Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 54775 JOB: 24-7744-R01 JOB NAME: LOT 0.0011 CAMPBELL RIDGE Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2018 as well as IRC 2021. *37 Truss Design(s)*

Trusses:

J01, R01, R02, R02A, R02B, R02C, R03, R03A, R03B, R04, R05, R06, R07, R08, R09, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, SP01, SP02, VT01, VT02,

Warning !--- Verify design parameters and read notes before use.

Max Uplift3=-27(LC 10), 4=-11(LC 10), 2=-63(LC 10) Max Grav 3=83(LC 21), 4=52(LC 7), 2=206(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 3, 11 lb uplift at joint 4 and 63 lb uplift at joint 2.

Job	Truss	Truss Type		Qtv	Plv LO	T 0.0011 CAMPBELL RIDGE 2	290 ALDEN WAY, ANGIER, NC
04 77 44 004	800	DestOresist		,			// 54775
24-7744-R01	R02	Roof Special		3	Job	Reference (optional)	# 54775
				Run: 8.430 s Feb	12 2021 Print: 8	3.630 s Jul 12 2024 MiTek Indus	stries, Inc. Fri Dec 6 13:12:53 2024 Page 1
-Q-10		13-	4-8	19-7-3	25-6-14	31-10-0	
0-10-	-8 2-3-8 5-6-8	5-	6-8	6-2-11	5-11-10	6-3-2	
				0.0	/		Scale = $1.67.2$
				6x8 🗧	~		Scale - 1.07.2
				6			
Ī			6.00 12				
					\searrow		
			3x4 ₂₄			0.00 12	
			5 70			25	
			Ø		~	26 4x6	
	6x	10 🕪				7	
-10						27	
0-5		4		/w/3			
.			вз //	vv5	We		
	23				vvo ∳∕		4.4.5
	II II					WZ	4x4
2							
o 1		DAB		/			
	A 81 B	15	14	W4 B4 6		B4 ₩8	
0 0	8	2x4	$5x12 \equiv$	10	11 2	28 10	9
	16	274	13	12	3x8 =	10	3x4
4)	$x6 = \frac{2x4}{10}$		3x4	4x8 =	= 570 =	4x4 =	5,4 11
	6x8 =						
	1-8-52-3-8 7-10-0	13-	4-8	19-7-3	25-6-14	31-10-0	
Plate Offsets (X,Y) [2:0-	-6-0.0-0-11. [3:0-0-13.0-1-8]	. [6:0-6-0.0-3-0		0-2-11	5-11-10	0-3-2	
		,, [0.0 0 0,0 0 0	,, <u>, , , , , , , , , , , , , , , , , ,</u>				
TCLL (roof) 20.0	SPACING-	2-0-0	CSI.	DEFL.	in (lo	c) l/defl L/d	PLATES GRIP
Snow (Pf/Pg) 15.4/20.0	Plate Grip DOL	1.15	TC 0.78	Vert(LL)	-0.26 15-2	22 >999 240	MT20 244/190
TCDL 10.0	Lumber DOL Rep Stress Incr	1.15 VES	BC 1.00 WB 0.78	Horz(CT) -0.54 1) 0.30	6 >708 180 9 n/a n/a	
BCLL 0.0 *	Code IRC2021/	TPI2014	Matrix-AS	1012(01) 0.50	5 11/a 11/a	Weight: 208 lb FT = 20%
BCDL 10.0							
LUMBER-	0 *			BRACING-	0		
TOP CHORD 2X4 SP No T1: 2v6 SP	2 "Except"			TOP CHORD	Structural w	ood sheathing directly ap	plied, except end verticals.
BOT CHORD 2x4 SP No	.2 *Except*			WEBS	1 Row at mi	dot 7-12	
B2: 2x4 SP	P No.1				MiTek reco	ommends that Stabilizers	and required cross bracing
WEBS 2x4 SP No	.3 *Except*				be installe	d during truss erection, ir	accordance with Stabilizer
F1: 2x4 SP	? No.2				Installation	n guide.	
Left: 2x4 SP No 3							
REACTIONS. (lb/size)	2=1168/0-3-8 (min. 0-1-9),	9=1122/Mecha	nical				
Max Horz 2	2=210(LC 11) 2= 120(LC 11)	E)					
Max Opilitz Max Grav	2=-120(LC 14), 9=-65(LC 1 2=1321(LC 2), 9=1268(LC	5) 2)					
max oran		_)					
FORCES. (lb) - Max. Cor	mp./Max. Ten All forces 2	50 (lb) or less e	except when shown.				
TOP CHORD 2-3=-589/	/114, 3-23=-2684/249, 4-23	3=-2633/270, 4-	5=-1907/253, 5-24=-	1893/321,			
6-24=-18 8-27=-15	10/345, 6-25=-1193/257, 2 40/179_8_9=-1204/165	5-26=-1229/234	, 7-26=-1306/225, 7-	-27=-1341/199,			
BOT CHORD 3-15=-31	8/2443, 14-15=-316/2454,	5-14=-349/171,	11-12=-85/1149, 11-	-28=-85/1149,			
10-28=-8	5/1149						
WEBS 4-15=0/32	28, 4-14=-945/183, 12-14=	-17/852, 6-14=-	244/1203, 6-12=-68/	283, 7-12=-374/16	63,		
8-10=-47	//989						
NOTES- (12)							
1) Unbalanced roof live lo	ads have been considered	for this design.					
2) Wind: ASCE 7-16; Vult	=120mph (3-second gust)	√asd=95mph; T	CDL=5.0psf; BCDL=	=5.0psf; h=23ft; Ca	at. II; Exp B; E	Enclosed; MWFRS	
(envelope) gable end z	one and C-C Exterior(2E) -	0-8-5 to 4-1-5, I	nterior(1) 4-1-5 to 14	-9-10, Exterior(2R	2) 14-9-10 to 2	24-4-13, Interior(1)	MULLING CASHING
24-4-13 to $26-10-10$, E	$\Omega = 1.60$	3-4 zone;C-C lo	r members and lorce	S & WIVFRS IOF I	eactions snov	wh; Lumber	RTH CAHOLINI
3) TCLL: ASCE 7-16: Pr=	20.0 psf (roof LL: Lum DOL	=1.15 Plate DC)L=1.15): Pa=20.0 ps	sf: Pf=15.4 psf (Lu	m DOL=1.15	Plate DOL=1.15)	OFESSION
Is=1.0; Rough Cat B; P	artially Exp.; Ce=1.0; Cs=1	.00; Ct=1.10	5 5 5 1	, - I (in the	and a second
4) Unbalanced snow load	s have been considered for	this design.				Eli	SEAL
5) This truss has been de	signed for greater of min ro	of live load of 1	2.0 psf or 2.00 times	flat roof load of 1	5.4 psf on ov	erhangs	28147
6) This truss has been de	signed for a 10 0 psf bottor	n chord live loa	d nonconcurrent with	any other live loa	ehe	in the second se	
7) * This truss has been d	lesigned for a live load of 3	0.0psf on the bo	ottom chord in all are	as where a rectan	gle 3-6-0 tall	by 1-0-0 wide will fit	. SAL AL
between the bottom che	ord and any other members	s, with BCDL =	10.0psf.		3	11.4	GINEE
8) Refer to girder(s) for true	uss to truss connections.					741	K. MORMUN
9) Provide mechanical col 10) This trues design region	nnection (by others) of trus	s to bearing pla	te capable of withsta	Inding 100 lb uplift	at joint(s) 9 e	except (jt=lb) 2=120.	All the second s
sheetrock be applied	directly to the bottom chord	o suuciufaiwo	ou sheathing be app	neu unecuy lo lhe	top chora an	u i/z gypsuili	12/5/2024
Warning !	narameters and read notes b	efore use This de	sign is based only upon	parameters shown a	nd is for an indi	ividual building component to	be installed and loaded
Continued on page 2 vertically Applicability of c	design parameters and proper in	corporation of cor	nponent is responsibility	of building designer	- not truss des	igner or truss engineer. Braci	ing shown is for lateral support
of individual web members of	only. Additional temporary bra	cing to ensure stat	ility during construction	is the responsibility	of the erector.	Additional permanent bracing	g of the overall structure is the
responsibility of the building	designer For general midanc	e regarding fabrics	ation quality control sto	rage delivery erecti	on and bracing	consult ANSI/TPI 1 Nation	al Design Standard for Metal

