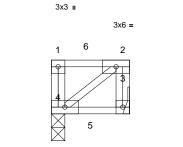


RE: 2412-1522-A - The Farm at Neills Creek Lot 00 Site Information:	818 Soundside Rd
Project Customer: DRB Raleigh Project Name: The	Edenton, NC 27932 Farm at Neills Creek Lot 00.0045
, , ,	on: The Farm at Neills Creek
Model: Cooper 3	
Address: 530 Winding Creek Dr	
City: Lillington State: NC	
General Truss Engineering Criteria & Design Loads	s (Individual Truss Design
Drawings Show Special Loading Conditions):	
Design Code: IRC2021/TPI2014	Design Program: MiTek 20/20 8.8
Wind Code: ASCE 7-16	Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16
Wind Speed: 115 mph	Floor Load: N/A psf
Roof Load: 50.0 psf	
Mean Roof Height (feet): 25	Exposure Category: B
No. Seal# Truss Name Date	
1 170360765 EG2 12/23/24	

2	170360766	FG3	12/23/24
3	170360767	F7	12/23/24
4	170360768	F6	12/23/24
5	170360769	F1	12/23/24
6	170360770	F3	12/23/24
7	170360771	F2	12/23/24
8	170360772	FG1	12/23/24
9	170360773	F4	12/23/24
10	170360774	F5	12/23/24
11	170360775	FGE1	12/23/24

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

Truss Engineering Co. under my direct supervision based on the parameters provided by Structural, LLC. Truss Design Engineer's Name: Lassiter, Frank My license renewal date for the state of North Carolina is December 31, 2025. **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.


Lassiter, Frank

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF	
2412-1522-A	FG2	Floor Girder	1	1	I70360765 Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Fri Dec 20 14:39:52 ID:u9d3tDODDmNXL5emt4TjK9yHMYd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Special

0-0-

3x6 =

ЗхЗ ш

Scale = 1:19.4

Loading (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.00 NO IRC2021/	TPI2014	CSI TC BC WB Matrix-P	0.37 0.41 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 n/a	(loc) 3-4 3-4 -	l/defl >999 >999 n/a	L/d 480 360 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%F, 12%E
BOT CHORD 1-5-7 oc purlins, exi BOT CHORD Rigid ceiling directly bracing.	v applied or 10-0-0 oc anical, 4=0-3-0 C 10), 4=-37 (LC 10) C 5), 4=255 (LC 7) apression/Maximum	9) d or LOA	provided suf lb up at 0-7 such connect In the LOAD of the truss a AD CASE(S) Dead + Flo Plate Incre Uniform Lo Vert: 3-4	or Live (balance ase=1.00 ads (lb/ft) 10, 1-2=-100 ed Loads (lb)	rt concentra d. The desi s the respor on, loads ap nt (F) or ba ed): Lumber	ated load(s) gn/selection nsibility of oth oplied to the ck (B).	of hers. face					

 Unbalanced floor live loads have been considered for this design.

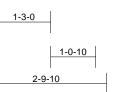
2) Bearings are assumed to be: Joint 4 SP No.2 .

3) Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint
- One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 4. This connection is for uplift only and does not consider lateral forces.
- 6) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 7) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

Page: 1

818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF
2412-1522-A	FG3	Floor Girder	1	1	I70360766 Job Reference (optional)

Run 8 83 S. Dec. 4 2024 Print: 8 830 S.Dec. 4 2024 MiTek Industries. Inc. Fri Dec 20 14:39:52 ID:u9d3tDODDmNXL5emt4TjK9yHMYd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

THA422

THA422

3x3 🛛 3x3 🛛 3x3 = 2 8 7 1 3 6 3x6 = 3x6 =

Scale = 1:20.1						5×0 =						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.40	Vert(LL)	-0.08	4-5	>363	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.48	Vert(CT)	-0.09	4-5	>337	360		
BCLL	0.0	Rep Stress Incr	NO	WB	0.07	Horz(CT)	0.00	4	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-P							Weight: 17 lb	FT = 20%F, 12%E
LUMBER TOP CHORD	2x4 SP No.2(flat)			oads (lb/ft) 5=-10, 1-3=-100								

Concentrated Loads (lb) Vert: 1=-210 (F), 2=-180 (F)

BOT CHORD	2x4 SP SS(flat)
WEBS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	2-9-10 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 4= Mechanical, 5=0-3-0
	Max Grav 4=322 (LC 6), 5=433 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension

TOP CHORD	1-5=-328/0, 3-4=-262/20, 1-2=0/0, 2-3=0/0
BOT CHORD	4-5=0/245
WEBS	2-5=-291/0, 2-4=-306/0

NOTES

1) Bearings are assumed to be: Joint 5 SP SS .

