	L 22	AND DAY
			12)	Beveled plate surface with	e or shim required t russ chord at joint(to provi (s) 1.	de full bearing	9				A CA	EER	A. C.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. GI A. GIL December 31,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	PB1G	Piggyback	1	1	Job Reference (optional)	170445486

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:39 ID:NTDUWIV6Vo8sDVKJ5RNPeayFh_G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:46

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	:1/TPI2014	CSI TC BC WB Matrix-AS	0.26 0.45 0.13	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood shea Rigid ceiling directly (size) 2=17-9-4, 13=17-9-4 16=17-9-4 Max Horiz 2=-88 (LC Max Uplift 12=-15 (L 14=-10 (L 18=-9 (LC Max Grav 2=316 (LC 12=370 (L 14=338 (L 19=370 (L	athing directly applied applied. 10=17-9-4, 12=17-9 4, 14=17-9-4, 15=17-5 4, 18=17-9-4, 19=17-5 14) C 17), 13=-9 (LC 17), C 17), 16=-10 (LC 16) 16), 19=-16 (LC 85 C 83), 13=320 (LC 8 C 81), 15=321 (LC 8 C 79), 18=320 (LC 7 C 77)	2) d. -4, -4, -3-4, 3) -4, 3), -, 2), 0), 5) 8), 6)	 Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E) i Exterior(2R) zone; cantiler and right exp MWFRS for r Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1.6 Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced: design. 	7-16; Vult=120n ; TCDL=6.0psf; closed; MWFRS)-3-11 to 3-3-11 9-8-9 to 12-8-9, ver left and right osed;C-C for me eactions shown 60 ed for wind load ds exposed to w I Industry Gable alified building d 7-16; Pr=20.0 ps DL = 1.15); Is=1. ; Cs=1.00; Ct=1 snow loads have s been designed	nph (3-sec BCDL=6. (envelope, Interior (Interior (1 exposed embers an ; Lumber I s in the pl vind (norm End Deta lesigner a: osf (roof LL sf; Pt=15.4 .0; Rough .10 b been cor	ond gust) Dpsf; h=25ft; C and C-C) and C-C) 12-8-9 to 19- 12-8-9 to 19- end vertical I d forces & DOL=1.60 plat ane of the trus ane of the trus per ANSI/TP :: Lum DOL=1 psf (Lum DOC Cat B; Partial asidered for the er of min roof	Cat. 8-9, 1-7 eft te ss , ole, , 11. 15 L = ly is live	14) This loac pan Bot 15) This stru cho the 16) See Det con LOAD (s truss h d of 250 iels and tom Cho s truss c ictural w rd and 1 bottom e Standa ail for C sult qua CASE(S	as bee .0lb live at all p ord, no lesign rood sh 1/2" gyr chord. ard Indu onnect lified b) Sta	en designed for a e and 3.0lb dead panel points alon nconcurrent with requires that a m eathing be appli posum sheetrock ustry Piggyback i ion to base truss uilding designer. ndard	I moving concentrated located at all mid g the Top Chord and any other live loads. inimum of 7/16" ed directly to the top be applied directly to Truss Connection as applicable, or
FORCES	(lb) - Maximum Com Tension 1-2=0/21, 2-3=-110/7 4-5=-79/69, 5-6=-10 7-8=-79/69, 8-9=-84, 10-11-0/21	pression/Maximum 75, 3-4=-84/64, 6/92, 6-7=-106/91, /64, 9-10=-110/75,	7) 8)	load of 12.0 p overhangs no Plates check about its cen Gable require	osf or 2.00 times on-concurrent wi ed for a plus or r ter. es continuous bo	s flat roof le ith other liv minus 5 de ottom chor	bad of 15.4 ps ve loads. egree rotation d bearing.	f on				WH CA	ROUN
BOT CHORD	2-19=-26/77, 18-19= 15-16=-26/53, 14-15 12-13=-26/53, 10-12	-26/53, 16-18=-26/53 =-26/53, 13-14=-26/5 =-26/77	9) 3, 1(53, 1/	 Gable studs : This truss ha chord live loa * This truss h 	spaced at 2-0-0 s been designed d nonconcurren	oc. d for a 10.0 It with any) psf bottom other live load	ls.		4	i	A J	and the second
WEBS	6-15=-237/7, 5-16=-2 3-19=-307/49, 7-14= 9-12=-307/49	285/53, 4-18=-279/42 -285/53, 8-13=-279/4	<u>2,</u> 12,	on the botton 3-06-00 tall b chord and an	y 2-00-00 wide v y other member	ed for a five eas where will fit betw s.	a rectangle veen the botto	m				SEA	
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	12 13	2) All bearings a 3) N/A	are assumed to I	be SP No.	3.			1111	A A A A A A A A A A A A A A A A A A A		EERAK

- 1) Unbalanced roof live loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

A. G A. GIL December 31,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	PB1	Piggyback	9	1	Job Reference (optional)	170445487

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:39 ID:0EuAuEEIg1N_a7f5pp_ElxyFh_c-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:63.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES	/TEI2014	CSI TC BC WB Matrix AS	0.50 0.95 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 15	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS	GRIP 244/190 187/143
BCDL	10.0	Code	IRC202	/1812014	Matrix-AS							Weight: 89 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood sheat Rigid ceiling directly a (size) 2=17-9-4, 6 9=17-9-4, 1	thing directly applied applied. 5=17-9-4, 8=17-9-4, 11=17-9-4	4) 5) d. 6) 7) 8)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Uhbalanced design. This truss ha load of 12.0 overhangs n All plates are Plates check	7-16; Pr=20.0 ps .15; Pg=20.0 ps OL = 1.15; Is=1.0; Cs=1.00; Ct=1. snow loads have us been designed psf or 2.00 times on-concurrent wit e MT20 plates unil ed for a plus or n	sf (roof LL f; Pf=15.4 0; Rough 10 been cor for greate flat roof le hother liv less other ninus 5 de	: Lum DOL= psf (Lum DC Cat B; Partia sidered for th er of min roof nad of 15.4 p re loads. wise indicate gree rotation	1.15 DL = ally his f live sf on ed.					
	Max Horiz 2=-88 (LC Max Grav 2=360 (LC 8=434 (LC 11=434 (LC	14) 57), 6=360 (LC 69), 67), 9=408 (LC 66), C 65)	9) 9) 10	about its cen Gable requir Gable studs	ter. es continuous bo spaced at 4-0-0 designed	ttom chor c.	d bearing.	I					
FORCES	(lb) - Maximum Comp	pression/Maximum		chord live loa	ad nonconcurrent	with any	other live loa	ads.					
TOP CHORD	1-2=0/21, 2-3=-165/43 4-5=-118/58, 5-6=-16	3, 3-4=-118/59, 5/37, 6-7=0/21	12	* This truss h on the bottor 3-06-00 tall b	nas been designe n chord in all area by 2-00-00 wide w	ed for a liv as where vill fit betv	e load of 20.0 a rectangle reen the botte	0psf om					
BOT CHORD	2-11=-21/102, 9-11=-2 6-8=0/102	21/94, 8-9=0/74,	13	chord and ar	ny other members		3						
WEBS	4-9=-252/9, 3-11=-273 3-9=-99/58, 5-9=-99/5	3/43, 5-8=-273/43, 58	14) This truss ha load of 250.0	is been designed blb live and 3.0lb	for a mov	ring concentr ted at all mid	rated					
NOTES 1) Unbalanc this desig 2) Wind: AS: Vasd=95r II; Exp B; Exterior(2 zone; can and right	eed roof live loads have b n. CE 7-16; Vult=120mph (mph; TCDL=6.0psf; BCD Enclosed; MWFRS (env EE) 0-3-11 to 3-3-11, Inte 2R) 9-8-9 to 12-8-9, Interi tilever left and right expc exposed;C-C for membe	Seen considered for 3-second gust) DL=6.0psf; h=25ft; C relope) and C-C rior (1) 3-3-11 to 9-1 ior (1) 12-8-9 to 19- sed; end vertical le ers and forces &	15 at. 3-9, 16 1-7 eft LC	panels and a Bottom Chor This truss de structural wo chord and 1/ the bottom c See Standar Detail for Co consult quali	It all panel points d, nonconcurrent usign requires that od sheathing be 2" gypsum sheett hord. d Industry Piggyb nnection to base fied building desi Standard	along the with any t a minim applied di rock be ap pack Truss truss as a gner.	Top Chord a other live loa um of 7/16" rectly to the oplied directly s Connection opplicable, or	and ads. top y to		Winner		ORTH CA ORTEESE SEA 0363	ROLUNIUM L 22