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0011 CAMPBELL RIDGE 290 ALDEN WAY	ANGIER, NC
24-7744-R01	R02	Roof Special	3	1	Job Reference (optional)	# 54775
		Rur ID:WI8	8.430 s Feb rkq6BK5Sa	12 2021 Pi RYCYGf9	rint: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri De 0xywFJ5-mBXTne ?nmZNX4IdFBMcK?DPC	c 6 13:12:53 2024 Page 2 gJzZoXVv8TePSyBhXO

NOTES- (12) 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0011 CAMPBELL RIDGE 290 ALDEN WAY	ANGIER, NC
24-7744-R01	R07	Common Girder	1	2	Job Reference (optional)	# 54775
		Run: 8 ID:W	.430 s Feb Vl8rkg6BK	12 2021 Pr 5SaRYCY	int: 8.630 s Jul 12 2024 MiTek Industries, Inc. Fri Dec ′Gf9_0xywFJ5-7QsnOAFpbWLFASzsXoInDe7	c_6 13:13:15 2024_Page 2 Eoix?jITkzZopBAyBhX2

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-51, 3-5=-51, 9-12=-20

Concentrated Loads (lb)

Vert: 15=-1101(B) 16=-1102(B) 17=-1102(B) 18=-1102(B) 19=-1102(B) 20=-1092(B) 21=-1092(B) 22=-1192(B) 23=-1192(B)