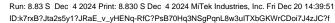
Refer to girder(s) for truss to truss connections. 2)

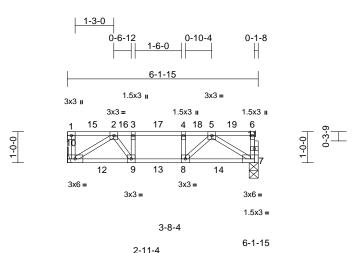
3) Provide mechanical connection (by others) of truss to

- bearing plate at joint(s) 5. 4) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and
- Bottom Chord, nonconcurrent with any other live loads. Recommend 2x6 strongbacks, on edge, spaced at 5) 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) Use Simpson Strong-Tie THA422 (Single Chord Girder) or equivalent spaced at 1-4-0 oc max. starting at 0-3-15 from the left end to 1-7-15 to connect truss(es) to front face of top chord.
- Fill all nail holes where hanger is in contact with lumber. 7)
- In the LOAD CASE(S) section, loads applied to the face 8)

of the truss are noted as front (F) or back (B).

- LOAD CASE(S) Standard
- Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00




818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF
2412-1522-A	F7	Floor	2	1	I70360767 Job Reference (optional)

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.33	Vert(LL)	-0.08	7-8	>943	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.74	Vert(CT)	-0.08	7-8	>881	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.00	7	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 32 lb	FT = 20%F, 12%E

TOP CHORD	2x4 SP No.2(flat)
BOT CHORD	2x4 SP No.2(flat)
WEBS	2x4 SP No.3(flat)
OTHERS	2x4 SP No.3(flat)
BRACING	
TOP CHORD	Structural wood sheathing directly applied or
	6-0-0 oc purlins, except end verticals.
BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc
	bracing.
REACTIONS	(size) 7=0-3-8, 10= Mechanical
	Max Grav 7=323 (LC 24), 10=324 (LC 7)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-10=-263/0, 6-7=-262/8, 1-2=0/0,
	2-3=-467/0, 3-4=-467/0, 4-5=-467/0,
	5-6=-19/1
BOT CHORD	9-10=0/378, 8-9=0/467, 7-8=0/380
WEBS	3-9=-236/116, 4-8=-181/116, 2-10=-448/0,
	2-9=-116/311, 5-7=-449/0, 5-8=-103/283

NOTES

- 1) Unbalanced floor live loads have been considered for this design.
- Bearings are assumed to be: , Joint 7 SP No.3 . 2)
- Refer to girder(s) for truss to truss connections. 3)
- Bearing at joint(s) 7 considers parallel to grain value 4) using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

1111111 Hummun SEAL 030652 munn December 23,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF
2412-1522-A	F6	Floor	7	1	I70360768 Job Reference (optional)

1-6-0

6-5-7

14

1.5x3 II

9

3x3 =

3x3 =

13

1 - 3 - 0

16 2 17 3 18

0-1-8

1.5x3 🛚

10 10

1.5x3 =

3x6 =

0-3-9

1-0-0

Structural LLC Thurmont MD - 21788

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Fri Dec 20 14:39:51 ID:ynVITXMzh97p5oUNIfQFFkyHMYf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-1-8

1.5x3 🛛

\

3x6 =

1.5x3 =

in

(loc)