EUAD CASE(S) Standa

MWFRS for reactions shown; Lumber DOL=1.60 plate

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face),

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

grip DOL=1.60

3)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	G1G	Attic Supported Gable	1	1	Job Reference (optional)	170445488

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:36 ID:f_W_GLuMAJHWCq?b3shSfcyFggP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:84.8

Continued on page 2

		.,],], [==::	,	, , [-,,				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.4	(psf) 20.0 4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2	021/TPI2014	CSI TC BC WB Matrix-AS	0.37 0.17 0.37	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 17	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 225 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No. 2x6 SP No. 2x4 SP No. 24-2,15-17, 3:2x4 SP N	2 2 .3 *Excep ,4-23,13-1	t* 18,6-11,36-37,30-31	,32-3	WEBS	23-36=-208/427 4-30=-299/90, 1 32-37=-336/89, 6-31=-52/267, 2 25-34=-60/254, 26-35=-60/254.	7, 30-36=-3 8-37=-191, 13-32=-29 5-31=-72/2 34-35=-60, 26-33=-72	36/99, /414, 9/80, 232, /254, /232.		5) This load ove 6) Pro 7) All p 8) Plat	s truss h d of 12.0 rhangs i vide ade plates ar	as bee psf or non-co equate re MT2 ked for	en designed for gr 2.00 times flat ro ncurrent with othe drainage to preve 0 plates unless o r a plus or minus	reater of min roof live oof load of 15.4 psf on er live loads. ent water ponding. therwise indicated. 5 degree rotation
BRACING TOP CHORD	Structural v except end	vood shea verticals,	athing directly applie , and 2-0-0 oc purlin	ed, s		11-33=-52/267, 10-26=-111/176 27-28=-27/237, 29-37=-27/237,	7-25=-111 , 28-36=-2 27-29=-27, 20-27=0/0,	/176, 7/237, /237, , 21-28=-9/1,		abo 9) Gat 10) This cho	ut its ce ble requi s truss h rd live lo	nter. res coi as bee bad nor	ntinuous bottom o en designed for a nconcurrent with	chord bearing. 10.0 psf bottom any other live loads.
BOT CHORD WEBS JOINTS	Rigid ceiling 1 Row at m 1 Brace at 38, 39, 40,	g directly hidpt Jt(s): 34, 41	applied. 4-23, 13-18			19-29=-9/1, 30-4 33-43=-60/9, 32 9-35=-147/24, 2 36-40=-237/130	42=-80/8, 3 -43=-80/8, 4-40=-245, , 2-41=-11	81-42=-60/8, 8-34=-147/24 /134, 4/643,	,	11) * Th on t 3-00 cho	his truss he botto 5-00 tall rd and a	has be om cho by 2-0 iny oth	een designed for rd in all areas wh 0-00 wide will fit l er members.	a live load of 20.0psf ere a rectangle between the bottom
REACTIONS	(size) 1 2 2 Max Horiz 2 Max Uplift 1 2 Max Grav 1 1 1	17=20-0-0 20=20-0-0 24=20-0-0 24=-236 (l 17=-106 (l 23=-357 (l 17=1041 (19=323 (L 105), 21=5 (LC 14), 2	0, 18=20-0-0, 19=20- 0, 21=20-0-0, 23=20- 1 LC 14) LC 13), 18=-344 (LC LC 59), 24=-125 (LC (LC 46), 18=286 (LC C 106), 20=309 (LC 323 (LC 104), 23=30 4=1041 (LC 46)	-0-0, -0-0, 57), 12) 15), 04	NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m	30-4 1 110/05 17-38170/35, 15-39=-109/642 14-39=-135/54, 5-42=-93/20, 12 d roof live loads h E 7-16; Vult=120 ph; TCDL=6.0psf	37-39=-10 37-39=-10 38-39=-9 40-41=-96 -43=-93/20 have been mph (3-sec ; BCDL=6.1	9/658, 6/26, (39, 3-41=-138) considered for cond gust) 0psf; h=25ft; C	5/54, Cat.	12) All (13) N/A	Searings	areas	TH CA	ROLL
FORCES	(lb) - Maxim	num Com	pression/Maximum		II; Exp B; E Exterior(2E	inclosed; MWFRS) -1-0-0 to 2-1-12	6 (envelope 2, Interior (1	e) and C-C) 2-1-12 to 7-	0-0,		6	in	O FESS	The second
TOP CHORD	2-24=-970/ 3-4=-431/90 6-7=-702/1 9-10=-608/ 11-12=-474 13-14=-431 15-17=-970	135, 1-2= 6, 4-5=-4(17, 7-8=-(103, 10-1 4/134, 12- 1/87, 14-1 0/130	0/72, 2-3=-478/57, 69/122, 5-6=-474/13 608/103, 8-9=-608/1 1=-702/118, 13=-469/120, 5=-478/55, 15-16=0	3, 03, /72,	Exterior(2F 13-0-0, Ext 17-2-15 to exposed ; o members a Lumber DO 3) TCLL: ASO	R) 7-0-0 to 10-11- erior(2R) 13-0-0 to 21-0-0 zone; can end vertical left ar and forces & MWF DL=1.60 plate grip CE 7-16; Pr=20.0	7, Interior (to 17-2-15, tilever left a nd right exp FRS for rea DOL=1.60 psf (roof LL	1) 10-11-7 to Interior (1) and right posed;C-C for actions shown; D .: Lum DOL=1	.15				SEA 0363	L 22
BOT CHORD	23-24=-76/2 20-21=-75/ 18-19=-75/	211, 21-2 181, 19-2 181, 17-1	3=-75/181, 0=-75/181, 8=-83/214		Plate DOL: 1.15 Plate Exp.; Ce=1 4) Unbalance design.	=1.15); Pg=20.0 p DOL = 1.15); Is=1 .0; Cs=1.00; Ct= d snow loads hav	osf; Pf=20.4 1.0; Rough 1.10, Lu=50 re been cor	4 psf (Lum DO Cat B; Partial 0-0-0 nsidered for th	L = ly is				AC A. G	EER. KIN

December 31,2024

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

design.

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	G1G	Attic Supported Gable	1	1	Job Reference (optional)	170445488

- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 16) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:36 ID:f_W_GLuMAJHWCq?b3shSfcyFggP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	G1	Attic	2	1	Job Reference (optional)	170445489

Structural LLC Thurmont MD - 21788

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

JOINTS

FORCES

BRACING

LUMBER

TCLL (roof)

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Mon.Dec.30.09:20:35 ID:ebuRrbFYnRn2?sGKbrsUaYyFgqG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

21-0-0

16-7-12

Page: 1

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads
- 6) Provide adequate drainage to prevent water ponding.