REACTIONS. (lb/size) 4=168/0-1-8 (min. 0-1-8), 2=220/0-3-8 (min. 0-1-8) Max Horz 2=61(LC 10) Max Uplift4=-67(LC 10), 2=-82(LC 10) Max Grav 4=223(LC 21), 2=300(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

- 1) Wind: ASCÉ 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

BAT74 Hol NIZ Weegen Standard Gate I Is inderess consumt # 54775 4.198 643 1.1000000000000000000000000	Job	Iru	SS	Truss Type		1	Qty	Ply	LOT 0.0	011 CAMF	BELL RIDGE	E 290 ALDEN WAY AN	NGIER, NC
International and account of the set	24-7744-R01	R12		Monopitch Structu	iral Gable		1	1	Joh Do	foronoo (ontional)	#	t 54775
Discretion for the product of the product o						Run: 8	.630 s Jul	12 2024 Pr	JOD Re	s Jul 12 2	optional) 024 MiTek In	ndustries, Inc. Fri Dec 6	13:13:20 2024 Page 1
Bits Bits <th< td=""><td></td><td></td><td></td><td>-0-10-8</td><td>6-8-5</td><td>ID:WI</td><td>8rkg6BK5 -13-6</td><td>5SaRYCY 0</td><td>'Gf9_0x</td><td>/wFJ5-UI</td><td>NfgRtJxQ3z</td><td>zXGEspKLLywiq0ljdN</td><td>NO9zT6rWarOyBhWz</td></th<>				-0-10-8	6-8-5	ID:WI	8rkg6BK5 -13-6	5SaRYCY 0	'Gf9_0x	/wFJ5-UI	NfgRtJxQ3z	zXGEspKLLywiq0ljdN	NO9zT6rWarOyBhWz
but the second provide the secon				0-10-8	6-8-5	-	6-9-1	1					
0.017 0.017 0.017 0 0.017 0.017 0 0 0.017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								3×4					Scale = 1:61.3
Provide Control (Marco 2000) Press Circle 2000 Press Circle 2000 Press Circle 2000 Control (Marco 2000) Press Circle 2000) Control (Marco 2000) Press Circle 2000) <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>374</td> <td>г II И</td> <td></td> <td></td> <td></td> <td></td>								374	г II И				
Image: State of the state				Ţ		9.00	12		4				
Image: State state of the									a f				
Image: Second													
$ \frac{1}{10^{10} \text{ m}^{10} \text{ m}^$							T2	P					
Image: spectra					5x6 🥢								
The contrast of the second se]			ar						
Top CHOR 24 SP No.3					3	K .			₩З				
Under the second process of the second proces of the second process of the second proces of the secon			ç	5		1 s	ТЗ 5	ST4 S	ST5				
Image: transmission of the standard					B								
Under the second provide the second pro					т								
Example of the set of the					A ST2	wi		Ø					
Image: provide of the second secon					ST1								
Image: Second and second				₹1 ² HW1	p	B 1			R.				
B = 1, f = 4 dd = 4d = 4d = 4d = 4d = 4d = 4d =						_ 2	3		XX				
124 = 200 445 5/13 0/100 1200 <td></td> <td></td> <td></td> <td></td> <td>8</td> <td>/ -</td> <td></td> <td>6</td> <td>$3^{5}_{4x6} =$</td> <td></td> <td></td> <td></td> <td></td>					8	/ -		6	$3^{5}_{4x6} =$				
Place 0.6-5 1.2-6 <th< td=""><td></td><td></td><td></td><td>4x4 =</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				4x4 =									
Plate Offsets (XY): [2:0:0:0:0:0:15] [3:0:0:0:0:0:0:15] [3:0:0:0:0:0:0:15] [3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0				_ 2-0-0	6-8-5		12-7-8		1,3-6-0				
Prior Dotation (1): [Conduction (1): [Conduction (2): [Condu	Plata Offacta (X)	V) [2:0 0 0	0 0 151 12:0 2 0 0 2 01	2-0-0	4-8-5	1	5-11-3	(0-10-8				
Determination SPACING- town (PEP) 2-0-0 (MT20) SPACING- statistical constraints 2-0-0 (MT20) Call bit is plate Gin pOL (MT20) PLATES (MT20) Code (MT20) PLATES (MT20) Code (MT20) PLATES (MT20) Code (MT20) PLATES (MT20) Code (MT20) Code (MT20) Code (MT20) Code (MT20) PLATES (MT20) Code (MT20) Code (MT20) <td></td> <td>f) [2.0-0-0</td> <td>,0-0-15], [3.0-3-0,0-3-0]</td> <td></td>		f) [2.0-0-0	,0-0-15], [3.0-3-0,0-3-0]										
Snow (Piffg) 15.4/20.0 Prails Cip DOL 1.13 BC 0.76 Verific1 0.05 6-7.999 240 M120 244/190 CDL 0.0 Code (RE20021/TP12014 WB WB Verific1 0.05 6-7.999 100 CUMBER- TOP CHORD 2x4 SP No.3 Code (RE20021/TP12014 WB Matrix-AS TOP CHORD Status PN No.3 Weight: 117 Ib FT = 20% WEBS 2x4 SP No.3 TOP CHORD X4 SP No.3 TOP CHORD No.3 Structural wood sheathing directly applied, except end verticals. Rol CHORD No.3 Reactions: ToP CHORD No.3 Structural wood sheathing directly applied, except end verticals. Rol CHORD No.3 WEBS 2x4 SP No.3 WEDGE TOP CHORD X4 SP No.3 Matrix ASE F=-727(CL O) Matrix Freerommends that Stabilizers and required cross bracing be installed forming trues arection, in accordance with Stabilizer Installation guide. REACTONS. All bearings 2-3-8 except (ip length) 5=1-2-0, 8=0-3-8, 6=0-3-8. Mixe Vupifi A1 upp (Nax Car A1 ir eactions 250 lb or less at joint(s) 8 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FT = 20% FORCES. (I) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 24==127/499, 8=022=-127/499, 7-22=-127/499, 7-22=-127/499, 7-22=-127/499, 6-23=-127/497, 5=2=-127/497, 5=2=-127/499, 7-22=-127/499, 7-22=-127/499, 7-22=-127/499, 7-22=-127/499	TCLL (roof)	20.0	SPACING-	2-0-0	CSI.]	DEFL.	in	(loc)	l/defl	L/d	PLATES	GRIP
