Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 54885 JOB: 24-B205-F02 JOB NAME: LOT 0.0015 CAMPBELL RIDGE Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2018 as well as IRC 2021. 23 Truss Design(s)

Trusses:

F201, F202, F203, F204, F205, F207, F208, F209, F210, F211, F212, F213, F214, F215, F216, F217, F218, F219, F220, F221, F223, F224, F225

Warning !--- Verify design parameters and read notes before use.

ob	Truss	Truss Type		Qty	Ply L	OT 0.0015 CAMPBELL RI	DGE 271 ALDEN WAY	ANGIER, NC	
4-B205-F02	F201	Floor Supported G		1	1	lob Reference (optional)	# 5488	
			F	Run: 8.430 s Feb ID:ZDrKgCbbXI	12 2021 Print hFNjTycgS\	: 8.630 s Jul 12 2024 MiTe /s5OzrCRU-ALHraSRq	k Industries, Inc. Sat Dec OzABIFesE1wBg3xF	c 7 18:07:22 2 Dg8pb8ZYXj	024 Page Q?YyyB
0 ₁ 178									
								Sca	le = 1:25
			3x4	=					
1 2	3	4 5	6 <u>7</u>	8		9 10	11	12	13
	•	<u> </u>				<u> </u>	•	•	•
ζ27 ζ_ <u>β</u> β¶ ST	1 ST1	ST1 ST1	ST1 W2 ST	1 ST	1	ST1 ST1	ST1	ST1	W
			В					6	
							XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		\times
26 25	24	23 22	21 20	19)	18 17	16	15	14
3x4			3x4 =						
			15-9						

			15-9-6		
Plate Offsets (X,Y)	[7:0-1-8,Edge], [21:0-1-8,Edge], [26:E	Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	CSI. TC 0.06 BC 0.01 WB 0.03	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES GRIP MT20 244/190
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH	. ,		Weight: 68 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)		BRACING- TOP CHORD	Structural wood sheathing on end verticals.	directly applied or 6-0-0 oc purlins, except	
WEBS 2x4 S	()			Rigid ceiling directly applied	d or 10-0-0 oc bracing.

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 15-9-6.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8-9)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

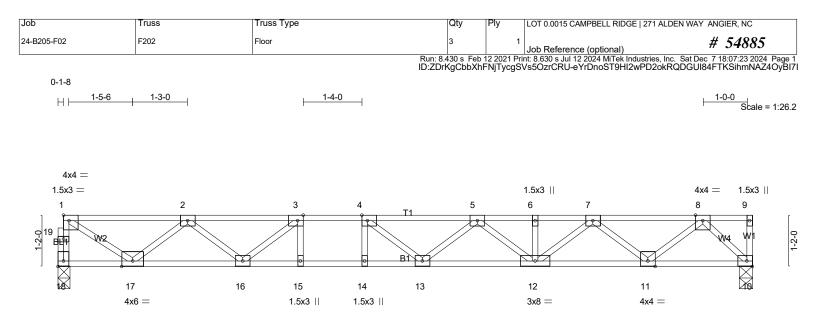
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


7) CAUTION, Do not erect truss backwards.

8) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

	5-6-14 5-6-14	6-2-14 6-10-14 0-8-0 0-8-0	<u>15-9-6</u> 8-10-8	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,Edge], [4:0-1	-8,Edge], [18:Edge,0-1-8]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.56 BC 1.00 WB 0.61 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.22 13-14 >862 480 Vert(CT) -0.30 13-14 >627 360 Horz(CT) 0.05 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 80 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S			BRACING- TOP CHORD Structural wood sheathing dir end verticals.	rectly applied or 6-0-0 oc purlins, except

WEBS 2x4 SP No.3(flat)

BOT CHORD Rigid ceiling directly applied or 1-4-12 oc bracing.

REACTIONS. (lb/size) 18=851/0-3-6 (min. 0-1-8), 10=858/0-3-8 (min. 0-1-8)

TOP CHORD 18-19=-848/0, 1-19=-847/0, 1-2=-1111/0, 2-3=-2448/0, 3-4=-3050/0, 4-5=-3152/0, 5-6=-2740/0, 6-7=-2740/0, 7-8=-1587/0

16-17=0/1950, 15-16=0/3050, 14-15=0/3050, 13-14=0/3050, 12-13=0/3124, 11-12=0/2291, 10-11=0/849 BOT CHORD

3-15=-16/294, 4-14=-272/38, 3-16=-829/0, 2-16=0/649, 2-17=-1092/0, 1-17=0/1288, 4-13=-219/326, 5-12=-490/0, WEBS

7-12=0/573, 7-11=-916/0, 8-11=0/961, 8-10=-1189/0

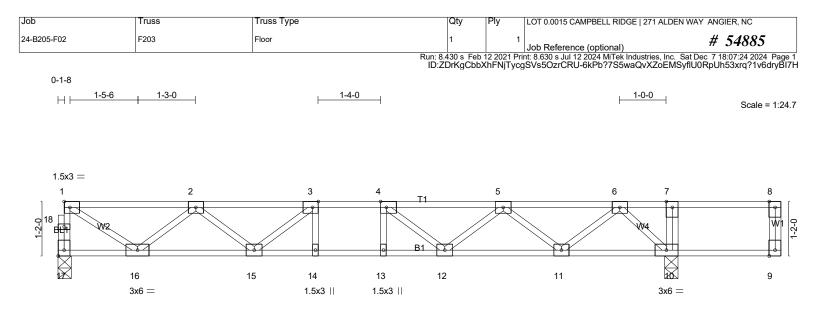
NOTES-(6-7)

- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 3x4 MT20 unless otherwise indicated.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.


6) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

	5-6-14 5-6-14	6-2-14 6-10-14	<u>13-1-14</u> 6-3-0	13-3-6 15-5-13 0-1-8 2-2-7
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [17:Ed	lge,0-1-8]		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.69 BC 0.59 WB 0.49 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.10 13 >999 480 Vert(CT) -0.13 13 >999 360 Horz(CT) 0.03 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 77 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			end verticals.	directly applied or 6-0-0 oc purlins, except ed or 10-0-0 oc bracing, Except:

REACTIONS. (lb/size) 17=690/0-3-6 (min. 0-1-8), 10=980/0-3-8 (min. 0-1-8) Max Grav 17=705(LC 3), 10=980(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 17-18=-699/0, 1-18=-698/0, 1-2=-893/0, 2-3=-1875/0, 3-4=-2193/0, 4-5=-2019/0, 5-6=-1240/0

BOT CHORD 15-16=0/1568, 14-15=0/2193, 13-14=0/2193, 12-13=0/2193, 11-12=0/1800, 10-11=-25/676

7-10=-382/0, 3-15=-503/0, 2-15=0/420, 2-16=-879/0, 1-16=0/1034, 4-12=-405/10, 5-12=0/382, 5-11=-781/0, WEBS 6-11=0/735, 6-10=-921/34

NOTES-(6-7)

1) Unbalanced floor live loads have been considered for this design.

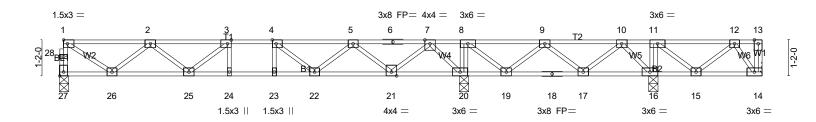
All plates are 3x4 MT20 unless otherwise indicated.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

6) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.


