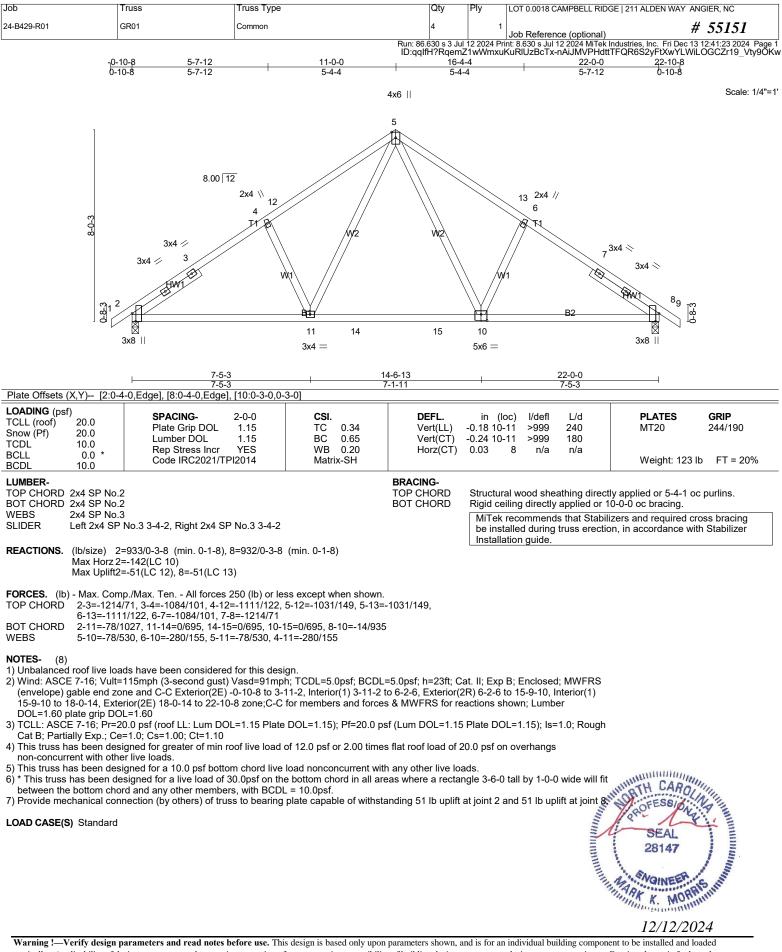
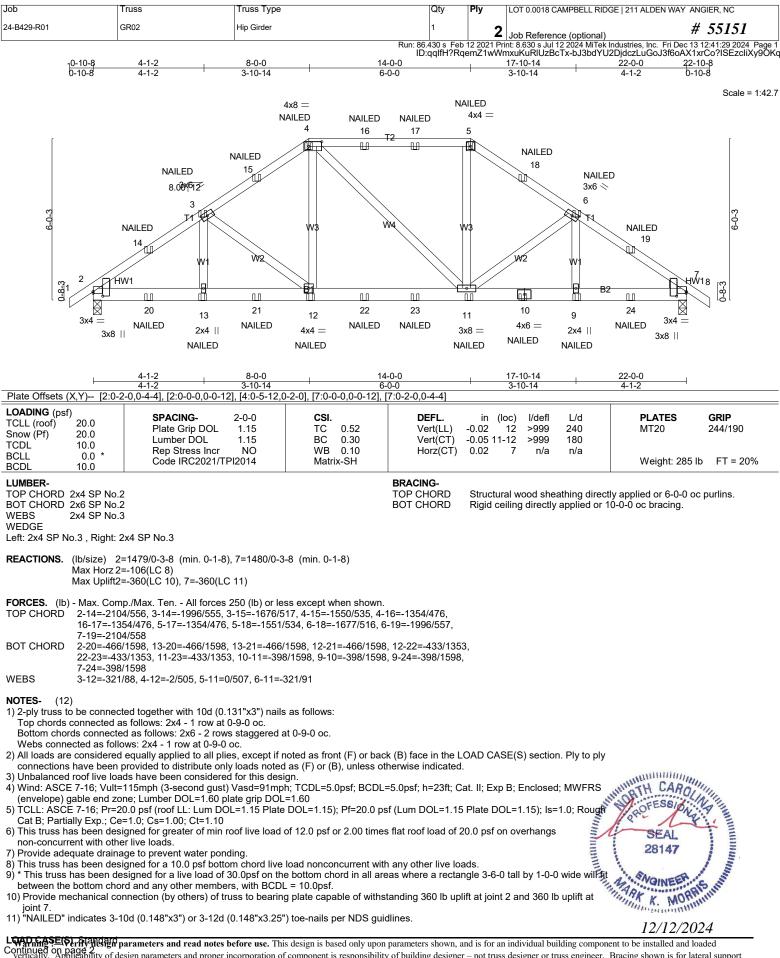
Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.


AST #: 55151 JOB: 24-B429-R01 JOB NAME: LOT 0.0018 CAMPBELL RIDGE Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2018 as well as IRC 2021. 67 Truss Design(s)

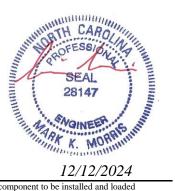

Trusses:

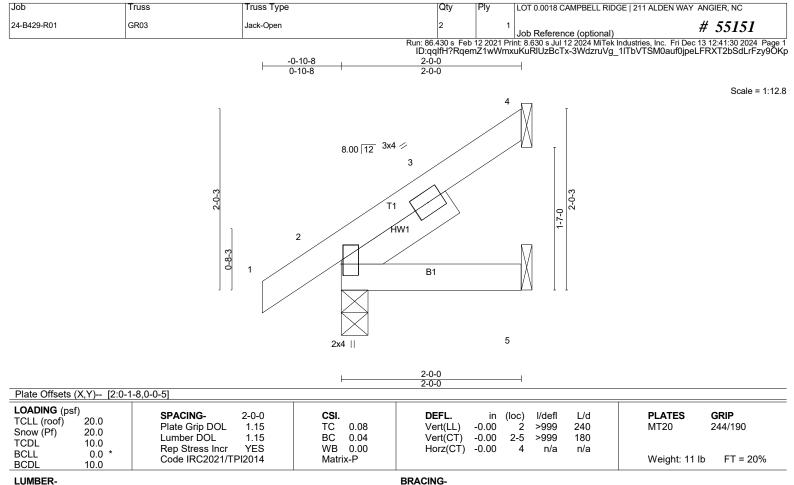
GR01, GR02, GR03, GR04, GR05, GR06, GR07, J01, J02, J03, J04, J05, J06, J07, J07A, J08, J09, J11, J12, J13, J14, J15, J16, J17, J17A, J19, J20, J21, J22, J23, J24, J25, J26, J27, J28, P01, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R24A, R24B, R25, R26, R27, VT01, VT02

Warning !--- Verify design parameters and read notes before use.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	' ANGIER, NC
24-B429-R01	GR02	Hip Girder	1	2	Job Reference (optional)	# 55151
Run: 86.430 s. Feb 12.2021 Print: 8.630 s. Jul 12.2024 MiTek Industries. Inc. Fri Dec 13.12:41:20.2024 Page 2						

n: 86.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:41:29 2024 Page 2 ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-bJ3bdYU2DjdczLuGoJ3f6oAX1xrCo?ISEzcliXy9OKq


LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 5-8=-60, 2-7=-20

Concentrated Loads (lb)

Vert: 4=-83(F) 5=-83(F) 10=-97(F) 3=-48(F) 13=-58(F) 12=-29(F) 11=-29(F) 6=-48(F) 9=-58(F) 14=-63(F) 15=-15(F) 16=-83(F) 17=-83(F) 18=-15(F) 19=-63(F) 20=-43(F) 21=-97(F) 22=-29(F) 23=-29(F) 24=-43(F)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

Left 2x4 SP No.3 1-5-0 SLIDER

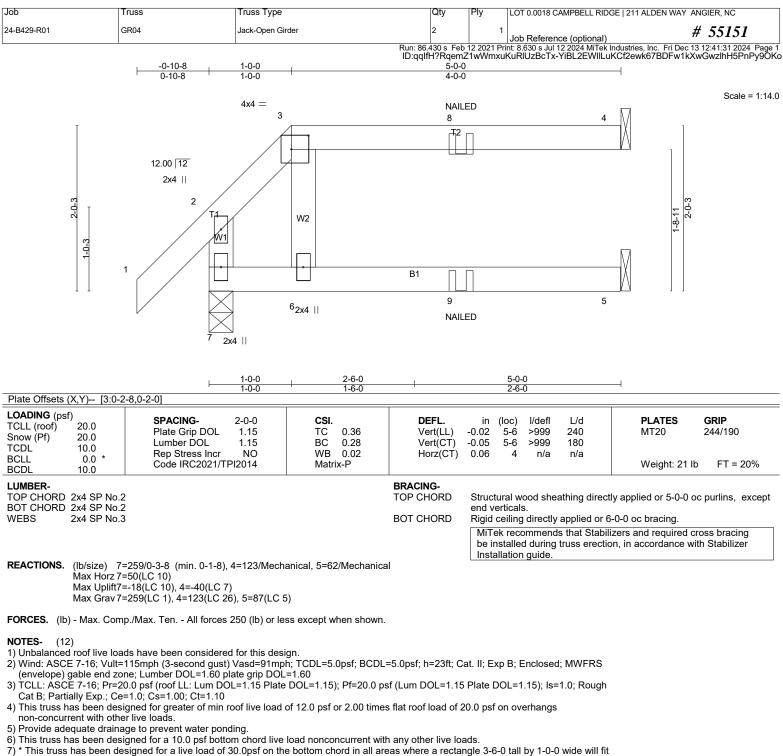
REACTIONS. (Ib/size) 4=48/Mechanical, 2=144/0-3-8 (min. 0-1-8), 5=20/Mechanical Max Horz 2=53(LC 12) Max Uplift4=-35(LC 12), 2=-3(LC 12) Max Grav 4=52(LC 20), 2=147(LC 18), 5=40(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

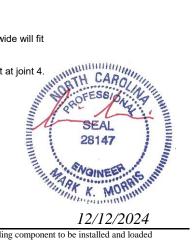
- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

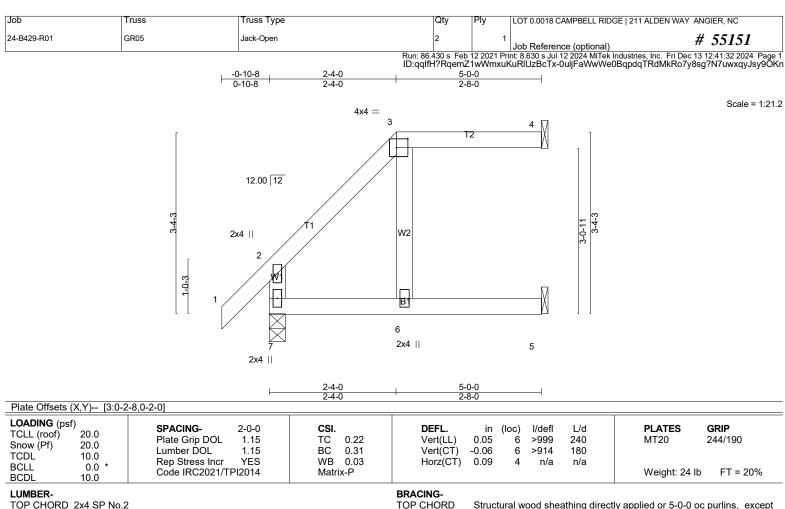
non-concurrent with other live loads.


- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 4 and 3 lb uplift at joint 2.

LOAD CASE(S) Standard

Structural wood sheathing directly applied or 2-0-0 oc purlins.


Rigid ceiling directly applied or 10-0-0 oc bracing.



- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 7 and 40 lb uplift at joint 4.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 7=259/0-3-8 (min. 0-1-8), 4=108/Mechanical, 5=78/Mechanical Max Horz 7=87(LC 12) Max Uplift4=-27(LC 9), 5=-7(LC 12)

Max Grav 7=259(LC 1), 4=108(LC 1), 5=86(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

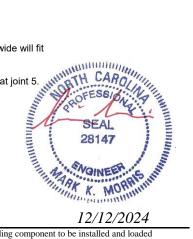
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

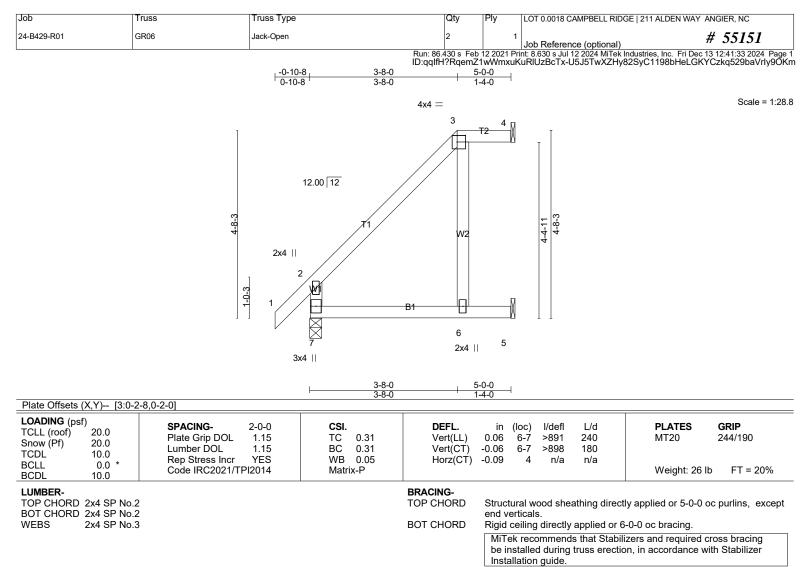
3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.


7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit


between the bottom chord and any other members.

Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 4 and 7 lb uplift at joint 5.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 7=259/0-3-8 (min. 0-1-8), 4=68/Mechanical, 5=117/Mechanical Max Horz 7=125(LC 12) Max Uplift4=-8(LC 9), 5=-58(LC 12) Max Grav 7=259(LC 1), 4=68(LC 1), 5=120(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

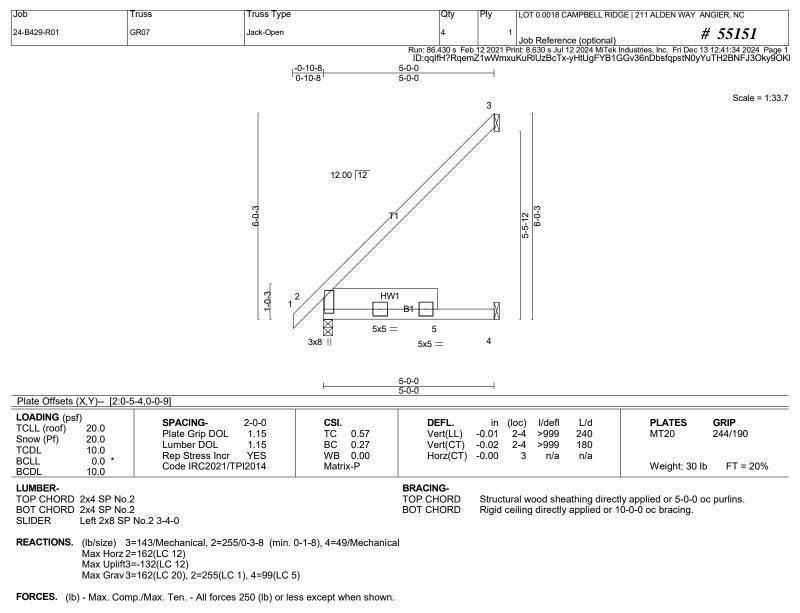
2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

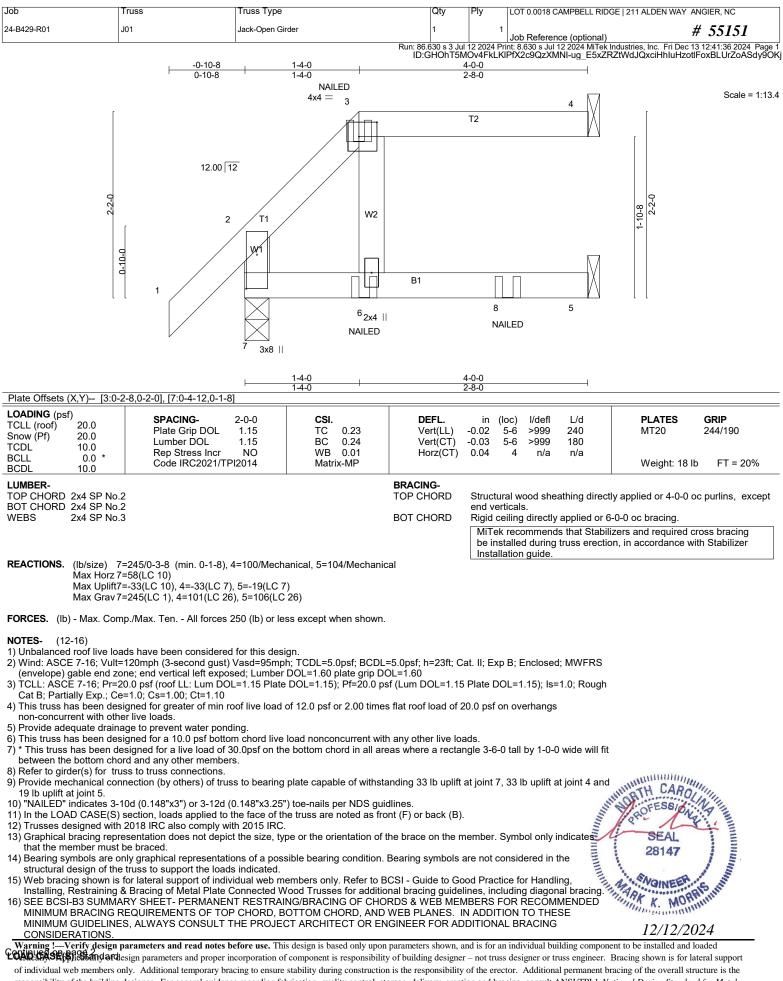

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 4 and 58 lb uplift at joint 5.

LOAD CASE(S) Standard

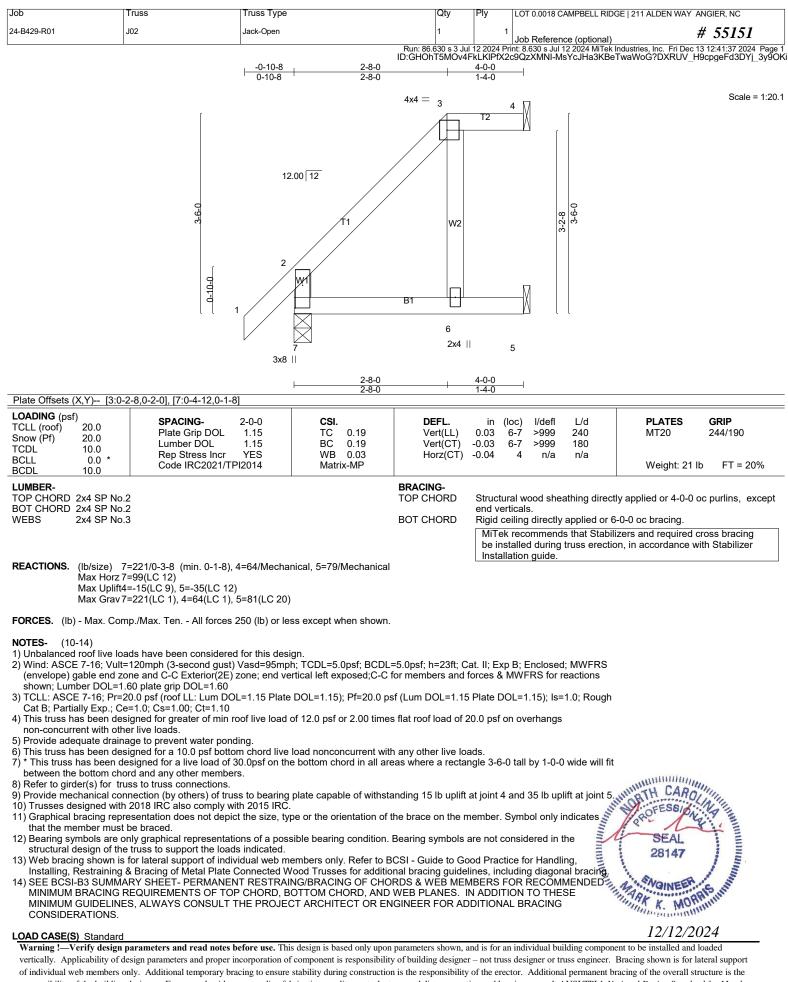
NOTES-


- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

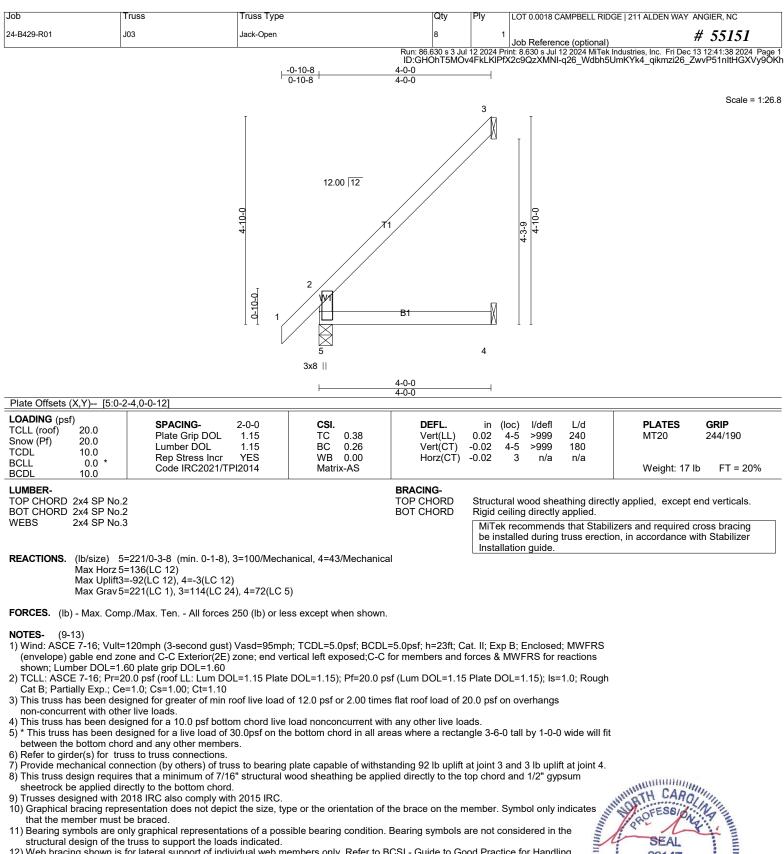
non-concurrent with other live loads.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 3.