LOL BOIL 10.0 10.0 Rep Stress Incr YES WB 0.22 Matrix-AS Hor2(CT) 0.01 5 n/a Weight 117 lb FT = 20% BODL 10.0 Code IRC2021/TPI2014 Matrix-AS BRACING- TOP CHORD 244 SP No.2 Structural wood sheathing directly applied, except end verticals. Rol Rol CHORD 244 SP No.3 Structural wood sheathing directly applied, except end verticals. Rol Rol Call Matrix-AS Rol CHORD 244 SP No.3 Structural wood sheathing directly applied, except end verticals. Rol Rol Call Matrix AS Rol Call Mat	Snow (Pf/Pg) 15.4	4/20.0	Lumber DOL	1.15	BC 0.55		/ert(CT)	-0.02	6-7 6-7	>999	240 180	INIT 20	244/190
BCDL 10.0 Code RC2021/FI2014 Matrix-RS Watrix-RS UMBER- TOP CHORD 24 SP No.3 TOP CHORD BOT CHORD 24 SP No.3 Stanctural wood sheathing directly applied, except end verticals. BOT CHORD 24 SP No.3 WEBS 24 SP No.3 WEBS WEBS 45.3-5 OTHERS 224 SP No.3 WEBS Mittabilitizers and required cross bracing be installed during truss erection, in accordance with Stabilizer installed during truss erection, in accordance with Stabilizer installed for guide. REACTIONS. All bearings 2-3-8 except (tielength) 5=1-2-0, 8=0-3-8. Mittabilitizers and required cross bracing be installed for guide. (b) Max Korz 2-311(LC 11) Max Graz VAI reactions 250 to rises at joint(s) 8 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) For Ces. FOP CHORD 236-476/82 8-22-127/499, 7-22-127/499, 7-23-127/497, 6-23-127/497, 5-23-127/10, 5-12, 1-12	BCLL	0.0 *	Rep Stress Incr	YES	WB 0.22	ł	Horz(CŤ)) 0.01	5	n/a	n/a		7 IL ET 000/
LUMBER: BRACING- TOP CHORD 2x4 SP No.3 BRACING- BOT CHORD 2x4 SP No.3 BDT CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD 2x4 SP No.3 BDT CHORD STRUCTURAL WEBS The second sheathing directly applied, except end verticals. BOT CHORD 2x4 SP No.3 WEBS 1R war at might 4 -5, 3- OTHERS 2x4 SP No.3 WEBS 1R war at might 4 -5, 3- MiTck recommends that Stabilizers and required cross bracing binstallation guide. REACTONS. All bearings 2-3-8 except (felength) 5=1-2-0, 8=0-3-8, 6=0-3-8. (b) - Max Horz 2=311(LC 11) Max Grav All reactions 250 (b) or less at joint(s) 8, 6 except 5=-272(LC 9) Max Grav All reactions 250 (b) or less at joint(s) 8 except 2=608(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3-e78/02 BOT CHORD 2-3-e78/02 BOT CHORD 2-3-e716/802 BOT CHORD 3-55-5871/168 NOTES - (11-4) 1) Wind: ASCE - 11: VII-11 1) Wind: ASCE - 11: VII-12 1) Tist suss has been designed for min tog live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf (Lium DUI-1.15 Plate DUI-1.15); 1s=10, Rough Cat B, Partially Exp.; Ce=10, Ce=1.100; 1) Tist suss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-8-0 tall by 1-0-0 wide will fit 10. This truss has been designed for a 10.0 psf bottom chord ive load of 10.0 psf or 2.00 times flat roof load of 15.4 psf (Lium DUI-1.15 Plate DUI-1.15; 10. This truss has been designed for a 10.0 psf bottom chord in all areas where	BCDL	10.0		PI2014	Matrix-AS							weight: T	7 ID FI = 20%
IOP CHORD 2x4 SP No.2 IOP CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Structural wood sheathing directly applied, except end verticals. Rigid caling directly applied, except end verticals. BOT CHORD Structural wood sheathing directly applied, except end verticals. BOT CHORD Structural wood sheathing directly applied, except end verticals. Rigid caling directly applied. 16.00 CHORD BOT CHORD Structural wood sheathing directly applied. WEBS 2x4 SP No.3 REACTONS. All brainings 2-3.8 except ([=length]) 5=1-2.0, 8=0-3-8. 6=0-3-8. (fib) Max Comp./Max. Ten All forces 250 (b) or less at joint(s) 8 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FORCES. (b). Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3e-678/62 BOT CHORD 2-3e-787/62 NOTES: (11-14) 1) Wink ASC 7-16. Vult=120mph (3-excend gust) Vasd=96mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10.8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever laft and right exposed. C-C for members and forces & MWFRS for neactions shown: Limber DOL=1.60 pit (roof Li: Limber DOL=1.15); Is-10.7 (roof Li: Lim DOL=1.15); Is-10.7 (roof Li: Limber DOL=1.1	LUMBER-					BRACING	3-	<u>.</u>					
WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 WEDGE 1 ñow at might 4-5 - 5.5 Mich Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide. REACTIONS. All bearings 2-3-8 except (t=length) 5=1-2-0, 8=0-3-8, 6=0-3-8. (b) - Max Horz 2=311(LC 11) Max Upit 110 lo to less at joint(s) 8, 6 except 5=-272(LC 9) Max Grav. All reactions 250 lb or less at joint(s) 8 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FORCES. (b) - Max. Comp/Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3=678/62 BOT CHORD 2-3=678/62 BOT CHORD 2-3=678/62 IO 11:40 10 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0.10-8 to 3-11-2; Interior(1) 3-11-2 to 8-6-10; Exterior(2E) 8-6-10 to 13-4-4 zone; (antilever End on gint exposed; col vertical left and right exposed; C-C for members and force a& MWFRS for reactions shown; Lumber DOL=1:60 Jate grip DOL=1:60 1 Tots: Assigned for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSIVTPI 1. 1	BOT CHORD 2x	4 SP No.2 4 SP No.3				BOT CH	JRD JRD	Rigid ce	al wood iling dir	sheathi ectly api	ng directly blied.	applied, except e	nd verticals.