7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT (0.0015 CAMPBELL RIE	DGE 271 ALDEN	
24-B205-F02	F204	Floor	1	1 Job F	Reference (optional)	1	# 54885
	·		Run: 8.430 s Fe ID:ZDrKgCb	h 12 2021 Print: 8 63	30 e Jul 12 2024 MiTek	Industries Inc. S	at Dec 7 18:07:25 2024 Page ⁻ IlhZgsu1ZoPz_Ehfg9HyBl7(
0-1-8							
H ⊢ 1-5-6	1-3-0	1-4-0		0-11-12			1-0-12 Scale = 1:32.3
1.5x3 =			3x8 FP $=$	4x4 = 3x6 =	=		1.5x3
1	2	3 4 T1 -	5 6	7 8	T2 9		10 11
924						\langle	W5 W1
9-24 8-24 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5- 5-	В				13192		W5 W1
			<u> </u>	15			
23 2	2 21	20 19 18	17 16		14	13	12
		1.5x3 1.5x3	3x8 FP= 4x4 =	3x6 =			
			4x4 —				
		6-10-14					
	<u>5-6-14</u> 5-6-14	6-2-14	<u>13-1-10</u> 6-2-12			<u>19-5-6</u> 6-3-12	
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edg						
LOADING (psf)		0-0 CSI .		in (loc) l/defl	L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0		.00 TC 0.42 .00 BC 0.52	Vert(LL) -0.0 Vert(CT) -0.0		480 360	MT20	244/190
BCLL 0.0 BCDL 5.0		ES WB 0.44	Horz(CT) 0.0		n/a	Weight: 99 I	b FT = 20%F, 11%E
						Weight. 991	11 - 20701, 1170L
LUMBER- TOP CHORD 2x4 SF	No.1(flat)		BRACING- TOP CHORD	Structural woo	od sheathing dired	tly applied or 6	6-0-0 oc purlins, except
BOT CHORD 2x4 SF WEBS 2x4 SF	No.1(flat) No.3(flat)		BOT CHORD	end verticals. Rigid ceiling o	directly applied or	6-0-0 oc bracir	ng .
		(1) (1)		0 0	moon) approa of	0 0 0 00 51401	.9.
Max U	plift12=-127(LC 3)	8), 12=107/0-3-8 (min. 0-1-8),	15=1410/0-3-8 (min. 0-	1-8)			
Max G	rav23=603(LC 3), 12=263(L	.C 4), 15=1410(LC 1)					
		s 250 (lb) or less except when					
7-8=0	/1363, 8-9=0/936, 9-10=-27		, ,				
	2=0/1304, 20-21=0/1599, 19 6=-575/0, 14-15=-1363/0, 13	-20=0/1599, 18-19=0/1599, 17- -14=-621/277	-18=0/877, 16-17=0/877	,			
WEBS 8-15=	-634/0, 3-21=-255/29, 2-22	=-732/0, 1-22=0/857, 4-18=-515 1127/0, 8-14=0/730, 9-14=-671					
	=-283/41, 10-12=-338/206	1121/0, 0-14-0/130, 3-140/1	70, 3-13-0/320,				
NOTES- (7-8)							
	/e loads have been conside 1T20 unless otherwise indica						
3) Provide mechanica	I connection (by others) of ti	russ to bearing plate capable of					
 I his truss is design standard ANSI/TPI 		018 International Residential C	ode sections R502.11.1	and R802.10.2	and referenced		
	rongbacks, on edge, space s at their outer ends or restra	d at 10-0-0 oc and fastened to	each truss with 3-10d (0).131" X 3") nails	. Strongbacks to		
6) CAUTION, Do not	erect truss backwards.	deniet the size time of the seize					110.
the member must b	ing representation does not be braced.	depict the size, type or the orie	entation of the brace on t	the web. Symbol	only indicates that	THUNNING C	ARO
8) Bearing symbols an	e only graphical representat	ions of a possible bearing conc	dition. Bearing symbols a	are not considere	ed in the structura	IN OFES	SIDA Nolli
		<i>.</i>			inn,	2 QAL	Charles and
LOAD CASE(S) Stand	dard				mu	SEA	
					10HW	2014	*] =
					Inter	A. SNOIN	EFR C M
						ARKY	ACRALINA
							WID . ALL
	erect truss backwards. ing representation does not le braced. e only graphical representat to support the loads indicate dard					Million III	Michight

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 CAMPBELL RIDGE 271 ALDEN WAY A	NGIER, NC
24-B205-F02	F205	Floor	1	1	Job Reference (optional)	# 54885
		Run: 8 ID:2	.430 s Feb DrKgCbb	12 2021 Pri KhFNjTyco	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Sat Dec gSVs5OzrCRU-27XMQpULRCgdntydTt?7qv6rell	7 18:07:26 2024 Page 1 NpXsD7SLODhjyBI7F
0-1-8						
H ⊢ 1-5-6 1-3	-0	4-0 <u>0-1</u>	1-12		<mark>0-11-0</mark>	0-7-12 Scale = 1:37.4

	6-10-14						
I	5-6-14 6-2-14	13-1-10	1	19-3	3-10	1 2	2-9-14
	5-6-14 ¹⁰⁻⁸⁻⁰¹ 0-8-0 ¹	6-2-12		6-2	2-0	I	3-6-4
Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [27:E	uge,0-1-8j					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.41 BC 0.51 WB 0.44 Matrix-SH	DEFL. in Vert(LL) -0.07 Vert(CT) -0.09 Horz(CT) 0.02	24 >999 24 >999	L/d 480 360 n/a	PLATES MT20 Weight: 119 lb	GRIP 244/190 FT = 20%F, 11%E
BODL 5.0	Code IRC2018/1F12014	Mault-SH				weight. The b	FT = 2070F, TT70E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	end verticals.	0	ectly applied or 6-0- or 6-0-0 oc bracing.	-0 oc purlins, except
(lb) - Max U	earings 0-3-8 except (jt=length) 27=0 plift All uplift 100 lb or less at joint(s) rav All reactions 250 lb or less at jo	14	5), 20=1399(LC 3), 1	6=552(LC 4)			
TOP CHORD 27-28	Comp./Max. Ten All forces 250 (lb 3=-596/0, 1-28=-595/0, 1-2=-741/0, 2 0/1358, 8-9=0/919, 9-10=-154/311) or less except when show -3=-1474/0, 3-4=-1595/0, 4	vn. 5=-1222/0,				
BOT CHORD 25-26	5=0/1302, 24-25=0/1595, 23-24=0/15 0=-1358/0, 18-19=-581/200, 17-18=-5		0/871, 20-21=-566/0,				
WEBS 8-20= 5-22=	624/0, 11-16=-312/0, 3-25=-257/25 =0/467, 5-21=-879/0, 7-21=0/917, 7-2 =-73/351, 10-17=-309/111, 10-16=-35	, 2-26=-731/0, 1-26=0/856, 0=-1128/0, 8-19=0/714, 9-					
 2) All plates are 3x4 M 3) Refer to girder(s) for 4) Provide mechanica 	ve loads have been considered for th MT20 unless otherwise indicated. or truss to truss connections. al connection (by others) of truss to b ned in accordance with the 2018 Inter 1.	earing plate capable of with			d referenced		
6) Recommend 2x6 s	trongbacks, on edge, spaced at 10-0 s at their outer ends or restrained by	other means	· ·	,	0		
 7) CAUTION, Do not 8) Graphical web brac the member must b 9) Bearing symbols a 	cing representation does not depict the be braced. re only graphical representations of a	e size, type or the orientati	ion of the brace on the	e web. Symbol or e not considered	nly indicates t	hat HUNDERTH CAR	OLINGUL

e) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structure design of the truss to support the loads indicated.