9-10

9-10

7

l/defl

>986

>928

n/a n/a

L/d

480

360

1-0-0

1-3-0

20 6

3x3 =

15

1.5x3 🛚

8

3x3 =

4 19 5

Page: 1

3-11-12 6-5-7 0-1-8 3-2-12 2-5-12 6-3-15 Н Н 2-4-4 2-4-4 0-1-8 0-9-0 0-1-8 0-9-0 Scale = 1:26.6 Plate Offsets (X, Y): [10:0-4-8,Edge] Spacing 1-7-3 CSI DEFL (psf) 40.0 Plate Grip DOL 1.00 TC 0.34 Vert(LL) -0.08 10.0 Lumber DOL 1.00 BC 0.74 Vert(CT) -0.08 0.0 Rep Stress Incr YES WB Horz(CT) 0.12 0.00 Code IRC2021/TPI2014 Matrix-S 5.0 TOP CHORD 2x4 SP No.2(flat) BOT CHORD 2x4 SP No.2(flat) 2x4 SP No.3(flat) 2x4 SP No.3(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing REACTIONS (size) 7=0-3-8, 10=0-3-8 Max Grav 7=326 (LC 26), 10=326 (LC 23) (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-10=-262/7, 6-7=-262/7, 1-2=-19/1, 2-3=-499/0, 3-4=-499/0, 4-5=-499/0, 5-6=-19/1 BOT CHORD 9-10=0/389, 8-9=0/499, 7-8=0/389 3-9=-196/107, 4-8=-196/107, 2-10=-461/0, 2-9=-88/307, 5-7=-461/0, 5-8=-88/307 1) Unbalanced floor live loads have been considered for

this design.

Loading

TCLL

TCDL

BCLL

BCDL

WEBS

OTHERS BRACING

BOT CHORD

FORCES

WFBS

NOTES

LUMBER

All bearings are assumed to be SP No.3 2)

- 3) Bearing at joint(s) 10, 7 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 4) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

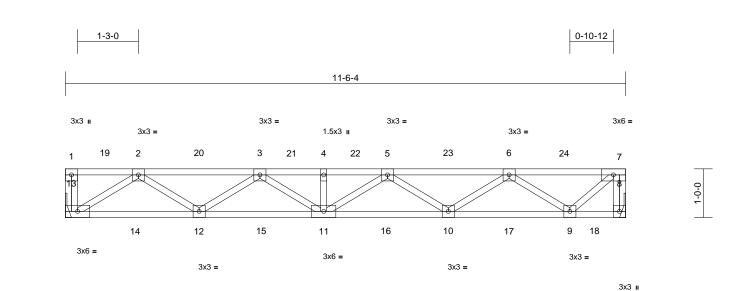
PLATES

Weight: 33 lb

MT20

GRIP

244/190


FT = 20%F, 12%E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF	
2412-1522-A	F1	Floor	1	1	I70360769 Job Reference (optional)	

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Fri Dec 20 14:39:48 ID:0ONY2rLj9Xt5sUK?eFOnAJyHMYh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:23.7

0-0-

Loading	(psf)	Spacing	1-7-3	CSI		DEFL	in	· · /	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00	TC	0.64	Vert(LL)	-0.09	10-11	>999	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.86	Vert(CT)	-0.12	10-11	>999	360		
BCLL	0.0	Rep Stress Incr	YES	WB	0.31	Horz(CT)	0.02	8	n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S							Weight: 59 lb	FT = 20%F, 12%E
LUMBER												
TOP CHORD	2x4 SP No.2(flat)											
BOT CHORD	2x4 SP No.2(flat)											
WEBS	2x4 SP No.3(flat)											
BRACING												
TOP CHORD	Structural wood she 6-0-0 oc purlins, ex	0 7 11	ed or									
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 o	c									
REACTIONS	(size) 8= Mecha	anical, 13= Mechanic	cal									
	Max Grav 8=496 (L0	,										
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-13=-259/33, 7-8=-	493/0 1-2=0/0										
	2-3=-1107/0, 3-4=-1	, ,										
	5-6=-1340/0, 6-7=-4											
BOT CHORD	12-13=0/714, 11-12		579.									
	9-10=0/1072, 8-9=0		,									
	- ,											

NOTES

WEBS

1) Refer to girder(s) for truss to truss connections.