MTek recommends that Stabilizers and required cross bracking beinstalled during truss erection, in accordance with Stabilizer Installed during truss erection erection and indust with stabi	WEBS 2x	4 SP No.3				WEBS		1 Řow a	t midpt		4-5, 3-5		
Left: 2x4 SP No.3 REACTIONS. All bearings 2:3-8 except (t=length) 5=1-2:0, 8=0-3-8. (b) Max Hoz 2=311(LC 11) Max Upiff: All upiff 100 lb or less at joint(s) 8, 6 except 5=.272(LC 9) Max Grav All reactions 250 lb or less at joint(s) 8 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FORCES. (b) -Max Comp.Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2:3=-678/62 OF CHORD 2:4=-127/499, 8:22=-127/499, 7-22=-127/499, 7-23=-127/497, 5=6=-127/497	WEDGE 2X	4 SP N0.3						MiTek	recomr	nends th	at Stabiliz	ers and required cr	oss bracing
REACTIONS. All bearings 2-3-8 except ([t=length) 5=1-2-0, 8=0-3-8, 6=0-3-8. (b) - Max Horz Z=311(LC 11) Max Upitif 14U lupit 100 bro less at joint(s) 8, 6 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FORCESS. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3-6-7862 BOT CHORD 2-3-4-7862 BOT CHORD 2-3-4-7862 BOT CHORD 2-3-6-787/168 NOTES - (11-14) 1) Winci: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable and zone and C-0 Exterior(22)-0-10.8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(22) 8-6-10 to 13-44 zone; cantilever left and right exposed; -0-10.8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(22) 8-6-10 to 13-44 zone; cantilever left and right exposed; -0-10.8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(22) 8-6-10 to 13-44 zone; cantilever left and right exposed; -0-10.8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(22) 8-6-10 to 13-44 zone; cantilever left and right exposed; -0-10.8 to 3-0.11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(22) 8-6-10 to 13-44 zone; cantilever left and right exposed; -0-10.8 to 3-0.12, Interior(1) 3-11-2 to 8-6-10, Exterior(22) 8-6-10 to 13-44 zone; cantilever left and right exposed; -0-10.8 to 3-0.0 C-1.10 2) Trus designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gate End Details as applicable; or consult qualified building designer as per ANS/ITP1 1. 3) TCL1. ASCE 7-16, P=20.0 psf (roof L1: Lum DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15); Pg=20.0 psf 6) Tais truss has been designed for a 10.0 psf bottom chord ine load on oncourrent with any other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Cable studs spaced at 2-0-0 oc. 1) This truss has been designed for a 10.0 psf bottom chord ine load on oncourrent with any other live loads. 5) This truss has been designed for a 10.0 psf obtom chord ine l	Left: 2x4 SP No.3	3						Installa	ation gu	ide.			
 (Ib) - Max Horz Ž=311(LC 11) (Ib) - Max Horz Ž=311(LC 11) Max Uplit 100 bor less at joint(s) 8, 6 except 5=.272(LC 9) Max Grav All reactions 250 lb or less at joint(s) 8 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FORCESS. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-678/62 BOT CHORD 2-3=-678/62 BOT CHORD 2-3=-678/62 MVEBS 3-7=0/300, 3-5=-587/168 NOTES- (11-14) 1) Winci ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate eng DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 3) TCL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pg=20.0 psf; PF=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partally Exp; (C=10, Cs=1.100, Cs=1.100). 4) This truss has been designed for a 10.0 psf bottom chord in set and nonconcurrent with any other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Cable Studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) This truss has been designed for a 10.0 psf obtom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with between the bottom chord and any other members, with BCDL = 10.0 psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (I=I0)	REACTIONS. A	All bearings 2	2-3-8 except (jt=length)	5=1-2-0, 8=0-3	3-8, 6=0-3-8.								