LOAD CASE(S) Standard

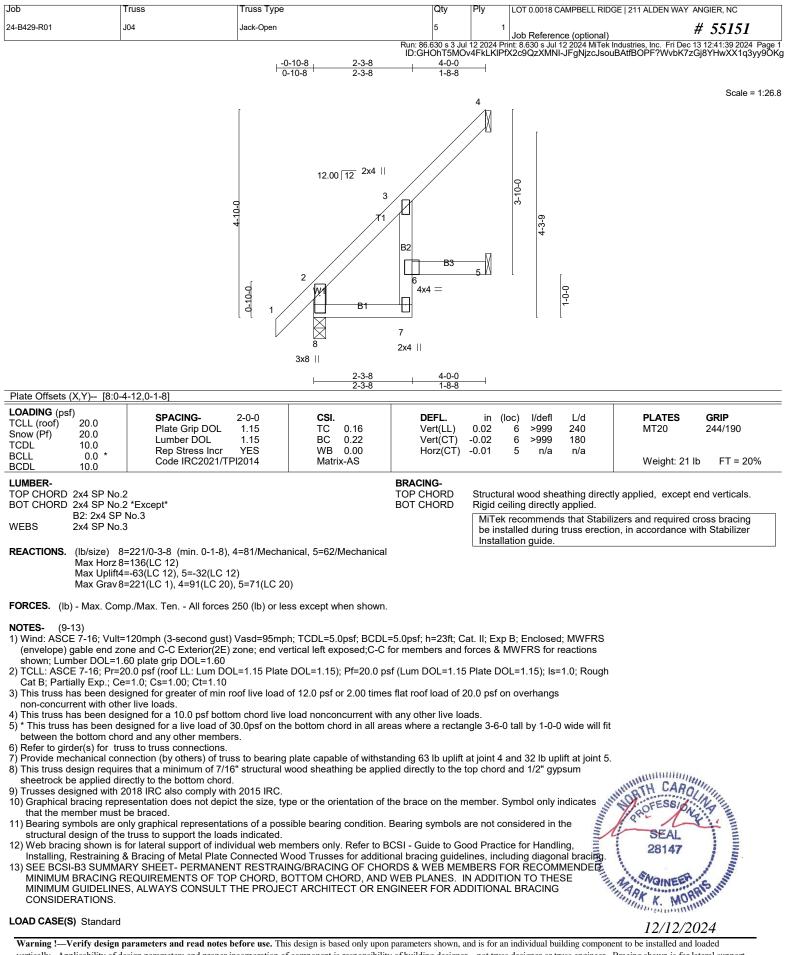


responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

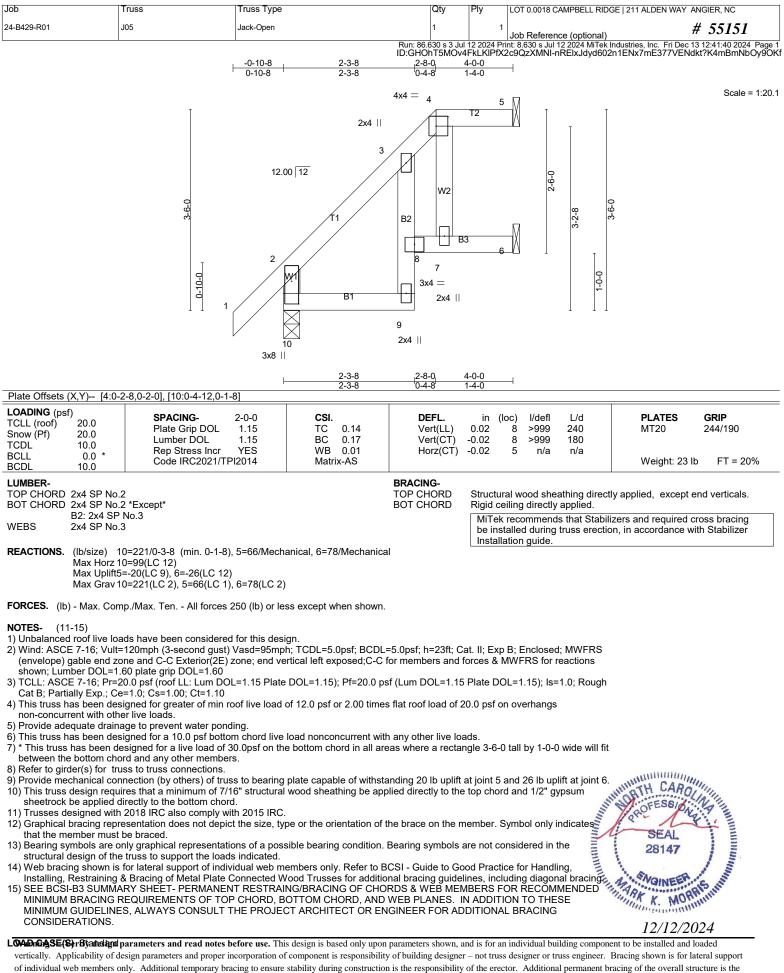

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY ANGIER, NC	
24-B429-R01	J01	Jack-Open Girder	1	1	Job Reference (optional) # 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Fri Dec 13 12:41:36 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-ug_E5xZRZtWdJQxciHhluHzotIFoxBLUrZoASdy9OK						

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 3=-2(B) 6=-8(B) 8=-74(B)

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- Bearing sympols are only set, structural design of the truss to support the loads indicated.
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 Web stacing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 Web stacing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 See BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
 MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE
 MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITIONAL BRACING

С. 12/20°. анд . Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

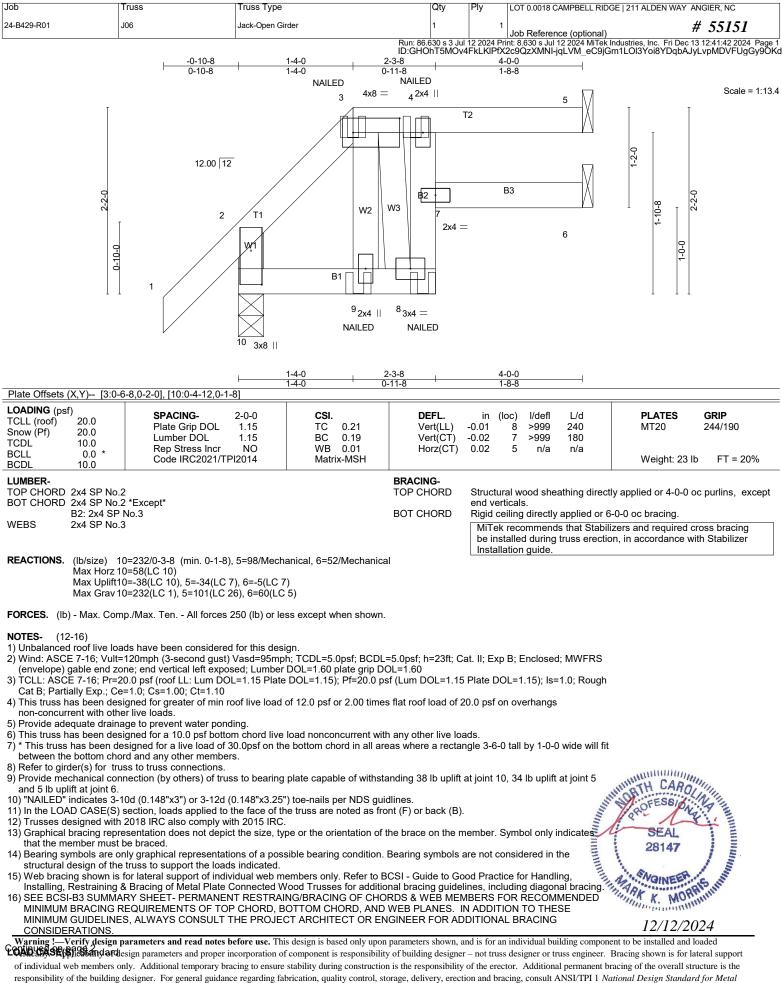

28147

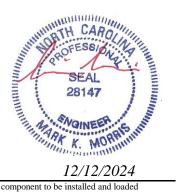
NOINEE K. MORR

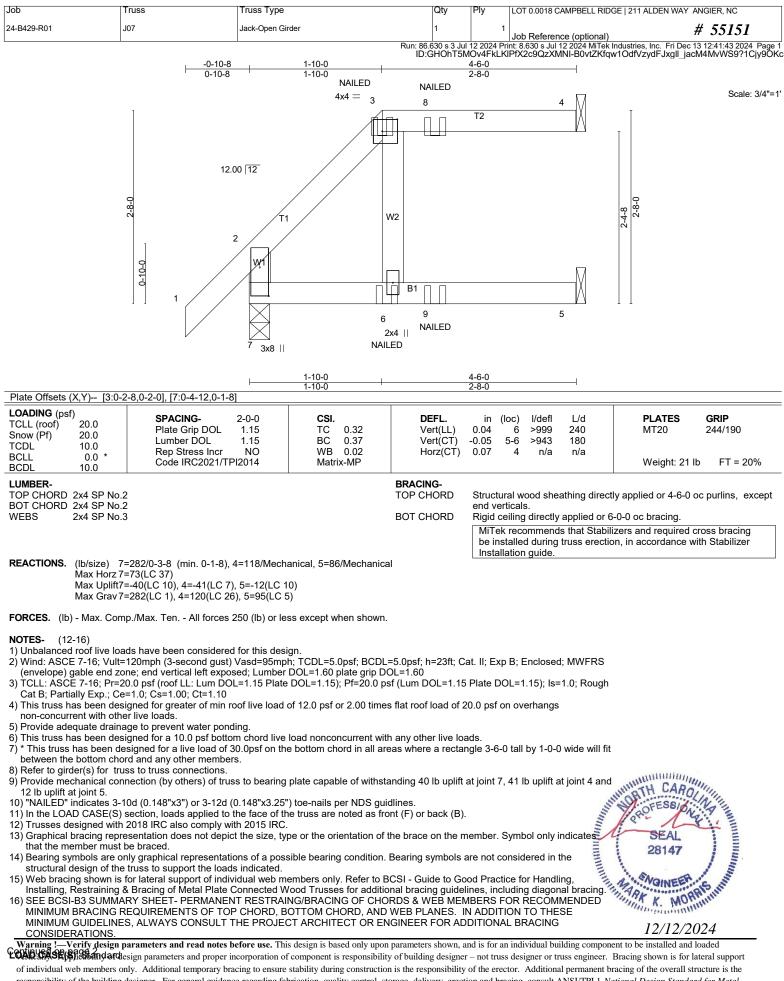
12/12/2024

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.




Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC
24-B429-R01	J06	Jack-Open Girder	1	1	Job Reference (optional)	# 55151
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:41:42 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-jqLVM_eC9jGm1LOl3Yoi8YDqbAJyLvpMDVFUgGy9OK						

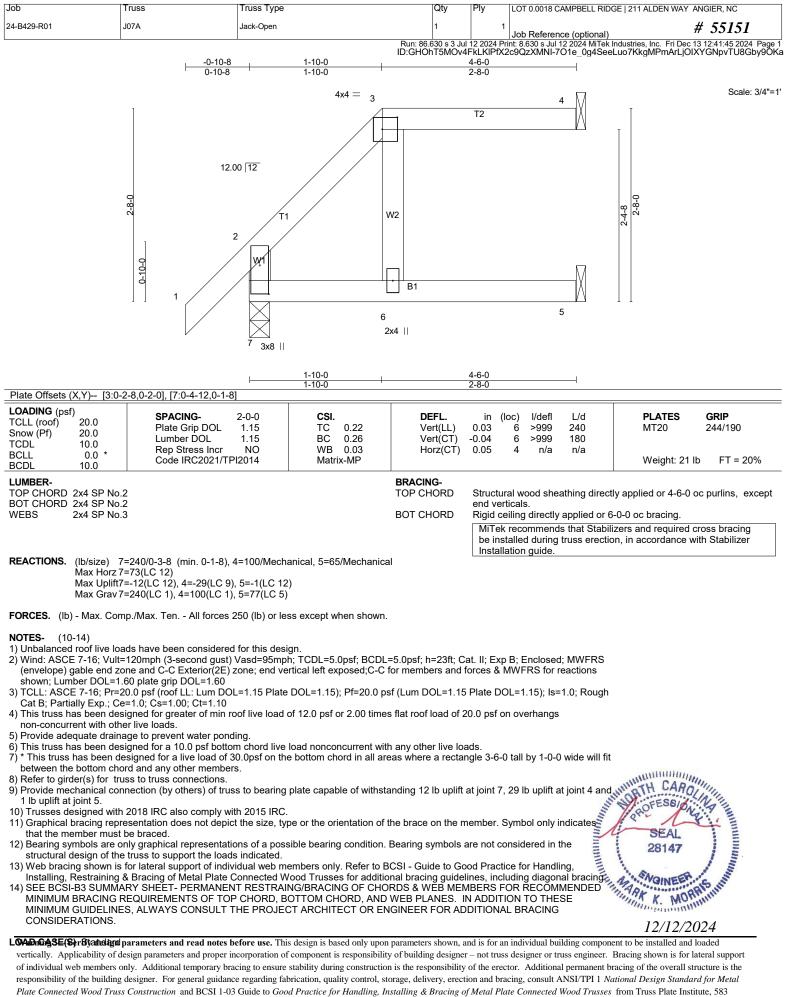
1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-2=-60, 2-3=-60, 3-5=-60, 8-10=-20, 6-7=-20

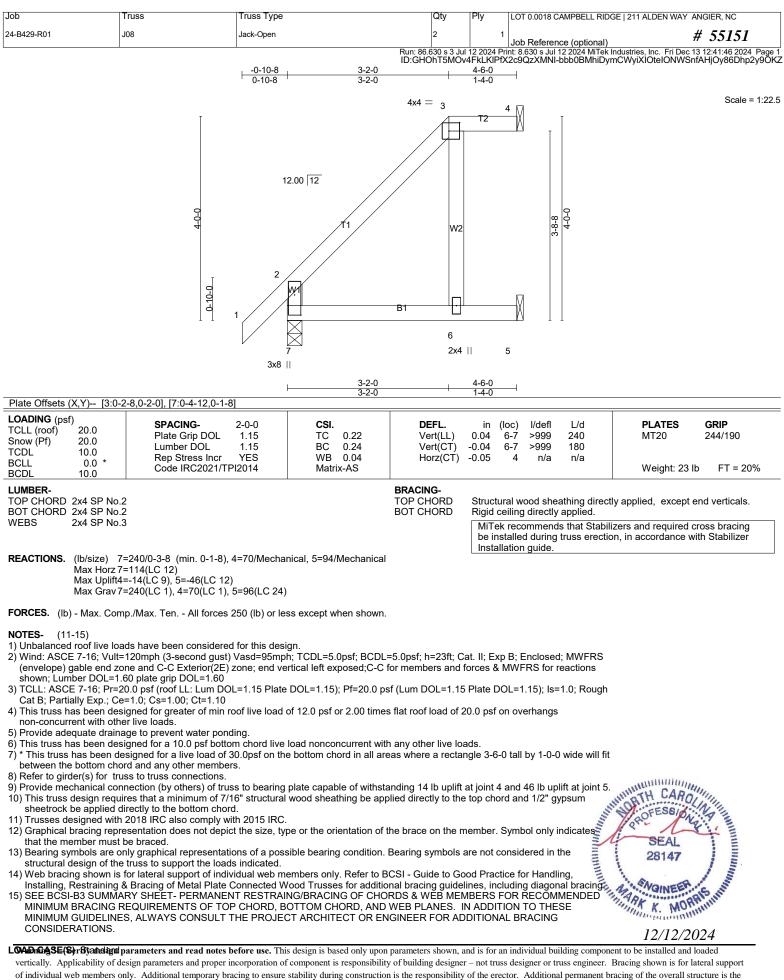
Concentrated Loads (Ib) Vert: 3=-2(F) 4=-2(F) 9=-8(F) 8=-8(F)

responsibility of the buil	ding designer.	For general g	uidance rega	rding fabrication	, quality contro	l, storage, delivery,	erection and	d bracing, consult A	NSI/TPI 1 A	Vational Design S	Standard for Metal
Plate Connected Wood	Truss Construct	tion and BCS	SI 1-03 Guid	e to Good Practic	ce for Handling	g, Installing & Brac	ing of Meta	l Plate Connected W	Vood Trusse	s from Truss Pla	te Institute, 583
D'Onofrio Drive, Madis	son, WI 53719.										

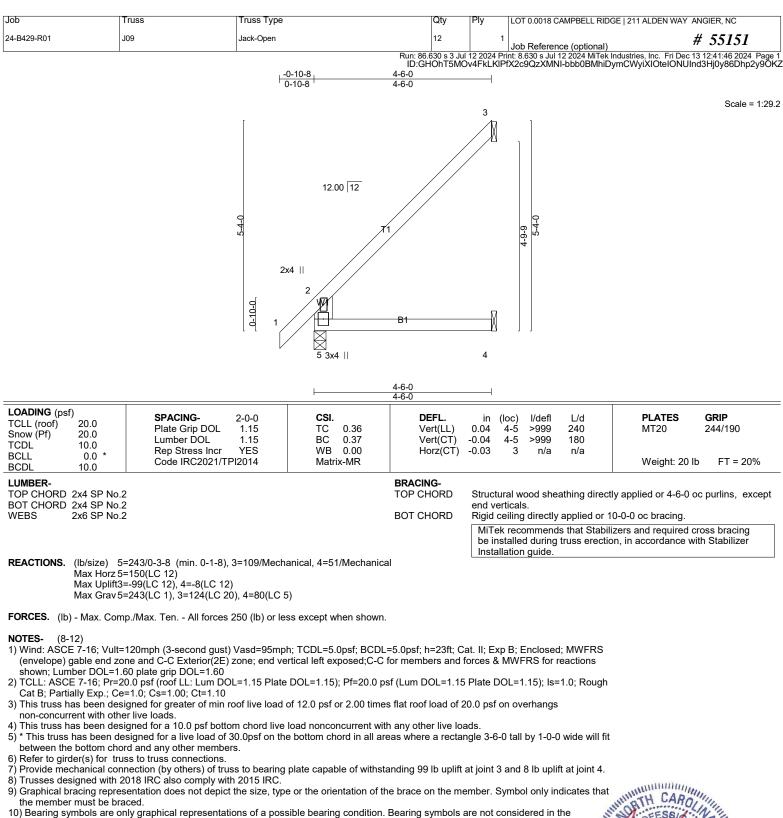
Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN V	/AY ANGIER, NC
24-B429-R01	J07	Jack-Open Girder	1	1	Job Reference (optional)	# 55151
Run: 86 630 s 3, lul 12 2024 Print: 8, 630 s, lul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:41:44 2024, Page 2						


Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 Mi lek Industries, Inc. Fri Dec 13 12:41:44 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-fCTGnggShKWUGfY8AzrADzI9T_ybpp9fgpkbk9y9OKb

LOAD CASE(S) Standard

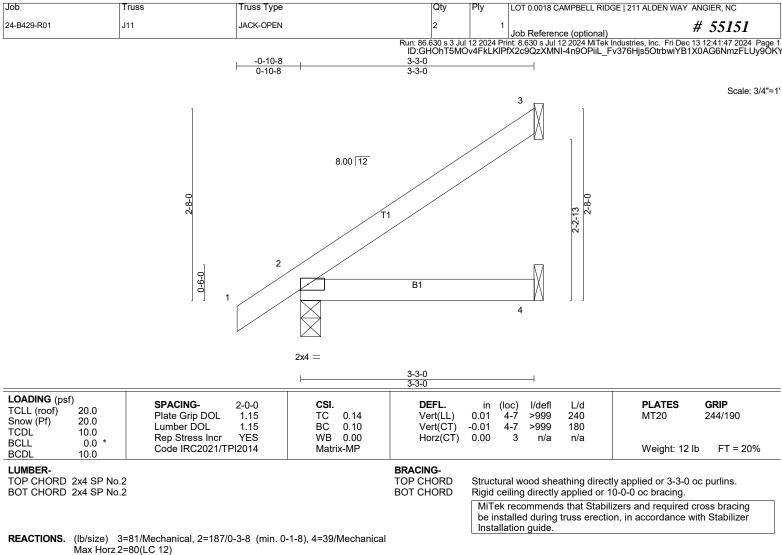

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (Ib)

Vert: 3=-21(B) 6=-19(B) 8=-21(B) 9=-19(B)



D'Onofrio Drive, Madison, WI 53719.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.


structural design of the truss to support the loads indicated. 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing

12) SEE BČŚI-B3 SUMMĂRY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WĔB MEMBERS FOR ŘECŎMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS

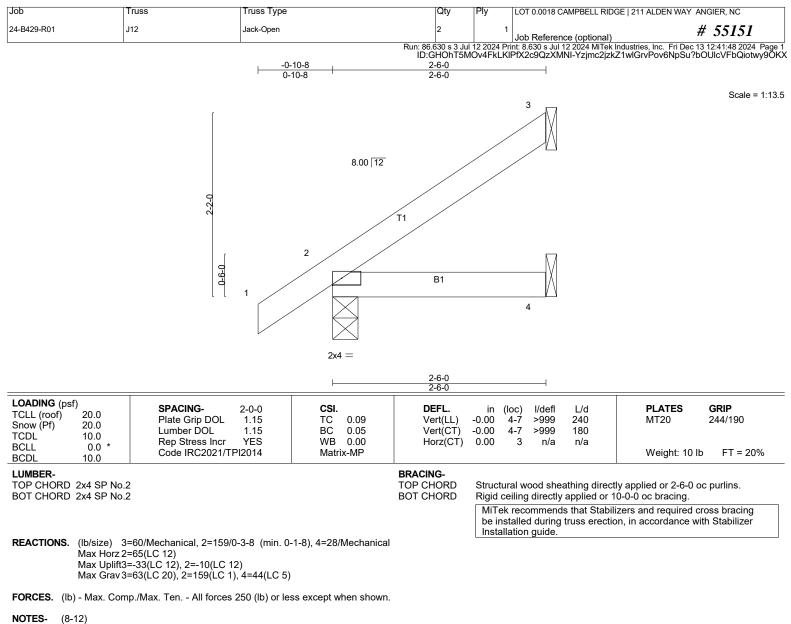
BELLEVILLE 27/202 'lo SEAL Annunder 28147 NOINEE K. MORR

12/12/2024

LOAD CASE(S) Standard

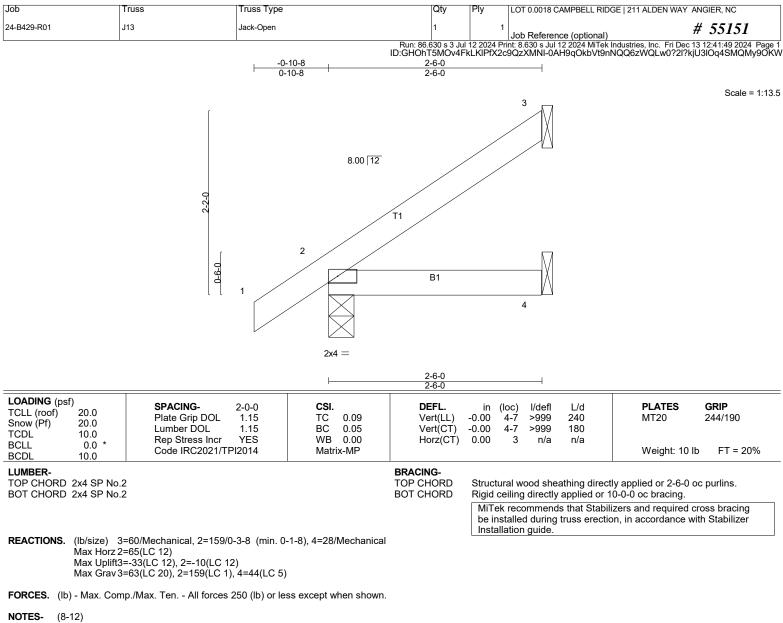
Max Uplift3=-44(LC 12), 2=-8(LC 12)

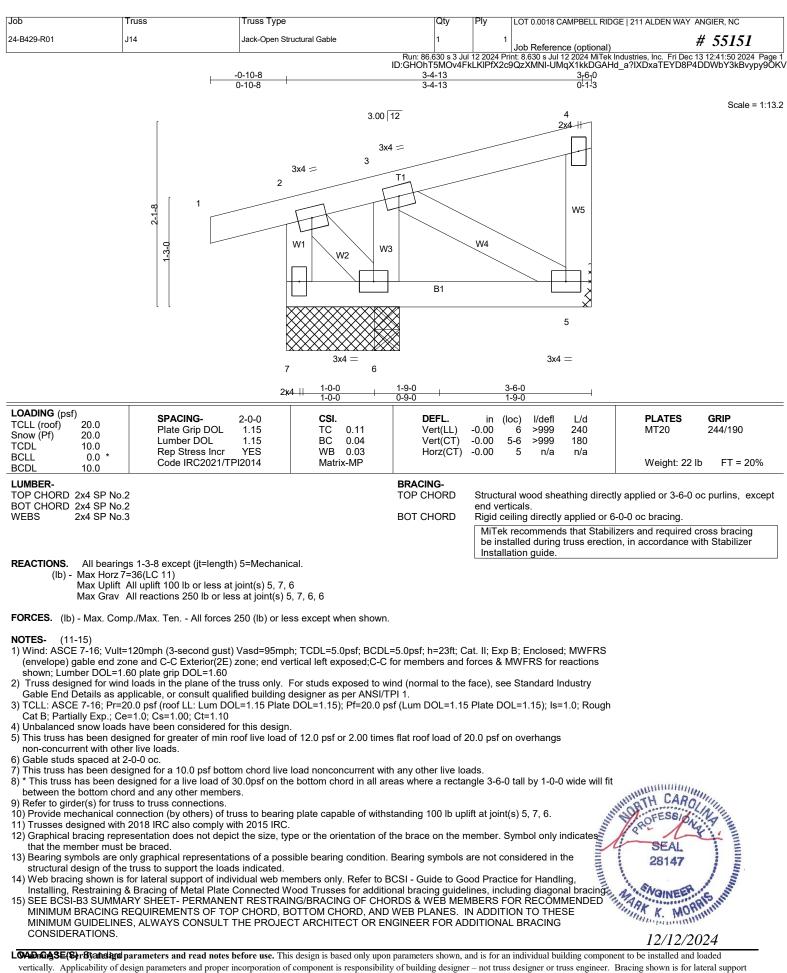
Max Grav 3=85(LC 20), 2=187(LC 1), 4=59(LC 5)

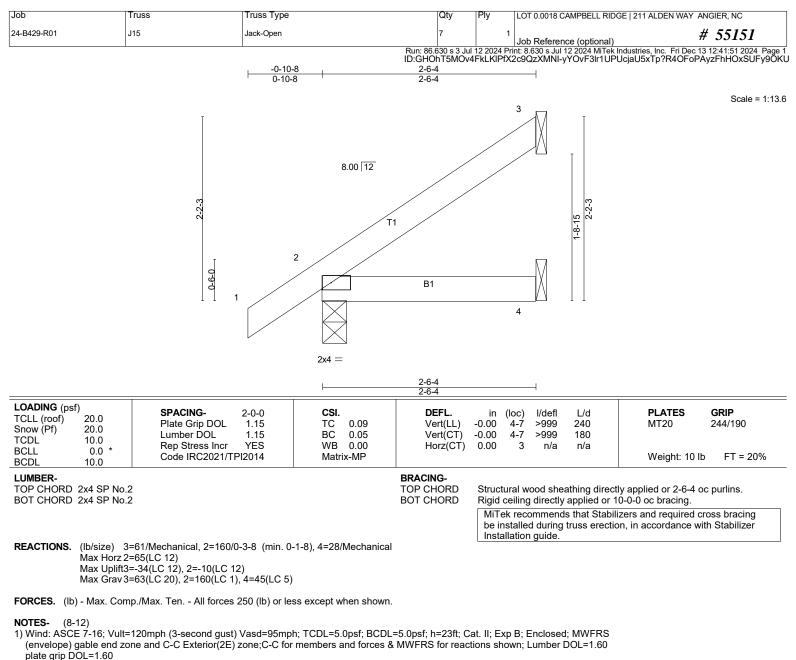

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 3 and 8 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.


```
LOAD CASE(S) Standard
```