7-9=0/648

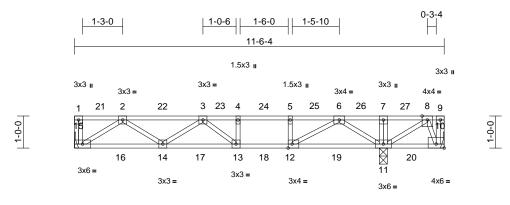
2) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

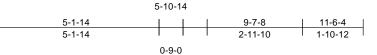
2-13=-846/0, 2-12=0/483, 3-12=-440/2, 3-11=-164/305, 4-11=-258/65, 5-11=-243/233, 5-10=-319/70, 6-10=0/405, 6-9=-708/0,

3) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF	
2412-1522-A	F3	Floor	1	1	Job Reference (optional)	170360770

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Fri Dec 20 14:39:50 ID:0ONY2rLj9Xt5sUK?eFOnAJyHMYh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-7-14

0-9-0

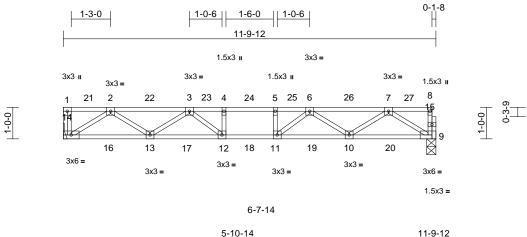
Scale = 1:35.2

Plate Offsets (X, Y): [10:Edge,0-1-8], [12:0-1-8,Edge]

	, , , , , [:o.24go,o : o	, [.2.0 : 0,20g0]			1							1	
Loading	(psf)	Spacing	1-7-3		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL	40.0	Plate Grip DOL	1.00		TC	0.57	Vert(LL)	-0.12	13-14	>986	480	MT20	244/190
TCDL	10.0	Lumber DOL	1.00		BC	0.85	Vert(CT)	-0.14	13-14	>812	360		
BCLL	0.0	Rep Stress Incr	YES		WB	0.31	Horz(CT)	0.01	11	n/a	n/a		
BCDL	5.0	Code	IRC2021	/TPI2014	Matrix-S							Weight: 60 lb	FT = 20%F, 12%E
	Mechanic	cept end verticals. applied or 6-0-0 oc anical, 11=0-3-0, 15 al	8)	load of 250.0 panels and a Bottom Chor Recommend 10-00-00 oc (0.131" X 3") at their outer	s been designed lb live and 3.0lb o t all panel points d, nonconcurrent 2x6 strongbacks and fastened to e nails. Strongbac ends or restraine to not erect truss Standard	dead loca along the with any , on edge ach truss ks to be ed by othe	ated at all mice Top Chord a other live loa e, spaced at s with 3-10d attached to w er means.	l and ads.					
	Max Uplift 10=-238 (Max Grav 10=233 (L 15=391 (L	.C 20), 11=668 (LC	1),										
FORCES	(lb) - Maximum Com Tension 1-15=-260/31, 9-10= 2-3=-807/0, 3-4=-870	-252/97, 1-2=0/0, 6/0, 4-5=-876/0,											
BOT CHORD WEBS	5-6=-876/0, 6-7=-111 8-9=0/0 14-15=0/553, 13-14= 11-12=-64/394, 10-1 4-13=-98/167, 5-12= 2-15=-655/0, 2-14=0 3-13=-327/108, 6-11 8-11=-465/98, 8-10=	=0/997, 12-13=0/876 1=-111/75 -272/0, 7-11=-282/4 /436, 3-14=-298/90, =-701/0, 6-12=0/646	, ,								al al	NUTH C	AROLIN
this design2) Bearings a3) Refer to gi4) Provide me	ed floor live loads have	been considered fo bint 11 SP No.2 . s connections.									in the second se	SE 0300	• •

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 238 lb uplift at joint 10.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)



818 Soundside Road Edenton, NC 27932

December 23,2024

Job		Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF	
2412-15	522-A	F2	Floor	2	1	Job Reference (optional)	170360771

Run: 8.83 S Dec 4 2024 Print: 8.830 S Dec 4 2024 MiTek Industries, Inc. Fri Dec 20 14:39:49 ID:0ONY2rLj9Xt5sUK?eFOnAJyHMYh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

