

Trenco 818 Soundside Rd Edenton, NC 27932

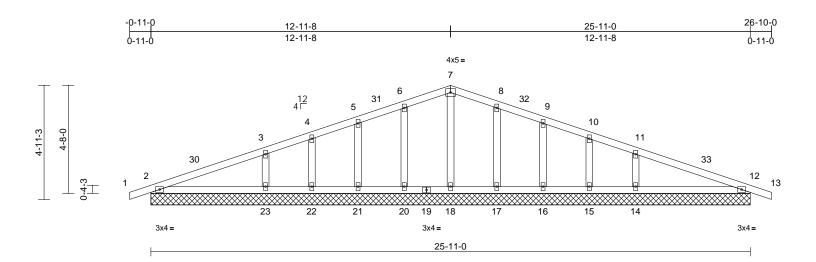
Re: Q-2402834 VASQUEZ: 2024-SAN-063

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I70065047 thru I70065061

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


December 10,2024

Tony Miller

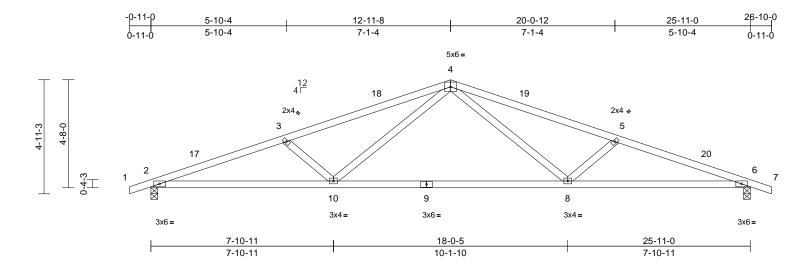
IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	A01	Common Supported Gable	1	1	Job Reference (optional)	70065047

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:13 ID:jq_KGS5xJuleN8H9JZI5o_yCjmj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.8

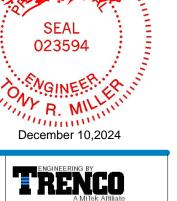
Scale = 1:49.8		•									i	
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	12	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI201	4 Matrix-AS							Weight: 118 lb	FT = 20%
	No.3 Structural wood she Rigid ceiling directly (size) 2=25-11-(14=25-11 21=25-11 21=25-11 21=25-11 21=25-11 27=25-11 Max Horiz 2=42 (LC Max Uplift 2=-24 (LC 14=-11 (L 16=-7 (LC 22=-5 (LC 24=-24 (L Max Grav 2=233 (LC 14=401 (L 16=188 (L 18=139 (L 21=188 (L)	$\begin{array}{l} 0,12=25-11-0,\\ -0,15=25-11-0,\\ -0,22=25-11-0,\\ -0,22=25-11-0,\\ -0,22=25-11-0,\\ -0,22=25-11-0,\\ -0,24=25-11-0,\\ -0\\ 10),24=42 \ (LC \ 10)\\ 211),12=-24 \ (LC \ 11)\\ 211),12=-5 \ (LC \ 11),\\ 211),17=-6 \ (LC \ 11),\\ 211),21=-7 \ (LC \ 11),\\ 211),22=-10 \ (LC \ 21),\\ 211),22=-10 \ (LC \ 21),22=-10 \ (LC$	 Unbala this de this de Vasd= Vind: Vasd= Vasd= Vasd= Vasd= Vasd= Vasd= Sea5ti MWFR 2-1-0, 15-11- Ieftance expose reaction DOL=' Truss of or constants Truss of or constants Truss of or constants All plat Sea5ti All bea Sea7ti All bea Seatification Seatification All bea Provid 	AŠCE 7-10; Vult=120r 95mph; TCDL=6.0psf; ; L=26ft; eave=2ft; Ca S (directional) and C- Exterior (2) 2-1-0 to 12 8, Exterior (2) 15-11-8 d right exposed ; end v dd;C-C for members a ns shown; Lumber DC	23=-270/12 -15=-52/3 ave been mph (3-see BCDL=6. t. II; Exp B C Corner (2-11-8, CO to 26-10- vertical left nd forces : DL=1.60 pl ds in the pl wind (norm E CAD eta designer a ss otherwi ottom choi oc. ed for a like eas where will fit betw rs. be SP No ion (by oth	0, 8-17=-123/ 3, 11-14=-270 considered for cond gust) Dpsf; h=25ft; ; Enclosed; 3) -0-11-0 to mer (3) 12-11- 0 zone; cantile and right & MWFRS for ate grip ane of the trus al to the face) is as applicab s per ANSI/TP se indicated. d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss to	101,)/120 -8 to ver s, le, l 1. psf m				SEA 0235	ROUTE
TOP CHORD	Tension 1-2=0/17, 2-3=-71/3 4-5=-42/83, 5-6=-54		joint 2' uplift a	o uplift at joint 12, 6 lb , 5 lb uplift at joint 22, t joint 17, 7 lb uplift at b uplift at joint 14, 24	11 lb upli joint 16, 5	t at joint 23, 6 Ib uplift at join	lb t				SEA 0235	• •
BOT CHORD	7-8=-63/137, 8-9=-5 10-11=-66/68, 11-12 2-23=0/62, 22-23=0/ 20-21=0/53, 18-20=1 16-17=0/53, 15-16=1 12-14=0/58	2=-70/27, 12-13=0/17 /53, 21-22=0/53, 0/53, 17-18=0/53,	, uplift a 10) This tru structu chord a the bot	Ib uplift at joint 14, 24 t joint 12. uss design requires th ral wood sheathing be and 1/2" gypsum shee tom chord. SE(S) Standard	at a minim applied d	um of 7/16" irectly to the to	р			and the second s	Decembe	