- 1) Wind: ASCE 7-16: Vult=120mph (3-second gust) Vasd=95mph: TCDL=5.0psf: BCDL=5.0psf: h=23ft: Cat. II: Exp B: Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 3 and 10 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION FOR RECOMMENDED MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF THE CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

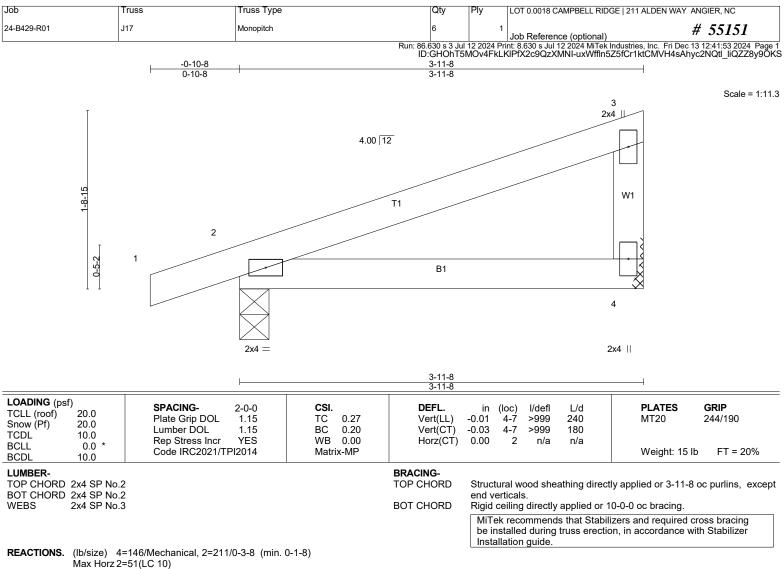

27202, NOINEE K. MORR 12/12/2024

- 1) Wind: ASCE 7-16: Vult=120mph (3-second gust) Vasd=95mph: TCDL=5.0psf: BCDL=5.0psf: h=23ft: Cat. II: Exp B: Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 33 lb uplift at joint 3 and 10 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION FOR RECOMMENDED MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF THE CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

27202 NOINEE K. MORR 12/12/2024

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION FOR RECOMMENDED MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF THE CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

272024 AND THE REAL PROPERTY NOINEE K. MORRY 12/12/2024



- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- tes THE CARO 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- Bearing sympols are only set, structural design of the truss to support the loads indicated.
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 Web stacing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 Web stacing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good
 See BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
 MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE
 MINIMI IM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITIONAL BRACING

MORPHS INTERNAL 2/12/207 Id and Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOINEE ARK K. MORR

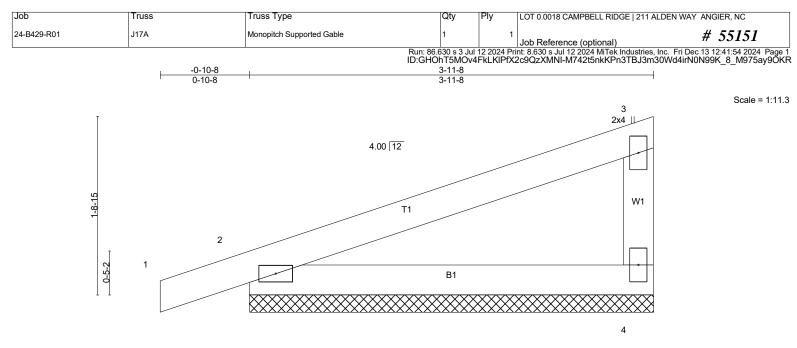
12/12/2024

Max Uplift4=-26(LC 14), 2=-42(LC 10) Max Grav 4=194(LC 21), 2=288(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(9-13)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit ates united the CARO between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- Trusses designed with 2018 IRC also comply with 2015 IRC.
- 10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 12) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
- 13) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED ANA PARA MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.


LOAD CASE(S) Standard

MORRIS MORRIS MORRIS MILLION Mand' Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

WOINEE

ARK K. MORAL

12/12/2024

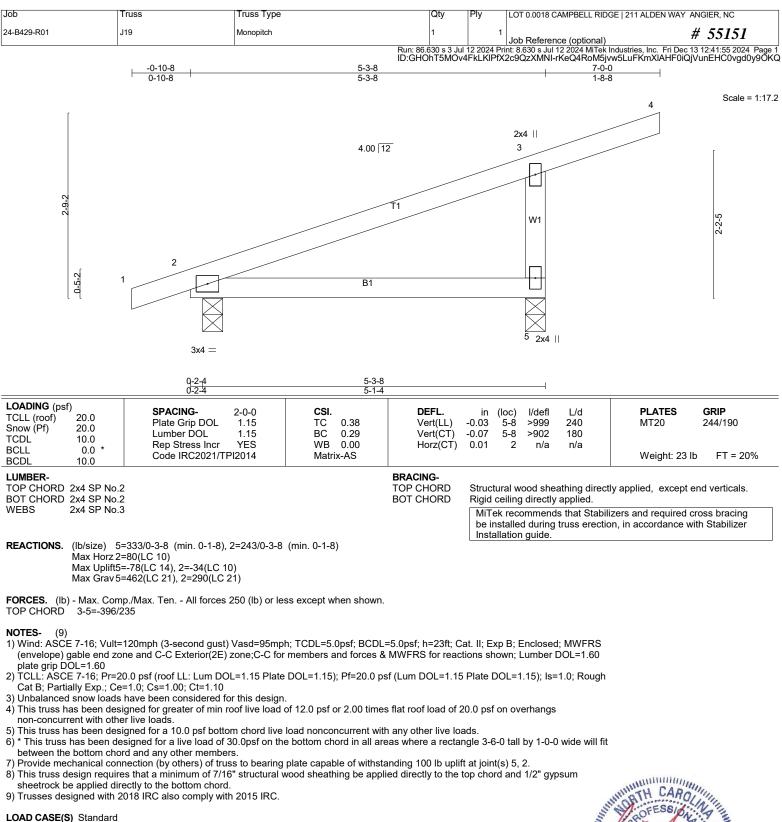
2x4 =

2x4 ||

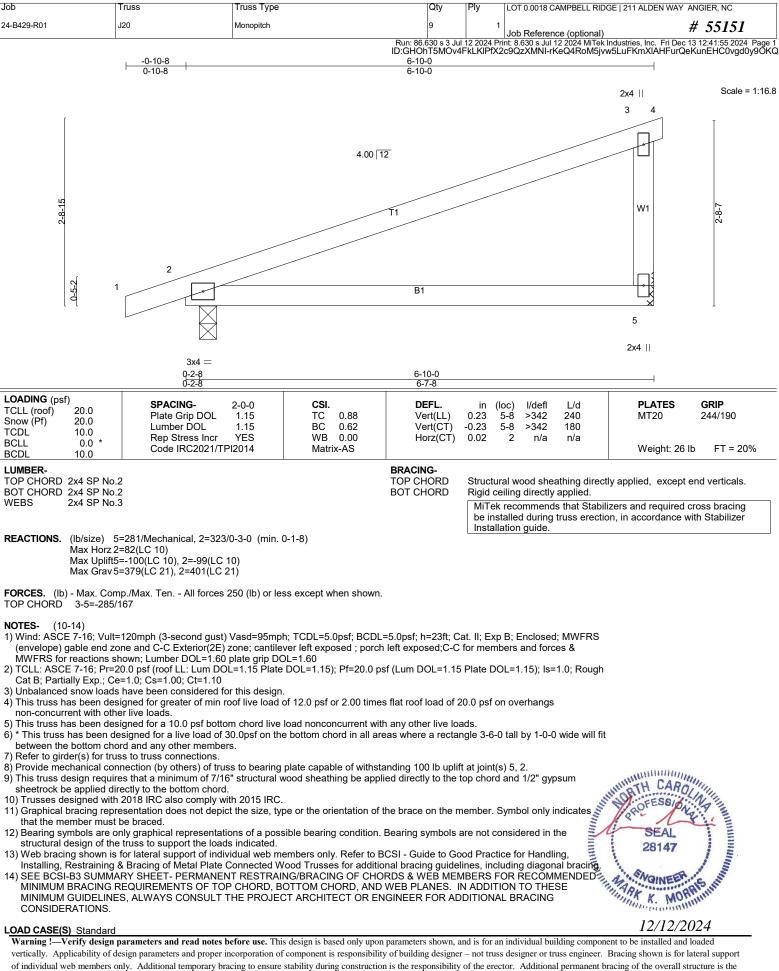
NOINEE

12/12/2024

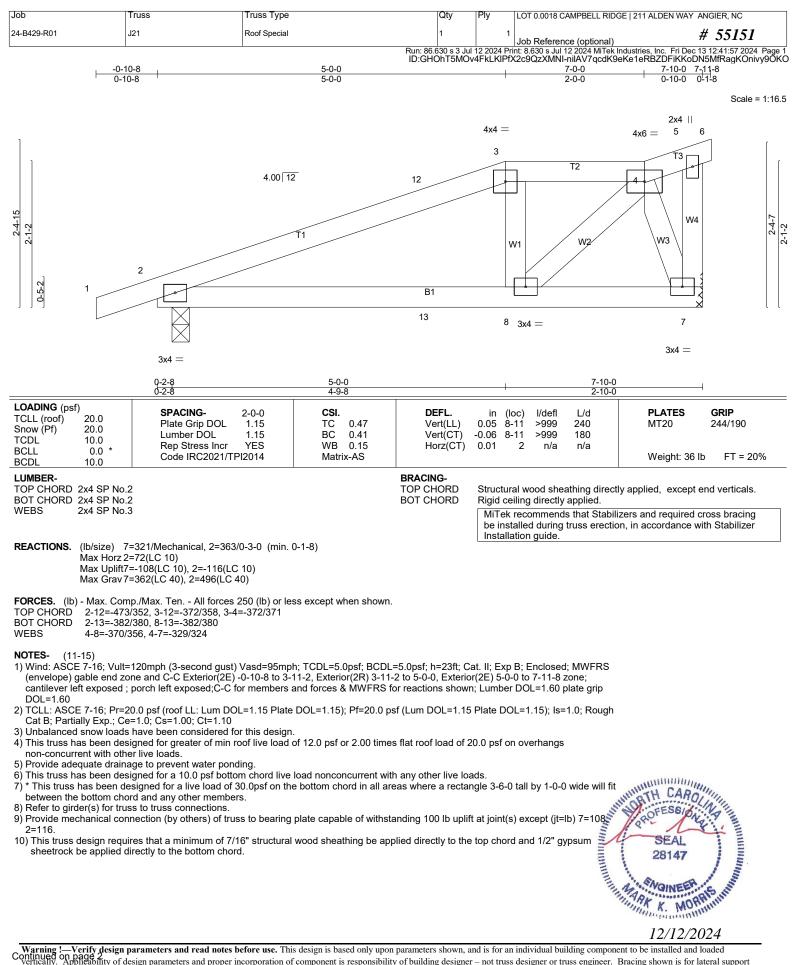
LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.35 BC 0.29 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d -0.00 1 n/r 180 0.01 1 n/r 80 0.00 n/a n/a	PLATES GRIP MT20 244/190 Weight: 15 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direc end verticals. Rigid ceiling directly applied or	ctly applied or 3-11-8 oc purlins, excep 10-0-0 oc bracing.
					ilizers and required cross bracing ion, in accordance with Stabilizer


REACTIONS. (lb/size) 4=146/3-11-8 (min. 0-1-8), 2=211/3-11-8 (min. 0-1-8) Max Horz 2=49(LC 10) Max Uplift4=-26(LC 14), 2=-42(LC 10) Max Grav 4=194(LC 21), 2=288(LC 21)


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


NOTES-(11-15)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 2-0-0 oc.
- 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.
 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols ore net structural design of the truss to support the loads indicated.
 14) Web bracing shown is for lateral support of the size.

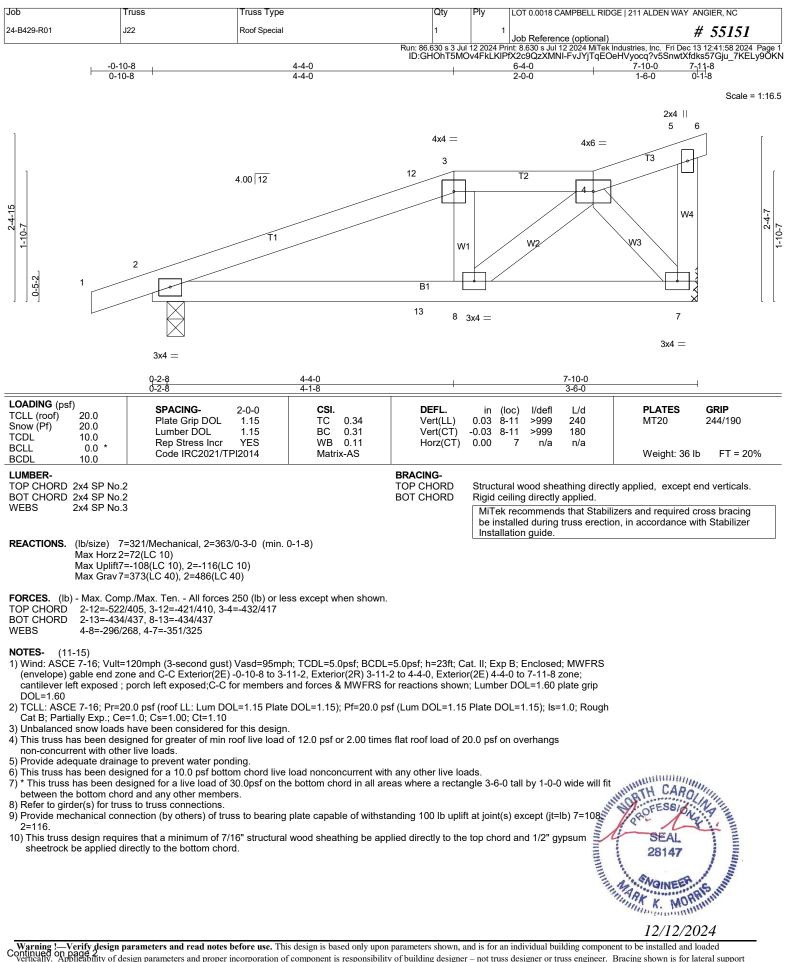

- Graphical bracing representation does not depict the size, type of the size that the member must be braced. Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated. Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional bracing guidelines, including diagonal bracing Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional Bracing Structure, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for Additional Bracing Structure, Installing, Restraining & Bracing Other Plate Structure, Installing, Restraining, Restrainin 15)MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

or individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDI	EN WAY ANGIER, NC
24-B429-R01	J21	Roof Special	1	1	Job Reference (optional)	# 55151
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:41:57 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-nilAV7qcdK9eKe1eRBZDFiKKoDN5MfRagKOnivy9OKO						

11) Trusses designed with 2018 IRC also comply with 2015 IRC.

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

 loads indicated.
 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

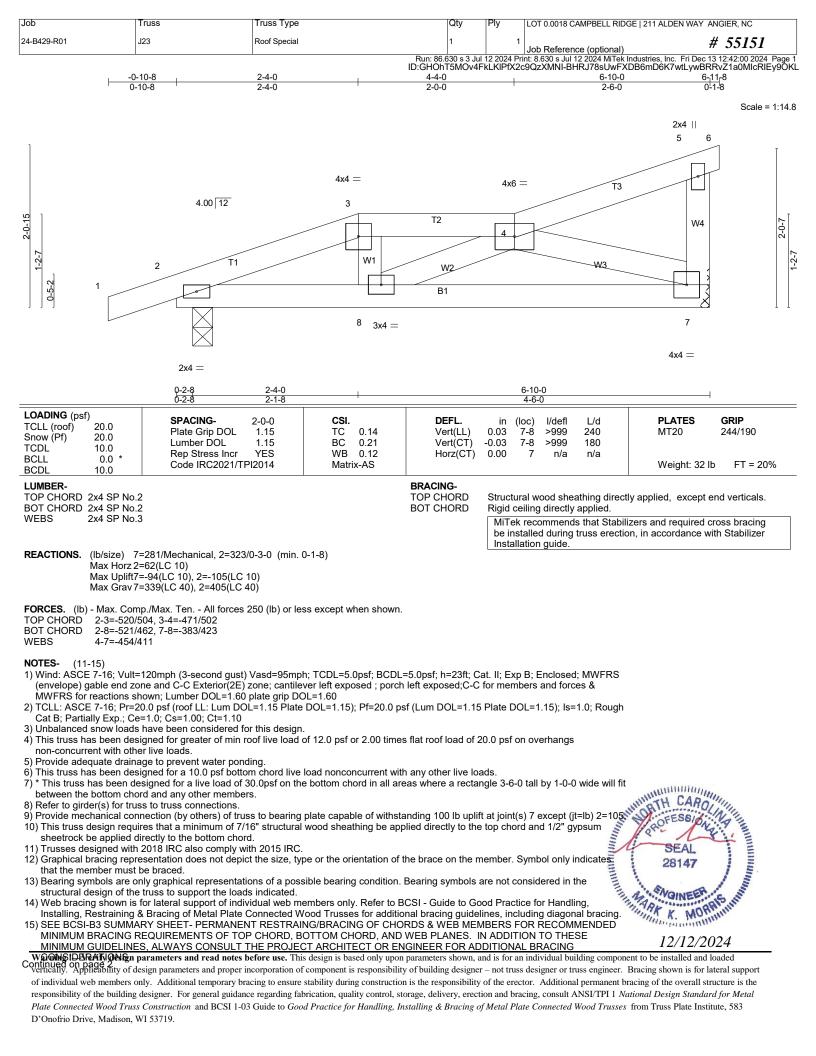
(5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN	WAY ANGIER, NC
24-B429-R01	J22	Roof Special	1	1	Job Reference (optional)	# 55151
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:41:59 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-j5twwprs9xPMZyB1ZcchK7QiO145qaWt7etumny9OKM						

11) Trusses designed with 2018 IRC also comply with 2015 IRC.

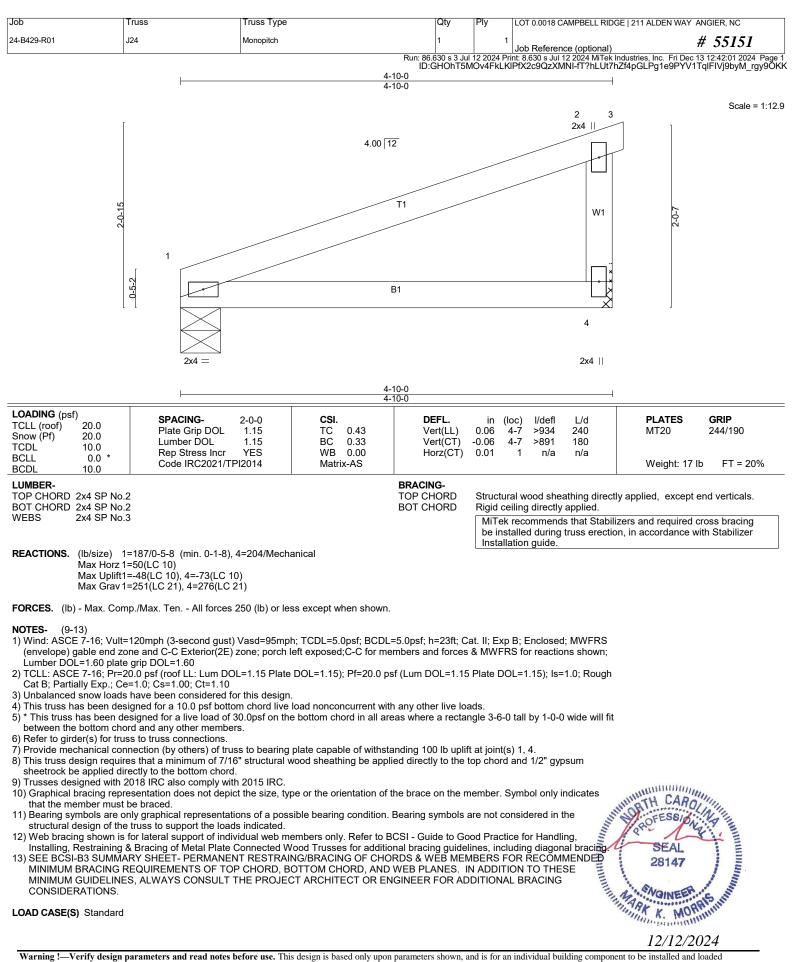
12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

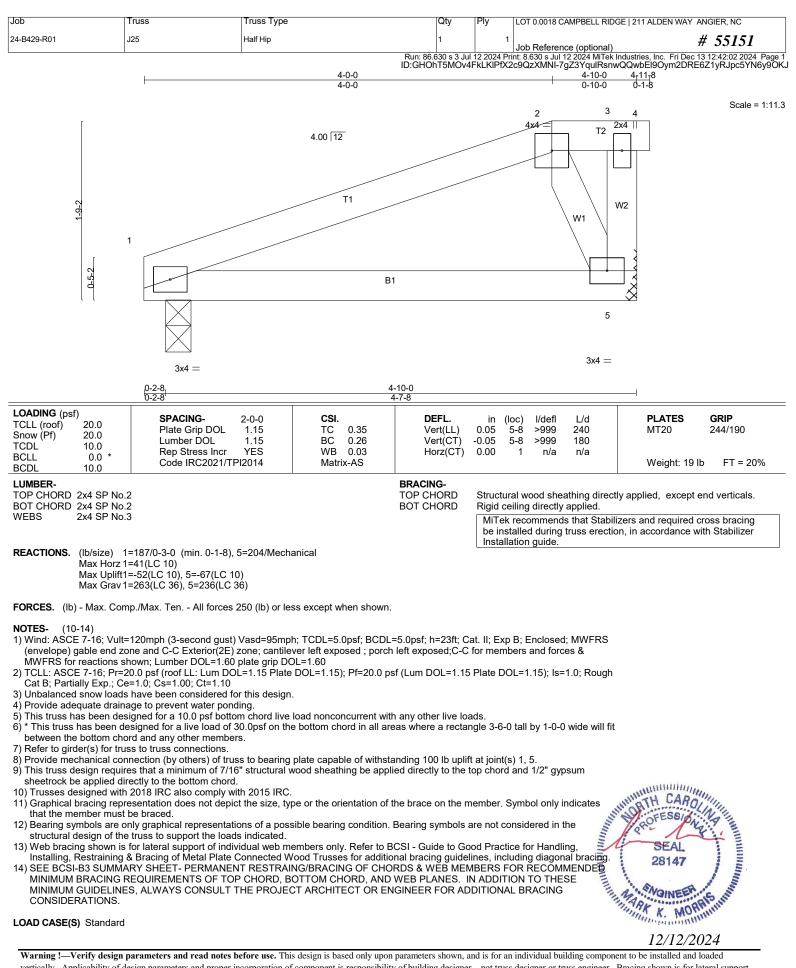

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

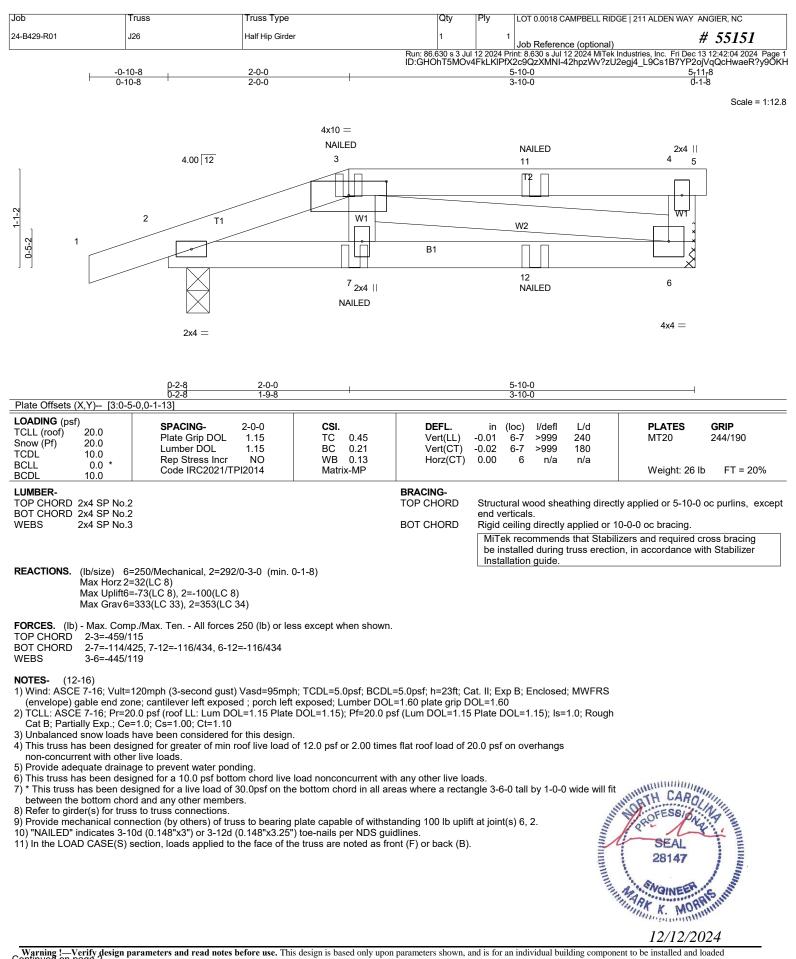
14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard





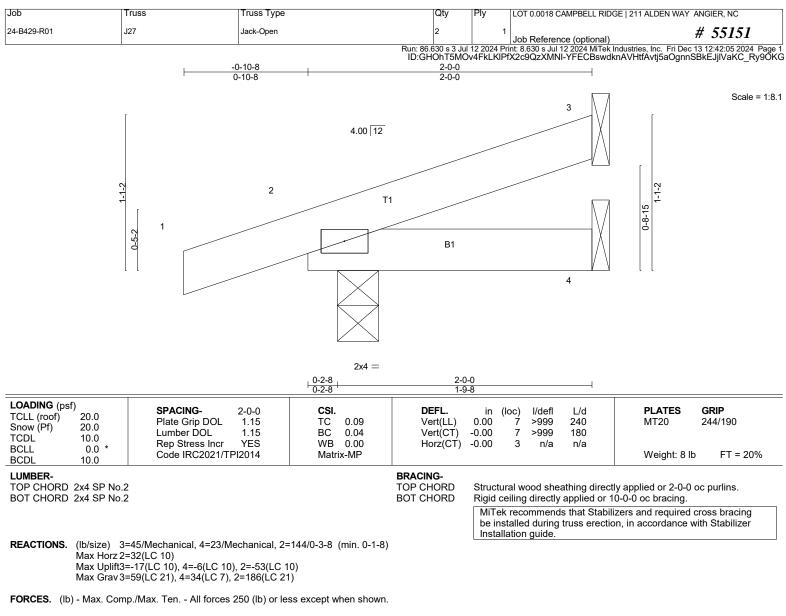

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC
24-B429-R01	J23	Roof Special	1	1	Job Reference (optional)	# 55151
					nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 29QzXMNI-BHRJ78sUwFXDB6mD6K7wtLywBl	

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC
24-B429-R01	J26	Half Hip Girder	1	1	Job Reference (optional)	# 55151
					int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 2c9QzXMNI-42hpzWv?zU2egj4 L9Cs1B7YP2	

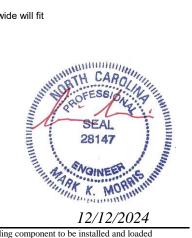
13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

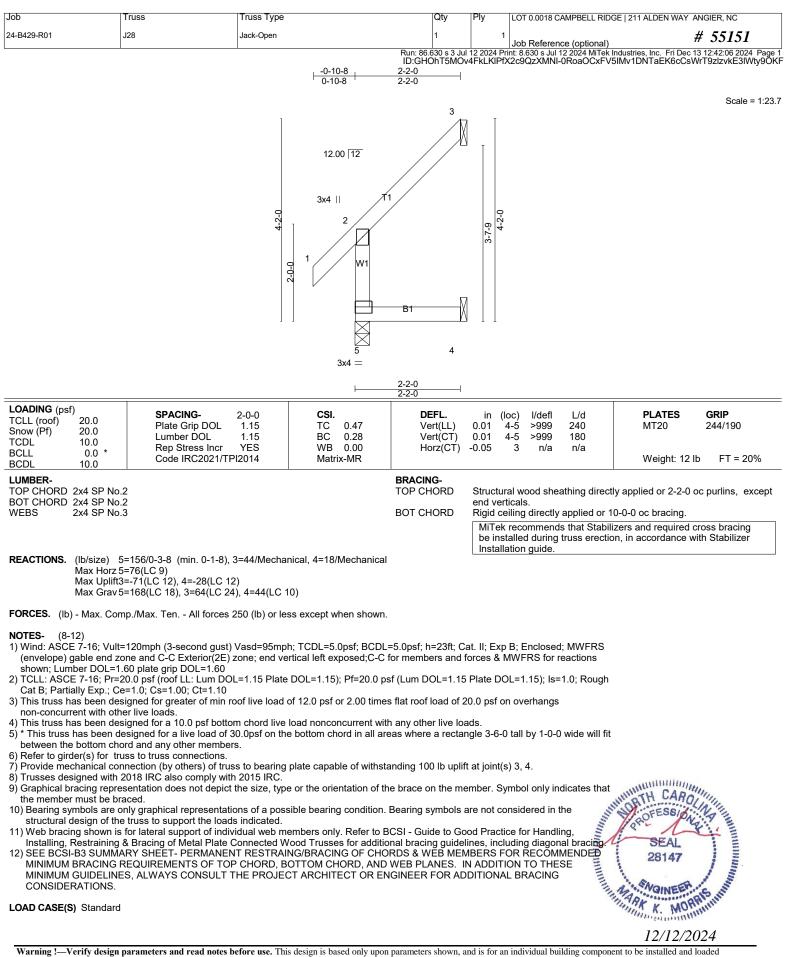
loads indicated. Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

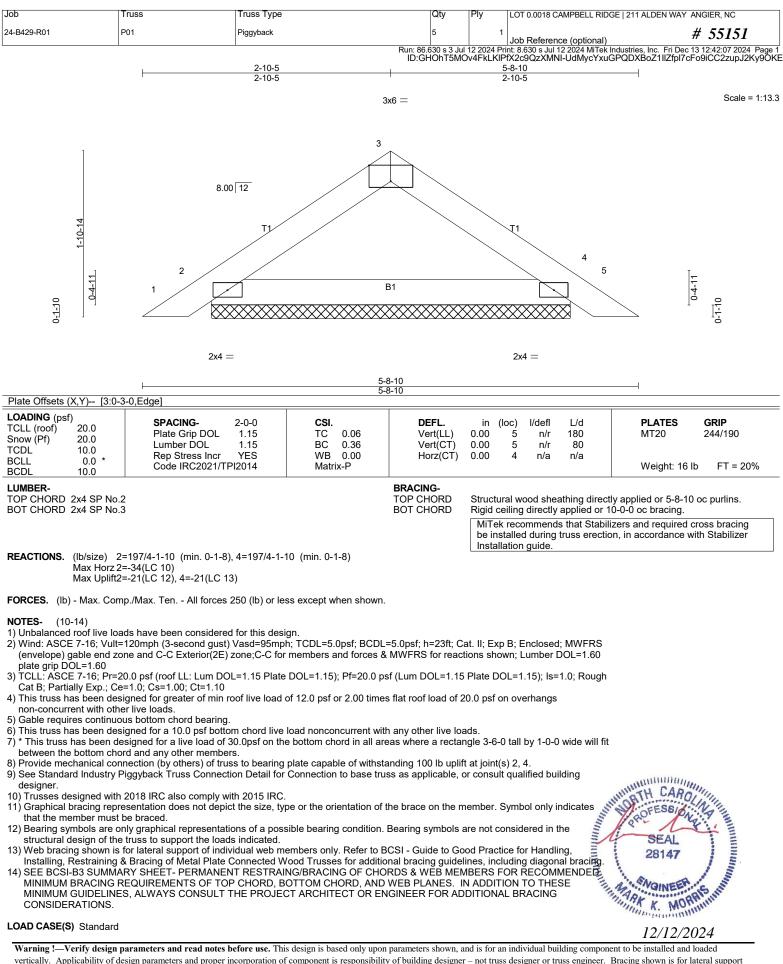

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

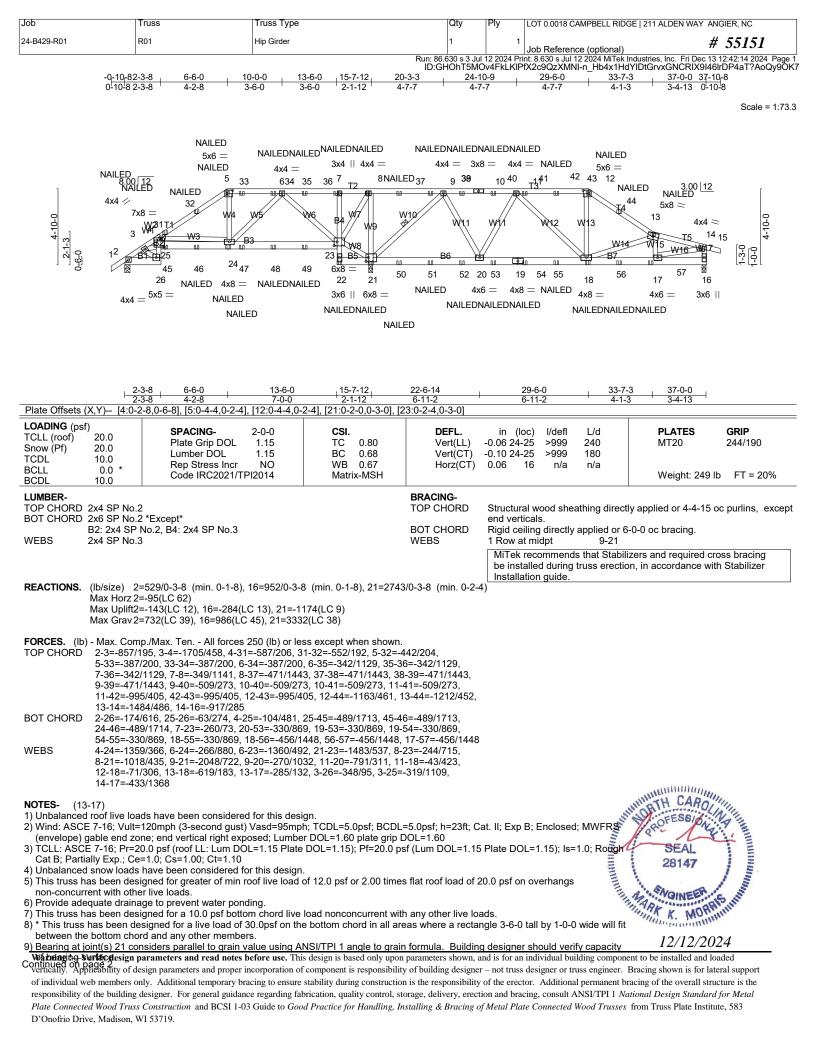
LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)


Vert: 1-3=-60, 3-4=-60, 4-5=-60, 6-8=-20 Concentrated Loads (lb) Vert: 3=-2(F) 7=-7(F) 11=-2(F) 12=-7(F)






- **NOTES-** (9)
- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left exposed ; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN V	VAY ANGIER, NC
24-B429-R01	R01	Hip Girder	1	1	Job Reference (optional)	# 55151
					int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri	

NOTES- (13-17)

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=143, 16=284, 21=1174.

In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

13) Trusses designed with 2018 IRC also comply with 2015 IRC.

14) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 15) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

- 16) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 17) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

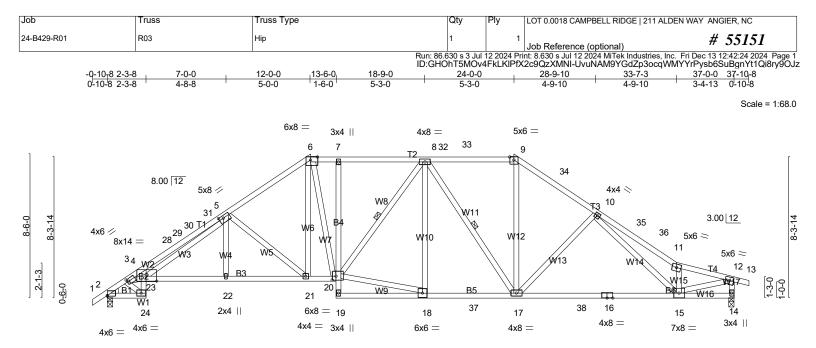
Uniform Loads (plf)

- Vert: 1-5=-60, 5-12=-60, 12-13=-60, 13-14=-60, 14-15=-60, 26-27=-20, 23-25=-20, 16-22=-20
- Concentrated Loads (lb)
 - Vert: 5-21(B) 12=-40(B) 13=-41(B) 23=-42(B) 7=-21(B) 24=-42(B) 8=-40(B) 18=-23(B) 21=-23(B) 31=-41(B) 32=-8(B) 33=-21(B) 34=-21(B) 35=-21(B) 37=-40(B) 39=-40(B) 40=-40(B) 41=-40(B) 42=-40(B) 42=-40(B) 44=-10(B) 45=-34(B) 46=-58(B) 47=-42(B) 48=-42(B) 49=-42(B) 50=-23(B) 51=-23(B) 52=-23(B) 53=-23(B) 53=-2 54=-23(B) 55=-23(B) 56=-59(B) 57=-86(B)

Job	Truss	Truss Type		Qty	Ply LOT	0.0018 CAMPBELL RIDGE	211 ALDEN WAY ANGIER, NC
24-B429-R01	R02	Hip		1	1 Job	Reference (optional)	# 55151
	I			ID:GHOhT5MOv	1 12 2024 Print: 8.0	630 s Jul 12 2024 MiTek Ind zXMNI-c7etK_61CO3Nb	ustries, Inc. Fri Dec 13 12:42:20 2024 Page 1 bBI3HWUcgZn9QV6BFtayyPSV03y9OK1
	-0-10-8 2-3-8 5-9-0 0-10-8 2-3-8 3-5-8	9-6-0 13-6 3-9-0 4-0			<u>26-6-0</u> 6-6-0	33-7-3 7-1-3	37-0-0 37-10-8 3-4-13 0-10-8
							Scale = 1:68.8
						7x12 MT20HS=	
		5x6 =	$4x4 \equiv$	5x8 =		7X12 M120HS-	
1		6	7 29	30 8	Т3	9	31
	8.00 12 5x5 ≁						Ī
	5 ,	w w	ç∕∕			74	3.00 12
6-10-0 6-7-14	$4x6 = 7x10 = 26 27 14^{28}$	W5 4	В4 ^{W7}	ý w9	W10	W11	5x8 = 77
اف ف	3W2 W1	WA4					
2-1-3 2-0	12	B3 B3	19			W12	W13 W14 W15 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0-6-0		20	32	B5 6	 16 33	B6	8
	22 4×6 —	4x8 =	7x8 = ¹⁸ 3x4	17 7x8 =	3x8 =	15 4x4 —	14 13 5x6 = ^{3x4}
	4x4 = 4x6 =		5,4	7.00 —		4,44 —	5.0 -
	<u>2-3-8</u> 9-6 2-3-8 7-2)	26-6-0 6-6-0	33-7-3	37-0-0
	(X,Y) [2:0-0-0,0-0-2], [3:0-1-):0-8-13,Edge], [19			
LOADING (pst TCLL (roof)	f) SPACING 20.0 Plate Grip		CSI. TC 0.95	DEFL. Vert(LL)	in (loc) -0.30 19-20	l/defl L/d >999 240	PLATES GRIP MT20 244/190
Snow (Pf) TCDL	10.0 Lumber D	OL 1.15	BC 0.87	Vert(CT)	-0.54 20-21	>826 180	MT20HS 187/143
BCLL BCDL	0.0 * Rep Stres 10.0	s Incr YES 2021/TPI2014	WB 0.95 Matrix-AS	Horz(CT)	0.31 13	n/a n/a	Weight: 233 lb FT = 20%
LUMBER-				BRACING-	0 1 1 1		
	2x4 SP No.2 *Except* T1: 2x4 SP No.1, T4: 2x4 SF	SS		TOP CHORD BOT CHORD	Rigid ceiling	directly applied.	applied, except end verticals.
BOT CHORD	2x4 SP No.2 *Except* B2,B3: 2x4 SP No.1, B4: 2x4	SP No.3		WEBS	1 Row at mic	1	ers and required cross bracing
WEBS	2x4 SP No.3 *Except* W8,W14,W2,W3: 2x4 SP No	0.2				during truss erection,	in accordance with Stabilizer
REACTIONS.	(lb/size) 2=1526/0-3-8 (mi	n. 0-2-2). 13=1536/0-3	-8 (min. 0-1-15)		motaliation	guide.	
	Max Horz 2=-132(LC 12) Max Uplift2=-67(LC 14), 13=	,					
	Max Grav 2=1779(LC 41), 13						
) - Max. Comp./Max. Ten A						
TOP CHORD	2-3=-2393/378, 3-26=-5073 5-28=-5454/827, 5-6=-2954	/493, 6-7=-2414/441,	7-29=-3205/539, 29-3	0=-3205/539,			
	8-30=-3205/539, 8-9=-2855 11-13=-1573/305						
BOT CHORD	2-22=-238/1761, 21-22=-1 ⁻ 7-19=-8/405, 16-17=-208/2		-,		,		
WEBS	6-20=-175/1388, 7-20=-128 9-17=-144/968, 9-15=0/461						
	3-22=-1554/191, 3-21=-483	8/3608, 5-21=-296/260	0, 5-20=-810/193				
NOTES- (12	2-16) I roof live loads have been co	nsidered for this desig	ın				
2) Wind: ASCI	E 7-16; Vult=120mph (3-seco	nd gust) Vasd=95mph	; TCDL=5.0psf; BCDL:	=5.0psf; h=23ft; C	at. II; Exp B; E	nclosed; MWFRS	ANNIHII (I.I.
Exterior(2R) 19-8-9 to 33-3-7, Interior(1)	33-3-7 to 33-7-3, Exter	rior(2E) $33-7-3$ to $37-10$	0-8 zone; end vert	tical right expo	sed;C-C for	BTH CARO
3) TCLL: ASC	E 7-16; Pr=20.0 psf (roof LL:	Lum DOL=1.15 Plate	DOL=1.00 plate grip DC DOL=1.15); Pf=20.0 ps	sf (Lum DOL=1.15	Plate DOL=1	.15); ls=1.0; Rough	ROFESSION
4) Unbalanced	ally Exp.; Ce=1.0; Cs=1.00; C I snow loads have been cons	dered for this design.				IIIII	SEAL
5) This truss h	as been designed for greater rent with other live loads.	of min roof live load o	f 12.0 psf or 2.00 time:	s flat roof load of 2	20.0 psf on ove	erhangs	28147
 6) Provide ade 7) All plates ar 	equate drainage to prevent wa re MT20 plates unless otherw	iter ponding. ise indicated.				Inne	A SAL A
8) This truss h 9) * This truss	as been designed for a 10.0 has been designed for a live	osf bottom chord live lead of 30.0psf on the	oad nonconcurrent with bottom chord in all are	n any other live loa eas where a recta	ads. ngle 3-6-0 tall	bv 1-0-0 wide will fit	TAK K MORALININ
between the	E 7-16; Vult=120mph (3-seco gable end zone and C-C Exte) 19-8-9 to 33-3-7, Interior(1) - nd forces & MWFRS for react E 7-16; Pr=20.0 psf (roof LL: ally Exp.; Ce=1.0; Cs=1.00; C snow loads have been cons as been designed for greater rent with other live loads. equate drainage to prevent wa re MT20 plates unless otherw as been designed for a 10.0 has been designed for a live e bottom chord and any other echanical connection (by other	members, with BCDL	= 10.0psf.	tanding 100 lb un	lift at ioint(s) 2	13	With B. MOUTHING
11) This truss	design requires that a minimu	im of 7/16" structural	wood sheathing be app	blied directly to the	e top chord and	d 1/2" gypsum	SEAL 28147 Defense 28147 Defense Defen
Continued on province of the second	Arify and the parameters and the	d'hotes before use. This	design is based only upon component is responsibility	parameters shown, a y of building designer	and is for an indiv r – not truss desi	vidual building component gner or truss engineer. Br	to be installed and loaded acing shown is for lateral support
of individual w	veb members only. Additional tem	porary bracing to ensure s	tability during construction	n is the responsibility	of the erector.	Additional permanent brac	ing of the overall structure is the
Plate Connecte	ed Wood Truss Construction and	BCSI 1-03 Guide to Good	Practice for Handling, In	ustalling & Bracing of	of Metal Plate Co	onnected Wood Trusses fr	om Truss Plate Institute, 583
D'Onofrio Dri	ve, Madison, WI 53719.						

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC	
24-B429-R01	R02	Hip	1	1	Job Reference (optional)	# 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:42:20 2024 Page 2 ID:GHQhT5MQv4FkLKIPfX2c9QzXMNI-c7etK_61CO3NbBI3HWUcqZn9QV6BFtayyPSV03y9OK1							

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

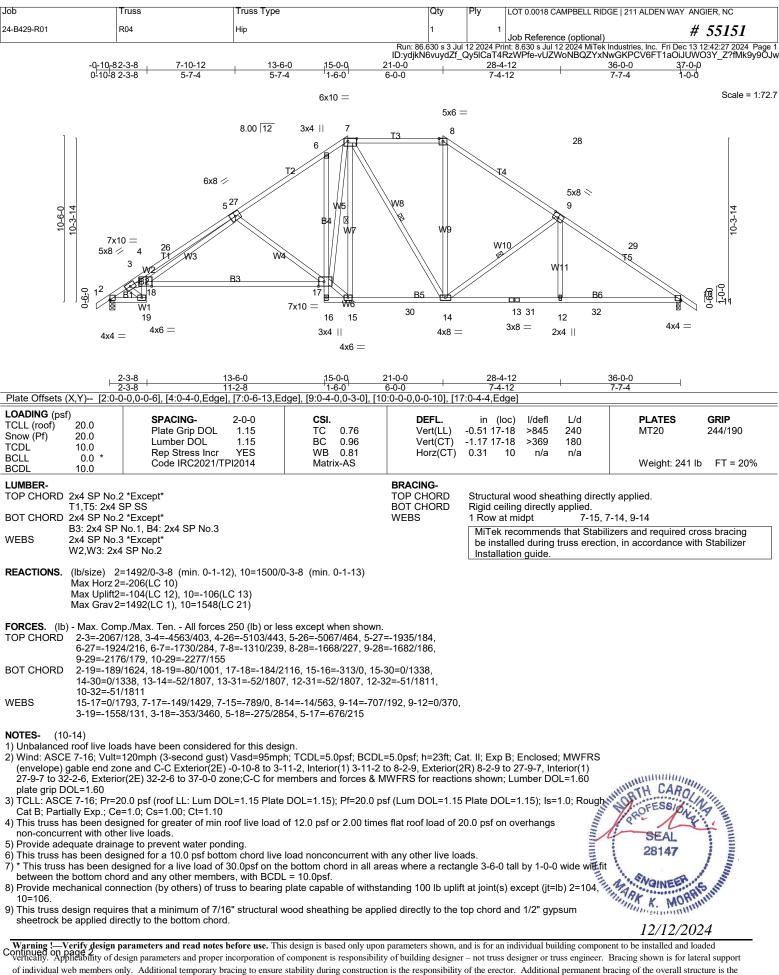
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

	2-3-8	7-0-0	12-0-0	13-6-0	18-9-0	24-0-0			33-7-3	37-0-0	
Plate Offsets	2-3-8 (X,Y) [2:0-0-	4-8-8 0,0-0-6], [3:0-1-4,0-1-	5-0-0 12], [4:0-7-8,E	'1-6-0' dge], [5:0-3-	5-3-0 -2,0-1-12], [5-3-0 6:0-4-13,Edge], [20		2]	9-7-3	3-4-13	
LOADING (ps TCLL (roof) Snow (Pf) TCDL BCLL BCDL	·· · · ·	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/	2-0-0 1.15 1.15 YES	CSI. TC BC WB	0.82 0.95 0.94 ix-AS	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) -0.30 22-23 -0.57 15-17 0.30 14	l/defl >999 >777 n/a	L/d 240 180 n/a		I P /190 T = 20%
LUMBER- TOP CHORD	TOP CHORD 2x4 SP No.2 *Except* T1: 2x4 SP SS BOT CHORD 2x4 SP SS *Except* B1,B6: 2x4 SP No.2, B4: 2x4 SP No.3, B5: 2x4 SP No.1 WEBS 2x4 SP No.3 *Except* W16,W2,W3: 2x4 SP No.2 WEDGE WEDGE					BRACING- TOP CHORD BOT CHORD WEBS	Structural wood sheathing directly applied, except end vertica Rigid ceiling directly applied. 1 Row at midpt 8-20, 8-17 MiTek recommends that Stabilizers and required cross braci be installed during truss erection, in accordance with Stabiliz				acing
WEDGE	W16,W2,W3	: 2x4 SP No.2					Installation	guide.			
Left: 2x4 SP N	No.3										
REACTIONS.	Max Horz 2= Max Uplift2=	1526/0-3-8 (min. 0-2- -165(LC 12) -86(LC 14), 14=-96(LC 1883(LC 41), 14=1706	C 15)	·3-8 (min. 0	-2-0)						
TOP CHORD	2-3=-2644/3 30-31=-568 32-33=-205 10-35=-333	0./Max. Ten All force 380, 3-4=-5517/763, 4 3/859, 5-31=-5607/86 8/471, 8-33=-2058/47 5/577, 35-36=-3447/5	-28=-5842/851 9, 5-6=-2445/4 1, 8-9=-1722/4 64, 11-36=-35	, 28-29=-57 88, 6-7=-20 31, 9-34=-2 57/562, 11-	60/852, 29 63/471, 7-3 070/467, 10 12=-2978/43	-30=-5723/855, 32=-2058/471, 0-34=-2233/454, 31, 12-14=-1678/29					
BOT CHORD		1950, 23-24=-108/102 37, 18-37=-192/2005, /2236					6,				
WEBS	8-17=-517/ [,] 12-15=-360	24, 6-20=-132/770, 18 131, 9-17=-127/836, 1 /2884, 3-24=-1573/18 /207	0-17=-715/203 5, 3-23=-489/3	, 10-15=-10 820, 5-23=-	1/960, 11-1 -362/2671, 5	15=-1420/272, 5-22=0/291,					
NOTES. (1	1-15)									WHUNKING CAR	
 Unbalance: Wind: ASC (envelope) 30-9-7 to 33 shown; Lun TCLL: ASC Cat B; Parti 4) Unbalanced This truss h non-concur Provide add 	d roof live load E 7-16; Vult=1 gable end zon 3-7-3, Exterior nber DOL=1.6 \(\mathcal{E}\) 7-16; Pr=20 ially Exp.; Ce= d snow loads h as been desig rrent with other equate drainage	Is have been consider 20mph (3-second gus e and C-C Exterior(2E (2E) 33-7-3 to 37-10-8 0 plate grip DOL=1.60 .0 psf (roof LL: Lum D 1.0; Cs=1.00; Ct=1.10 have been considered ned for greater of min live loads. ge to prevent water po	ed for this des st) Vasd=95mp E) -0-10-8 to 3- 3 zone; end ver OL=1.15 Plate) for this design r oof live load nding.	ign. h; TCDL=5. 11-2, Interic tical right e: DOL=1.15 of 12.0 psf (0psf; BCDL or(1) 3-11-2 xposed;C-C); Pf=20.0 p or 2.00 time	=5.0psf; h=23ft; C to 5-2-9, Exterior(2 for members and sf (Lum DOL=1.15 es flat roof load of 2	at. II; Exp B; E 2R) 5-2-9 to 3 forces & MWI 5 Plate DOL=1 20.0 psf on ov	Enclosed 0-9-7, Int FRS for i .15); Is= erhangs	; MWFRS terior(1) reactions	SEAL 28147	HUNNINH
		ned for a 10.0 psf bot signed for a live load o									
werween th	e potrom chore	and any other memo	erse with BGD	- Tellupper	sed only upor	n narameters shown a	and is for an indi	vidual bui	Iding compor	nent to be installed and loaded	
Continued on J	page 2 plicability of des	ign parameters and proper	r incorporation o	f component i	s responsibili	ty of building designer	r – not truss des	igner or tr	uss engineer.	Bracing shown is for lateral sup	pport
of individual v	web members onl	y. Additional temporary I	bracing to ensure	stability duri	ng constructio	on is the responsibility	of the erector.	Additiona	l permanent b	bracing of the overall structure is Jational Design Standard for Me	s the
Plate Connect	ted Wood Truss (Construction and BCSI 1-								s from Truss Plate Institute, 583	
D'O fi D		1 62710									

D'Onofrio Drive, Madison, WI 53719.


Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WA	AY ANGIER, NC
24-B429-R01	R03	Нір	1	1	Job Reference (optional)	# 55151
					int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri [

NOTES- (11-15)

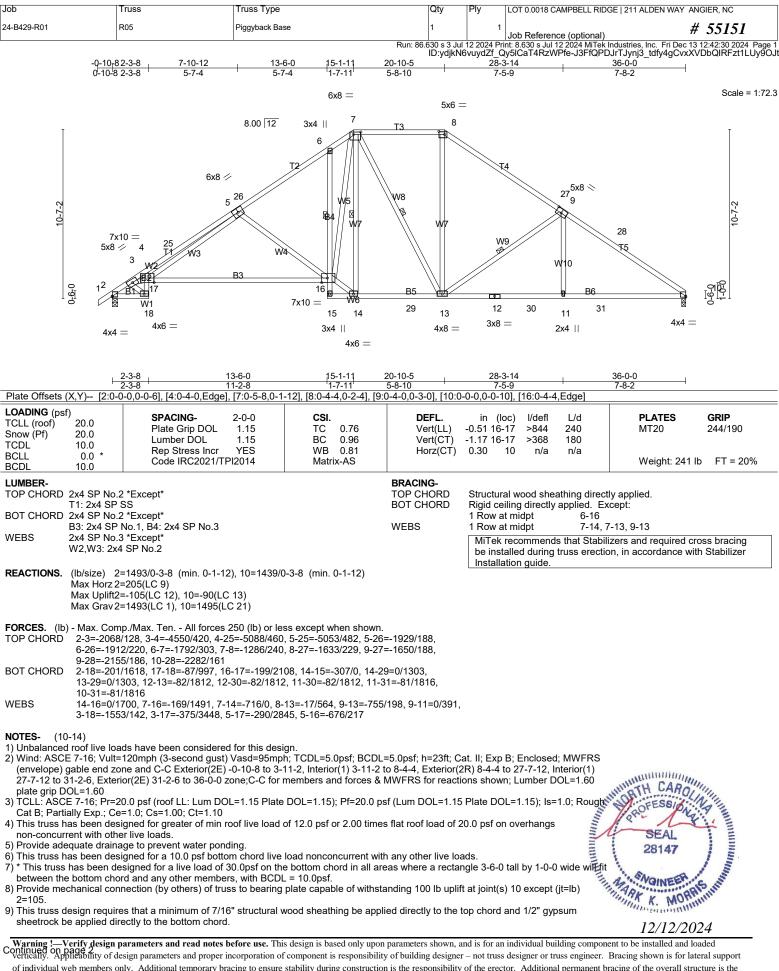
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.
 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS
- OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC
24-B429-R01	R04	Hip	1	1	Job Reference (optional)	# 55151
					int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec RzWPfe-vUZWoNBQZYxNwGKPCV6FT1aOiJI	

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

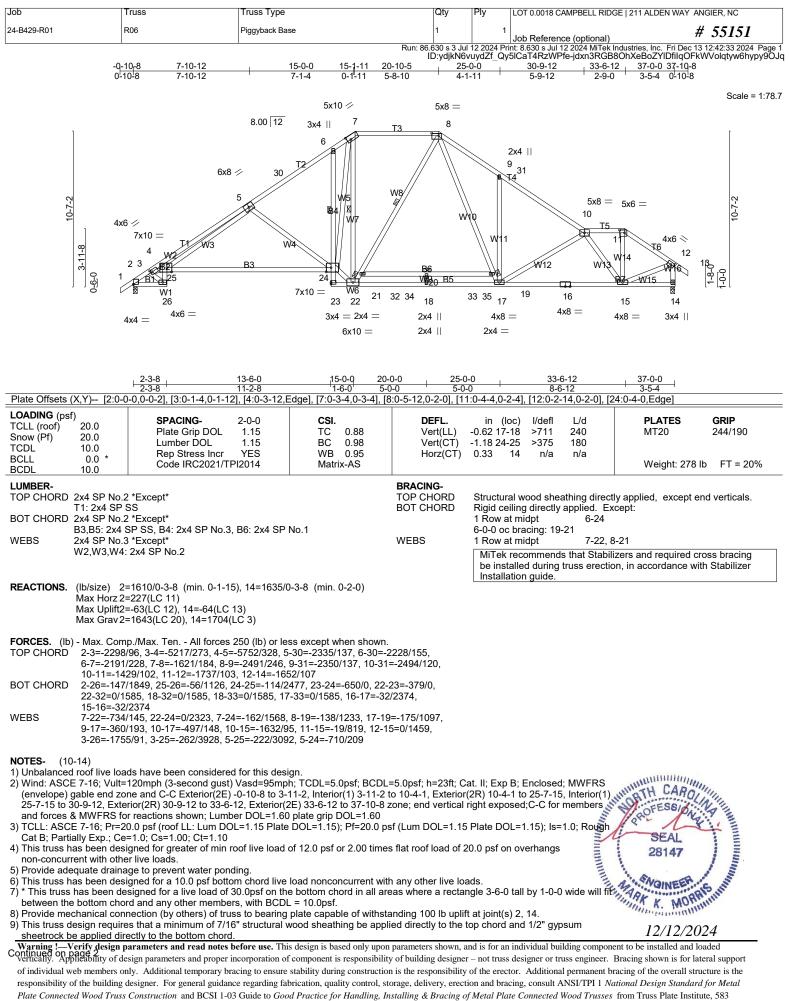
(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer of truss designer. Bracing shown is tor lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN	WAY ANGIER, NC
24-B429-R01	R05	Piggyback Base	1	1	Job Reference (optional)	# 55151
					nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. F ly5lCaT4RzWPfe-J3FfQPDJrTJynj3_tdfy4	

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

 loads indicated.
 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

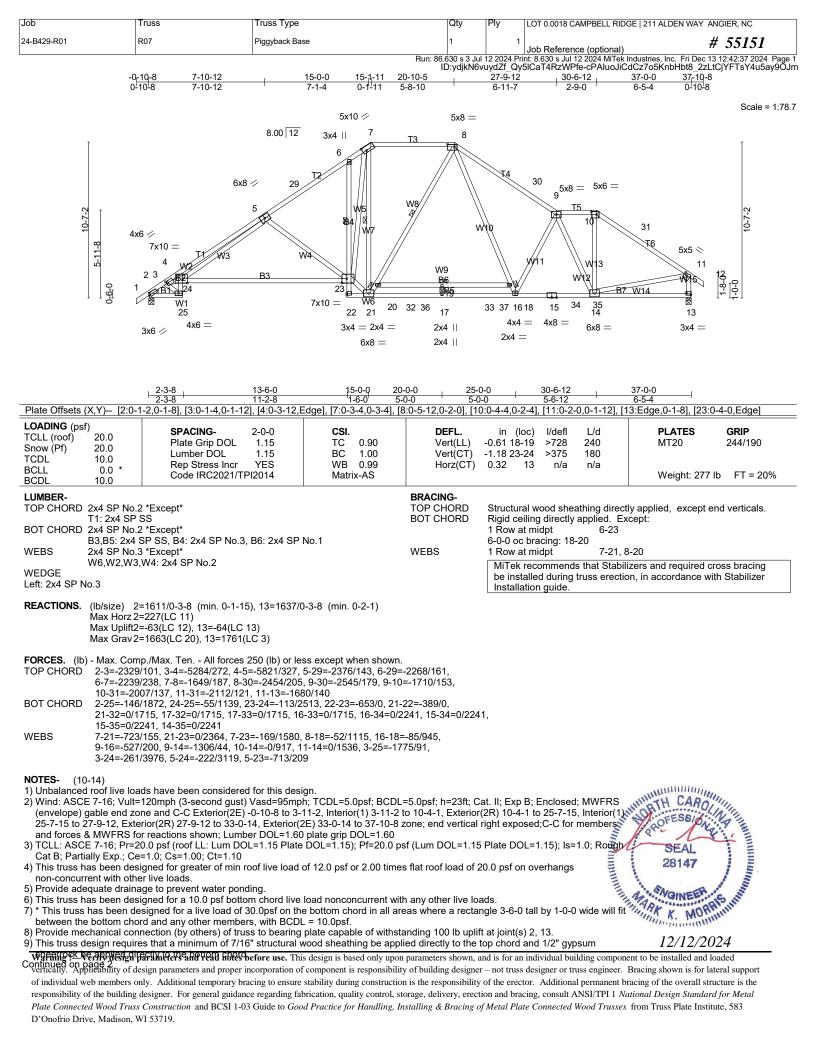
(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

D'Onofrio Drive Madison WI 53719

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC	
24-B429-R01	R06	Piggyback Base	1	1	Job Reference (optional)	# 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:42:34 2024 Page 2 ID:ydjkN6vuydZf Qy5ICaT4RzWPfe-BqV9GmGpviqOGKMl6TkuFWMZ?8skXC40AarEUGy9OJp							

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

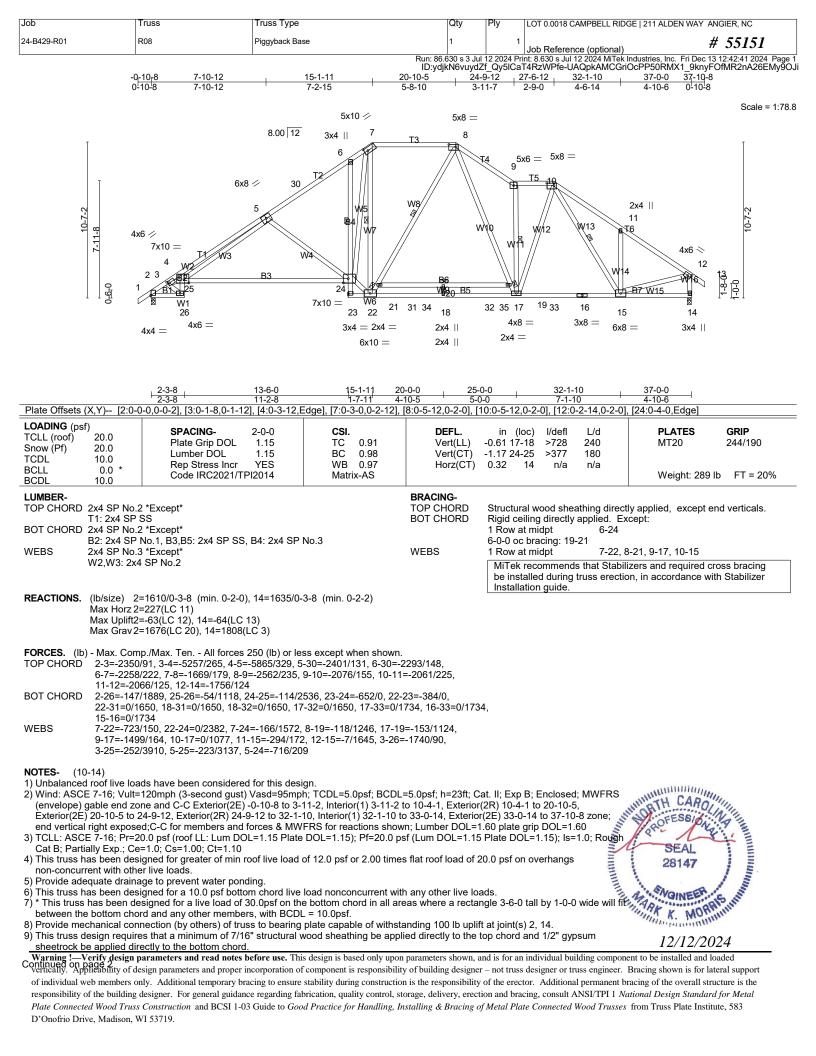
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC	
24-B429-R01	R07	Piggyback Base	1	1	Job Reference (optional)	# 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:42:37 2024 Page 2 ID:ydjkN6vuydZf_Qy5ICaT4RzWPfe-cPAluoJiCdCz7o5KnbHbt8_2zLtCjYFTsY4u5ay90Jm							

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the


loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

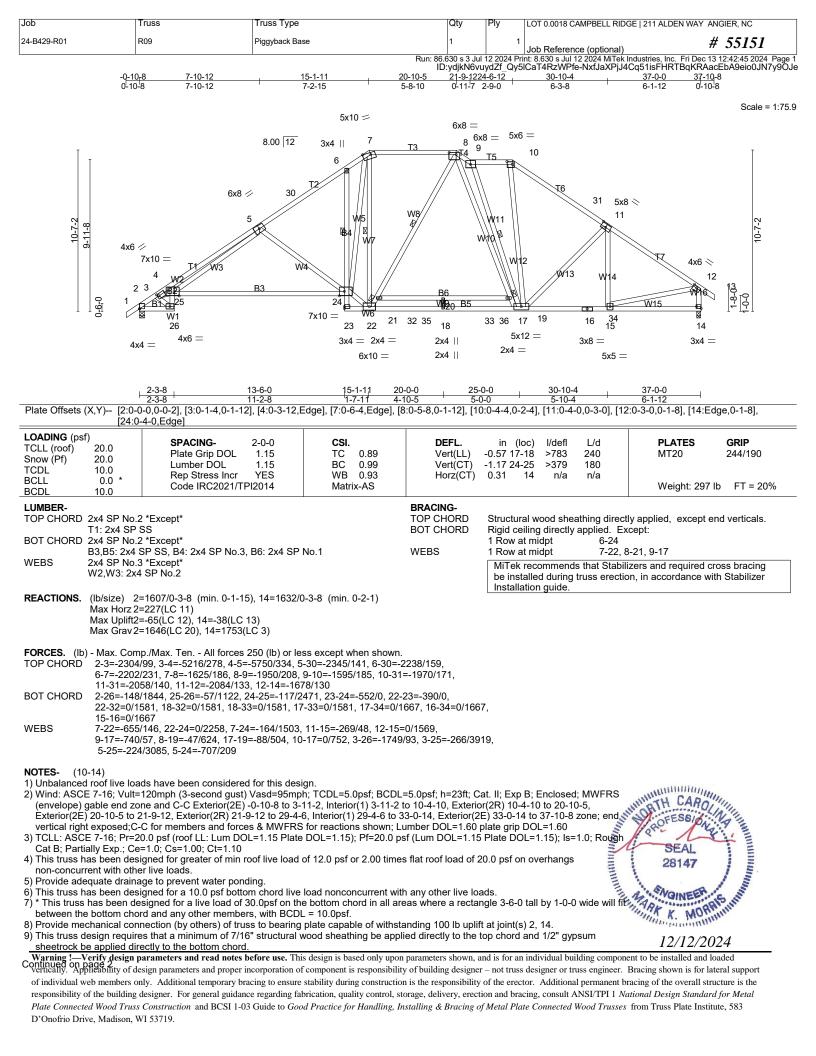
4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDE	N WAY ANGIER, NC
24-B429-R01	R08	Piggyback Base	1	1	Job Reference (optional)	# 55151
		·	Run: 86.630 s 3 Jul ID:ydjkN6vuydZ	12 2024 Pri f_Qy5lCa	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. T4RzWPfe-UAQpkAMCGriOcPP50RM	Fri Dec 13 12:42:41 2024 Page 2 (1_9knyFOfMR2nA26EMy9OJi

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the


loads indicated.

Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC			
24-B429-R01	R09	Piggyback Base	1	1	Job Reference (optional)	# 55151			
	Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:42:45 2024 Page 2 ID:ydjkN6vuydZf Qy5ICaT4RzWPfe-NxfJaXPjJ4Cq51isFHRTBqKRAacEbA9eio0JN7y9OJe								

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

lob 24-B429-R01	Truss R10		Truss Type Roof Special		Qty 1	1		E 211 ALDEN WAY A	# 55151
					Run: 86.630 s 3 Ju ID:GHOhT5MOv4FI	Job Refer I 12 2024 Print: 8.630 s J kLKIPfX2c9QzXMNI-n	ence (optional) ul 12 2024 MiTek Ir WLSCZRbc?aPy		
	-0 <u>-10-8</u> 0-10-8	<u>8-1-15</u> 8-1-15		- <u>3-0 17-6-</u> 1-1 1-3-0	23-9-0	<u>30-10-4</u> 7-1-4	37	7-0-0 37-10-8 1-12 0-10-8	_ ,
				5x8 =					Scale = 1:78.
			8.00 12	4	5x6 =	5x8 =			
]		0.00 12	T35		6			ſ
				2	121 W6				
		5x8	25	4*8		15	27 5x8 ≫		
	11-4-0 10-6-0		3	wз	W4		7		10-6-0
			w2			W8		Te	10-
		Tł	W1			W9	W10	+0 4x6 × 8	
	2 91	B1	9		_⊠ B3_⊠ ₩46		ra B4 V	y11 9	0-8-0 0-8-8
		28		9 18 17 3	14 31 35	13 32 12 3	<u> </u>	10	
	4x6 =			8 = 4x4 = 2x4 =	2x4	4x8 = 3x8 = 2x4 =		3x4 =	
					2x4				
	 	8-1-15 8-1-15	15-0					7-0-0	
Plate Offsets (X OADING (psf)	<u>,Y) [2:0-0-0,0-</u>				[8:0-3-0,0-1-12], [10	0:Edge,0-1-8]			
CLL (roof)	20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.63	DEFL. Vert(LL)	in (loc) l/def -0.67 16-17 >660	240	PLATES MT20	GRIP 244/190
	10.0 0.0 *	Lumber DOL Rep Stress Incr Code IRC2021/T	1.15 YES	BC 1.00 WB 0.95	Vert(CT) Horz(CT)	-1.02 16-17 >434 0.09 10 n/a		Waight: 250	Ib ET = 20%
UMBER-	10.0		P12014	Matrix-AS	BRACING-			Weight: 250	lb FT = 20%
OP CHORD 2	x4 SP No.2 x4 SP No.2 *Exc	cept*			TOP CHORD BOT CHORD	Structural wood sh Rigid ceiling direct		y applied, except e cept:	end verticals.
NEBS 2	3: 2x4 SP No.1, x4 SP No.3	B2: 2x4 SP SS			WEBS	3-1-0 oc bracing: 1 1 Row at midpt	3-18, 13	3-21	
VEDGE .eft: 2x4 SP No	.3				JOINTS	1 Brace at Jt(s): 2 MiTek recommen		zers and required o	ross bracing
						be installed durin Installation guide		n, in accordance w	ith Stabilizer
Ň	Max Horz 2=240		,.	(min. 0-2-2)					
		LC 12), 10=-92(LC 3(LC 20), 10=1810							
				except when showr 4-5=-3198/404, 5-2					
				7-8=-2160/122, 8- 28, 19-29=-103/242	10=-1733/122 8, 18-19=-103/242	8,			
	12-33=-24/1734	, 11-33=-24/1734			1831, 12-13=-24/1				
VEBS				0/1121, 4-21=-385/ 55/263, 6-21=-126	1973, 13-15=-352/1 /926	105,			
NOTES- (10-1		ive been considere	d for this design						
2) Wind: ASCE	7-16; Vult=120m	ph (3-second gust	:) Vasd=95mph; ⁻	CDL=5.0psf; BCD		at. II; Exp B; Enclos (2R) 11-5-6 to 16-3-			
Exterior(2É) 1 33-0-14 to 37	16-3-0 to 17-6-0, -10-8 zone; end	Interior(1) 17-6-0 vertical right expos	to 18-11-6, Exteri sed;C-C for mem	or(2R) 18-11-6 to 2 bers and forces & I	8-6-10, Interior(1) 2 MWFRS for reaction	(2R) 11-5-6 to 16-3- 28-6-10 to 33-0-14, E ns shown; Lumber D 5 Plate DOL=1.15); I 20.0 psf on overhanç	Exterior(2E) OCL=1.60	INNIATH CARO	innin.
plate grip DO) TCLL: ASCE	L=1.60 7-16; Pr=20.0 p	sf (roof LL: Lum D	DL=1.15 Plate D	DL=1.15); Pf=20.0	osf (Lum DOL=1.15	5 Plate DOL=1.15); I	s=1.0; Rough	ROFESSION	NA III III
Cat B; Partial) This truss has	ly Exp.; Ce=1.0; s been designed	Cs=1.00; Ct=1.10 for greater of min	roof live load of	2.0 psf or 2.00 tim	es flat roof load of 2	20.0 psf on overhang	gs	SEAL	
i) Provide adeq	uate drainage to	prevent water por	nding. om chord live los	d nonconcurrent w	ith any other live lo	20.0 psf on overhang ads. ngle 3-6-0 tall by 1-0	IIIIII	28147	
7) * This truss h between the l	as been designed	d for a live load of any other membe	30.0psf on the bers, with BCDL =	ottom chord in all a 10.0psf.	reas where a rectai	ngle 3-6-0 tall by 1-0	0-0 wide will fit	A ANGINEER	15 million
Provide mech	nanical connection	on (by others) of tru	uss to bearing pla	ite capable of withs	tanding 100 lb uplif blied directly to the	ft at joint(s) 2, 10. top chord and 1/2" g	lypsum	SEAL 28147 MONEER 12/12/20	ount
sheetrock be	applied directly	to the bottom chore	d.	0 11	-			12/12/20)24
Warning !	rify design param	eters and read notes arameters and proper	before use. This de	sign is based only upo	n parameters shown, a	and is for an individual l	building compone	nt to be installed and	oaded

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty Ply	LOT 0.0018 CAMPBELL RIDGE 21	1 ALDEN WAY ANGIER, NC				
24-B429-R01	R10	Roof Special	1	1 Job Reference (optional)	# 55151				
	Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 22024 Print: 8.630 s Jul 22024 Mich 8.630 s Jul 2200 s Jul 2200 Mich 8.630 s Jul 2200								