0-9-0

Scale = 1:34.3

Loading TCLL	(psf) 40.0	Spacing Plate Grip DOL	1-7-3 1.00	CSI TC	0.59	DEFL Vert(LL)	in -0.11	(loc) 12-13	l/defl >999	L/d 480	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.00	BC	0.35	Vert(CT)	-0.14	12-13	>999	360	101120	244/130
BCLL	0.0	Rep Stress Incr	YES	WB	0.24	Horz(CT)	0.02	9	>000 n/a	n/a		
BCDL	5.0	Code	IRC2021/TPI2014	Matrix-S	0.2.1		0.02				Weight: 58 lb	FT = 20%F, 12%E
LUMBER			7) CAUTION,	Do not erect trus	s backward	ds.						
TOP CHORD	2x4 SP No.2(flat)		LOAD CASE(S) Standard								
BOT CHORD WEBS	2x4 SP No.2(flat) 2x4 SP No.3(flat)											
OTHERS	2x4 SP No.3(flat) 2x4 SP No.3(flat)											
BRACING	2X4 01 110.0(hat)											
TOP CHORD	Structural wood she	athing directly applie	ed or									
	6-0-0 oc purlins, ex											
BOT CHORD	Rigid ceiling directly bracing.	applied or 10-0-0 or	с									
REACTIONS	(size) 9=0-3-8, Max Grav 9=503 (L0	14= Mechanical C 1), 14=508 (LC 1)										
FORCES	(lb) - Maximum Com Tension	npression/Maximum										
TOP CHORD	1-14=-259/32, 8-9=-	259/35, 1-2=0/0,										
	2-3=-1144/0, 3-4=-1											
	5-6=-1649/0, 6-7=-1											
BOT CHORD	13-14=0/735, 12-13 10-11=0/1521, 9-10	,	649,									
WEBS	4-12=-181/125, 5-11		71/0									
WEBG	2-13=0/499, 3-13=-4											
	7-9=-868/0, 7-10=0/	500, 6-10=-461/9,										
	6-11=-205/342											1072
NOTES											TH C	A.D.111
,	ed floor live loads have	e been considered fo	or							6	"THU	ARO
this desigr 2) Bearings a	are assumed to be: , Je	oint 9 SP No 3								3	ØKS	STOLAS
	irder(s) for truss to trus									21	A	No.7 -
, 0	t joint(s) 9 considers pa									2	Vel	9 R := =
	SI/TPI 1 angle to grain									The second second	: OF	AI : E
	should verify capacity of									1	SE	
	has been designed fo 0.0lb live and 3.0lb dea									2	: 030	652 : =
	d at all panel points ald									Ξ		1 E -
	nord, nonconcurrent wi									20	n: n	a: 0:
	end 2x6 strongbacks, o									1	P. SNGI	VEENX
	oc and fastened to eac									1	NE	- Glin
	 3") nails. Strongbacks ter ends or restrained 		alls								Min R.	LAS
	tor enus or restrained	by other means.										
											Decembe	r 23,2024
	UNG - Verify design parameter	ers and READ NOTES ON	THIS AND INCLUDED MITEK		/III-7473 rev. 1	/2/2023 BEFOR	EUSE					