LOAD CASE(S) Standard

SEAL 28147 12/7/2024

Job	Truss	Truss Type	Qty	Ply LOT 0.0015 CAMP	BELL RIDGE 271 ALDEN	WAY ANGIER, NC
24-B205-F02	F207	Floor	3	1 Job Reference (optional)	# 54885
			Run: 8.430 s F ID:ZDrKgCb	eb 12 2021 Print: 8.630 s Jul 12 20 bXhFNjTycgSVs5OzrCRUV	024 MiTek Industries, Inc. Sa e6rVVbzpwL0A50bI1bwl	at Dec 7 18:07:28 2024 Page 1 KBAo53q?IWQwftKmcyBI7D
0-1-8						
H ⊢ 1-5-6 ∣ 1-3	-0 1	4-0	0-11-12	-8-8	1-4-0	0-9-4 Scale = 1:37.4
						Scale - 1.37.4
1.5x3 =			3x8 FP = 4x4 =			3x6 =
1	2 <u>3</u> T1	4 5	6 7 8	9 10 T2	11	12 13
29 _B				W5 (2)		W6 W1
				Ĩ	B2	
	26 25	24 23	22 21	20 19	18 17	16 15 14

13-1-10

4x4 =

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

BRACING-

TOP CHORD

BOT CHORD

3x8 FP =

19-1-2

5-11-8

I/d

480

360

n/a

Rigid ceiling directly applied or 6-0-0 oc bracing.

l/defl

>999

n/a

3x8 =

in (loc)

25 >999

25

21

end verticals

-0.07

-0.10

0.02

1 5x3 ||

1.5x3 ||

20-5-2

19-9-2

)-8-0-8-0

PLATES

Weight: 117 lb

MT20

Structural wood sheathing directly applied or 6-0-0 oc purlins, except

22-9-14

GRIP

244/190

FT = 20%F, 11%E

REACTIONS. (lb/size) 28=579/0-3-6 (min. 0-1-8), 14=349/Mechanical, 21=1549/0-3-8 (min. 0-1-8) Max Grav 28=618(LC 3), 14=424(LC 4), 21=1549(LC 1)	
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 28-29=-612/0, 1-29=-611/0, 13-14=-407/0, 1-2=-764/0, 2-3=-1536/0, 3-4=-1687/0, 4-5=-1344/18, 5-6=-367/406, 6-7=-367/406, 7-8=0/1648, 8-9=0/1648, 9-10=-69/659, 10-11=-686/260, 11-12=-746/67, 12-13=-281/1	
BOT CHORD 26-27=0/1343, 25-26=0/1687, 24-25=0/1687, 23-24=0/1687, 22-23=-187/1014, 21-22=-797/0, 20-21=-1112/0, 19-20=-434/552, 18-19=-434/552, 17-18=-67/746, 16-17=-67/746, 15-16=-67/746	

	10-10-01/140
WEBS	2-26=-1/251, 2-27=-754/0, 1-27=0/884, 4-23=-593/0, 5-23=0/504, 5-22=-904/0,
	7-22=0/943, 7-21=-1174/0, 11-18=-365/0, 10-18=0/325, 10-20=-736/0, 9-20=0/764,
	9-21=-876/0, 12-15=-594/84, 13-15=-1/431

(7-8) NOTES-

LOADING (psf)

40.0

10.0

0.0

5.0

TOP CHORD 2x4 SP No.1(flat)

BOT CHORD 2x4 SP No.1(flat)

2x4 SP No.3(flat)

TCLL

TCDL

BCLL

BCDL

LUMBER-

WFBS

1) Unbalanced floor live loads have been considered for this design.

- 2) All plates are 3x4 MT20 unless otherwise indicated.
- Refer to girder(s) for truss to truss connections.

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

 $4x4 \equiv$

5-6-14

5-6-14

SPACING-

Plate Grip DOL

Rep Stress Incr

Code IRC2018/TPI2014

Lumber DOL

1 5x3 ||

1.5x3 ||

6-10-14

6-2-14

Plate Offsets (X,Y)-- [3:0-1-8,Edge], [4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-8,Edge], [28:Edge,0-1-8]

2-0-0

1.00

1.00

YES

0-8-00-8-0

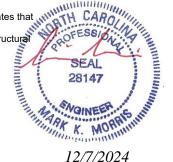
CSI.

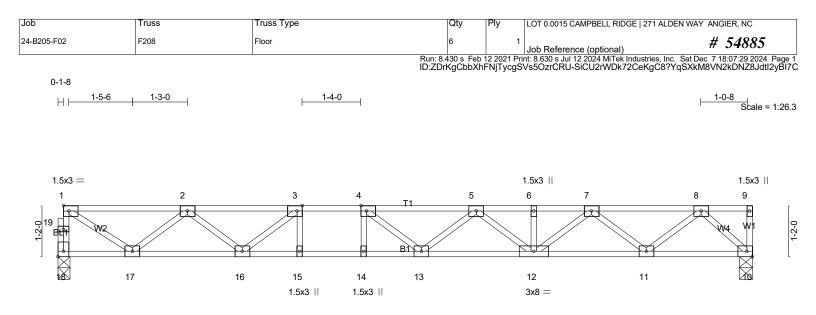
тс

BC

WB

Matrix-SH


0.44


0.54

0.45

- 7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
 8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Plate Offsets (X,Y)	[3:0-1-8,Edge], [4:0-1-8,Edge], [18:Ed	⁺ 0-8-0 ⁺ 0-8-0 ⁺ lge,0-1-8]	8-11-0	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.33 BC 0.67 WB 0.41 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.15 13-14 >999 480 Vert(CT) -0.20 13-14 >934 360 Horz(CT) 0.03 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 80 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			BRACING- TOP CHORD Structural wood sheathing d end verticals.	irectly applied or 6-0-0 oc purlins, except

WEBS 2x4 SP No.3(flat) BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

15-9-14

REACTIONS. (Ib/size) 18=569/0-3-6 (min. 0-1-8), 10=573/0-3-8 (min. 0-1-8)

5-6-14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 18-19=-567/0, 1-19=-566/0, 1-2=-743/0, 2-3=-1638/0, 3-4=-2042/0, 4-5=-2113/0, 5-6=-1842/0, 6-7=-1842/0, 7-8=-1078/0

16-17=0/1304, 15-16=0/2042, 14-15=0/2042, 13-14=0/2042, 12-13=0/2097, 11-12=0/1545, 10-11=0/587 BOT CHORD

3-16=-556/0, 2-16=0/435, 2-17=-730/0, 1-17=0/861, 5-12=-325/0, 7-12=0/379, 7-11=-608/0, 8-11=0/639, 8-10=-807/0 WEBS

6-2-14.6-10-14

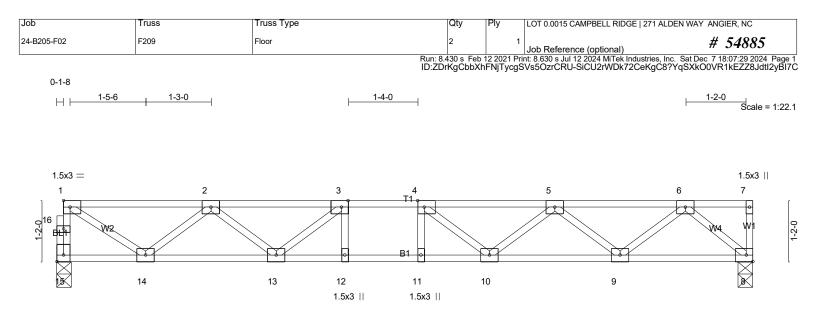
NOTES-(6-7)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

6) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

	5-6-14 <u>5-6-14</u> [3:0-1-8,Edge], [4:0-1-8,Edge], [15:Eq		6-10-14 0-8-0	13-3-14 6-5-0	
, , , , , , , , , , , , , , , , ,					
LOADING (psf) TCLL 40.0	Plate Grip DOL 1.00	CSI. TC 0.21	DEFL. in Vert(LL) -0.07	(loc) I/defl L/d 11 >999 480	PLATES GRIP MT20 244/190
TCDL 10.0	Lumber DOL 1.00	BC 0.42	Vert(CT) -0.09	11 >999 360	
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.33 Matrix-SH	Horz(CT) 0.02	8 n/a n/a	Weight: 67 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SI BOT CHORD 2x4 SI				Structural wood sheathing d	rectly applied or 6-0-0 oc purlins, except

2x4 SP No.3(flat) WEBS

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 15=477/0-3-6 (min. 0-1-8), 8=482/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 15-16=-474/0, 1-16=-473/0, 1-2=-607/0, 2-3=-1279/0, 3-4=-1506/0, 4-5=-1403/0, 5-6=-911/0

BOT CHORD 13-14=0/1065, 12-13=0/1506, 11-12=0/1506, 10-11=0/1506, 9-10=0/1269, 8-9=0/532

WEBS 3-13=-353/0, 2-13=0/292, 2-14=-597/0, 1-14=0/702, 5-9=-467/0, 6-9=0/493, 6-8=-698/0

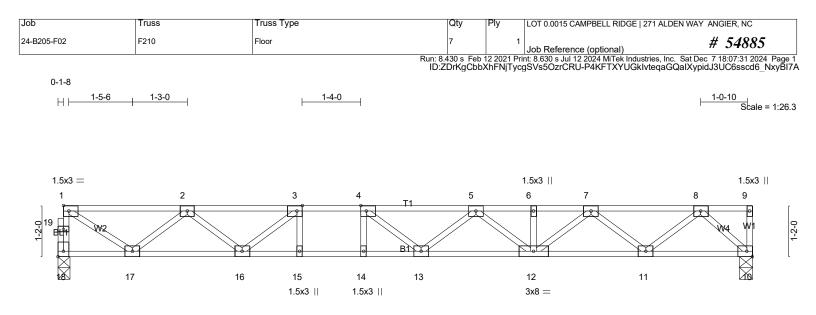
NOTES-(6-7)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

6) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Plate Offsets (X,Y)	5-6-14 [3:0-1-8,Edge], [4:0-1-8,Edge], [18:Edge]	dge,0-1-8]	8-11-2	
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.33 BC 0.67 WB 0.41 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.15 13-14 >999 480 Vert(CT) -0.20 13-14 >932 360 Horz(CT) 0.03 10 n/a n/a	PLATES GRIP MT20 244/190 Weight: 80 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat)			BRACING- TOP CHORD Structural wood sheathing direct end verticals.	ly applied or 6-0-0 oc purlins, except

WEBS 2x4 SP No.3(flat) BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

15-10-0

REACTIONS. (Ib/size) 18=570/0-3-6 (min. 0-1-8), 10=574/0-3-8 (min. 0-1-8)

5-6-14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 18-19=-567/0, 1-19=-566/0, 1-2=-744/0, 2-3=-1640/0, 3-4=-2045/0, 4-5=-2116/0, 5-6=-1846/0, 6-7=-1846/0, 7-8=-1083/0

16-17=0/1305, 15-16=0/2045, 14-15=0/2045, 13-14=0/2045, 12-13=0/2100, 11-12=0/1550, 10-11=0/593 BOT CHORD

3-16=-557/0, 2-16=0/436, 2-17=-731/0, 1-17=0/862, 5-12=-324/0, 7-12=0/379, 7-11=-608/0, 8-11=0/638, 8-10=-811/0 WEBS

6-2-14 6-10-14

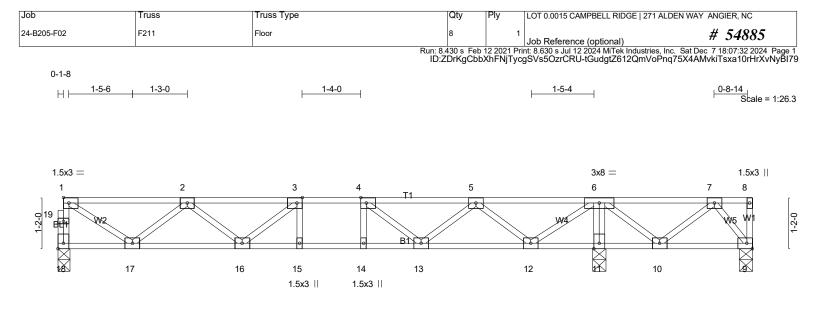
NOTES-(6-7)

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

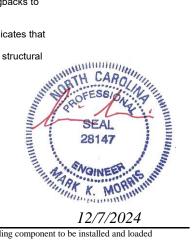
3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


5) CAUTION, Do not erect truss backwards.

6) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.


LOAD CASE(S) Standard

L	5-6-14 6-2-14 6-10-14 12-4-2			15-10-0
Plate Offsets (X Y)	5-6-14 [3:0-1-8,Edge], [4:0-1-8,Edge], [18:Ed	0-8-0 0-8-0 10-8-0-8-0 10-8-00-8-0	5-5-4	3-5-14
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.25 BC 0.35 WB 0.35 Matrix-SH	DEFL. in (loc) l/defl L/d Vert(LL) -0.04 15-16 >999 480 Vert(CT) -0.06 15-16 >999 360 Horz(CT) 0.01 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 81 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			end verticals.	ng directly applied or 6-0-0 oc purlins, except plied or 6-0-0 oc bracing.
Max U	e) 18=380/0-3-6 (min. 0-1-8), 11=86 plift9=-188(LC 3) rav18=382(LC 3), 11=863(LC 1), 9=6		-100/0-3-8 (min. 0-1-8)	
TOP CHORD 18-19 BOT CHORD 16-17 WEBS 6-11=	Comp./Max. Ten All forces 250 (lb)=-377/0, 1-19=-376/0, 1-2=-464/0, 2- 7=0/815, 15-16=0/945, 14-15=0/945, 844/0, 2-17=-458/0, 1-17=0/536, 4- 89/256	3=-904/0, 3-4=-945/0, 4 13-14=0/945, 12-13=0/4	5=-660/0, 6-7=0/406	3/0,
 2) All plates are 3x4 M 3) Provide mechanica 4) This truss is design standard ANSI/TPI 5) Recommend 2x6 s be attached to wall 6) CAUTION, Do not t 7) Graphical web brac the member must b 8) Bearing symbols and 	ned in accordance with the 2018 Inter 1. trongbacks, on edge, spaced at 10-0- s at their outer ends or restrained by erect truss backwards. bing representation does not depict the be braced.	earing plate capable of w national Residential Coc 0 oc and fastened to ea other means. e size, type or the orient	ithstanding 100 lb uplift at joint(s) except (jt=lb) e sections R502.11.1 and R802.10.2 and refere ch truss with 3-10d (0.131" X 3") nails. Strongb ation of the brace on the web. Symbol only indic on. Bearing symbols are not considered in the s	nced acks to ates that