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

4-B429-R01	Truss R11		Truss Type Roof Special		Qty 1	Ply LOT	0.0018 CAMPBELL F	RIDGE 211 ALDEN WAY	ANGIER, NC # 55151
					Run: 86.630 s 3 Jul ID:GHOhT5M	Job I 12 2024 Print: 8 Ov4FkLKIPfX20	Reference (option 630 s Jul 12 2024 Mil 9QzXMNI-jvSCdF	al) Fek Industries, Inc. Fri Dec Ts8cr7Bobq2q0euu1Lik	
	-0 <u>-10₋8</u> 0-10-8	8-1-15 8-1-15			20-6-0 26	6-9-0 -3-0	31-8-12 4-11-12	<u>37-0-0</u> <u>37</u> -10-8 5-3-4 0-10-8	
				5x8 =					Scale = 1:78.
			8.00 12	4					
				A	√3 5x6 =	5x8	=		
ſ		5x8		12		6 T4			1
		540	3		25 W4	\square		2x4	
<u>11-4-0</u>				W3	× 100		W8 BW		0
1 8-6-0		ч	W2					4x4 🗞	8-6-0
	2 //		W1		B3		evv	8 9)ọ
		B1		~	Viga6			94 W10	1-8-0 0-8-8
	4.6 -	26	20	19 18 17 2 18 = 4x4 =	8 14 ^{29 34} 2x4	15 13 ³⁰ 31 6x12 =	$12 \ 32 \ 11 \ 3x8 = \ 6x8 =$	10 = 3x4	
	4x6 =			3x6 =	2x4	2x4 =	0.0		
	 	8-1-15	15-0-				31-8-12	37-0-0	
Plate Offsets (X,Y)	[2:0-0-0,0-0-0	8-1-15 6], [3:0-4-0,0-3-0	6-10-], [6:0-5-12,0-2-0		-0 5-0-0		6-8-12	5-3-4	
CADING (psf) CLL (roof) 20.0 Snow (Pf) 20.0		SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC 0.64	DEFL. Vert(LL)	in (loc) -0.64 16-17	l/defl L/d >687 240	PLATES MT20	GRIP 244/190
CDL 10.0 CLL 0.0	* F	Lumber DOL Rep Stress Incr	1.15 YES	BC 0.87 WB 0.99	Vert(CT) Horz(CT)	-1.03 16-17 0.09 10	>430 180 n/a n/a		
3CDL 10.0		Code IRC2021/T	PI2014	Matrix-AS	BRACING-			Weight: 25	0 lb FT = 20%
TOP CHORD 2x4 SP BOT CHORD 2x4 SP		ot*			TOP CHORD BOT CHORD		ood sheathing dir directly applied.	ectly applied, except	end verticals.
B3,B2: VEBS 2x4 SP	2x4 SP SS No.3 *Exce	ot*			WEBS	1 Row at mi 2 Rows at 1	dpt 3-18	8, 4-15, 6-11 3	
VEDGE	1: 2x4 SP No	.1				be installe	d during truss ere	abilizers and required ction, in accordance	
.eft: 2x4 SP No.3 REACTIONS. (Ib/size	e) 2=1612/()-3-8 (min 0-2-4) 10=1633/0-3-8	3 (min 0-2-3)		Installation	guide.		
Max H Max U	orz 2=240(L0 plift2=-68(LC	C 11) C 12), 10=-93(LC	13)	(
	,	-C 20), 10=1848	、						
	2884/119, 3-	24=-2306/129, 4		4-5=-3924/426, 5-2					
BOT CHORD 2-26=	-104/2456, 2	20-26=-104/2456	, 20-27=-105/245	53, 19-27=-105/245)=0/1439, 13-30=0/					
16-34	!=-100/411 , 1	5-34=-100/411		3=-100/411, 16-33=					
				-1/1111, 4-15=-394, 11=-311/180, 8-11=					
NOTES- (10-14) I) Unbalanced roof liv	e loads have	e been considere	d for this design						
Wind ASCE 7 16.	Vult-120mp	a (3 second quet	Vacd-05mph 7	COL -5 Opef BCD	L=5.0psf; h=23ft; C to 11-5-6, Exterior	at. II; Exp B; E (2R) 11-5-6 to	Inclosed; MWFR 16-3-0,	S UNITED TH CAR	40.
Exterior(2E) 16-3-0	to 20-6-0, In zone; end ve	terior(1) 20-6-0 t ertical right expos	o 21-11-6, Exteri sed;C-C for mem	or(2R) 21-11-6 to 3 bers and forces & N	1-8-12, Interior(1) 3 //WFRS for reactior	31-8-12 to 33- ns shown; Lur	0-14, Exterior(2E) nber DOL=1.60	INNORTH CAR	LINIU
33-0-14 to 37-10-8	0 Pr=20.0 psf	(roof LL: Lum DC	DL=1.15 Plate DC	DL=1.15); Pf=20.0 p	osf (Lum DOL=1.15	Plate DOL=1	.15); ls=1.0; Rou	gh offer	C. P. Internet
33-0-14 to 37-10-8 plate grip DOL=1.60) TCLL: ASCE 7-16;		or greater of min	roof live load of 1	12.0 psf or 2.00 time	es flat roof load of 2	20.0 psf on ov	erhangs	28147	WIINK
33-0-14 to 37-10-8 plate grip DOL=1.6 3) TCLL: ASCE 7-16; Cat B; Partially Exp 9) This truss has been non-concurrent with	n designed fo n other live lo	ads				ada	1100		
33-0-14 to 37-10-8 plate grip DOL=1.6 3) TCLL: ASCE 7-16; Cat B; Partially Exp 4) This truss has beer non-concurrent with 5) Provide adequate d 3) This truss has beer	n designed for n other live lo drainage to p n designed fo	oads. revent water pon or a 10.0 psf botto	ding. om chord live loa	d nonconcurrent w	th any other live loa	aus.		- A'S SNA	1 8
33-0-14 to 37-10-8 plate grip DOL=1.6 3) TCLL: ASCE 7-16; Cat B; Partially Exp 4) This truss has beer non-concurrent with 5) Provide adequate d 3) This truss has beer r) * This truss has beet between the bottom	n designed for n other live lo drainage to p n designed for en designed n chord and a	ads. revent water pon or a 10.0 psf botto for a live load of any other membe	iding. om chord live loa 30.0psf on the b ers, with BCDL =	nd nonconcurrent wi ottom chord in all a 10.0psf.	th any other live loa reas where a rectar	ngle 3-6-0 tall	by 1-0-0 wide will	THE A PRINCE	ALS INTERNET
33-0-14 to 37-10-8 plate grip DOL=1.6 3) TCLL: ASCE 7-16; Cat B; Partially Exp 4) This truss has beer non-concurrent with 5) Provide adequate d 3) This truss has beer between the bottom 5) Provide mechanica 9) This truss design re	I., Ce - 1.0, C n designed for a other live lo drainage to p n designed for en designed n chord and a l connection equires that a d direction	ads. revent water pon or a 10.0 psf botto for a live load of any other member (by others) of tru a minimum of 7/1	ding. om chord live loa 30.0psf on the b ers, with BCDL = iss to bearing pla 6" structural woo	nd nonconcurrent wi ottom chord in all a 10.0psf. ate capable of withs od sheathing be app	th any other live loa reas where a rectar tanding 100 lb uplif lied directly to the t	ngle 3-6-0 tall t at joint(s) 2, top chord and	by 1-0-0 wide will 10. 1/2" gypsum	THE MARK K. MO	AS
33-0-14 to 37-10-8 plate grip DOL=1.6 3) TCLL: ASCE 7-16; Cat B; Partially Exp 1) This truss has beer non-concurrent with 5) Provide adequate c 3) This truss has beer 7) * This truss has beer between the bottom 3) Provide mechanica 4) This truss design re sheetrock be applie Warning !	h, Ge T, U, C n designed for n other live lo drainage to p n designed for en designed for n chord and a l connection equires that a ed directly to sign parameter	ads. revent water pon or a 10.0 psf botte for a live load of any other membe (by others) of true a minimum of 7/1 the bottom chore ers and read notes	ding. om chord live loa 30.0psf on the b ers, with BCDL = iss to bearing pla 6" structural woo 1. before use . This de	ad nonconcurrent wi ottom chord in all a 10.0psf. ate capable of withs ad sheathing be app esign is based only upon	th any other live loa reas where a rectar tanding 100 lb uplif slied directly to the t	t at joint(s) 2, top chord and	by 1-0-0 wide will 10. 1/2" gypsum vidual building comp	12/12/2	024
 (envelope) gable er Exterior(2E) 16-3-0 33-0-14 to 37-10-8 plate grip DOL=1.6 TCLL: ASCE 7-16; Cat B; Partially Exp This truss has beer non-concurrent with Provide adequate d This truss has beer non-concurrent with Provide adequate d This truss has beer non-concurrent with Provide adequate d This truss has beer hetween the bottom Provide mechanica This truss design re sheetrock be applie Warning - Verify de vortically. Applicability of individual web memt responsibility of the bui <i>Plate Connected Wood</i> D'Onofrio Drive. Madia 	and designed fic a other live lic drainage to p and designed fic and designed fic and chord and a chord and a chord and a d connection equires that a d directly to sign parameter y of design para- pers only. Add	ads. revent water pon or a 10.0 psf botto for a live load of any other membe (by others) of true a minimum of 7/1 the bottom chore ers and read notes ameters and proper itional temporary b	iding. om chord live loa 30.0psf on the bi- ers, with BCDL = iss to bearing pla 6" structural woo 1. before use. This de incorporation of cor- racing to ensure stal	Id nonconcurrent wi ottom chord in all a 10.0psf. ate capable of withs ad sheathing be app esign is based only upo mponent is responsibil billiy during constructi	th any other live loa reas where a rectar tanding 100 lb uplif blied directly to the t n parameters shown, a ity of building designer on is the responsibility	t at joint(s) 2, top chord and nd is for an indi r – not truss desi of the erector.	by 1-0-0 wide will 10. 1/2" gypsum vidual building comp gner or truss engined Additional permaner	12/12/2 ponent to be installed and er. Bracing shown is for at bracing of the overall s	024 Toaded lateral support tructure is the

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC	
24-B429-R01	R11	Roof Special	1	1	Job Reference (optional)	# 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:42:50 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-jvSCdFTs8cr7Bobq2q0euu1LibLAGQKNs4j42Ky9OJZ							

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss		Truss Type	Qty	Ply LOT 0.0018 CA	MPBELL RIDGE 21	1 ALDEN WAY ANGIER, NC
24-B429-R01	R12		Roof Special	1	1		# 55151
				Run: 86.630 s 3 J	Job Referenc	e (optional) 2 2024 MiTek Industri	es, Inc. Fri Dec 13 12:42:52 2024 Page 1 9F36zJ6eYO1RkOpgJOCB7Dy9OJ>
	-0-10-8	8-1-15	16-3-0	23-6-0	29-9-0	37-0-0	37-10-8
	0-10-8	8-1-15	8-1-1	7-3-0	6-3-0	7-3-0	0-10-8
				5x8 =			Scale = 1:79.1
			8.00 12	4			
	Ţ		0.00 12	A			
			/	13			
		5x8	23 T2	NR 24	5x6 = 7x	8 =	
			3	\\w4	T4		т
	11-4-0		Å Y	V3 🕅	25		
			W2			26 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0
	6-6-0	It			W6 W7 W8		6x6 = 7
	2			B3			
		'1 B1		Via ₅		W9	
		27	19	16 29 13 ^{30 33}	12 34 11 10	I	9
	4x6 =		2x4 4x8 = 4x4 2x4	2x4	7x8 = 5x5 $2x4 = 5x6$	i =	3x6 =
				2x4	3x8 =		
	1	8-1-15	15-0-0	20-0-0 25-0-		37-0-0	
Plate Offsets	(X,Y) [2:0-0-0,0	8-1-15 -0-10], [3:0-4-0,0-3-0	6-10-1)], [6:0-6-4,0-2-4], [9:Edge,0	<u> </u>	0 4-9-0	7-3-0	
LOADING (ps	f)	SPACING-	2-0-0 CSI .	DEFL.	in (loc) l/defl	L/d	PLATES GRIP
TCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL Lumber DOL	1.15 TC 0.	88 Vert(LL) 89 Vert(CT)	-0.67 15-16 >658 -1.07 15-16 >415	240 180	MT20 244/190
TCDL BCLL	10.0 0.0 *	Rep Stress Incr	YES WB 0.	74 Horz(CŤ)		n/a	
BCDL	10.0	Code IRC2021/TF	PI2014 Matrix-A				Weight: 236 lb FT = 20%
LUMBER- TOP CHORD	2x4 SP No.2 *Ex	cept*		BRACING- TOP CHORD	Structural wood shea	thing directly app	lied, except end verticals.
	T3: 2x4 SP SS 2x4 SP No.2 *Ex	·		BOT CHORD WEBS	Rigid ceiling directly a 1 Row at midpt		
WEBS	B3,B2: 2x4 SP S 2x4 SP No.3 *Ex	s			MiTek recommends	that Stabilizers a	and required cross bracing
	W4: 2x4 SP No.3 Ex				be installed during t Installation guide.	russ erection, in a	accordance with Stabilizer
WEDGE Left: 2x4 SP N	No.3						
REACTIONS.	(lb/size) 2=161	3/0-3-8 (min. 0-2-4)), 9=1636/0-3-8 (min. 0-2-2))			
	Max Horz 2=240						
		4(LC 20), 9=1801(L					
			250 (lb) or less except wher				
TOP CHORD			-23=-2164/171, 4-24=-3759/ 6-26=-2101/132, 7-26=-2207				
BOT CHORD			19-28=-104/2431, 18-28=- 0=0/1731, 30-31=0/1731, 12				
WEBS	10-11=0/1741	,	, ,	,	,		
**200			=-37/919, 4-16=0/1127, 4-14 6-12=0/1357, 7-10=0/1590				
NOTES- (10							
1) Unbalance 2) Wind: ASC	d roof live loads h E 7-16: Vult=120r	ave been considered nph (3-second gust)	d for this design. Vasd=95mph; TCDL=5.0ps	sf: BCDL=5.0psf: h=23ft: (Cat. II: Exp B: Enclosed:	MWFRS	
(envelope)	gable end zone a	nd C-C Exterior(2E)	-0-10-8 to 3-11-2, Interior(1)) 3-11-2 to 11-5-6, Exterio 37-10-8 zone: end vertica	or(2R) 11-5-6 to 21-0-10,	Interior(1)	AN CAROUN
and forces	& MWFRS for rea	ctions shown; Lumb	per DOL=1.60 plate grip DOI	_=1.60			FESSIO
Cat B; Part	ially Exp.; Ce=1.0	; Cs=1.00; Ct=1.10	- 1. 15 Plate DUL=1.15); P	1-20.0 psi (Lum DOL=1.1	io male DOL=1.15); IS=1	I.U, Rough	AL AND IN
4) This truss h	nas been designed rent with other live	a tor greater of min r e loads.	oot live load of 12.0 psf or 2	2.00 times flat roof load of	20.0 pst on overhangs		SEAL
non-concur	equate drainage to	o prevent water pond t for a 10.0 psf botto	ding. om chord live load nonconcu	irrent with any other live li	pads		2014/
non-concur 5) Provide ade 6) This truss b	has been designed		30 Onst on the bottom chord	in all areas where a recta	angle 3-6-0 tall by 1-0-0	wide wilf fit	A. A. []
non-concur 5) Provide add 6) This truss h 7) * This truss	has been designed has been design	ed for a live load of	ro with $PCDI = 10.0 \pm 10$		а ,	1, 110 0	NOINEER AN
non-concur 5) Provide add 6) This truss f 7) * This truss between the 8) Provide me	nas been designed has been design e bottom chord ar echanical connecti	ed for a live load of a id any other member on (by others) of true	rs, with BCDL = 10.0psf. ss to bearing plate capable	of withstanding 100 lb up	lift at joint(s) 2, 9.	IIII AK	TK MORRIGHT
non-concur 5) Provide add 6) This truss f 7) * This truss between the 8) Provide me 9) This truss of sheetrock b	has been designed has been design e bottom chord ar cchanical connecti design requires that be applied directly	ed for a live load of a lid any other membe on (by others) of tru- at a minimum of 7/10 to the bottom chord	Vasd=95mph; TCDL=5.0ps -0-10-8 to 3-11-2, Interior(1 14, Exterior(2E) 33-0-14 to ber DOL=1.60 plate grip DOI VL=1.15 Plate DOL=1.15); P oof live load of 12.0 psf or 2 ding. m chord live load nonconcu 30.0psf on the bottom chord rs, with BCDL = 10.0psf. ss to bearing plate capable of "structural wood sheathing.	of withstanding 100 lb up g be applied directly to the	lift at joint(s) 2, 9. e top chord and 1/2" gyps	sum	SEAL 28147 12/12/2024 re installed and loaded

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDE	N WAY ANGIER, NC
24-B429-R01	R12	Roof Special	1	1	Job Reference (optional)	# 55151
			Run: 86.630 s 3 Jul ID:GHOhT5MOv	12 2024 Pr 4FkLKIPf	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. X2c9QzXMNI-8U8LFGVkRXDh2FJPjyal	Fri Dec 13 12:42:53 2024 Page 2 LWWfoloNgTr3pY2ykffy9OJW

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

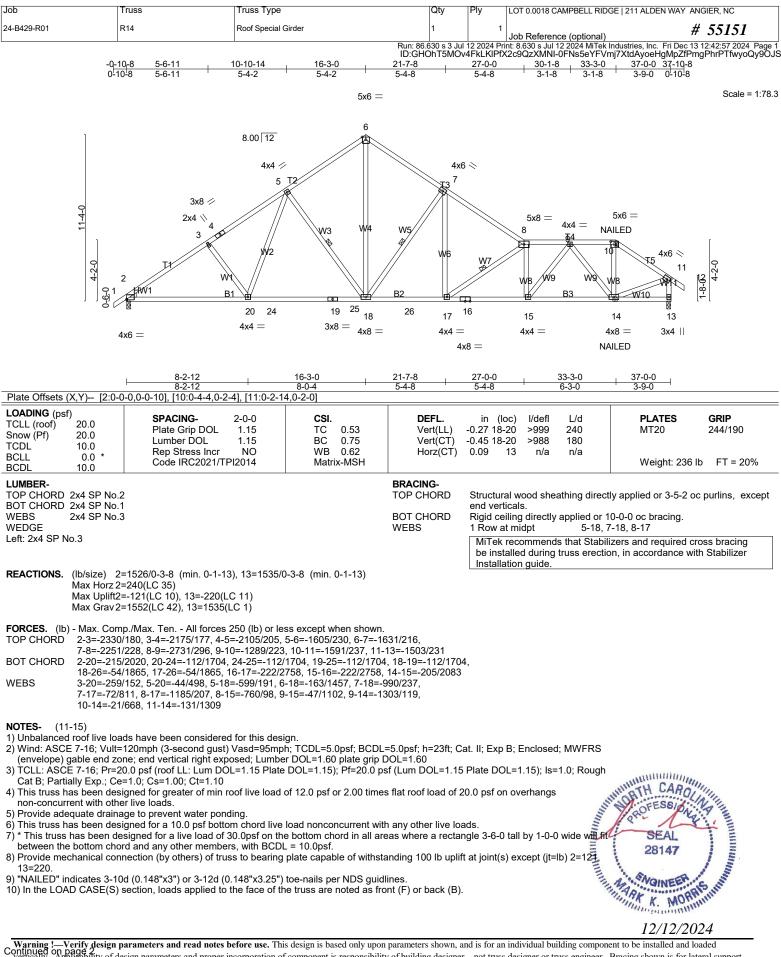
LOAD CASE(S) Standard

Job	Truss	3	Truss Type	Qty	Ply LOT 0.0018 CAMPBELL I	RIDGE 211 ALDEN WAY ANGIER, NC
24-B429-R01	R13		Roof Special	1	1	# 55151
				Run: 86.630 s 3 Ju	Job Reference (option 12 2024 Print: 8.630 s Jul 12 2024 Mi	al) // 20101 Fek Industries, Inc. Fri Dec 13 12:42:55 2024 Page 1 X_z8TPHZTnrNcpbxkB9c3?xjA6?MRrkYy9OJU
	-0-10 ₀ 8	8-1-15	16-3-0	24-3-0	26-6-0 32-9-0	37-0-0 37-10-8
	0-10-8	8-1-15	8-1-1	8-0-0	2-3-0 6-3-0	4-3-0 0 ¹ 10 ¹ 8
				5x8 =		Scale = 1:76.5
l			8.00 12	4 1		
				\square		
			24 72	25		
		5x8	<i>"</i>	1 13	2x4 \\	
0			3	W5	5 5x8 =	5x6 =
11-4-0		//			6 6 T4	27
			w2		26	
	6-0	II	W1	/	W9	W10
				W6	WY 19	
	0-1 9-0	'1 B1		$2x4 = 200^{2}$		
		28	17 29 16 15	17	4 = 13 12	⊠ 11 10
	4x6 =		2x4 3x8 = 4x4 =	= 2x4	6x8 = 4x8 =	4x8 = 3x4
	L	8-1-15	15-0-0	20-0-0 25-0		37-0-0
Plate Offsets (X,Y		8-1-15 -0-10], [3:0-4-0,0-3-	6-10-1)], [7:0-4-4,0-2-4], [8:0-2-14,0-	5-0-0 5-0 -2-0]	-0 7-9-0	' 4-3-0 [']
LOADING (psf)		SPACING-	2-0-0 CSI .	DEFL.	in (loc) l/defl L/d	PLATES GRIP
	0.0 0.0	Plate Grip DOL	1.15 TC 0.60	6 Vert(LL)	-0.20 14́ >999 240	MT20 244/190
TCDL 10	0.0 0.0 *	Lumber DOL Rep Stress Incr	1.15 BC 0.83 YES WB 0.83		-0.48 14 >931 180 0.09 10 n/a n/a	
	0.0	Code IRC2021/T	PI2014 Matrix-AS	;		Weight: 234 lb FT = 20%
LUMBER-		(000t*		BRACING-	Ctructural wood oboothing dir	actly applied avaant and varticals
	2x4 SP SS	сері		TOP CHORD BOT CHORD	Rigid ceiling directly applied.	ectly applied, except end verticals.
BOT CHORD 2x4 WEBS 2x4	SP No.2			WEBS	I	5, 4-13, 6-11 abilizers and required cross bracing
WEDGE Left: 2x4 SP No.3					be installed during truss ere	ction, in accordance with Stabilizer
					Installation guide.	
Ма	ax Horz 2=240)(LC 11)	3), 10=1536/0-3-8 (min. 0-1-1	(3)		
Ma Ma	ax Uplift2=-11 ax Grav 2=155	1(LC 12), 10=-142(L 55(LC 20), 10=1536(C 13) LC 1)			
				- h		
TOP CHORD 2-	-3=-2248/198	, 3-24=-1701/216, 4	250 (lb) or less except when s 24=-1560/243, 4-25=-2869/4	54, 5-25=-2999/427,		
	-6=-2785/271 -10=-1502/15	, ,	26=-1349/163, 7-27=-1526/16	65, 8-27=-1663/163,		
			17-29=-165/1926, 16-29=-16 3=-147/2620, 11-12=-147/262		6,	
WEBS 3-	-17=0/414, 3-	15=-773/213, 15-18	=-56/667, 4-18=-49/677, 4-19=	=-370/1845,		
	3-19=-385/18 -11=-59/1361		6-13=-885/127, 6-11=-1543/12	21, 7-11=0/565,		
NOTES- (10-14)					
1) Unbalanced roo	of live loads h	ave been considere			at the Free De Freedore at MM/FD	
					at. II; Exp B; Enclosed; MWFR (2R) 11-5-6 to 21-0-10, Interior	
21-0-10 to 27-1	1-6, Exterior(WERS for rea	2R) 27-11-6 to 33-0	14, Exterior(2E) 33-0-14 to 37	7-10-8 zone; end vertical	right exposed;C-C for members	S WILLING CARCING
3) TCLL: ASCE 7-	16; Pr=20.0 p	osf (roof LL: Lum DC	L=1.15 Plate DOL=1.15); Pf=	20.0 psf (Lum DOL=1.15	Plate DOL=1.15); Is=1.0; Rou	gh Seessid Null
4) This truss has t	Exp.; Ce=1.0 been designe	; Cs=1.00; Ct=1.10 d for greater of min	oof live load of 12.0 psf or 2.0	0 times flat roof load of 2	20.0 psf on overhangs	at has a
non-concurrent 5) Provide adequa	with other live	e loads. o prevent water non	dina.		(2R) 11-5-6 to 21-0-10, Interior right exposed;C-C for members Plate DOL=1.15); Is=1.0; Rou 20.0 psf on overhangs ads. ngle 3-6-0 tall by 1-0-0 wide wit at at joint(s) except (it=lb) 2=111	SEAL
6) This truss has t	peen designe	d for a 10.0 psf botto	m chord live load nonconcurr	ent with any other live lo	ads.	28147
between the bo	ttom chord ar	ned for a live load of and any other membe	rs, with BCDL = 10.0psf.	n an areas where a recta	igie 3-0-0 tall by 1-0-0 wide wi	A Non-CA
 Provide mechai 10=142. 	nical connect	ion (by others) of tru	ss to bearing plate capable of	withstanding 100 lb uplit	t at joint(s) except (jt=lb) 2=111	ARK & MORRISING
9) This truss desig			6" structural wood sheathing b	be applied directly to the	top chord and 1/2" gypsum	Man A. Mount
sneetrock be ap	phied airectly	to the bottom chord				B SEAL 28147 Efit 12/12/2024 ponent to be installed and loaded
Warning !—Verif Continued on page	y design paran	neters and read notes	before use. This design is based or	nly upon parameters shown, a	and is for an individual building comp	ponent to be installed and loaded
of individual web n	nembers only.	parameters and proper Additional temporary bi	ncorporation of component is respondent to ensure stability during con	onsibility of building designe	 not truss designer or truss engine of the erector. Additional permaner 	er. Bracing shown is for lateral support nt bracing of the overall structure is the