Max Guy Mit All upint 100 lb or less at joint(s) 8, 6 except 2=508(LC 25), 5=544(LC 24), 6=328(LC 11), 2=402(LC 1) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-678(62 BOT CHORD 2-3=-678(62 BOT CHORD 2-3=-678(62 BOT CHORD 2-3=-678(62 BOT CHORD 2-3=-678(762 MESS 3-7=0/3000, 3-5=-587/168 NOTES- (11-14) 1) Wind: ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E)-0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, L5 xetrior(2E)-8-6-10 to 13-4-4 zone; (envelope) gable end zone and C-C Exterior(2E)-0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, L5 xetrior(2E)-8-6-10 to 13-4-4 zone; (envelope) gable end zone and C-C Exterior(2E)-0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, L5 xetrior(2E)-8-6-10 to 13-4-4 zone; (envelope) gable end zone and C-C Exterior(2E)-0-10-8 to 3-11-2, Interior(1) -8-6-10 to 13-4-4 zone; (envelope) gable end zone and C-C Exterior(2E)-0-10-8 to 3-11-2, Interior(2E)-8-6-10 to 13-4-4 zone; (antilever left and right exposed ; end vertical left and right exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP1 1. 3) TCLL: ASCE 7-16; Pr-20 op Bf (for LL: Lum DOL=1-115); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10. Rough Cat B: Partially Exp; Ce-10; Cs=1.00; Ct=1.10; 3) This truss has been designed for a 10.0 psf bottom chord live load on nonconcurrent with any other live loads. 3) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 4) This truss	(lb) - M	ax Horz 2=3	11(LC 11)										
FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2.3=-678/62 BOT CHORD 2.3=-127/499, 8-22=-127/499, 7-22=-127/499, 7-23=-127/497, 6-23=-127/497, 5-6=-127/497 WEBS 3-7=0/300, 3-5=-587/168 NOTES- (11-14) 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 8) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide wilf fit. 8) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide wilf fit. 8) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide wilf fit. 8) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide wilf fit. 8) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a nectangle 3-6-0 tall by 1-0-0 wide wilf	M	ax Uplift All	reactions 250 lb or less at j	at ioint(s) 8, 6 exc	ept 5=-272(LC 9) (cept 2=508(LC 25), 5	5=544(LC	24). 6=3	28(LC 1	1). 2=4()2(LC 1)			
FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-33-67862 BOT CHORD 2-33-67862 BOT CHORD 2-35-67862 BOT CHORD 2-35-67862 WEBS 3-7=0/300, 3-5=-587/168 NOTES- (11-14) 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2; Interior(1) 3-11-2 to 8-6-10. Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=10; Rough Cat B; Partially Exp; Ce=1.0; CS=1.00; CS=1.00; 4) This truss has been designed for rate or min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 co. 7) This truss has been designed for a 10.0 psf bottom chord nive load nonconcurrent with any other live loads. 8) * This truss has been designed for a 10.0 psf out the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit Between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (It=Ib) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 225/2024				j (j			_ ,,		.,,	-()			
BOT CHORD 2.8=-127/499, 8-22=-127/499, 7-23=-127/499, 7-23=-127/497, 5-6=-127/497 5-6=-127/497 WEBS 3.7=0/300, 3-5=-587/168 NOTES- (11-14) 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oz. 7) This truss has been designed for a 10.0 psf bottom chord ine load nonconcurrent with any other live loads. 8) * This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16* structural wood sheathing be applied directly to the top chord and any 2/5/2024 2 2/5/2024	TOP CHORD 2	Max. Comp./ 2-3=-678/62	Max. Ten All forces 2	50 (lb) or less	except when shown.								
 Sel-127/497 WEBS 3-7=0/300, 3-5=-587/168 NOTES- (11-14) 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever left and right exposed; -or for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); B=20.0 psf; PF=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fartially Exp. (Sec-1.0); CE-1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (it=lb) <i>Sec.1</i>. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum <i>LiveSci.2</i>. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum <i>LiveSci.2</i>. 10) This tru	BOT CHORD 2	2-8=-127/499	9, 8-22=-127/499, 7-22=	-127/499, 7-23	=-127/497, 6-23=-127	7/497,							
 NOTES 01 Stock, Constants NOTES 01 11-14) 1) Which 3KSCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-10-8 to 3-11-2; Interior(1) 3-11-2 to 8-6-10, Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable; cor consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DDL=1.15 Plate DDL=1.15); Is=1.0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load on nonconcurrent with any other live loads. 8) * This truss has been designed for a 10.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the between the bottom chord and any other members, with BCDL = 10.0 psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (It=Ib) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheeterock be applied directly to the bottom chord. 	WEBS 3	5-6=-127/497 3-7=0/300 3-	, -5=-587/168										