December 31,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MITek® connectors. This design is based only upon parameters with Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	G1A	Attic	8	1	Job Reference (optional)	170445490

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:36 ID:20EGrF1SxB1dOntZHTLQBRyFgcL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

_		_
	Page:	1

Scale = 1:70

	(X, 1). [4.0-2-0,0-1-13], [0.0-2-0,0-1-13], [12.0-4-0,0-	5-0], [14.0-4-0	,0-3-0], [10.0-4-0,	0-0-0j, [z	1.0-2-0,0-2-0]	, [22.0-2	-0,0-2-0	1				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.38 0.64 0.46	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.38 0.01 -0.10	(loc) 13 13 10 14-16	l/defl >999 >628 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 215 lt	GRIP 244/190 • FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep 2-16,8-11,3-7,17-1,1 4 SP No.2	t* 0-9,21-22,23-24,25	WI -26:2x	EBS	16-21=0/457, 21-2 2-23=-322/102, 1 22-25=-351/156, 8 3-24=-250/146, 19 19-20=-201/664, 2 7-26=-250/141, 2	23=-356/ 1-22=0/4 3-25=-32 3-24=-29 20-26=-30 1-29=-31	162, 57, 2/107, 3/270, 04/270, 8/45,		7) This cho 8) * Th on t 3-06 cho	s truss h rd live lo nis truss he botto 5-00 tall rd and a	as bee ad nor has be m cho by 2-0 ny oth	en designed for nconcurrent with een designed fo rd in all areas w 0-00 wide will fi er members.	a 10.0 psf botto any other live r a live load of 2 here a rectangl t between the b	m loads. 20.0psf e ottom
BRACING TOP CHORD	Structural wood sheat except end verticals, (6-0-0 max.): 4-6.	athing directly applie , and 2-0-0 oc purlin	ed, IS		18-29=-318/45, 18 22-30=-318/45, 13 6-20=-149/260, 5- 5-20=-414/156, 17 1-21=-79/655, 10-	3-30=-318 3-18=0/96 19=-414/ 7-21=-52	8/45, 6, 4-19=-145/2 (156, 1/132, (30 9-22=-92)	260,	9) All t 10) This load pan Bott	bearings s truss h d of 250. els and tom Cho	are as as bee Olb live at all p rd por	ssumed to be S on designed for and 3.0lb deal anel points alor	 No.2. a moving conce d located at all r ng the Top Chor a any other live 	ntrated nid rd and
BOT CHORD WEBS JOINTS	Rigid ceiling directly 1 Row at midpt 1 Brace at Jt(s): 27, 28	applied. 2-16, 8-11, 3-7, 21-	22		23-27=-160/175, 2 26-28=-420/445, 2 2-27=-139/201, 3- 8-28=-144/201, 7-	24-27=-4 25-28=-1 27=-255/ 28=-255/	58, 5 22- 52, 11/445, 58/173, (161, (167,	000,	11) This stru cho the	s truss d ctural w rd and 1 bottom (esign r ood sh /2" gyr chord.	equires that a r eathing be app osum sheetrock	ninimum of 7/16 ied directly to the be applied directly	blads. 5" he top ectly to
REACTIONS	(size) 10=0-3-8, Max Horiz 17=-221 (Max Grav 10=957 (L	17=0-3-8 LC 14) .C 45), 17=957 (LC	45) NC 1)	DTES Unbalanced	14-29=-36/28, 12- roof live loads ha	30=-36/2	8 considered for	r	12) Gra or th bott	phical p ne orient om chor	urlin re ation c	presentation do of the purlin alor	es not depict th ig the top and/c	ne size or
FORCES	(Ib) - Maximum Com Tension 1-2=-538/83, 2-3=-5i 4-5=-570/192, 5-6=-1 7-8=-584/246, 8-9=-1 9-10=-940/81	pression/Maximum 84/246, 3-4=-690/23 570/198, 6-7=-690/2 531/74, 1-17=-940/6	2) 31, 238, 53,	this design. Wind: ASCE Vasd=95mp II; Exp B; Er Exterior(2E)	7-16; Vult=120m h; TCDL=6.0psf; E nclosed; MWFRS (0-1-12 to 3-4-4, Ir 7-0-0 to 11-2-15	ph (3-sec 3CDL=6.0 envelope nterior (1)	cond gust) Dpsf; h=25ft; (and C-C) 3-4-4 to 7-0- 1) 11-2-15 to	Cat. 0,	13) Attio LOAD (c room c CASE(S)	hecked Star	d for L/360 defle	ARO	
BOT CHORD	16-17=0/512, 14-16= 12-13=0/541, 11-12=	=0/541, 13-14=0/54 =0/541, 10-11=-86/5	1, 512 3)	13-0-0, Exte 17-2-15 to 1 exposed ; e members ar Lumber DO TCLL: ASCI	9-10-4 zone; canti nd vertical left and d forces & MWFR _=1.60 plate grip [7-16: Pr=20.0 ps	17-2-15, ilever left right exp S for rea OOL=1.60	Interior (1) and right posed;C-C for ctions shown;) : Lum DOL=1	;			N	OH FES	AL	
			4)	Plate DOL= 1.15 Plate D Exp.; Ce=1. Unbalanced design.	1.15); Pg=20.0 psf IOL = 1.15); Is=1.0 0; Cs=1.00; Ct=1. snow loads have	; Pf=20.4); Rough 10, Lu=50 been cor	I psf (Lum DC Cat B; Partial)-0-0 hsidered for th	DL = ly iis		1111		0363	IEER A	anna 1
			5)	Provide ade	quate drainage to	prevent v	water ponding				1	10 ····	BEN	6

- 4) Unbalanced snow loads have been considered for this design.
- Provide adequate drainage to prevent water ponding. 5) Plates checked for a plus or minus 5 degree rotation 6) about its center.

111111111 December 31,2024

G

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	T1A	Roof Special	1	1	Job Reference (optional)	170445491

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:41 ID:f4fECSluMPzWY?jG66W2dmyFg7j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.6

Plate Offsets (X, Y): [1:Edge,0-1-12]