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC			
24-B429-R01	R13	Roof Special	1	1	Job Reference (optional)	# 55151			
	Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:42:55 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-4sG5gyX_z8TPHZTnrNcpbxkB9c3?xjA6?MRrkYy9OJU								

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALD	DEN WAY ANGIER, NC
24-B429-R01	R14	Roof Special Girder	1	1	Job Reference (optional)	# 55151
					int: 8.630 s Jul 12 2024 MiTek Industries, Inc c9QzXMNI-VRxEJ ZtF3r 80CMWVA	

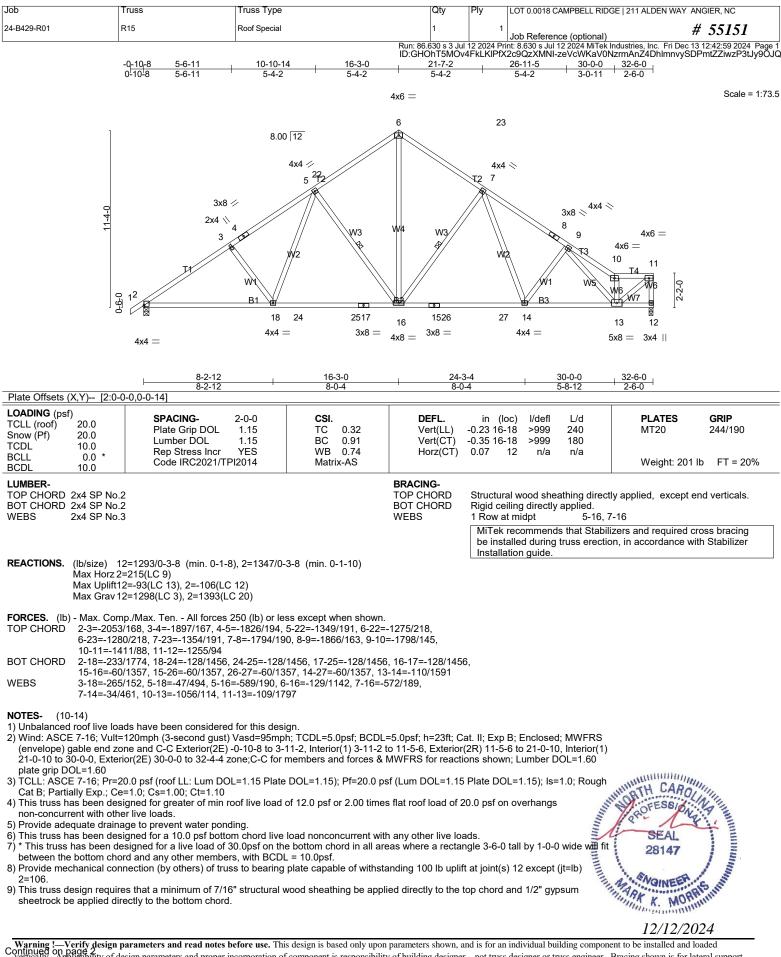
12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

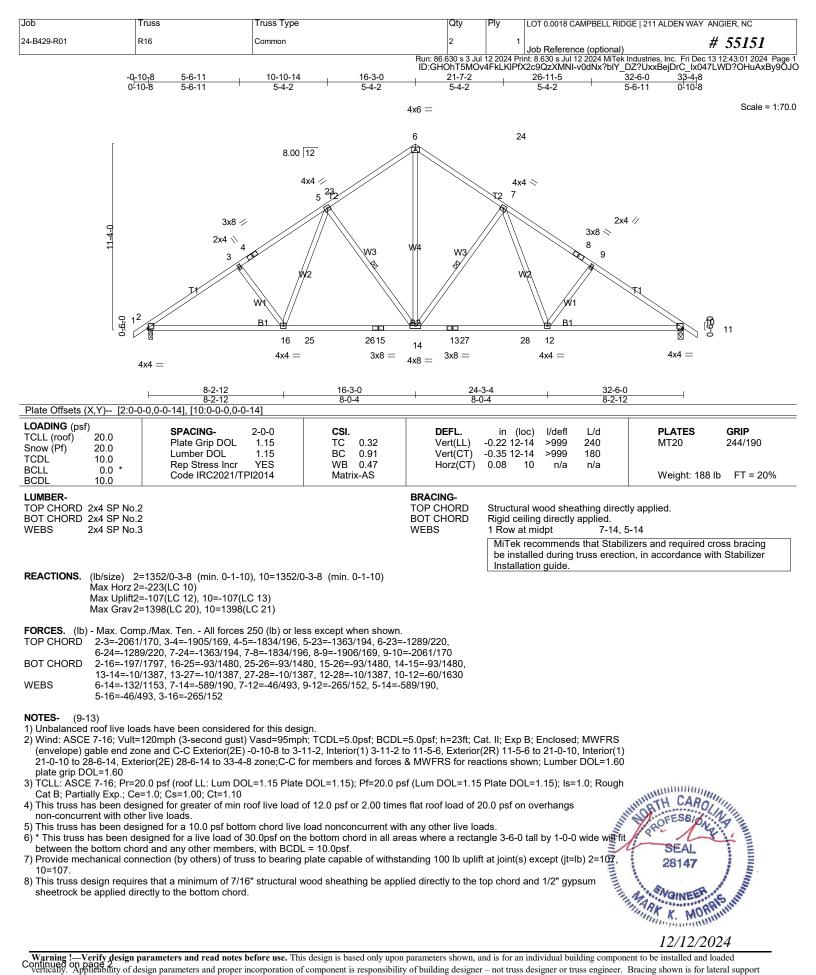
Uniform Loads (plf) Vert: 1-6=-60, 6-8=-60, 8-10=-60, 10-11=-60, 11-12=-60, 13-21=-20

Concentrated Loads (lb)

Vert: 14=0(F)

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDE	N WAY ANGIER, NC	
24-B429-R01	R15	Roof Special	1	1	Job Reference (optional)	# 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:43:00 2024. Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-Rg3_ifb7nh5iOKMldwC_I?R7Cdl?c0pr9d8cPly9OJP							

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

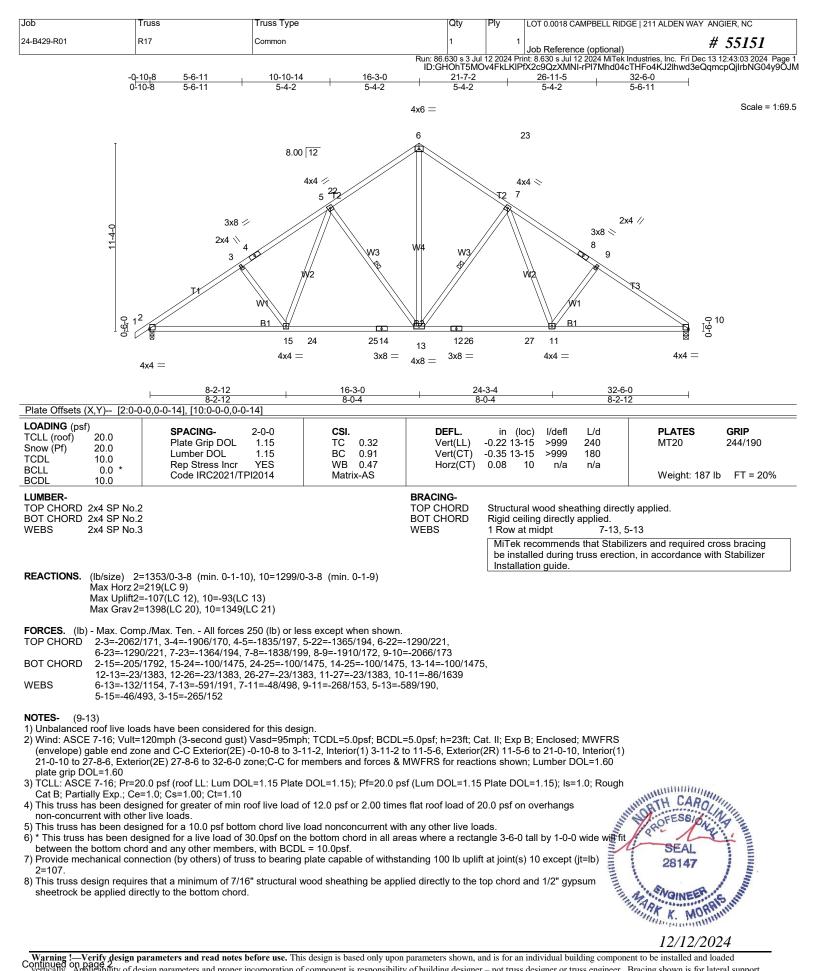
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN	NWAY ANGIER, NC
24-B429-R01	R16	Common	2	1	Job Reference (optional)	# 55151
		·			nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. <2c9QzXMNI-v0dNx?bIY_DZ?UxxBejDr(

10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

3) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty Ply LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY ANGIER, NC
24-B429-R01	R17	Common	¹ Job Reference (optional) # 55151
		·	Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:43:03 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-rPI7Mhd04cTHFo4KJ2lhwd3eQqmcpQjlrbNG04y9OJM

10) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

11) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

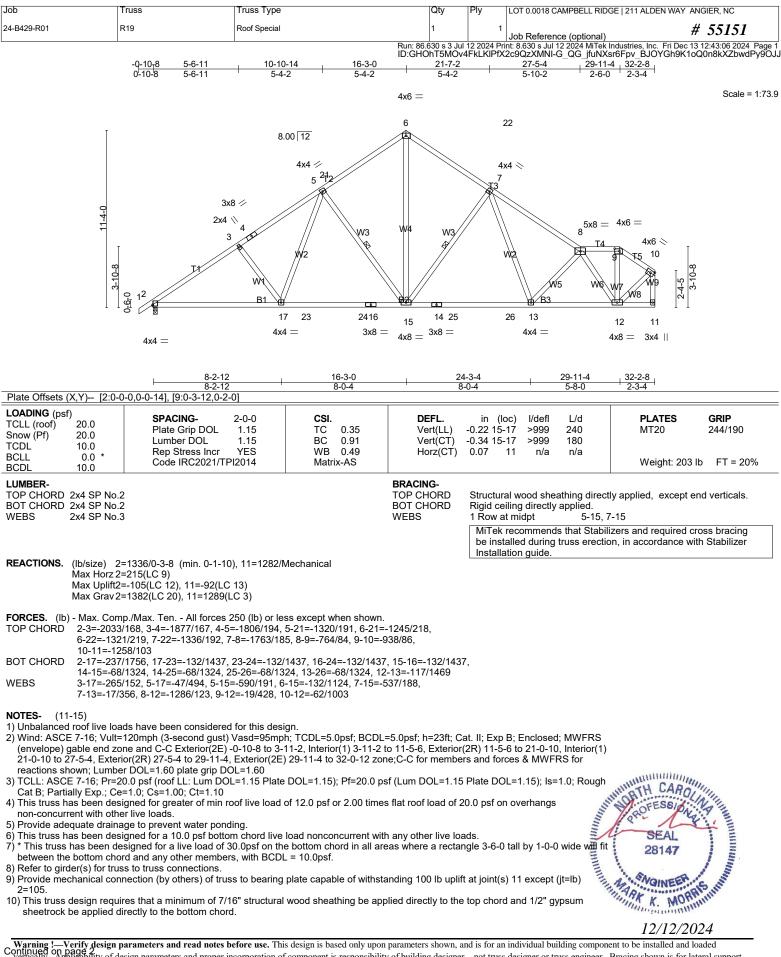
3) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job		Truss	Truss Type		Qty	Ply LOT 0.00	18 CAMPBELL RID	GE 211 ALDEN WAY AN	
24-B429-R01	1	R18	Roof Special		1	1 Job Refe	erence (optional)		# 55151
		0.40.0 5.0.44	10 10 11	10.0.0	ID:GHOhT5MOv	4FkLKIPfX2c9QzXN	NI-JbJVZ1eervb	Industries, Inc. Fri Dec 13 7sxfWsmGwTrcqGE6_	3 12:43:04 2024 Page YqyR4F6qYWy9O
		-0 <u>-10₋8 5-6-11</u> 0-10-8 5-6-11	<u> </u>	16-3-0 5-4-2	<u>21-7-2</u> 5-4-2	<u>26-11-5</u> 5-4-2	30-5-4 3-5-15	<u>32-2-8</u> 1-9-4	
					4x6 =				Scale = 1:73
					6	23			
	I		8.00 12	//		20			
			414						
			4x4 🖉	72		4x4 ≷ ∖12 7			
		3×	8 -	Ŕ					
	11-4-0	2x4				$/\!/ \parallel \nearrow$	$3x8 \otimes 4x4 \approx$		
	Ę	3	4	W3	W4 W3		8 9	4x6 =	
			× yy2	14	4	wką	13	4x6 =	
		I	NA /				W1 W5	× τ4 ^{W71}	
	0-9-0	1 ²	B1 dr			B:		-10-8 -10-8	
	0		18 24	2517	16 ^{15 26}	27 14		<u>13</u> 12	
		4x4 =	$4x4 \equiv$	3x8 =	4x8 = 3x8 =	4x4 =		3x4	
								5x8 =	
		8-2-12		16-3-0	24-3		30-5-4	32-2-8	
	(X,Y) [2:0-0	<u>8-2-12</u>)-0,0-0-14]		8-0-4	8-0	-4	6-2-0	' 1-9-4 '	
OADING (ps CLL (roof)	if) 20.0	SPACING-		CSI.	DEFL.	in (loc) l/de		PLATES	GRIP
Snow (Pf)	20.0	Plate Grip DOL Lumber DOL		TC 0.32 BC 0.90	Vert(LL) Vert(CT)	-0.22 16-18 >99 -0.34 16-18 >99		MT20	244/190
BCLL	10.0 0.0 *	Rep Stress Incr Code IRC2021/		WB 0.66 Matrix-AS	Horz(CT)	0.07 12 n	'a n/a	Weight: 199 I	b FT = 20%
BCDL	10.0				BRACING-				
TOP CHORD	2x4 SP No.2 2x4 SP No.2				TOP CHORD BOT CHORD	Structural wood s Rigid ceiling dire		tly applied, except er	nd verticals.
WEBS	2x4 SP No.3				WEBS	1 Row at midpt	5-16, 7		
						be installed dur	ing truss erection	izers and required cr on, in accordance wit	
REACTIONS.	(lb/size) 1	2=1282/Mechanical, 2=	1336/0-3-8 (min. 0-1	-10)		Installation guid	е.		
	Max Horz 2		,						
		2=1295(LC 21), 2=1381							
FORCES. (IL		p./Max. Ten All force /167. 3-4=-1877/166. 4-			255/217				
SI GIORD	6-23=-125	9/217, 7-23=-1333/191		, -)				
BOT CHORD	2-18=-228	48/66, 11-12=-1253/77 /1759, 18-24=-123/144				Ι,			
VEBS	3-18=-265	/1325, 15-26=-51/1325, /152, 5-18=-47/495, 5-1	6=-590/190, 6-16=-1	29/1119, 7-16=-54					
	7-14=-33/4	117, 9-13=-430/45, 10-1	3=-886/108, 11-13=-	88/1615					
NOTES- (1 I) Unbalance		ds have been consider	ed for this design						
) Wind: ASC	E 7-16; Vult=	120mph (3-second gus	t) Vasd=95mph; TCD				10 [′] Interior(1)		
21-0-10 to	30-5-4, Exter	ne and C-C Exterior(2E or(2E) 30-5-4 to 32-0-1					ber DOL= 1.60		
	CE 7-16; Pr=2	0.0 psf (roof LL: Lum D		1.15); Pf=20.0 psf	(Lum DOL=1.15	Plate DOL=1.15);	ls=1.0; Rough	SEAL	111
		=1.0; Cs=1.00; Ct=1.10 igned for greater of min		psf or 2.00 times	flat roof load of 2	0.0 psf on overhai	ngs 💰	TESSIA	Nillin
non-concui	rrent with othe						mm	POR Ma	
) This truss I	nas been des	igned for a 10.0 psf bot signed for a live load o	tom chord live load no	onconcurrent with	any other live loa	ads. Ingle 3-6-0 tall by 1	0-0 wide wiff fit	SEAL	
	e bottom cho	rd and any other memb			o where a reoldr	igio 0-0-0 tali by 1		28147	
	uer(s) for true	s to truss connections.	uss to bearing plate o	apable of withstar	nding 100 lb uplifi	t at joint(s) 12 exce	ept (jt=lb)	A ANGINEER	a min
3) Refer to gir 9) Provide me	echanical con	nection (by others) of th			.				
 Refer to gir Provide me 2=106. 		res that a minimum of 7	0.	sheathing be appli	ed directly to the	top chord and 1/2	" gypsum	ARK K. MORP	Munner.
 Refer to gir Provide me 2=106. This truss 	design requi		7/16" structural wood	sheathing be appli	ed directly to the	top chord and 1/2	" gypsum	SEAL 28147	annun annun

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN	NWAY ANGIER, NC
24-B429-R01	R18	Roof Special	1	1	Job Reference (optional)	# 55151
					nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. K2c9QzXMNI-nnstnNeGcDj_U5EiQTo9?	

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

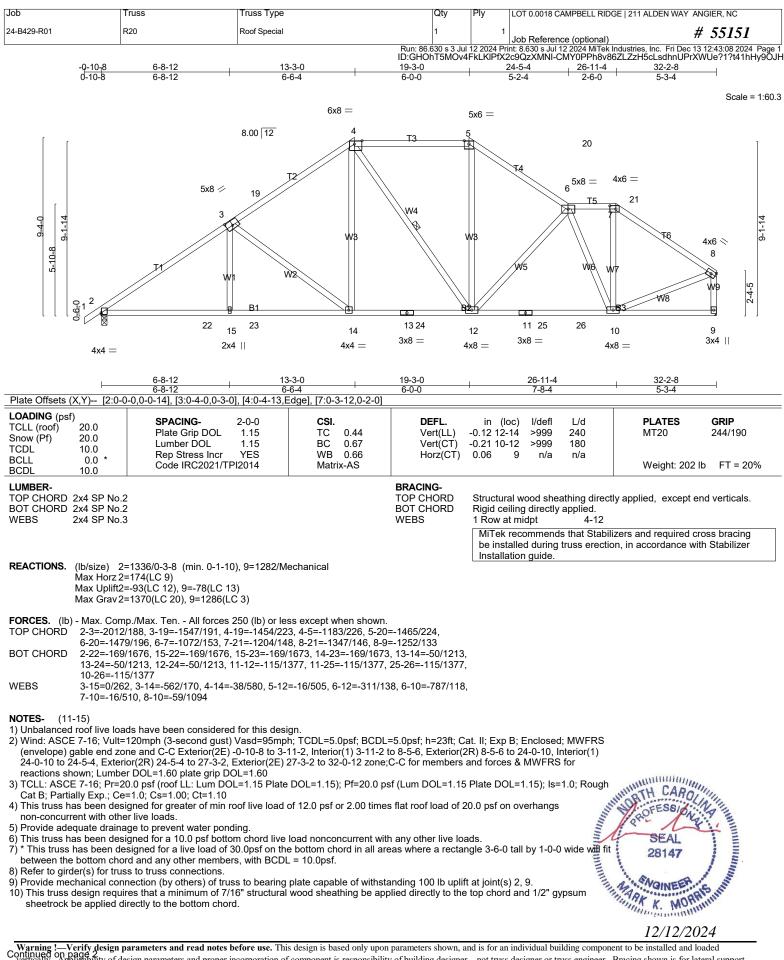
loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDE	EN WAY ANGIER, NC
24-B429-R01	R19	Roof Special	1	1	Job Reference (optional)	# 55151
		·			nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. 2c9QzXMNI-G_QG_jfuNXsr6Fpv_BJO	

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

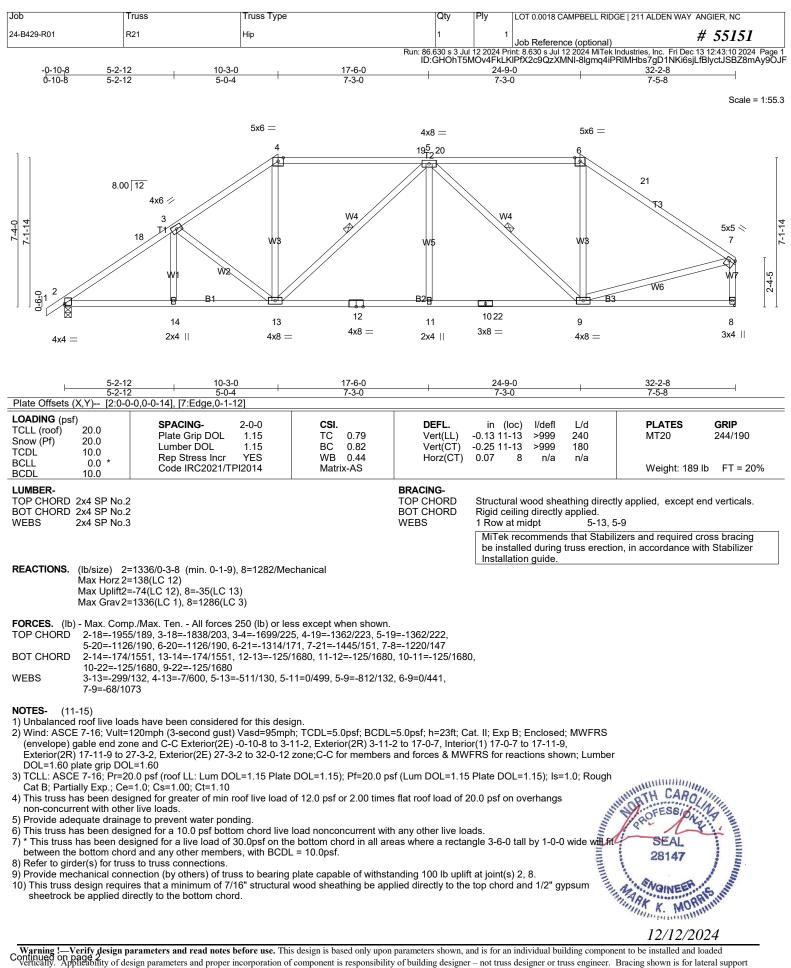
14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 AL	DEN WAY ANGIER, NC
24-B429-R01	R20	Roof Special	1	1	Job Reference (optional)	# 55151
	·				int: 8.630 s Jul 12 2024 MiTek Industries, I 2c9QzXMNI-CMY0PPh8v86ZLZzH5c	

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

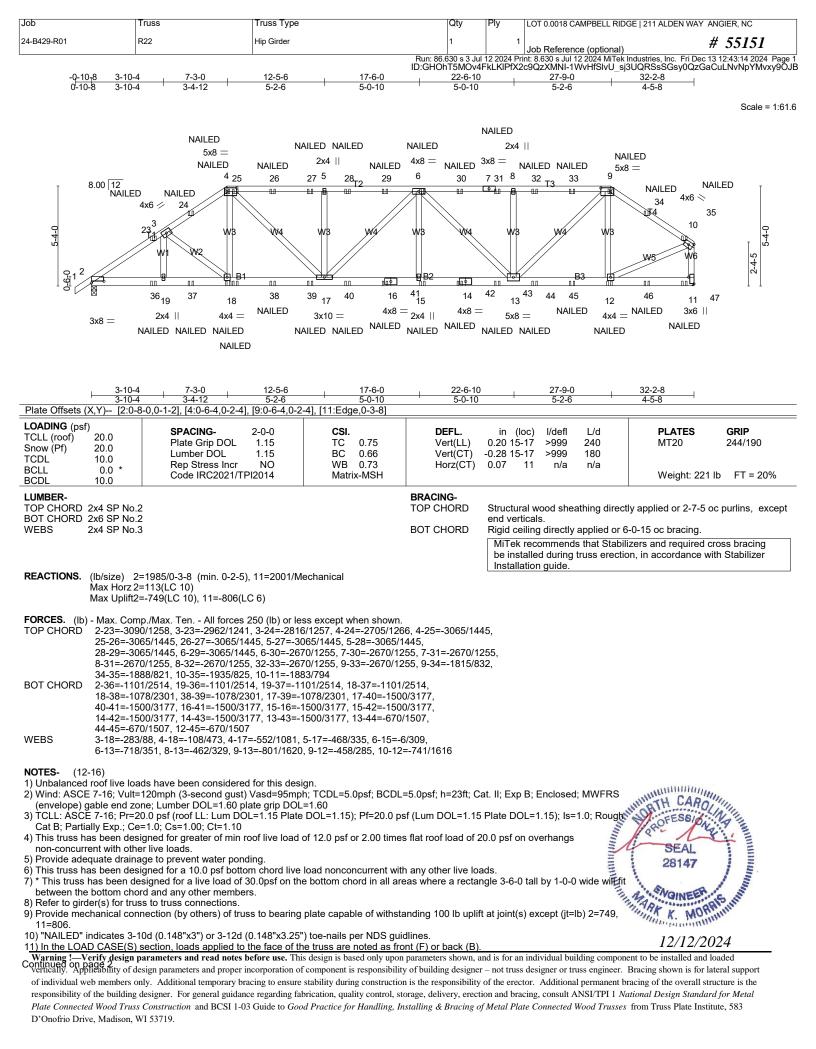
14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC
24-B429-R01	R21	Hip	1	1	Job Reference (optional)	# 55151
					nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec IPfX2c9QzXMNI-8lgmq4iPRIMHbs7gD1NKi6sjl	