 NOTES- (11-14) 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 8-6-10, Exterior(2E) 8-6-10 to 13-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 plate grip DDL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pre2:0, D gt (roof LL: Lum DDL=1.15); Pg=2:0.0 psf; Pf=15.4 psf (Lum DDL=1.15 Plate DDL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (It=Ib) 9) Truis truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	WEBC C		0-001/100										
 (Invite. Node) gable end zone and C-C Exterior(22) -0-10-8 in 9.11-2 to 8-6-10, Exterior(22) 8-6-10 to 13-4-4 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 pillet grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TP11. 3) TCLL: ASCE 7-16; Forof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5) S=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	NOTES- (11-14	4) -16: \/ult=12	Omph (3-second quet))	/asd=05mph	[CDI =5 Opef: BCDI =	5 Onef h=	23ft- Ca	t II: Evn	B. Encl	osod: M	WERS		
 cantilever left and right exposed ; end vertical left and right exposed; C- C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TOLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	(envelope) gab	ble end zone	and C-C Exterior(2E) -	D-10-8 to 3-11-	2, Interior(1) 3-11-2 to	5.0p31, 11- 5 8-6-10, E	Exterior(2	2E) 8-6-1	0 to 13	-4-4 zon	e;		
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TOLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	cantilever left a	and right exp	osed ; end vertical left	and right expos	sed;C-C for members	and force	s & MW	FRS for r	reaction	s showr	ı;		
 Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 cc. 7) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	2) Truss designe	a for wind lo	ads in the plane of the	truss onlv. For	studs exposed to wir	nd (norma	l to the fa	ace), see	Standa	ard Indu	strv		
 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 co. 7) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	Gable End Det	tails as appli	cable, or consult qualifi	ed building des	igner as per ANSI/TP	기 1.							
 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	3) TCLL: ASCE 7	′-16; Pr=20.0 Cat B: Partia) psf (roof LL: Lum DOL ally Exp : Ce=1 0: Cs=1	=1.15 Plate D	DL=1.15); Pg=20.0 ps	sf; Pf=15.4	psf (Lu	m DOL='	1.15 Pla	ate DOL:	=1.15);	MANINE CONTRACTOR	
non-concurrent with other live loads. 5) All plates are 2x4 MT20 unless otherwise indicated. 6) Gable studs spaced at 2-0-0 oc. 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded	4) This truss has	been design	led for greater of min ro	of live load of	2.0 psf or 2.00 times	flat roof lo	bad of 15	5.4 psf or	n overha	angs		WINTH CARO	1111
 (5) An plates are 2x4 M120 threes otherwise indicated. (6) Gable studs spaced at 2-0-0 oc. (7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. (8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide with fit between the bottom chord and any other members, with BCDL = 10.0psf. (9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. (10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 	non-concurren	t with other li	ive loads.	4							in .	STESSIA	Nall
 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 25/2024 	6) Gable studs sp	baced at 2-0-	0 oc.	J.							Inn	109- Ma	
 8) ^a This truss has been designed for a live load of 30.0ps on the bottom chord in all areas where a rectangle 3-b-0 tail by 1-0-0 wide with II between the bottom chord and any other members, with BCDL = 10.0psf. 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 28147 28	7) This truss has	been design	ed for a 10.0 psf botton	n chord live loa	d nonconcurrent with	any other	live load	ds.	4 - 11 - 1	100	El	SEAL	1111
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 8, 6 except (jt=lb) 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 12/5/2024 	between the bo	s been desig	and any other members	, with BCDL =	10.0psf.	as where	a rectan	yıe 3-6-0	iali Dy	1-0-0 WI		28147	
 5=272. 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. 12/5/2024 Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded 	9) Provide mecha	anical conne	ction (by others) of trus	to bearing pla	te capable of withsta	nding 100	lb uplift	at joint(s) 8, 6 e	xcept (jt:	=lb)		
sheetrock be applied directly to the bottom chord.	5=272. 10) This truss des	sian requires	that a minimum of 7/1	6" structural we	od sheathing be appl	lied direct	v to the	top chore	and 1	2" avnsi	im ing	4 NOINEER	S. Call
Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded	sheetrock be	applied direct	ctly to the bottom chord				,			- 97930	an	AK K MORP	anne
12/5/2024												All the state of t	
Warning !Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded												12/5/202	4
	Warning !	ify design par: le 2	ameters and read notes be	fore use. This de	esign is based only upon p	parameters	shown, an	id is for an	individu	al buildin	g componen	nt to be installed and lo	aded