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

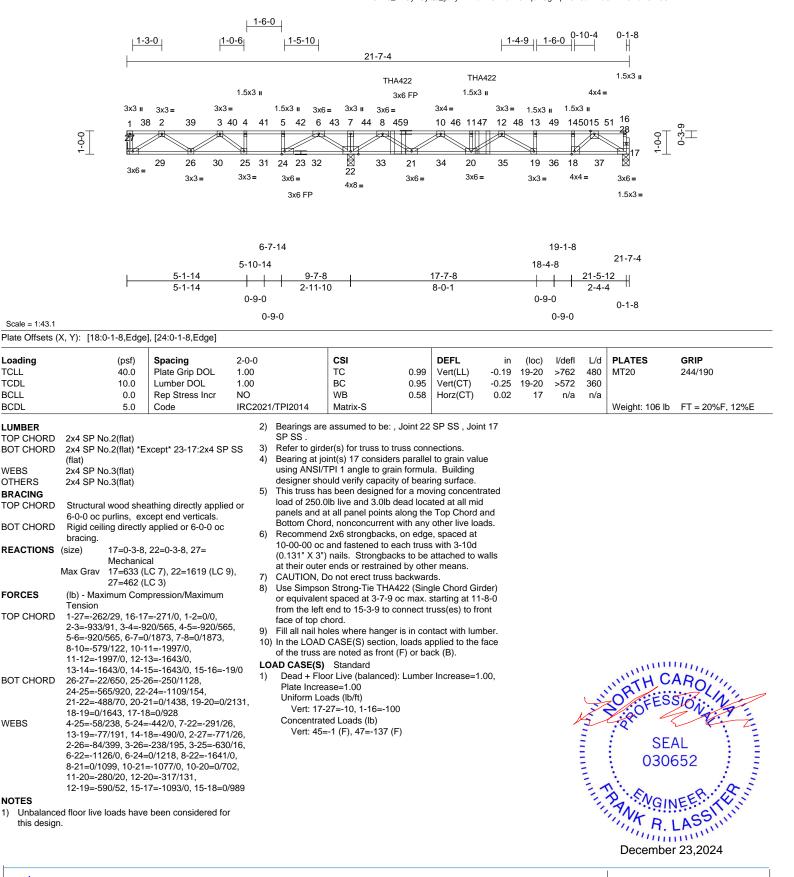
Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF
2412-1522-A	FG1	Floor Girder	1	1	Job Reference (optional)

Structural LLC Thurmont MD - 21788

TCLL

TCDL

BCLL


BCDL

WEBS

WEBS

1)

Run: 8.83 S. Dec. 4 2024 Print: 8.830 S.Dec. 4 2024 MiTek Industries. Inc. Fri Dec 20 14:39:52 ID:NMBR5ZPs_4VOyFCyQo_ytNyHMYc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF	
2412-1522-A	F4	Floor	1	1	Job Reference (optional)	

Structural LLC Thurmont MD - 21788

Loading

TCLL

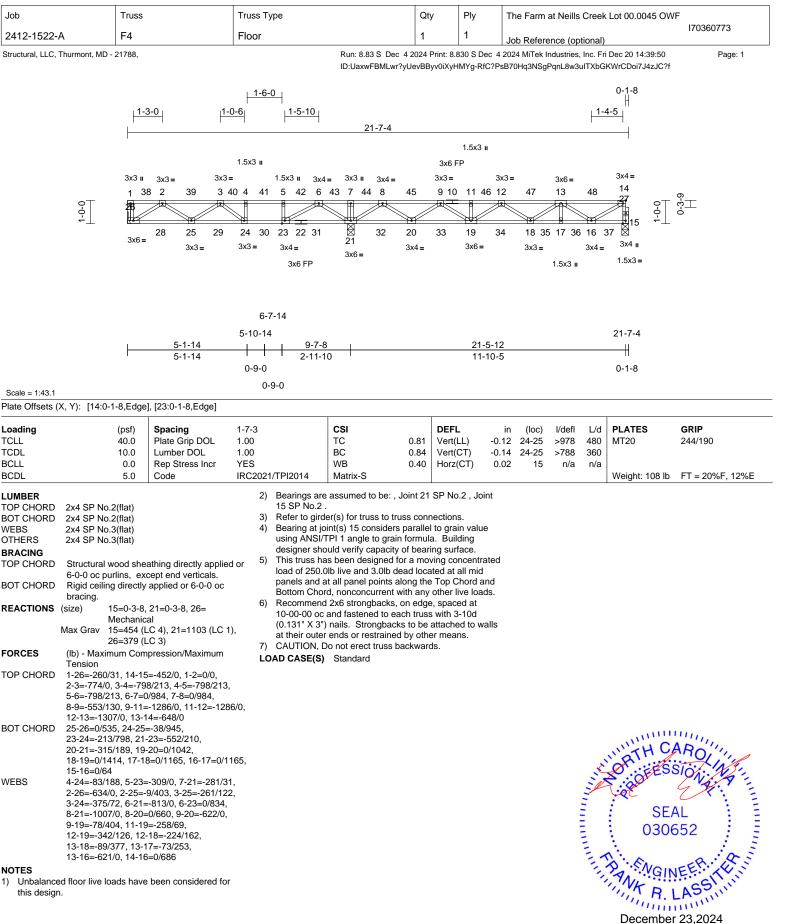
TCDL

BCLL

BCDL

WEBS

OTHERS


BRACING

FORCES

WEBS

NOTES 1)