12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


13) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 15) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(5) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC
24-B429-R01	R22	Hip Girder	1	1	Job Reference (optional)	# 55151
					int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 2c9QzXMNI-1WvHfSlvU_sj3UQRSsSGsy0QzG	

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

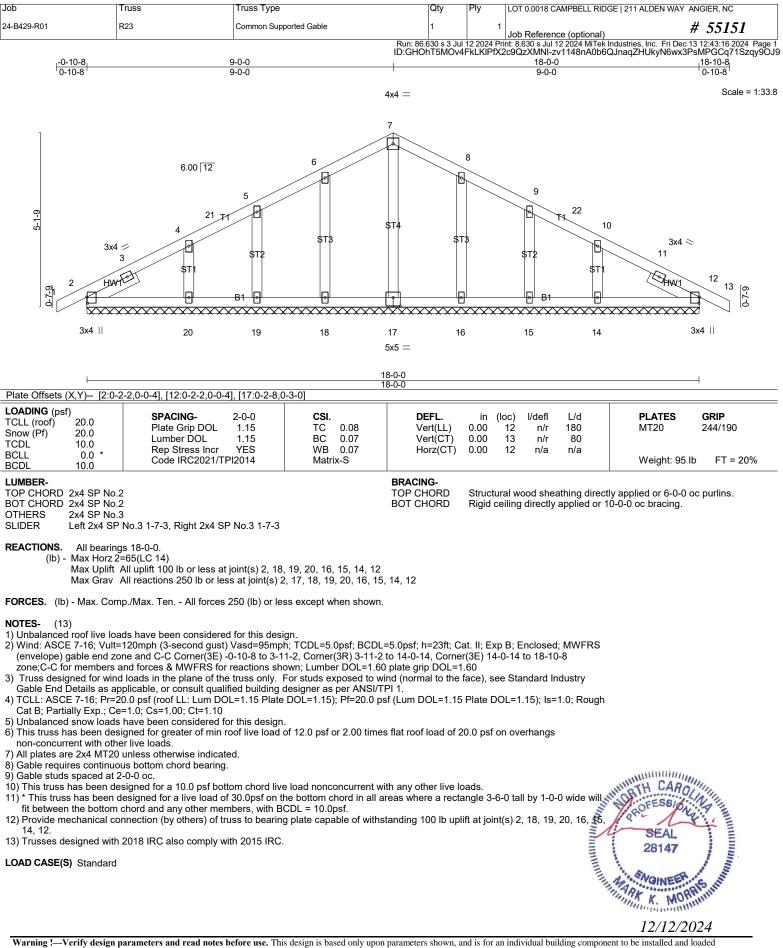
14) bearing symbols are not considered in the structural design of the truss to support tr loads indicated.

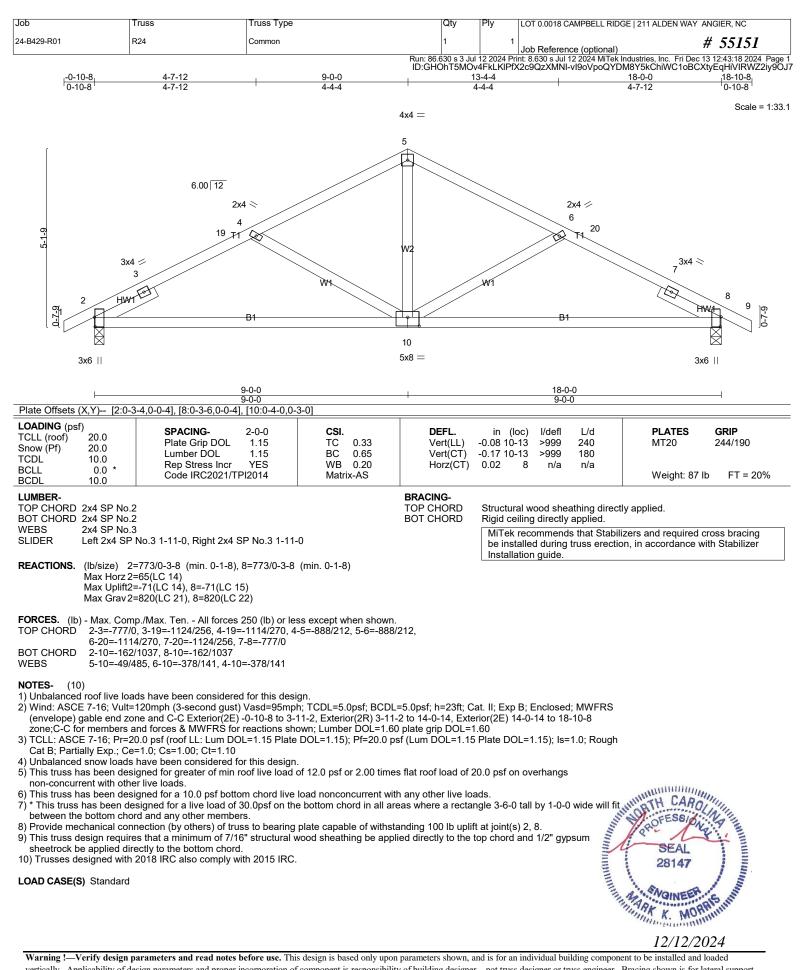
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

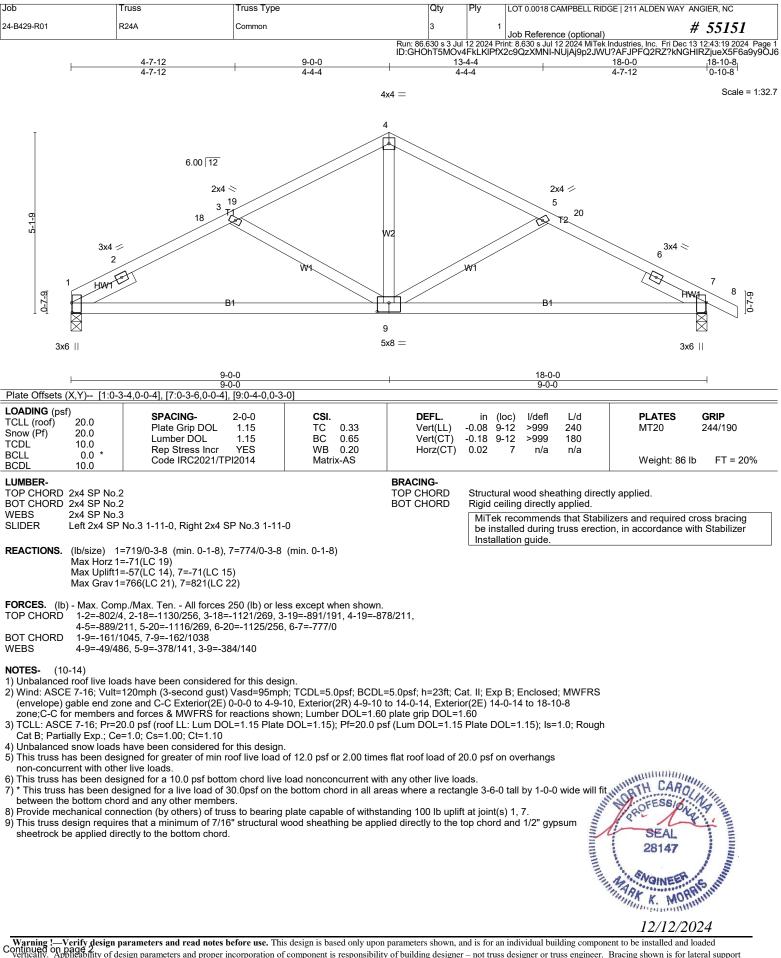
16) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15


Uniform Loads (plf)


Vert: 1-4=-60, 4-9=-60, 9-10=-60, 11-20=-20

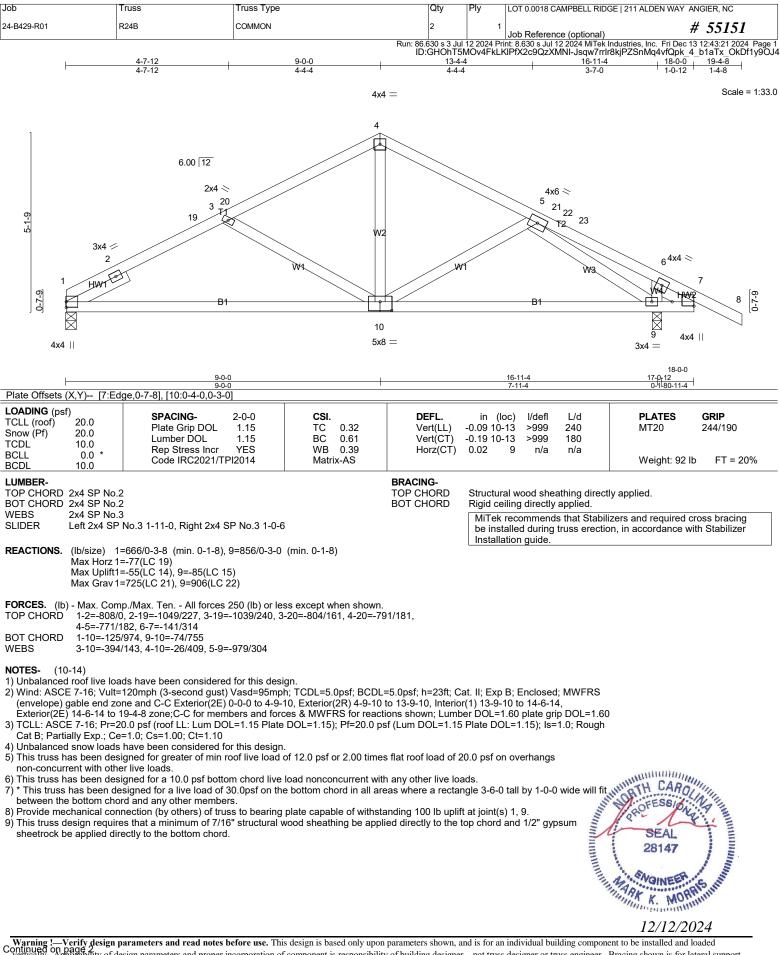

Concentrated Loads (lb)

Vert: 4=-49(F) 9=-49(F) 18=-61(F) 15=-31(F) 6=-49(F) 12=-31(F) 23=-60(F) 24=-15(F) 25=-49(F) 26=-49(F) 27=-49(F) 28=-49(F) 29=-49(F) 30=-49(F) 31=-49(F) 32=-49(F) 33=-49(F) 33=-31(F) 43=-31(F) 43=

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instance and roaced control page 2. So that the page 2 is the p

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC
24-B429-R01	R24A	Common	3	1	Job Reference (optional)	# 55151
					int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 2c9QzXMNI-NUJAJ9p2JWU?AFJPFQ2RZ?kNO	

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

 loads indicated.
 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY	ANGIER, NC	
24-B429-R01	R24B	COMMON	2	1	Job Reference (optional)	# 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:43:21 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-Jsqw7rrlr8kjPZSnMq4vfQpk_4_b1aTx_0kDf1y90J4							

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

 loads indicated.
 13) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

(4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

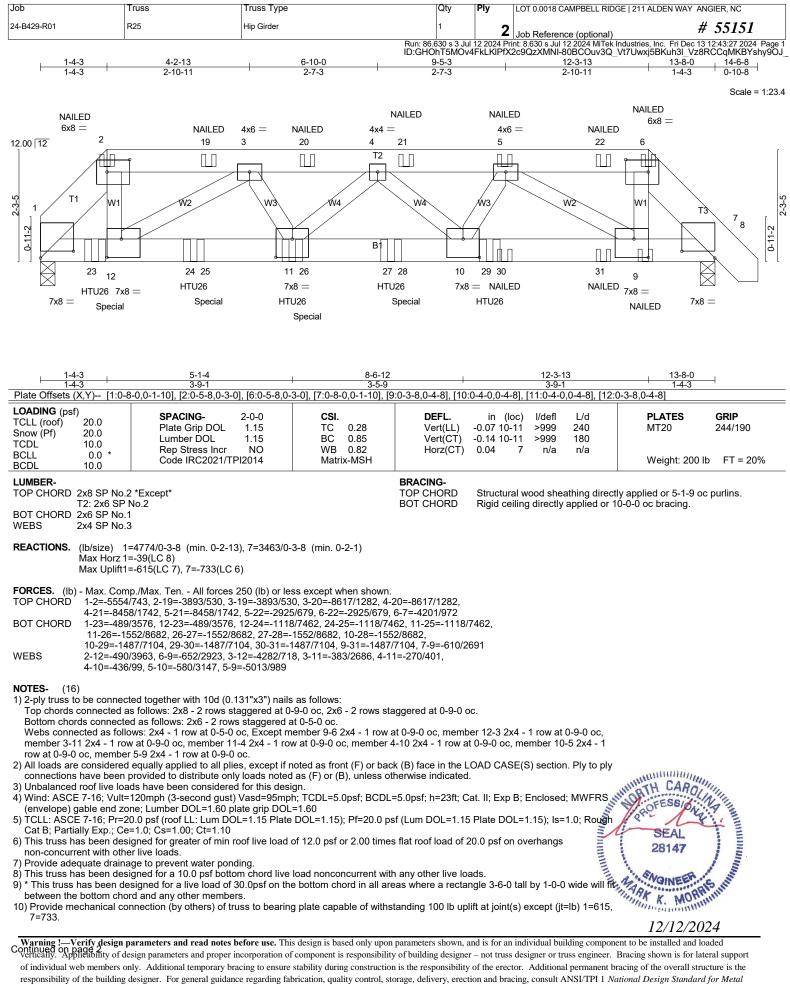


Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE	211 ALDEN WAY ANGIER, NC	
24-B429-R01	R25	Hip Girder	1	2	Job Reference (optional)	# 55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:43:27 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-80BCOuv3Q Vt7Uwxj5BKuh3I Vz8RCCqMKBYshy9OJ							

NOTES- (16)

11) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-1-4 from the left end to 7-1-4 to connect truss(es) R18 (1 ply 2x4 SP), R19 (1 ply 2x4 SP), R20 (1 ply 2x4 SP), R21 (1 ply 2x4 SP) to front face of bottom chord. 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 9-1-4 from the left end to connect truss(es) R22 (1 ply 2x6 SP) to front

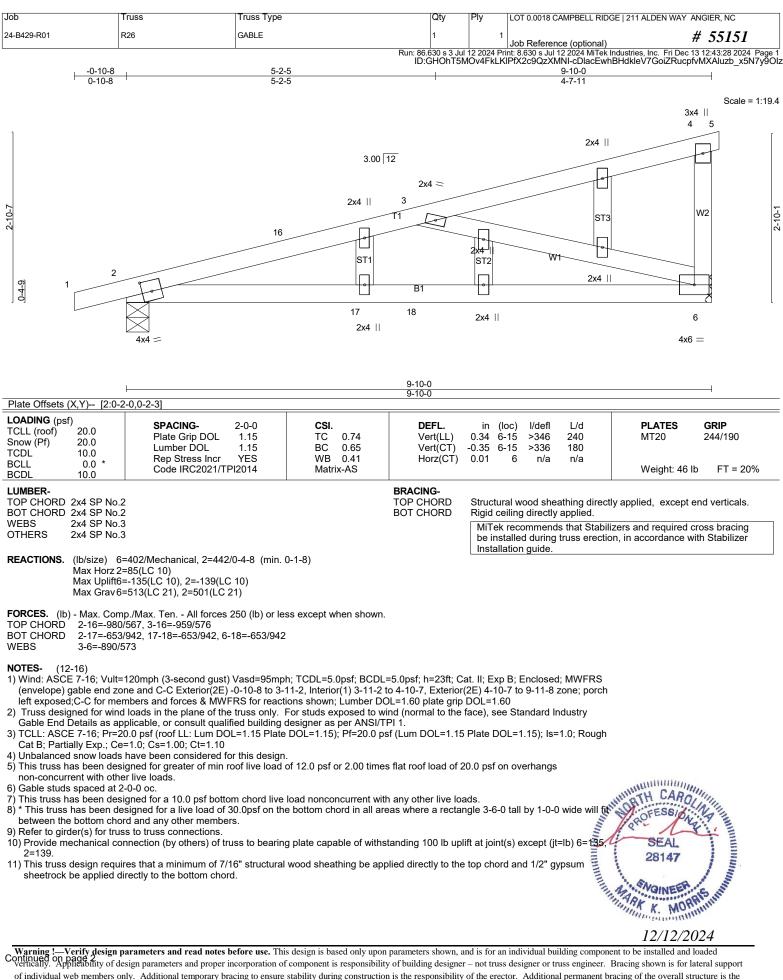
face of bottom chord.

13) Fill all nail holes where hanger is in contact with lumber.

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

15) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 18 lb down and 3 lb up at 1-4-15, 18 lb down and 3 lb up at 3-4-15, and 18 lb down and 3 lb up at 5-4-15, and 18 lb down and 3 lb up at 7-4-15 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 16) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard


1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-6=-60, 6-8=-60, 13-16=-20

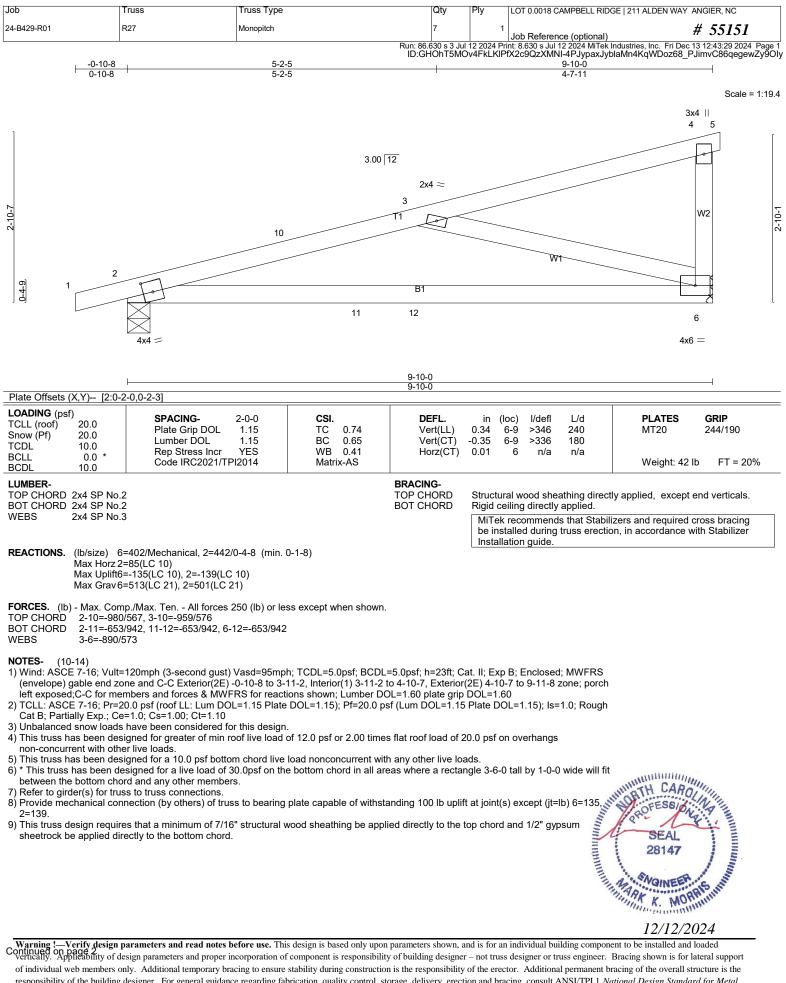
Concentrated Loads (lb)

Vert: 2=-2(B) 6-2(B) 12=-8(B) 9=-8(B) 11=-1262(F) 5=-2(B) 19=-2(B) 20=-2(B) 21=-2(B) 22=-2(B) 23=-1262(F) 24=-1262(F) 25=-8(B) 26=-8(B) 27=-1262(F) 28=-8(B) 26=-8(B) 27=-1262(F) 28=-8(B) 26=-8(B) 26=-8 29=-1981(F) 30=-8(B) 31=-8(B)

Vertically. "Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY ANGIER, NC		
24-B429-R01	R26	GABLE	1	1	Job Reference (optional) # 55151		
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:43:28 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-cDlacEwhBHdkleV7GoiZRucpfvMXAluzb_x5N7y9Olz							

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

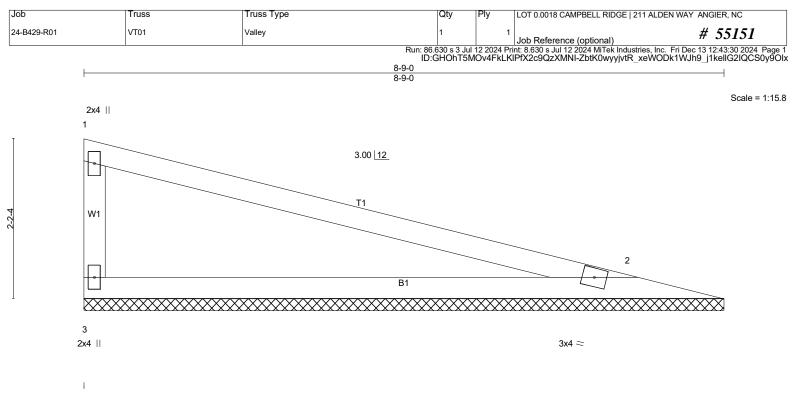
6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0018 CAMPBELL RIDGE 211 ALDEN WAY AND	GIER, NC	
24-B429-R01	R27	Monopitch	7	1	Job Reference (optional) #	55151	
Run: 86.630 s 3 Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec 13 12:43:29 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-4PJypaxJyblaMn4KqWDoz68_PJimvC86qegewZy9Oly							

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.


12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

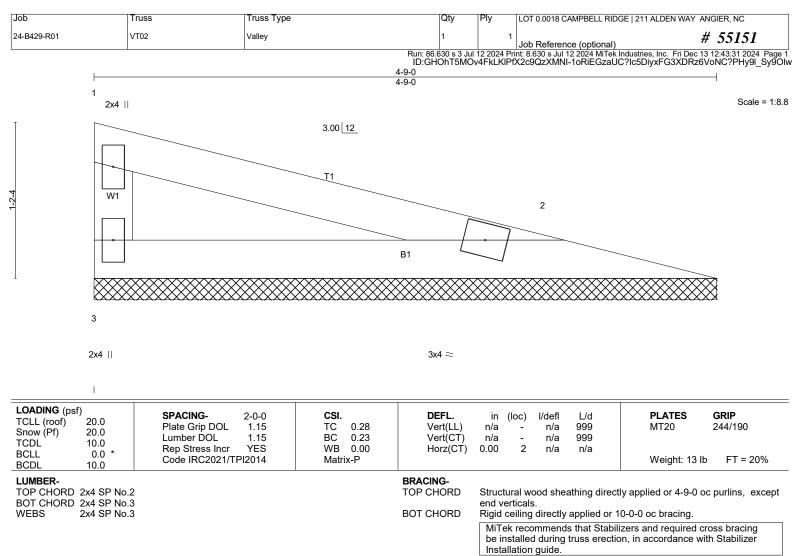
 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.75 BC 0.73 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP SS BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3		BRACING- TOP CHORD Structural wood sheathing directly applied or 7-7-14 end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.			oc purlins, except			
				MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer				


Installation guide.

REACTIONS. (lb/size) 3=297/8-9-0 (min. 0-1-8), 2=297/8-9-0 (min. 0-1-8) Max Horz 3=-57(LC 11) Max Uplift3=-46(LC 11), 2=-32(LC 11) Max Grav 3=384(LC 21), 2=384(LC 21)


FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-310/132

NOTES- (8-12)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 3=137/4-9-0 (min. 0-1-8), 2=137/4-9-0 (min. 0-1-8) Max Horz 3=-26(LC 11) Max Uplift3=-21(LC 11), 2=-15(LC 11) Max Grav 3=170(LC 21), 2=170(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8-12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
 Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION FOR RECOMMENDED MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF THE CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

LOAD CASE(S) Standard