Loading TCLL (roof) Snow (Pf/Pg) TCDL 3CLL 3CDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.72 0.96 0.43	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.26 0.01 0.01	(loc) 11-13 11-13 8 11-13	l/defl >949 >741 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea except end verticals. Rigid ceiling directly (size) 8=11-11-6 14=0-3-8 Max Horiz 14=-188 (Max Uplift 9=-17 (LC Max Grav 8=310 (LC 10=847 (L	athing directly applie applied. 3, 9=11-11-8, 10=11 LC 12) 17) C 64), 9=360 (LC 63) C 64), 14=738 (LC	3) 4) 9d, 5) -11-8, 6) 7)), 34) 8)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. Plates check about its cen This truss ha chord live loa * This truss the on the bottor 3-06-00 tall b chord and ar All bearings	7-16; Pr=20.0 p .15); Pg=20.0 ps OL = 1.15); Is=1.); Cs=1.00; Ct=1. snow loads have ed for a plus or r ter. Is been designed ad nonconcurren in chord in all are by 2-00-00 wide v y other members are assumed to b	sf (roof LL sf; Pf=15.4. .0; Rough .10 been cor minus 5 de d for a 10.0 t with any ed for a liv was where will fit betw s, with BC be SP No.	: Lum DOL= psf (Lum D Cat B; Partia sidered for t gree rotation 0 psf bottom other live loz e load of 20. a rectangle ceen the bott DL = 10.0ps 2.	e1.15 OL = ally his n ads. Opsf tom f.						
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-515/93, 2-3=-9 5-6=-162/54, 6-7=-1 1-14=-848/18 13-14=-141/200, 11- 9-10=-72/79, 8-9=-1 5-10=-356/70, 6-9=-1	pression/Maximum 14/93, 3-5=-241/58, 45/22, 7-8=-290/27, -13=0/458, 10-11=0/ 8/195 289/44, 2-13=-270/7	9) 10 766, 74, 1 [,]	Provide mec bearing plate 9.)) This truss ha load of 250.0 panels and a Bottom Chor I) This truss de	hanical connection capable of withs s been designed lb live and 3.0lb t all panel points d, nonconcurrent sign requires that	on (by othe standing 1 d for a mov dead loca a along the t with any at a minim	ers) of truss 7 lb uplift at ring concent ted at all mic Top Chord other live loa um of 7/16"	to joint rated d and ads.				What CA		
NOTES I) Unbalancı this desigi Wind: ASI Vasd=95m II; Exp B; Exterior(2 Exterior(2 28-2-9 zoi vertical lef forces & M	3-11=-232/111, 7-9= 1-13=0/574, 2-11=0/ ed roof live loads have n. CE 7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) 6-5-9 to 9-5-9, Interi R) 12-4-5 to 15-4-5, Int ne; cantilever left and r t and right exposed;C-/ MWFRS for reactions sl	-bu/40, 6-10=0/110, /514, 3-10=-809/10 been considered for (3-second gust) DL=6.0psf; h=25ft; C ivelope) and C-C ior (1) 9-5-9 to 12-4- terior (1) 15-4-5 to ight exposed ; end C for members and hown; Lumber	r Lu Cat. 5,	structural wo chord and 1/ the bottom c DAD CASE(S)	od sheathing be 2° gypsum sheet hord. Standard	applied di trock be a	rectly to the pplied direct	top y to		Manna and		SEA 0363	22 EREAL	Mannan

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 6-5-9 to 9-5-9, Interior (1) 9-5-9 to 12-4-5, Exterior(2R) 12-4-5 to 15-4-5, Interior (1) 15-4-5 to 28-2-9 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

G١ A. GIL December 31,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	T1	Roof Special	6	1	Job Reference (optional)	170445492

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:40 ID:ILOM7sIw7KhITxudqyxq_9yFgG3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.6

Plate Offsets (X,	Y):	[1:Edge,0-1-12]
-------------------	-----	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.88 0.92 0.80	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.38 -0.71 0.43 0.15	(loc) 10-11 10-11 8 10-11	l/defl >694 >367 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 131 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=95m II; Exp B; F Exterior(2E Exterior(2E Exterior(2E Exterior(2E) Exterior(2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep No.2 Structural wood she except end verticals Rigid ceiling directly (size) 8–0-3-8, 1 Max Horiz 14=-188 (Max Grav 8=997 (LC (lb) - Maximum Com Tension 1-2=-660/95, 2-3=-1: 5-6=-5575/46, 6-7=- 1-14=-1104/15 13-14=-138/201, 11 9-10=-62/3457, 8-9= 2-13=-502/66, 2-11= 3-10=-40/3774, 5-10 7-9=-50/3082, 6-10= ed roof live loads have the Distribution of the state of the state of the state inclosed; MWFRS (er E) 6-5-9 to 9-5-9, Interial 212-4-5 to 15-4-5, In	t* 12-10:2x4 SP SS t* 3-10,9-7,10-6:2x4 athing directly applied. (Applied. 14=0-3-8 LC 12) C 34), 14=988 (LC 34 pression/Maximum 584/99, 3-5=-5532/1 3742/80, 7-8=-1106/3 (Apple: Applied applied applied applied (Apple: Applied applied applied applied (Applied applied applied applied applied (Applied applied applied applied applied applied applied (Applied applied applied applied applied applied applied (Applied applied applied applied applied applied applied applied (Applied applied applied (Applied applied applie	3) SP 4) d, 5) 6) 7) 15, 9) 1782, 10) 07, 11) at. LO 5,	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced : design. Plates check about its cem This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Bearing at joi using ANSI/T designer sho 0 This truss ha load of 250.0 panels and a Bottom Chorn This truss de structural wo chord and 1/2 the bottom ch	7-16; Pr=20.0 psf 15); Pg=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.11 snow loads have b ed for a plus or mil- ter. s been designed for d nonconcurrent v as been designed for h chord in all areas y 2-00-00 wide wil y other members, are assumed to be nt(s) 8 considers p Pl 1 angle to grain uld verify capacity s been designed for b live and 3.0lb de t all panel points a d, nonconcurrent v sign requires that a d sheathing be ap 2" gypsum sheetron hord. Standard	(roof LL Pf=15.4 Rough Deeen cor nus 5 de or a 10.0 vith any for a liv s where I fit betw with BC SP No. barallel to for a liv s a minim poplied di ck be a	: Lum DOL= psf (Lum DC Cat B; Partia isidered for th egree rotation) psf bottom other live loa e load of 20.0 a rectangle veen the bottt DL = 10.0psf 2. o grain value a. Building ng surface. ing concentri- ted at all mid Top Chord a other live loa um of 7/16" rectly to the the pplied directly	1.15 DL = Illy ds. Dpsf om to and ds. to p		A statement of the stat		SEAL 03632		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI A. GIL December 31,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	T1G	Roof Special	1	1	Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:41 ID:5Y1Lo9EPduLDAl2iFkifaVyFg5p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:76.6