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LC	OT 0.0015 CAMPBEL	L RIDGE 271 ALDEN WAY	ANGIER, NC
24-B205-F02	F212	Floor Supported Gable	1	1 Jo	b Reference (option	onal)	# 54885
0 ₁₁₇ 8			Run: 8.430 s Feb 1 ID:ZDrKgCbbXh	2 2021 Print: 8 FNjTycgSVs	3.630 s Jul 12 2024 M 5OzrCRU-LTS?uC	/iTek Industries, Inc. Sat De ZkoLYd6x_zNrdmdNu7S	c 7 18:07:33 2024 Page 1 66uOg6H93xb5RpyBI78
							Scale = 1:25.0
			3x4 =				
1 2	3 4	56	7 8 8		9 10	11	12 13
	ST1 ST1	ST1 ST1 W2	ST1 ST	1	ST1 ST	е 1 ST1	ST1 W1 2
			-B6				ST1 W1
				$\sim\sim\sim\sim$			
26 25	24 23	22 21	20 19		18 17	16	15 14
3x4		3x4 =					

			15-9-12		
Plate Offsets (X,Y)	[7:0-1-8,Edge], [21:0-1-8,Edge], [26:E	Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ii Vert(LL) n/: Vert(CT) n/: Horz(CT) 0.0	a - n/a 999	PLATES GRIP MT20 244/190 Weight: 68 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except

15-9-12

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

REACTIONS. All bearings 15-9-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8-9)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

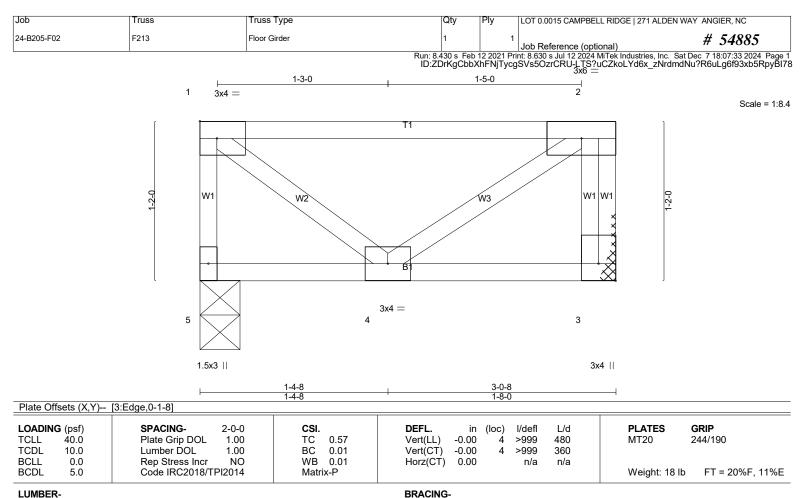
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

4) Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


7) CAUTION, Do not erect truss backwards.

8) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

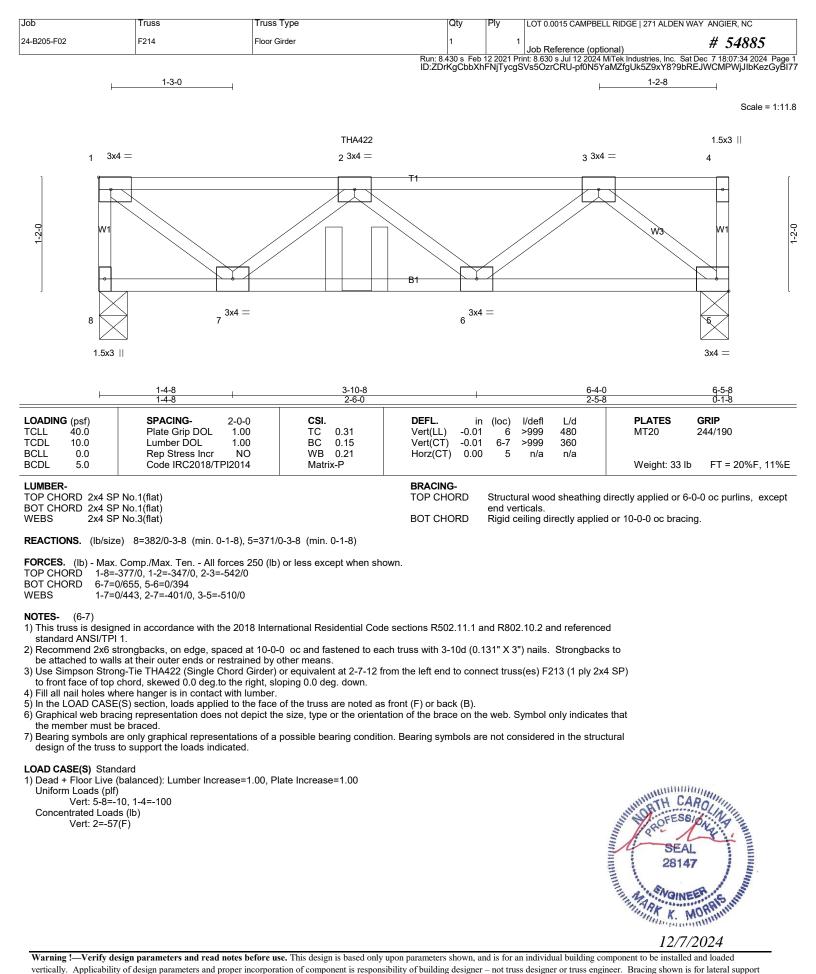
LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 3-0-8 oc purlins, except end verticals BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 5=157/0-3-8 (min. 0-1-8), 3=157/Mechanical


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(4-5)

- 1) Refer to girder(s) for truss to truss connections.
- 2) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 3) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to
- be attached to walls at their outer ends or restrained by other means.
- 4) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 5) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

12/7/2024

Job		Truss	Truss Ty	ре		Qty	Ply LO	0.0015 CAMPBELL RID	OGE 271 ALDEN WA	Y ANGIEI	R, NC	
24-B205-F02		F215	Floor Sup	ported Gable		1	1	Reference (optional)		# 5	4885	
	1		I			Run: 8.430 s Feb ID:ZDrKqCbb	12 2021 Print: 8 XhFNjTycgSV	630 s Jul 12 2024 MiTek s5OzrCRU-HralJub_k	Industries, Inc. Sat D ZoLMF8MVGfEio	ec 7 18:0 Sgwas8(7:35 2024 ISXF4CV	Page 1 ViyBI76
						Ū	,,,,	-	-		0- <mark>1-</mark> 8	
											Scale =	
											Odale -	1.22.0
					3x4 =							
1	2	3	4	5	6 . T1	7	8	9	10	11	12	
 ●	•	•	•	•		•	•	•	•	•	┏	25
0-W1	ST1	ST1	ST1	ST1 W	2 ST1	ST1	ST1	ST1	ST1	ST1	BE 1	25 0-2-1
_		•			₀ B1		•					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	xxxxXxxxx	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~	~~~~	XXXXXXX	xxxxxxxxxxx	****		XXX	L
24	23	22	21	20	19	18	17	16	15	14	13	
				3x4 =							3x4	

			14-1-14		
Plate Offsets (X,Y)-	- [6:0-1-8,Edge], [20:0-1-8,Edge]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. i Vert(LL) n/ Vert(CT) n/ Horz(CT) 0.0	a - n/a 999	PLATES         GRIP           MT20         244/190           Weight: 62 lb         FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins, except d or 10-0-0 oc bracing.