Job	Truss	Truss Type	Qty	Ply	LOT 0.0011 CAMPBELL RIDGE 290 ALDE	EN WAY ANGIER, NC
24-7744-R01	R12	Monopitch Structural Gable	1	1	Job Reference (optional)	# 54775
		Run:	8.630 s Ju	l 12 2024 Pr	rint: 8.630 s Jul 12 2024 MiTek Industries, Inc	. Fri Dec 6 13:13:20 2024 Page 2

ID:W8/kg6BK5SaRYCYGf9_0xywFJ5-UNfgRUxQ3zXGEspKLLywiq0IjdNO9zT6rWarOyBhWz 11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

14) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Concentrated Loads (lb) Vert: 8=-361(F)

12/5/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0011 CAMPBELL RIDGE 290 ALDEN WAY	ANGIER, NC
24-7744-R01	R15	Half Hip Girder	1	1	Job Reference (optional)	# 54775

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Fri Dec 6 13:13:25 2024 Page 2 ID:WI8rkg6BK5SaRYCYGf9_0xywFJ5-qLTZUbN4FbbqN?kn7vw7dIYx1kP23PRCG7DLWbyBhWu

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-27(B) 6=-21(B) 10=-24(B) 11=-23(B) 12=-21(B) 13=-21(B)

12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

12/5/2024

NOINEE

NOTES- (10)

LOAD CASE(S) Standard

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15);
- Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

NOTES-(13)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 4-0-0, Corner(3R) 4-0-0 to 8-0-0, Corner(3E) 8-0-0 to 12-10-8 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1

4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs

- non-concurrent with other live loads.
- 6) All plates are 2x4 MT20 unless otherwise indicated. Gable requires continuous bottom chord bearing.
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 2-0-0 oc.

- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This muss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will the second s 11)

12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12 11

LOAD CASE(S) Standard

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0011 CAMPBELL RIDGE 290 ALDE	EN WAY ANGIER, NC
24-7744-R01	R22	Common Supported Gable	1	1	Job Reference (optional)	# 54775
		Run	8.630 s Ju	12 2024 Pr	rint: 8.630 s Jul 12 2024 MiTek Industries, Inc	. Fri Dec 6 13:13:34 2024 Page 2

ID:Wi8rkg6BK5SaRYCYGf9_0xywFJ5-34VzNgUj7MkYyNwV9lbEUfQbuMWmgVFXL0vJLayBhVI 12) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced. 13) Bearing symbols are not considered in the structural design of the truss to support the

loads indicated. 14) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate

 (Connected Wood Trustee for additional bracing guidelines, including diagonal bracing.
 (SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2021/TPI2014	CSI. TC 0.18 BC 0.18 WB 0.06 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) l/defl L/d 0.01 1 n/r 180 0.01 1 n/r 80 0.00 7 n/a n/a	PLATES GRIP MT20 244/190 Weight: 40 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing direct end verticals. Rigid ceiling directly applied or 1 MiTek recommends that Stabili be installed during truss erection Installation guide	ly applied or 6-0-0 oc purlins, except 0-0-0 oc bracing. izers and required cross bracing n, in accordance with Stabilizer

REACTIONS. All bearings 9-10-8.

(lb) - Max Horz 2=83(LC 10)

Max Uplift All uplift 100 lb or less at joint(s) 7, 2, 8, 9, 10

Max Grav All reactions 250 lb or less at joint(s) 7, 2, 8, 9 except 10=362(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. 3-10=-275/187 WFBS

NOTES-(12)

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Corner(3E) -0-10-8 to 3-10-8, Exterior(2N) 3-10-8 to 4-11-2, Corner(3E) 4-11-2 to 9-8-12 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads
- 6) All plates are 2x4 MT20 unless otherwise indicated.
- 7) Gable requires continuous bottom chord bearing.

101 This cluss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 10) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will construct the bottom chord and any other members.
 11) Provide mechanical connection (by others) of truss to bearing plate complete structure to the structure of the bottom.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

- between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (jt=lb) 8=132, 6=131.

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

¹⁾ Unbalanced roof live loads have been considered for this design.

NOTES-

 Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15);

Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

NOTES- (8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

NOTES- (8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

Max Uplift1=-7(LC 12), 3=-7(LC 13) Max Grav 1=101(LC 2), 3=101(LC 2)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