													-	
Loading	((psf)	Spacing	2-0-0		CSI	0.20		in n/o	(loc)	l/defl	L/d	PLATES	GRIP
Spow (Pf/Pg)	15 //	20.0	Plate Grip DOL	1.15			0.39	Vert(LL)	n/a	-	n/a	999	WI120	244/190
	15.4/2	20.0	Rep Stress Incr	1.15 VES		WB	0.34	Horiz(TL)	0.00	- 12	n/a	999 n/a		
BCU		0.0*	Code	IRC2	021/TPI2014	Matrix-AS	0.50	110112(112)	0.00	12	n/a	n/a		
BCDL		10.0	Code	11(02)	521/11/2014	Matrix-A0							Weight: 173 I	b FT = 20%
LUMBER TOP CHORD	2x4 SP No.2				WEBS	9-14=-361/83, 10- 4-24=-87/41, 1-25	13=-279/ =-85/59,	/39, 22-24=-92 22-25=-271/8	2/44, 3,	11) * Th on t	is truss he botto	has bo m cho	een designed fo ord in all areas v	or a live load of 20.0psf vhere a rectangle
BOT CHORD	2x4 SP No.2					4-26=-89/11, 17-2	6=-85/10), 17-27=-328/	′114,	3-06	6-00 tall	by 2-0	0-00 wide will f	it between the bottom
WEBS	2x4 SP No.3					7-27=-137/85, 11-	13=-68/3	31, 10-14=-48/	65,	cho	d and a	iny oth	er members.	
OTHERS	2x4 SP No.3					7-28=-00/3, 14-28	=-48/3, 4 24_ 294	FIS=FIZO/IZ, /51_2_25226	2/12	12) All (earings	are a	ssumed to be S	PINO.Z.
BRACING						5-24=-200/51, 21-	24=-204/ 26281/	/51, 2-25=-230 /51 6-27239	5/43, R/35	13) PIO	ring plat		al connection (i	ding 8 lb unlift at joint
TOP CHORD	Structural wo except end ve	od shea erticals.	athing directly applie	ed,		7-16=-188/54, 15-	28=-11/1	51, 0 21 - 250	5/00,	14 a	ind 2 lb	uplift a	at joint 13.	
BOT CHORD	Rigid ceiling	directly	applied.		NOTES					14) N/A				
JOINTS	1 Brace at Jt(26, 28	(s): 24,			 Unbalanced this design. 	roof live loads hav	/e been o	considered for	-					
REACTIONS	(size) 12: 15: 18: 22: Max Horiz 23: Max Uplift 13: 16: 18: 22: Max Grav 12: 14: 14: 16: 18: 21: 23: 21: 23: 21: 23: 21: 23: 21: 23: 21: 23: 21: 23: 21: 23: 24: 24: 24: 25: 24: 24: 24: 24: 24: 24: 24: 24: 24: 24	=22-0-8 =22-0-8 =22-0-8 =-187 (L =-2 (LC =-10 (LC =-13 (LC =-13 (LC =-303 (L =339 (L =339 (L =331 (L =279 (L	, 13=22-0-8, 14=22 , 16=22-0-8, 17=22 , 23=22-0-8 , 23=22-0-8 , 21=22 , 23=22-0-8 , 21=22 , 23=22-0-8 , 21=20 , 21=20	-0-8, -0-8, -0-8, 6), 2) 81), 79), 58), 75), 54),	 Wind: ASCE Vasd=95mp II; Exp B; Er Exterior(2E) Exterior(2R) 28-2-9 zone vertical left <i>a</i> forces & MV DOL=1.60 p Truss design only. For st see Standar or consult qi TCLL: ASC Plate DOL= 1.15 Plate E 	E 7-16; Vult=120mp h; TCDL=6.0psf; E nclosed; MWFRS (6-5-9 to 9-5-9, Int 12-5-12 to 15-5-1 ; cantilever left and and right exposed; VFRS for reactions late grip DOL=1.6 ned for wind loads uds exposed to win d Industry Gable E ualified building de E 7-16; Pr=20.0 psf 1.15); Pg=20.0 psf 0OL = 1.15); Is=1.0	oh (3-sec 3CDL=6.0 envelope erior (1) : 2, Interio 4 right ex C-C for n shown; 0 in the pla nd (norm End Deta signer as f (roof LL ; Pf=15.4); Rough	xond gust) Opsf; h=25ft; C e) and C-C e) and C-C g=5-9 to 12-5- r (1) 15-5-12 t posed ; end nembers and Lumber ane of the trus al to the face) ils as applicab s per ANSI/TP L: Lum DOL=1 4 psf (Lum DO Cat B; Partial	Cat. 12, to ss , ble, 11. .15 bL = lv	15) Bev surf 21,16) This loac pan Bott	eled pla ace with 18, 16, 5 truss h I of 250. els and om Cho	te or s a truss 15. as bee Olb live at all p ord, no	thim required to chord at joint(s en designed for e and 3.0lb dea banel points alo nconcurrent wit	provide full bearing) 23, 14, 13, 22, 17, 19, a moving concentrated d located at all mid ng the Top Chord and h any other live loads.
FORCES	(Ib) - Maximu Tension	im Com	pression/Maximum		Exp.; Ce=1.	0; Cs=1.00; Ct=1.1	0	, 			4	ç s	:0	- Alexandre
TOP CHORD	HORD 1-2=-37/124, 2-3=-51/121, 3-4=-76/113, 4-5=-78/116, 5-6=-48/100, 6-7=-47/103, 7-9=-111/60, 9-10=-48/109, 10-11=-130/25, 11-12=-285/28, 1-23=-185/43 HORD 22-23=-158/211, 21-22=-130/176, 19-21=-130/176, 18-19=-130/177, 17-18=-130/177, 16-17=-55/102, 15-16=-53/104, 14-15=-53/104, 13-14=-87/65, 12-13=-20/192			/25,	 6) Initial (Edg design. 6) Plates checl about its cer 7) Gable requii 8) Truss to be braced agai 9) Gable studs 10) This truss h chord live lo 	nced snow loads have been considered for this checked for a plus or minus 5 degree rotation is center. equires continuous bottom chord bearing. o be fully sheathed from one face or securely against lateral movement (i.e. diagonal web). studs spaced at 2-0-0 oc. iss has been designed for a 10.0 psf bottom ive load nonconcurrent with any other live loads.						AL 322		

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Ver Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	170 / 15 / 00
2412-1523-A	T1G	Roof Special	1	1	Job Reference (optional)	170445493

LOAD CASE(S) Standard

17) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:41 ID:5Y1Lo9EPduLDAl2iFkifaVyFg5p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	B2T	Piggyback Base	2	1	Job Reference (optional)	170445494

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:33 ID:oh?OnUF104ezXRAVtyMSLlyFffN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.8	2-3-8 2-3-8	9-5-3 7-1-11	+ <u>15-5-15</u> 6-0-12	<u>21-11-8</u> 6-5-9	24-3-0 2-3-8	
Plate Offsets (X, Y): [2:0-2-14,0-2-0], [6:0-3-0,0-2-5], [7:0-	4-0,0-2-8], [10:0-6-0,	0-3-4]				

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-AS	0.81 0.93 0.83	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.21 -0.34 0.14 0.06	(loc) 13-14 13-14 8 13-14	l/defl >999 >850 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 193 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 *Except* 6-7:2x6 SP No.2 BOT CHORD 2x4 SP No.2 *Except* 14-12:2x4 SP SS, 10-9:2x4 SP No.3 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-7. BOT CHORD Rigid ceiling directly applied. WEBS 1 Row at midpt 7-8, 3-13, 5-11, 6-10 REACTIONS (size) 8=0-3-8, 16=0-3-8 Max Horiz 16=247 (LC 13) Max Grav 8=1103 (LC 43), 16=1205 (LC 50) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/47, 2-3=-2872/33, 3-5=-1835/0, 5-6=-111/74, 6-7=-309/119, 7-8=-1247/55, 2-16=-1207/0 BOT CHORD 15-16=-180/294, 14-15=-63/259.			2) , 3) 50) 4) 5) 5, 6) 7)	Wind: ASCE Vasd=95mph II; Exp B; End Exterior(2E) - 15-7-11, Exte exposed ; en members and Lumber DOL=1 TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p overhangs nc Provide adeq Plates checke	7-16; Vult=120mpl r; TCDL=6.0psf; BC closed; MWFRS (e 1-0-0 to 2-1-12, In grior(2R) 15-7-11 to tertical left and r d vertical left and r d forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf; DL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10; snow loads have b s been designed for so been designed for so for 2.00 times fla on-concurrent with uate drainage to p ed for a plus or mir	n (3-sec CDL=6.0 nvelope terior (1 b 19-10 ver left ght exp for rea DL=1.60 (roof LL Pf=20.2 Rough), Lu=50 een cor or great tt roof lo other liv revent v	ond gust) Dpsf; h=25ft; () and C-C) 2-1-12 to -10, Interior (1 and right iosed;C-C for ctions shown : Lum DOL=1 - psf (Lum DC Cat B; Partial)-0-0 isidered for th er of min roof pad of 15.4 ps re loads. water ponding egree rotation	Cat.) :.15 DL = Iy iis live sf on J.	13) Gra or ti bott LOAD (phical p ne orient om chor CASE(S)	urlin re ation o d. Star	presentation doe: of the purlin along ndard	s not depict the size the top and/or
BOT CHORD	15-16=-180/294, 14- 3-14=-56/582, 13-14 11-13=-201/1656, 10 9-10=-75/128, 8-9=-2 3-13=-1590/267, 5-1 6-11=0/885, 6-10=-1 7-10=-28/1038, 2-14	15=-63/259, =-467/3234,)-11=-160/915, 228/0 3=0/459, 5-11=-956/5 026/106, 8-10=-112/2 =-219/2399	8) 9) 55, 263,	Plates checked for a plus or minus 5 degree rotation about its center. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom							ALL A	ORTH CA	ROUT
7-10=-28/1038, 2-14=-219/2399 NOTES 1 1) Unbalanced roof live loads have been considered for this design. 1				All bearings are assumed to be SP No.2. This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. This truss design requires that a minimum of 7/16"									