14-1-14

OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 14-1-14.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8-9)

1) All plates are 1.5x3 MT20 unless otherwise indicated.

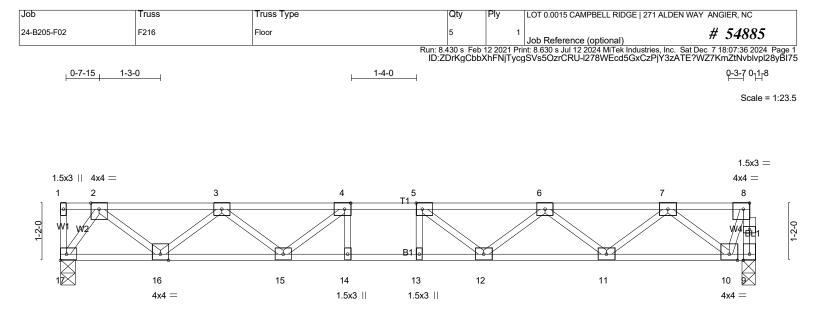
2) Gable requires continuous bottom chord bearing.

3) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

Gable studs spaced at 1-4-0 oc.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.


7) CAUTION, Do not erect truss backwards.

8) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

9) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

#### LOAD CASE(S) Standard





L	5-10-15		7-2-15	14-1-14	
·	5-10-15		0-8-0	6-10-15	
Plate Offsets (X,Y)	[4:0-1-8,Edge], [5:0-1-8,Edge], [8:0-1	-8,Edge]			
LOADING (psf) TCLL 40.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00	<b>CSI.</b> TC 0.35 BC 0.68	<b>DEFL.</b> Vert(LL) -0.1 Vert(CT) -0.1		PLATES         GRIP           MT20         244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr YES Code IRC2018/TPI2014	WB 0.42 Matrix-SH	Horz(CT) 0.0		Weight: 72 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			BRACING- TOP CHORD	Structural wood sheathing d end verticals.	irectly applied or 6-0-0 oc purlins, except

- - - -

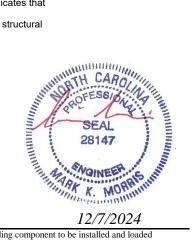
~ ~ . -

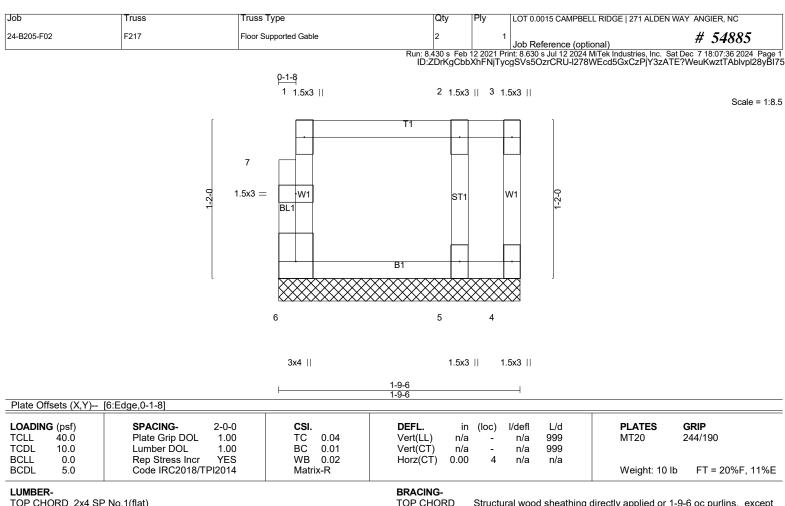
WFBS 2x4 SP No.3(flat) BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

. . . . .

REACTIONS. (lb/size) 9=768/0-3-6 (min. 0-1-8), 17=768/0-3-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.


- ----


- TOP CHORD 8-9=-771/0, 2-3=-1221/0, 3-4=-2204/0, 4-5=-2558/0, 5-6=-2403/0, 6-7=-1671/0, 7-8=-281/0
- BOT CHORD 16-17=0/540, 15-16=0/1870, 14-15=0/2558, 13-14=0/2558, 12-13=0/2558, 11-12=0/2204, 10-11=0/1109
- WEBS 4-15=-556/0, 3-15=0/458, 3-16=-844/0, 2-16=0/887, 2-17=-946/0, 5-12=-385/53, 6-12=0/338, 6-11=-694/0, 7-11=0/731, 7-10=-1079/0, 8-10=0/765

#### NOTES-(6-7)

- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

## LOAD CASE(S) Standard





TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat) BRACING-TOP CHORD BOT CHORD

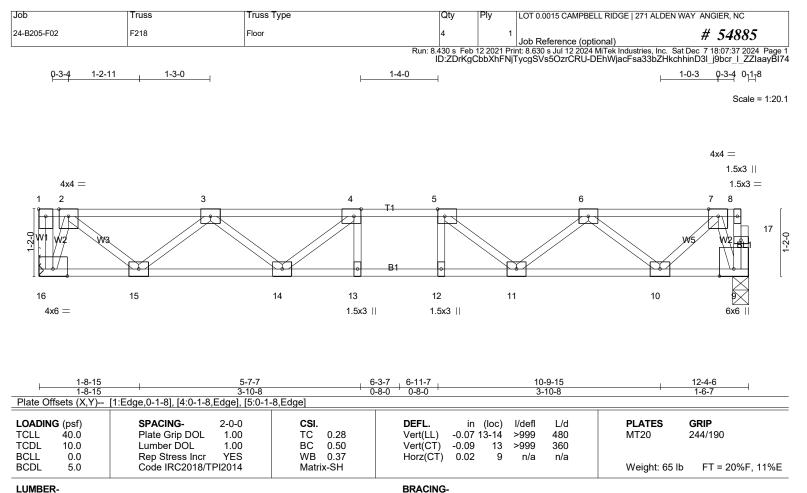
Structural wood sheathing directly applied or 1-9-6 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=57/1-9-6 (min. 0-1-8), 4=11/1-9-6 (min. 0-1-8), 5=101/1-9-6 (min. 0-1-8)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (7-8)

1) Gable requires continuous bottom chord bearing.