E. t all acing Plate Institute (www.tpinst.org) Plate Institute (www.tpinst.org)

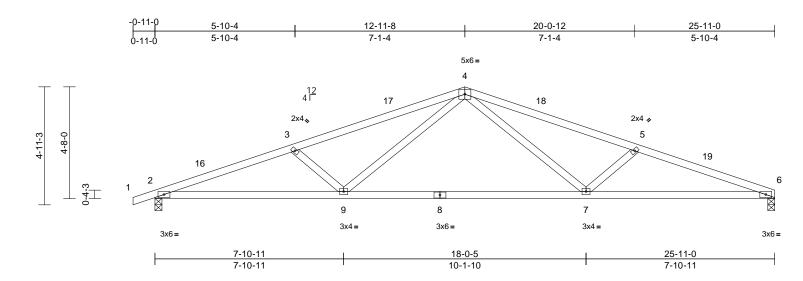
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	A02	Common	4	1	Job Reference (optional)	170065048

Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:14 ID:gq7QfeiDBiDf8I3H_5EeX_yCiew-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

Scale = 1:49.8


Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.69 0.79	DEFL Vert(LL) Vert(CT)	in -0.15 -0.50	(loc) 8-10 8-10	l/defl >999 >628	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2015/TP	912014	WB Matrix-AS	0.19	Horz(CT)	0.08	6	n/a	n/a	Weight: 110 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood sher Rigid ceiling directly (size) 2=0-3-8, 6 Max Horiz 2=42 (LC Max Uplift 2=-30 (LC	applied. 5=0-3-8 10) 11), 6=-30 (LC 11)	be 2 a 6) Th str d. ch the LOAD	aring plate and 30 lb u his truss de ructural woo		tanding 3 t a minim applied d	0 lb uplift at um of 7/16" irectly to the	joint top					
FORCES	Max Grav 2=1092 (L (lb) - Maximum Com	, ,											
TOP CHORD	Tension 1-2=0/17, 2-3=-2604 4-5=-2301/115, 5-6=												
BOT CHORD	2-10=-93/2446, 8-10 6-8=-101/2446	=-38/1550,											
WEBS	4-8=0/773, 5-8=-465 3-10=-465/128	/128, 4-10=0/773,											
this design 2) Wind: ASS Vasd=95m B=45ft; L= MWFRS (2-1-0, Inte 15-11-8, II left and rig exposed; reactions : DOL=1.60 3) * This trus on the bot 3-06-00 ta chord and	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =26ft; eave=4ft; Cat. II; directional) and C-C E: erior (1) 2-1-0 to 12-11- nterior (1) 15-11-8 to 2 pht exposed ; end vertii C-C for members and ft shown; Lumber DOL=1	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; tterior (2) -0-11-0 to 8, Exterior (2) 12-11 6-10-0 zone; cantilec cal left and right orces & MWFRS for 1.60 plate grip or a live load of 20.0 where a rectangle fit between the botto	-8 to ver psf								and the second second	SEA 0235	94

- All bearings are assumed to be SP No.2. 4)
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	A03	Common	5	1	Job Reference (optional)	170065049

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:14 ID:bW67rZJoODEjiJOsZ785CUyCjnj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:48.2