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

December 31,2024

C

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	B2A	Piggyback Base	1	1	Job Reference (optional)	170445495

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Mon Dec 30 09:20:32 ID:UepTey60iiL5nE8U?HgyfzyFfi8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:75.8	

Plate Offsets (>	(, Y):	[5:0-3-0,0-2-5]
------------------	--------	-----------------

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-AS	0.89 0.57 0.58	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.29 -0.38 0.02 0.03	(loc) 8-9 8-9 8 8-9	l/defl >997 >743 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 190 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORI BOT CHORI WEBS BRACING TOP CHORI	 2x4 SP No.2 *Except 2x4 SP SS 2x4 SP No.3 *Except Structural wood sheat except end verticals, (6-0-0 max.): 5-7. 	t* 5-7:2x6 SP No.2 t* 12-2:2x6 SP No.2 athing directly applied and 2-0-0 oc purlins	3) 4) d, 5)	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p	7-16; Pr=20.0 psf .15); Pg=20.0 psf; DL = 1.15); Is=1.0; I; Cs=1.00; Ct=1.1 snow loads have b s been designed fo psf or 2.00 times fl	(roof LL Pf=20.4 Rough 0, Lu=50 been cor or greate at roof lo	: Lum DOL= psf (Lum DO Cat B; Partia)-0-0 isidered for t er of min root pad of 15.4 p	=1.15 OL = ally this f live osf on					
BOT CHORI WEBS REACTIONS	 Rigid ceiling directly 1 Row at midpt (size) 8=0-3-8, 1 Max Horiz 12=247 (L Max Grav 8=1117 (L 	applied. 7-8, 4-9, 5-9, 6-8 2=0-3-8 .C 13) .C 43), 12=1203 (LC	6) 7) 50)	 overhangs non-concurrent with other live loads. 6) Provide adequate drainage to prevent water ponding. 7) Plates checked for a plus or minus 5 degree rotation about its center. 8) This truss has been designed for a 10.0 psf bottom check live load expreparent with any other live loads. 									
FORCES	(lb) - Maximum Com	pression/Maximum	9)	* This truss h	as been designed	for a liv	e load of 20.	.0psf					
TOP CHORI	2-12=-1162/47	/2, 4-5=-1069/93, 53/150, 7-8=-300/50,	10	3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.									
BOT CHORI	2 12- 1102/11 0 11-12=-335/682, 9-1 8-9=-121/512	1=-177/1503,	11) This truss ha load of 250.0	s been designed for lb live and 3.0lb de	or a mov	/ing concenti ted at all mic	rated					
WEBS	4-11=0/341, 4-9=-78 6-9=-53/886, 6-8=-10	9/62, 5-9=-125/146, 033/107, 2-11=0/937		panels and a Bottom Chor	t all panel points a d, nonconcurrent v	long the vith any	Top Chord a other live loa	and ads.					11111
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Explored: MWERS (provleme) and C.) This truss de structural wo chord and 1/2 the bottom cl) Graphical pu or the orienta	sign requires that od sheathing be a 2" gypsum sheetro nord. rlin representation	a minim oplied di ick be aj does no	um of 7/16" rectly to the oplied directly of depict the	top ly to size		Jan		ORTHCA	TOL

II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 15-7-11, Exterior(2R) 15-7-11 to 19-7-14, Interior (1) 19-7-14 to 24-1-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

ЪQ bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	A1G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	70445496

Scale = 1:89.5

Looding

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:29 ID:5nRUhQDv3zi_3pNrIB4I8tyFg_4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20	(psi) 20.0 0.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC2021/TPI2014	TC BC WB Matrix-	0.64 0.25 0.31 AS	Vert(LL) Vert(TL) Horiz(TL)	n/a n/a 0.01	(100) - - 27	n/a n/a n/a	999 999 n/a	MT20 Weight: 425 lb	244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD	2x4 SP N 2x4 SP N 2x6 SP N 2x4 SP N Structural except en (6-0-0 ma	0.2 0.2 *Except 0.3 I wood shea Id verticals, Ix.): 11-22.	t* 26-27:2x4 SP No.3 athing directly appliec and 2-0-0 oc purlins	I,	Max Grav	27=278 (LC 160 159), 29=334 (L (LC 157), 31=33 32=333 (LC 155 154), 34=333 (L (LC 152), 37=33 38=333 (LC 150 149), 40=333 (L (LC 147), 42=33), 28=329 (LC C 158), 30=33 3 (LC 156),), 33=333 (LC C 153), 35=32 3 (LC 151),), 39=333 (LC C 148), 41=33 3 (LC 146), 41 = 322 (LC	22 22 23 23 23 23 23	WEBS		16-35 19-33 21-31 24-29 15-37 13-39 10-41 7-44= 4-47=	5=-264/35, 17-34 3=-264/35, 20-32 1=-265/31, 23-30 3=-270/72, 25-28 7=-264/35, 14-38 3=-264/42, 12-40 1=-267/38, 9-42= =-273/55, 6-45=-2 =-281/59, 3-48=-2	=-264/35, =-264/42, =-262/27, =-267/105, =-264/35, =-265/32, -269/61, 8-45 276/55, 5-46= 284/51, 2-49=	3=-271/56, 278/55, 289/153
BOT CHORD WEBS	(6-0-0 max.): 11-22. CHORD Rigid ceiling directly applied. 5 1 Row at midpt 26-27, 16-35, 17-34, 19-33, 20-32, 21-31, 23-30, 24-29, 25-28, 15-37, 14-38, 13-39, 12-40, 10-41, 9-42, 8-43 FORCES CTIONS (size) 27=43-8-8, 28=43-8-8, 29=43-8-8,			-43 FORCES	(lb) - Ma	43=333 (LC 145), 44=333 (LC 144), 45=333 (LC 143), 46=333 (LC 142), 47=333 (LC 141), 48=332 (LC 140), 49=337 (LC 139), 50=281 (LC 138) Ib) - Maximum Compression/Maximum Ib) - Maximum Compression/Maximum							een consider 3-second gus L=6.0psf; h=; elope) and C	red for st) 25ft; Cat. -C Corner
REACTIONS	(size) Max Horiz Max Uplift	27=43-8-8 30=43-8-8 33=43-8-8 40=43-8-8 40=43-8-8 49=43-8-8 49=43-8-8 49=43-8-8 49=200 (L 27=-21 (L0 29=-16 (L0 41=-14 (L0 43=-11 (L0 45=-11 (L0 45=-11 (L0 50=-133 (10))))))))))))))))))))))))))))))))))))	 a, 28=43-8-8, 29=43-8 b, 34=43-8-8, 32=43-8 c, 34=43-8-8, 35=43-8 c, 38=43-8-8, 39=43-8 c, 41=43-8-8, 42=43-8 c, 41=43-8-8, 48=43-8 c, 50=43-8-8 c 13) c 13), 28=-8 (LC 12) c 13), 42=-14 (LC 16 c 16), 42=-9 (LC 16) c 16), 42=-9 (LC 16) c 16), 49=-137 (LC 1 LC 14) 	3-8, 5-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 3-8, 4-8, 3-8, 4-8, 5-8, 5-8, 5-8, 3-8, 5-8,	$\begin{array}{l} \mbox{Tension} \\ 1-50=-267/166, 1-2=-364/299, 2-3=-277/236, \\ 3-4=-247/221, 4-6=-205/196, 6-7=-164/151, \\ 7-8=-155/184, 8-9=-165/224, 9-10=-190/266, \\ 10-11=-165/224, 11-12=-167/245, \\ 12-13=-167/245, 13-14=-167/245, \\ 12-13=-167/245, 15-16=-167/245, \\ 16-17=-167/245, 12-13=-167/245, \\ 19-20=-167/245, 20-21=-167/245, \\ 21-22=-167/245, 20-21=-167/245, \\ 21-22=-167/245, 20-21=-167/245, \\ 21-22=-167/245, 22-23=-165/224, \\ 23-24=-193/266, 24-25=-161/219, \\ 25-26=-179/234, 26-27=-259/198 \\ 49-50=-112/147, 48-49=-112/147, \\ 45-46=-112/147, 46-47=-112/147, \\ 43-44=-112/147, 46-47=-112/147, \\ 43-44=-112/147, 34-35=-112/147, \\ 35-37=-112/147, 34-35=-112/147, \\ 33-34=-112/147, 30-31=-112/147, \\ 29-30=-112/147, 28-29=-112/147, \\ 27-28=-112/147 \end{array}$			/236, 51, /266,	(3E Cor 37 to 4 veri forc DO) 0-2-12 ner(3R) 8-9, Con 13-6-12 : tical left ical left L=1.60	to 4-7- 18-3 mer(3F) and rig WFRS plate g	7-3, Exterior(2N) 7 to 22-7-14, Ext R) 37-8-9 to 42-0 cantilever left and ght exposed;C-C for reactions she prip DQL=1180 H CA OFFESS SEA 0363	4-7-3 to 18-3 arior(2N) 22- 0, Exterior(2 1 right expose for members wn; Lumber	-7, 7-14 to N) 42-0-0 3d; end 3 and