LUMBER

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.
Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0045 OWF
2412-1522-A	F5	Floor	3	1	Job Reference (optional)

Structural LLC Thurmont MD - 21788

Loading

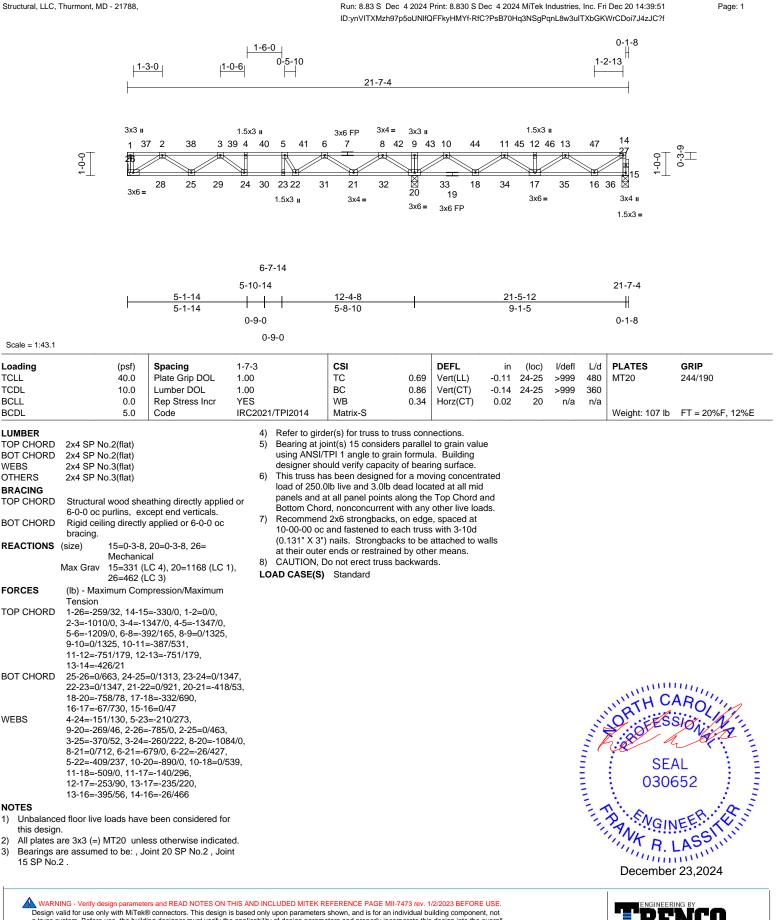
TCLL

TCDI

BCLL

BCDL

WEBS


WEBS

NOTES

1)

2)

3)