Loading (psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL	1.00	тс	0.69	Vert(LL)	-0.15	7-9	>999	240	MT20	244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.80	Vert(CT)	-0.49	7-9	>630	180		
BCLL 0.0	Rep Stress Incr	YES	WB	0.19	Horz(CT)	0.08	6	n/a	n/a		
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 108 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.2 BRACING TOP CHORD Structural wood s BOT CHORD Rigid ceiling direc REACTIONS (size) 2=0-3-1 Max Horiz 2=43 (I Max Uplift 2=-31 (I Max Grav 2=1093 FORCES (Ib) - Maximum C Tension TOP CHORD 1-2=0/17, 2-3=-26 4-5=-2310/131, 5 BOT CHORD 2-9=-113/2449, 7	neathing directly applied ly applied. , 6=0-3-8 C 10) .C 11), 6=-7 (LC 11) (LC 1), 6=1036 (LC 1 mpression/Maximum 06/155, 3-4=-2304/119	6) This truss d structural w chord and 1 the bottom o LOAD CASE(S) ed.	esign requires that bod sheathing be a /2" gypsum sheetr chord.	applied di	irectly to the						
3-9=-465/128											
 NOTES Unbalanced roof live loads hat this design. Wind: ASCE 7-10; Vult=120m Vasd=95mph; TCDL=6.0psf; I B=45ft; L=26ft; eave=4ft; Cat. MWFRS (directional) and C-C 2-1-0, Interior (1) 2-1-0 to 12-15-11-8, Interior (1) 15-11-8 the left and right exposed; end verexposed; C-C for members an reactions shown; Lumber DOI DOL=1.60 * This truss has been designe on the bottom chord in all area 3-06-00 tall by 2-00-00 wide vere chord and any other members All bearings are assumed to b Provide mechanical connection bearing plate capable of withs and 31 lb uplift at joint 2. 	ch (3-second gust) CDL=6.0psf; h=25ft; I; Exp B; Enclosed; Exterior (2) -0-11-0 to 1-8, Exterior (2) 12-11 25-11-0 zone; cantile tical left and right I forces & MWFRS for =1.60 plate grip I for a live load of 20.0 s where a rectangle II fit between the botto a SP No.2. h (by others) of truss to	-8 to ver)psf om						thitting.		SEA 0235	

December 10,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	A04	Common	8	1	I700650 Job Reference (optional))50

0-4-3 ∏

5-10-4

5-10-4

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15 ID:bW67rZJoODEjiJOsZ785CUyCjnj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-0-12

5-10-4

14-2-8 12-11-8

1-3-0 1-3-0

3x4=

3x8 -

6

26

5

Ø

3x8 =

4

25

8

3x6=

25-11-0

5-10-4

27

25-11-0

7-10-11

2x4 🥠

7

2x4、 3 <u>کې</u> 3-1-1 24 ⊠kç ⇔ <u>₫⁄16</u> T. 15 17 14 10 9 3x4 = 3x4 = 2x4 🛛 2x4= 3x6= 2x4 🛛 2x4 u 2x4 =3x4 = 2x4 II 10-0-0 8-7-10 18-0-5 8-5-15 17-3-6 17 11-3-4 -5-7-10-11 14-7-12 0-7-4 1-4-6 2-7-10 0-1-11 0-7-4 7-10-11 1-3-4 3-4-9 0-1-11

11-8-8

5-10-4

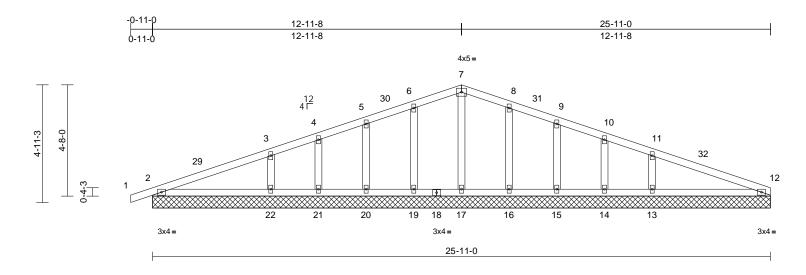
12 4 Г

Scale = 1:54.4

4-11-3 4-8-0

Plate Offsets (X, Y): [4:0-2-4,0-1-8], [5:0-2-0,Edge], [6:0-2-4,0-1-8]

				•									
Loading TCLL (roof) TCDL	(psf) 20.0 10.0	Spacing Plate Grip DOL Lumber DOL	2-0-0 1.00 1.15		CSI TC BC	0.61 0.92	DEFL Vert(LL) Vert(CT)	in -0.19 -0.59	(loc) 11 10-14	l/defl >999 >525	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC201	5/TPI2014	WB Matrix-AS	0.35	Horz(CT)	0.09	8	n/a	n/a	Weight: 123 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep No.3 Structural wood she Rigid ceiling directly (size) 2=0-3-8, 8 Max Horiz 2=43 (LC	athing directly applie applied. 3=0-3-8 10)	4) SP 5) 6) ed.	* This truss h on the bottor 3-06-00 tall h chord and ar All bearings This truss de structural wo		is where ill fit betw e SP No. a minim applied di	a rectangle veen the bott 2. um of 7/16" rectly to the	om top					
FORCES	Max Grav 2=1183 (L (Ib) - Maximum Com Tension)										
TOP CHORD													
BOT CHORD	2-17=0/2685, 14-17= 9-10=0/1970, 8-9=-3 12-13=-52/0, 11-12=	8/2694, 13-16=-52/0, =-52/0											
WEBS	6-11=0/773, 9-11=0/ 16-17=0/682, 4-16=(13-14=-26/0, 10-12=	0/766, 3-17=-449/11											
this design 2) Wind: ASK Vasd=95m B=45ft; L= MWFRS (2-1-0, Inte 15-11-8, II left and rig exposed; reactions DOL=1.60	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =26ft; eave=4ft; Cat. II; (directional) and C-C E: erior (1) 2-1-0 to 12-11- nterior (1) 15-11-8 to 2 ght exposed ; end verti C-C for members and ft shown; Lumber DOL=	(3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-11-0 to 8, Exterior (2) 12-11 5-11-0 zone; cantiler cal left and right orces & MWFRS for 1.60 plate grip	-8 to ver									SEA 0235	94