December 31,2024

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	A1G	Piggyback Base Supported Gable	1	1	Job Reference (optional)	170445496
Structural, LLC, Thurmont, MD -	21788.	Run: 8.83 S Dec. 4.2	Page: 2			

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable. or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pg=20.0 psf; Pf=20.4 psf (Lum DOL=1.15); Pf=20.4 psf (Lum DO 4) 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10, Lu=50-0-0
- 5) Unbalanced snow loads have been considered for this design.
- 6) Provide adequate drainage to prevent water ponding.
- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web).
- 10) Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2 .
- 14) N/A
- 15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 17) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Mon.Dec.30.09:20:29 ID:5nRUhQDv3zi_3pNrIB4l8tyFg_4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	A1	Attic	6	1	Job Reference (optional)	5497

Scale = 1:93

Page: 1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.75	Vert(LL)	-0.39	18-20	>803	360	MT20	244/190
Snow (Pf/Pg)	20.4/20.0	Lumber DOL	1.15		BC	0.66	Vert(CT)	-0.51	18-20	>616	240		
TCDL	10.0	Rep Stress Incr	YES		WB	0.97	Horz(CT)	0.04	12	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.03	12-13	>999	240		
BCDL	10.0											Weight: 347 lb	FT = 20%
LUMBER			N	DTES					12) Thi	s truss d	esian	requires that a mi	inimum of 7/16"
TOP CHORD	2x4 SP No.2		1)	Unbalanced	roof live loads ha	ve been o	considered fo	or	, stru	ictural w	ood sh	neathing be applie	ed directly to the top
BOT CHORD	2x4 SP SS		,	this design.	design. chord and 1/2" gypsum si								be applied directly to
WEBS	2x4 SP No.3 *Excep	ot*	2)	Wind: ASCE 7-16; Vult=120mph (3-second gust) the bottom chord.									
	18-5,6-18,7-15,10-13	3,22-23:2x4 SP No.2,	,	Vasd=95mph	; TCDL=6.0psf; E	SCDL=6.	Opsf; h=25ft;	Cat.	13) Gra	phical p	urlin re	epresentation doe	s not depict the size
	21-1:2x6 SP No.2			II; Exp B; En	closed; MWFRS (envelope	e) and C-C		or t	he orien	tation of	of the purlin along	the top and/or
BRACING				Exterior(2E)	0-2-12 to 4-7-3, Ir	nterior (1)	4-7-3 to 18-	3-7,	bott	tom cho	rd.		
TOP CHORD	Structural wood she	athing directly applied	d,	Exterior(2R)	18-3-7 to 24-5-10	, Interior	(1) 24-5-10 t	0	14) Atti	c room o	checke	d for L/360 deflec	tion.
	except end verticals	, and 2-0-0 oc purlins		37-8-9, Exter	ior(2E) 37-8-9 to	43-6-12	zone; cantile	/er	LOAD	CASE(S) Sta	ndard	
	(5-9-4 max.): 5-10.			left and right	exposed ; end ve	rtical left	and right						
BOT CHORD	Rigid ceiling directly	applied.		exposed;C-C	for members and	d forces a		r					
WEBS	1 Row at midpt	4-18, 5-18, 6-17, 7-1	7,		wh; Lumber DOL	.= 1.60 pi	ate grip						
		13-23, 2-21, 11-12	2)		7 16 Pr-20 0 pc	f (roof L		1 15					
JOINTS	1 Brace at Jt(s): 22,		3)	Plate DOI =1	15) Pa=20.0 ps	• Pf=204	Losf (Lum DC	1.15) =					
	23	17 0 0 0 0 0 0 0 0		1.15 Plate D	DL = 1.15): ls=1.0): Rough	Cat B: Partia	ulv					
REACTIONS	(size) 12=0-3-8,	17=0-3-8, 21=0-3-8		Exp.; Ce=1.0	; Cs=1.00; Ct=1.1	10, Lu=50	0-0-0	,					
	Max Horiz 21=250 (L		(4)	Unbalanced snow loads have been considered for this									
	Max Grav 12=1046	(LC 59), 17=2005 (LC	,	design.									
500050	50), 21=1	303 (LC 57)	5)	5) 200.0lb AC unit load placed on the bottom chord, 33-5-1									
FURCES	(ID) - Maximum Com	ipression/maximum		from left end	supported at two	points, s	5-0-0 apart.						
	1-2579/33 2-41	977/21 4-5-1233/97	, 6)	Provide adec	luate drainage to	prevent	water ponding	g.				munn	un,
	5-6=-972/98 6-7=-3	63/129 7-9=-521/85	, /)	Plates check	ed for a plus or m	iinus 5 de	egree rotation	1				W'TH CA	ROUN
	9-10=-539/83, 10-11	=-684/74, 1-21=-430	/42. o)	about its cen	ter.	for a 10 l) not hottom				- 5	R	- Chile
	11-12=-1035/0		• • • • • • • • • • • • • • • • • • • •	chord live los	d nonconcurrent	with any	other live loa	de		/	5.	2 the	Dr. pm
BOT CHORD	20-21=-157/1814, 18	8-20=-145/1529,	9)	* This truss h	as heen designe	d for a liv	e load of 20 (nsf			2 A	.04	
	17-18=-82/601, 15-1	7=-34/524,	5)	on the botton	n chord in all area	as where	a rectangle	5951				:2	K : 3
	14-15=-33/514, 13-1	4=-33/514,		3-06-00 tall b	v 2-00-00 wide w	ill fit betv	veen the bott	om				CEA	1 1 1
	12-13=-106/119			chord and an	y other members	, with BC	DL = 10.0pst	f.			:	SEA	- : =
WEBS	2-20=-233/100, 4-20)=0/553, 4-18=-839/7	6, 10) All bearings a	are assumed to b	e SP SS						0363	22 : =
	5-18=-84/239, 6-18=	=-37/937, 6-17=-1160	^{/55,} 11) This truss ha	s been designed	for a mov	ving concentr	ated		-			1 - E
	7-17=-906/0, 15-24=	=0/488, 22-24=0/527,		load of 250.0	Ib live and 3.0lb o	dead loca	ited at all mid				2	A	- 1 - S -
	23-25239/163 10-	-200/147, -23159/133		panels and a	t all panel points	along the	Top Chord a	and			20	NO.	EFR. A S
	22-23=-45/322 2-21	=-1584/0, 11-13=0/7	51.	Bottom Chor	a, nonconcurrent	with any	other live loa	ids.			1	A GIN	5. 64 1
	24-26=-1/14, 25-26=	-1/14, 14-26=0/103.	,								1	ICA G	IL BEIN
	9-22=-381/52, 9-23=	-372/61										1111.0	in in its in the second s
												December	r 21 2024
												Decembe	(.3) /0/4