a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job 2412-1522-	-A	Truss FGE1			Truss Ty	pe upported G	able	Q 1	У	Ply 1					Lot 00.0045 O	WF 170360775
Structural, LLC,		_			100130			S Dec 4 2024	Print: 8.8				nce (op idustries,		Dec 20 14:39:52	Page: 1
T	3x3 II 1 5	3 2 54	3 55 4	56 5	57 6	58 7 5	21-		3х	6 FP					WrCDoi7J4zJC?i	1-8
1-0-0	38 33x3 II	8 35 39	34 40 3	3 41 32		30 29 4 3x6 FP	3 28 44 27	45 26 4	6 25 ·	47 24	48 23	49 2	22 50	21 5	1.	19 ← 19 ← 44= 5x3=
							21-5 21-5								21-	1
Scale = 1:41.7 Plate Offsets)-2-8,Edge]]												0-1	1-8
oading CLL CDL CLL CDL		(psf) 40.0 10.0 0.0 5.0	Spacing Plate Grip Lumber Do Rep Stress Code	OL	1-7-3 1.00 1.00 YES IRC2021/	TPI2014	CSI TC BC WB Matrix-R	0.30 0.33 0.05	DEFL Vert(I Vert(Horiz	LL) TL)	in n/a n/a).00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%F, 12%E
LUMBER OP CHORD SOT CHORD VEBS DTHERS SRACING TOP CHORD SOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N Structurai 6-0-0 oc p Rigid ceili bracing. (size) Max Uplift	o.2(flat) o.3(flat) o.3(flat) o.3(flat) l wood sheat ourlins, exc ing directly 19=21-7-4 25=21-7-4 25=21-7-4 35=21-7-4 19=-4 (LC 22=-1 (LC 35=-5 (LC 19=269 (L	athing direct cept end ver applied or 6 4, 20=21-7-4 4, 23=21-7-4 4, 33=21-7-4 4, 33=21-7-4 18), 21=-11 50), 28=-3 19), 36=-13 C 68), 20=2	ticals. -0-0 oc -, 21=21-7 -, 24=21-7 -, 31=21-7 -, 34=21-7 - - - - - - - - - - - - -	or WE -4, -4, NO -4, 1) -4, 2) 3) -4, 2) 3) -9, 5)	TES All plates a indicated. Gable requ Truss to be braced aga Gable stud All bearing:	35-36=-3/35, 32-33=-3/35, 28-29=-3/35, 25-26=-3/35, 2-22=-3/35, 19-20=-3/35 2-35=-271/13 5-32=-272/10 8-28=-272/10 11-25=-272/1 16-21=-272/1 16-21=-272/1 16-21=-272/1 re 1.5x3 () M irres continuou fully sheathed inst lateral mo s spaced at 1- s are assumed joint(s) 19 con	31-32=-3/35 27-28=-3/35 24-25=-3/35 21-22=-3/35 21-22=-3/35 3, 3-34=-273/ 0, 6-31=-272/ 0, 13-24=-27 6, 17-20=-27 T20 unless of s bottom choc d from one fa from one fa from one fa uvement (i.e. 4-0 oc. to be SP Not	29-31= 26-27= 23-24= 20-21= 10, 4-33 10, 7-29 10, 10-2 2/10, 3/10, 5/7 therwis rd beari ce or se diagona .2.	3/35, 3/35, 3/35, 3/35, 3/35, 3=-272/10 272/10 272/10 272/10 272/10 	,					
OP CHORD	Tension 1-36=-262 2-3=-35/3 6-7=-35/3 10-11=-3	23=285 (L 25=285 (L 27=285 (L 29=285 (L 32=285 (L 32=285 (L 34=286 (L 36=268 (L imum Com 2/20, 18-19 i, 3-4=-35/3 i, 7-8=-35/3 5/3, 11-13= 5/3, 15-16=	C 66), 22=2 C 64), 24=2 C 64), 24=2 C 62), 26=2 C 58), 31=2 C 56), 33=2 C 56), 33=2 C 54), 35=2 C 52) pression/Ma =-257/12, 1- 3, 4-5=-35/3, 8, 8-9=-35/3, -35/3, 13-14 -35/3, 16-17	285 (LC 63 285 (LC 61 285 (LC 59 285 (LC 57 285 (LC 55 283 (LC 53 aximum -2=-35/3, 5-6=-35/3, 9-10=-35, 4=-35/3,),),)), 7),),),), 8) 3, (3, 9) 10)	using ANS designer sł One H2.5A recommene UPLIFT at 24, 23, 22, does not cc This truss ł load of 250 panels and Bottom Chi Recommer 10-00-00 o (0.131" X 3 at their outu	/TPI 1 angle to nould verify can Simpson Stroo ded to connect tit(s) 36, 19, 35 and 21. This consider lateral nas been desig .0lb live and 3 at all panel poord, nonconcul d 2x6 strongb c and fasteneco ") nails. Stron er ends or rest Do not erect to	o grain formu pacity of bea ng-Tie conne truss to bea , 33, 32, 31, onnection is forces. Ined for a mc olb dead loc bints along th rrent with any acks, on edg I to each trus gbacks to be rained by oth	la. Build ring surf ectors ring wal 29, 28, 2 for uplif ving col ated at a e Top C o ther li e, spacc s with 3 attache er mear	ding face. Is due to 27, 26, 25 t only and ncentrate all mid hord and ive loads. ed at -10d ed to walls	d					AROUTER STOLET

T RENCO

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses sate truss systems, see **ANSI/TPII Quality Criteria and DSP-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