2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.
- 7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.
- 8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard





#### LUMBER-

TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

#### REACTIONS. (lb/size) 16=666/Mechanical, 9=660/0-3-6 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-871/0, 3-4=-1701/0, 4-5=-1934/0, 5-6=-1656/0, 6-7=-776/0

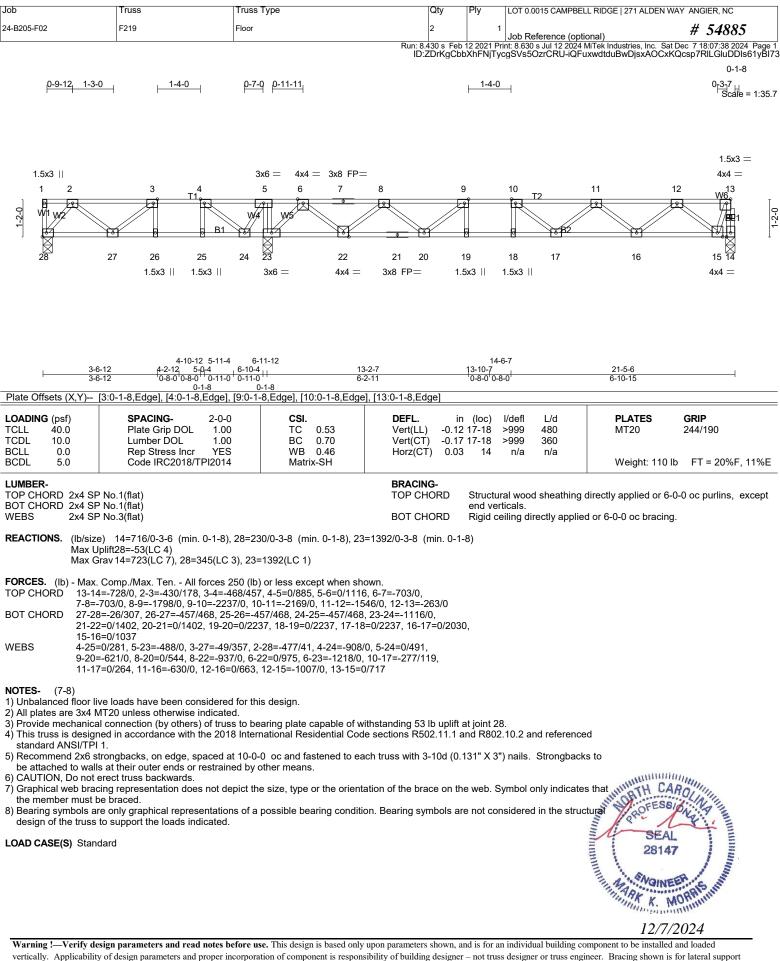
BOT CHORD 15-16=0/280, 14-15=0/1449, 13-14=0/1934, 12-13=0/1934, 11-12=0/1934, 10-11=0/1371, 9-10=0/271

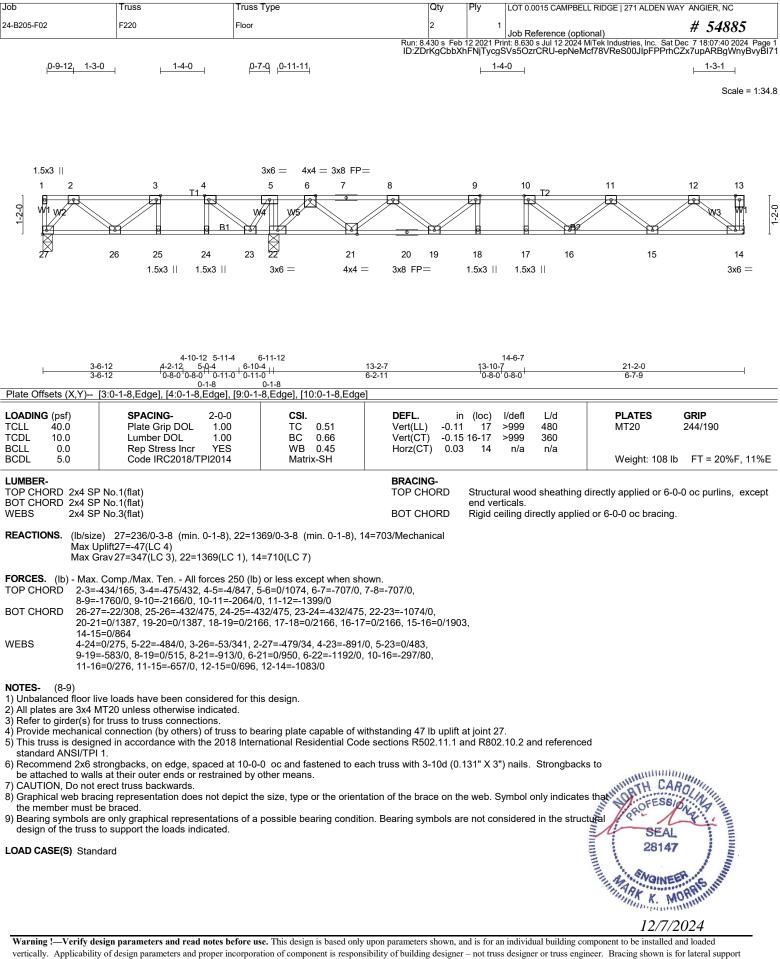
4-14=-405/0, 3-14=0/353, 3-15=-752/0, 5-11=-444/0, 6-11=0/381, 6-10=-774/0, 2-15=0/777, 2-16=-787/0, 7-10=0/724, WEBS 7-9=-775/0

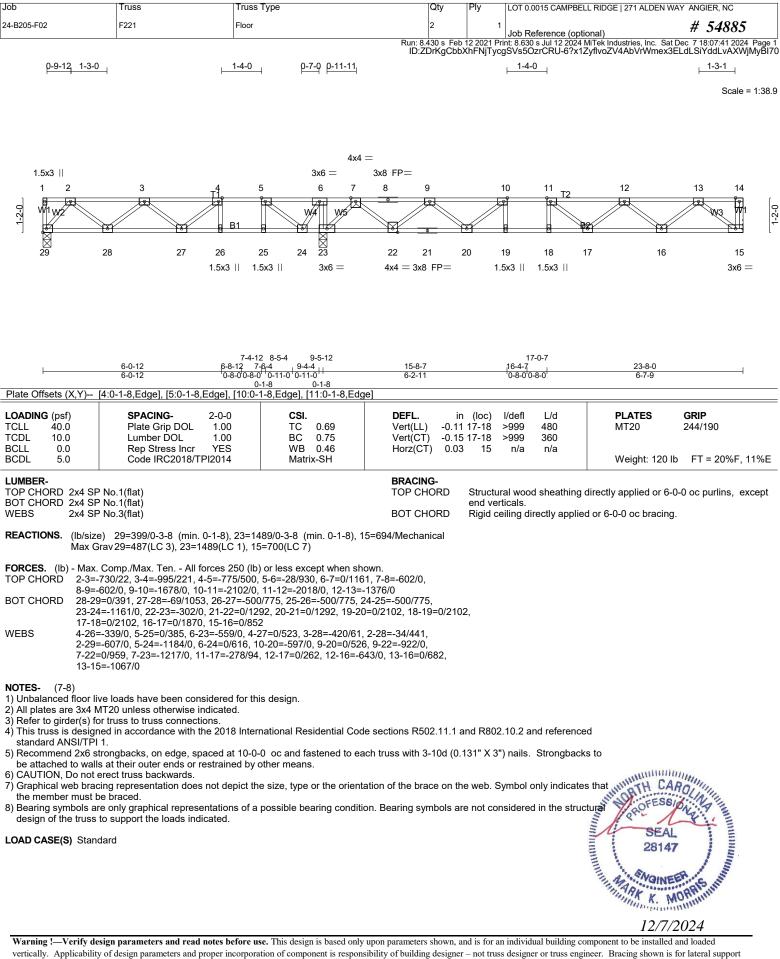
- (7-8) NOTES-
- 1) Unbalanced floor live loads have been considered for this design.
- All plates are 3x4 MT20 unless otherwise indicated.
- Refer to girder(s) for truss to truss connections

4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

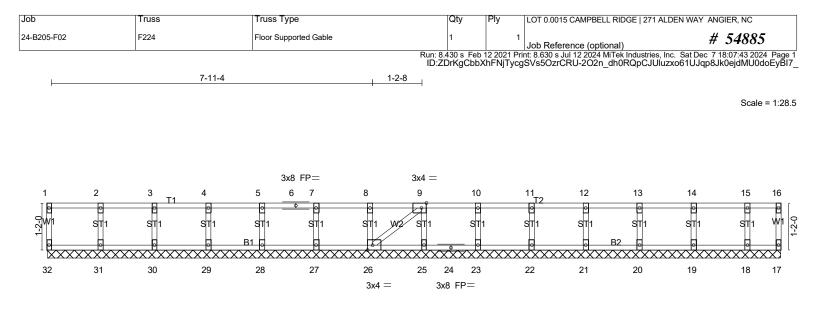

6) CAUTION, Do not erect truss backwards.