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty		Ply	The Farm at Neills Creek Lot 00.0045 Roof	
2412-1523-A	A1A	Piggyback Base	1	1	Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries. Inc. Mon Dec 30 09:20:28 ID:SOULpCe2l0e1JuYG2R06OyyFflK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	9-3-7	18-5-3	24-1-4	28-0-0	37-6-13	46-5-12	51-0-0
Scale = 1:94.9	9-3-7	9-1-11	5-8-1	3-10-12	9-6-13	8-10-15	4-6-4

Plate	Offsets	(X	Y)·	[15·Edge	0-3-8
i iuic	0113013	(~,	•).	[10.Lugo	,000

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 20.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MS	0.63 0.91 0.80	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.23 -0.40 0.09 0.09	(loc) 22-24 22-24 15 22-24	l/defl >999 >728 n/a >999	L/d 360 240 n/a 240	PLATES MT20 M18AHS Weight: 441 lb	GRIP 244/190 186/179 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP No.2 *Excep 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 1 Structural wood shea 3-1-11 oc purlins, ei 2-0-0 oc purlins (4-8 Rigid ceiling directly bracing.	t* 21-18:2x6 SP DSS t* 22-8,10-17:2x4 SP -6-0 athing directly appliec xcept end verticals, ar -10 max.): 7-11. applied or 10-0-0 oc	1) 2) Hor nd	Unbalanced n this design. Wind: ASCE Vasd=95mph II; Exp B; Enn Exterior(2E) - Exterior(2R) 37-8-9, Exter 44-11-2 to 50 exposed ; en members and Lumber DOL	roof live loads hav 7-16; Vult=120mp ; TCDL=6.0psf; B closed; MWFRS (1-0-0 to 4-1-3, Ini 18-3-7 to 25-6-0, I ior(2R) 37-8-9 to 4 -10-4 zone; cantil d vertical left and f forces & MWFR =1.60 plate grip 0 point	the been of CDL=6.0 cDL=6.0 envelope terior (1) Interior (44-11-2, ever left right exp S for rea (OL=1.60 (crocf LL)	considered for cond gust) Dpsf; h=25ft; C e) and C-C 4-1-3 to 18-3- 1) 25-6-0 to Interior (1) and right lossed;C-C for ctions shown;) Lum DOL =1	Cat. -7,	13) Gra or tł bott LOAD (phical p ne orient om chor CASE(S)	urlin re ation c d. Star	presentation doe f the purlin along ndard	s not depict the size the top and/or	
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=189 (LC Max Grav 2=2010 (L 20=682 (L	6-22, 12-17, 12-16, 14-15, 8-22, 8-19, 10 10-17 5=0-3-8, 20=0-3-8 2 15) C 34), 15=2010 (LC 3 C 54)	3) -19, 4) 3), 5)	Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced s design. This truss ha	7-16; $Pf=20.0 \text{ ps}$; .15); $Pg=20.0 \text{ ps}$; DL = 1.15); $Is=1.0; Cs=1.00; Ct=1.1snow loads have h$	F (roof LL Pf=20.4 ; Rough 0, Lu=50 peen cor	er of min roof l	L = ly is						
FORCES	(lb) - Maximum Com	pression/Maximum		overhangs no	on-concurrent with	other liv	/e loads.	I ON						
TOP CHORD	1-2=0/41, 2-4=-3342 6-7=-2525/384, 7-8= 8-10=-2369/375, 10- 11-12=-2350/370, 12 13-14=-1621/213, 14	/341, 4-6=-3192/361, -2166/364, 11=-2031/352, 2-13=-1825/307, I-15=-2164/208	6) 7) 8) 9)	All plates are Plates check about its cent This truss has chord live los	MT20 plates unle ed for a plus or mi ter. s been designed f	inus 5 de	water ponding wise indicated egree rotation) psf bottom	1.		6	TIN'	OR FESS	ROLIN	
BOT CHORD	2-24=-431/2861, 22- 20-22=-254/2400, 19 17-19=-246/2351, 16 15-16=-63/73	24=-362/2573, 9-20=-254/2400, 9-17=-221/1871,	10)	* This truss h on the bottom 3-06-00 tall b chord and an	as been designed n chord in all area y 2-00-00 wide wi v other members	I for a liv s where Il fit betv with BC	e load of 20.0 a rectangle veen the botto	psf m		11111	-	SEAI		
WEBS NOTES	4-24=-237/130, 6-24 7-22=-63/919, 11-17 12-17=-97/347, 12-1 13-16=-639/156, 14- 8-22=-509/132, 8-19 10-19=-102/156, 10-	=0/529, 6-22=-872/1 =-80/847, 6=-833/89, 16=-184/2131, =-263/91, 17=-675/107	95, 11) 12)	Bearings are SP DSS , Joi This truss ha load of 250.0 panels and a Bottom Chord	assumed to be: J nt 15 SP No.2. s been designed f lb live and 3.0lb d t all panel points a d, nonconcurrent t	oint 2 SF for a move ad location along the with any	No.2, Joint 2 ving concentra ted at all mid Top Chord ar other live load	20 Ited Ind Is.		1113 Y		A. G	E.R. K.	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

December 31,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 Roof		
2412-1523-A	A1T	Piggyback Base	2	1	Job Reference (optional)	170445499	

Structural, LLC, Thurmont, MD - 21788

Loading

TCDL

BCLL

BCDL

WEBS

WEBS

WEBS

20-21=-165/61, 19-20=-53/12,

18-19=-164/269, 16-18=0/546

15-16=-43/617, 14-15=-65/73

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- Plates checked for a plus or minus 5 degree rotation 7)
- about its center. 8) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

December 31,2024

818 Soundside Road

Edenton, NC 27932

036322

G (1111111)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