7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.


8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

#### LOAD CASE(S) Standard










Job 24-B205-F02 ₁ <u>0-7-5</u> 1 1-3-	F223 Floo	ss Type ^{yr}	Qty 15 Run: 8.430 s Feb 1 ID:ZDrKgCbbXhF 1-4-0	1 Job Refere	CAMPBELL RIDG ence (optional) Il 12 2024 MiTek Ir J-aCVPnHgNg6f		AY ANGIER, NC # 54885 Dec 7 18:07:42 2024 Page 1 hbEkoyH6IU8qG3FoyBI7? p-7-15 Scale = 1:30.3
4x4 = 1 1 1 1 1 1 24 23 1.5x3    4x4 =	3x8 FP= 1 2 3x8 FP= 1 2 22	$ \begin{array}{c} 1.5x3    \\ 5 & 6 \\ \hline B & 2 \\ 21 & 20 \\ 3x8 = \\ \end{array} $		3 17 x3	1.5 9 11 • • 16 11 3x8 FP= 3x	B2	4x6 = $12$ $4x6$ $12$ $14$ $13$ $4x4 =$
Plate Offsets (X,Y)	<u>9-8-13</u> 9-8-13 [1:Edge,0-1-8], [7:0-1-8,Edge], [8:0	-1-8,Edge]	11-0-13 10-4-13 0-8-0 0-8-0		<u>18-5-1</u> 7-4-1		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2018/TPI2014	<b>CSI.</b> TC 0.37 BC 0.75 WB 0.37 Matrix-SH	DEFL.         in           Vert(LL)         -0.24           Vert(CT)         -0.32           Horz(CT)         0.05	19-20 >933 44 19-20 >679 30	./d 80 60 //a	PLATES MT20 Weight: 95 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
		674/Masharias	BRACING- TOP CHORD BOT CHORD	Structural wood sh end verticals. Rigid ceiling direct			)-0 oc purlins, except g.
FORCES. (lb) - Max. TOP CHORD 1-24= 7-8=- BOT CHORD 22-22 14-15 WEBS 6-21=	Comp./Max. Ten All forces 250 ( 669/0, 12-13=-669/0, 1-2=-400/0, 2886/0, 8-9=-2542/0, 9-10=-1759/0 =0/1132, 21-22=0/2171, 20-21=0/2 =-0/1182 375/0, 4-21=0/445, 4-22=-662/0, 2 5=0/736, 11-14=-938/0, 12-14=0/76	(b) or less except when sh 2-3=-1663/0, 3-4=-1663/0 0, 10-11=-1759/0, 11-12=-4 2814, 19-20=0/2886, 18-15 2-22=0/691, 2-23=-953/0,	, 4-5=-2520/0, 5-6=-252( 62/0 9=0/2886, 17-18=0/2886	, 16-17=0/2242, 15			
<ol> <li>Unbalanced floor li</li> <li>All plates are 3x4 M</li> <li>Refer to girder(s) fd</li> <li>This truss is design standard ANSI/TPI</li> <li>Recommend 2x6 s be attached to wall</li> <li>Graphical web brac the member must b</li> <li>Bearing symbols and</li> </ol>	trongbacks, on edge, spaced at 10 s at their outer ends or restrained b sing representation does not depict	ernational Residential Coc -0-0 oc and fastened to ea y other means. the size, type or the orient	ach truss with 3-10d (0.1 ation of the brace on the	31" X 3") nails. Str web. Symbol only	ongbacks to indicates that		
LOAD CASE(S) Stand					The second	SEAL	

SEAL 28147 12/7/2024



Plate Offsets (X,Y)	[9:0-1-8,Edge], [26:0-1-8,Edge]		18-1-15				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES	<b>CSI.</b> TC 0.06 BC 0.01 WB 0.03	<b>DEFL.</b> in Vert(LL) n/a Vert(CT) n/a Horz(CT) -0.00	a - n/a	L/d 999 999 n/a	<b>PLATES</b> MT20	<b>GRIP</b> 244/190
BCDL 5.0	Code IRC2018/TPI2014	Matrix-SH	H012(C1) -0.0	J 17 11/a	II/a	Weight: 77 lb	FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP			BRACING- TOP CHORD	end verticals.	0	directly applied or 10	)-0-0 oc purlins, except

18-1-15

WEBS 2x4 SP No.3(flat) 2x4 SP No.3(flat) OTHERS

BOT CHORD

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. All bearings 18-1-15.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 26, 25, 23, 22, 21, 20, 19, 18

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7-8)

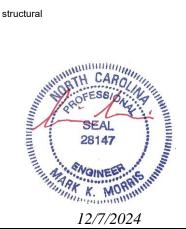
1) All plates are 1.5x3 MT20 unless otherwise indicated.

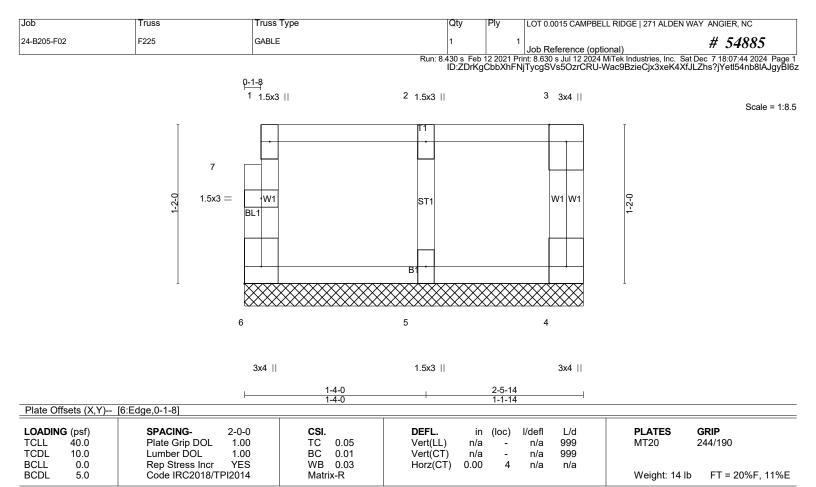
2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Non Standard bearing condition. Review required.

5) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.


6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to


be attached to walls at their outer ends or restrained by other means.

7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

#### LOAD CASE(S) Standard





LUMBER-	
TOP CHORD	2x4

BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat)OTHERS2x4 SP No.3(flat)

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 2-5-14 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 6=59/2-5-14 (min. 0-1-8), 4=55/2-5-14 (min. 0-1-8), 5=126/2-5-14 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (7-8)

1) Gable requirés continuous bottom chord bearing.

SP No.1(flat)

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

- 4) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.

7) Graphical web bracing representation does not depict the size, type or the orientation of the brace on the web. Symbol only indicates that the member must be braced.

8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

LOAD CASE(S) Standard