Combo December 10,2024

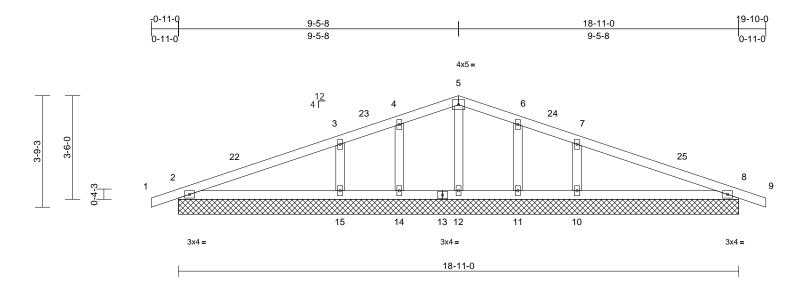
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	A05	Common	1	1	Job Reference (optional)	170065051

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15 ID:ZqwHqeOAJ9G4Dpt28icVk8yCjdI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:48.3

.oading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.23	Vert(LL)	n/a	-	n/a	999	MT20	244/190
CDL	10.0	Lumber DOL	1.15	BC	0.21	Vert(CT)	n/a	-	n/a	999		
CLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horz(CT)	0.00	12	n/a	n/a		
CDL	10.0	Code	IRC2015/TP	2014 Matrix-AS							Weight: 116 lb	FT = 20%
MBER P CHORD T CHORD T CHORD HERS ACING P CHORD T CHORD ACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Exce No.3 Structural wood sh Rigid ceiling directl (size) 2=25-11 15=25-1 15=25-1 17=25-1 20=25-1	pt* 22-3,13-11:2x4 Sl eathing directly applie	WEBS NOTE: 1) Ur thi d. 2) Wi B= Mi 2- 15 lef ex	7-17=-96/0, 6-1 4-21=-52/33, 3- 9-15=-136/67, 1 balanced roof live loads h s design. nd: ASCE 7-10; Vult=120 sd=95mph; TCDL=6.0psf 45ft; L=26ft; eave=2ft; Ca VFRS (directional) and C -0, Exterior (2) 2-1-0 to 1 11-8, Exterior (2) 15-11-1 and right exposed ; end posed;C-C for members a	22=-270/12 0-14=-48/3 mave been mph (3-sec ; BCDL=6. it. II; Exp B -C Corner (2-11-8, Co 3 to 25-11-i vertical left and forces	0, 8-16=-12: 2, 11-13=-2' considered for cond gust) 0psf; h=25ft; ; Enclosed; 3) -0-11-0 to rmer (3) 12-1 0 zone; canti and right & MWFRS for	3/101, 76/143 or 1-8 to lever				vveignit. Tro ib	F I = 20 <i>7</i> 6
	26=25-1 Max Horiz 2=43 (LC Max Uplift 2=-22 (L 14=-2 (L 20=-7 (L 22=-12 (Max Grav 2=233 (L 13=414 15=190	1-0 2 10), 23=43 (LC 10) C 11), 13=-17 (LC 11 C 11), 15=-8 (LC 11), C 11), 15=-8 (LC 11), C 11), 21=-5 (LC 11), LC 11), 21=-5 (LC 11), LC 11), 12=-171 (LC 1), LC 21), 14=37 (LC 2), LC 1), 16=159 (LC 2)), 3) Tri on se or 1) 4) All 5) Ga 1), 6) Ga 1), 7) * T	ctions shown; Lumber D L=1.60 uss designed for wind loa y. For studs exposed to a Standard Industry Gabl- consult qualified building plates are 2x4 MT20 unlu- ble requires continuous b ble studs spaced at 2-0-0 his truss has been design	ds in the pl wind (norm e End Deta designer a ess otherwi ottom chor oc. ned for a liv	ane of the tru al to the face ils as applica s per ANSI/T se indicated d bearing. re load of 20.	e), able, PI 1.					
ORCES OP CHORD OT CHORD	20=188 22=401 26=171 (lb) - Maximum Coi Tension 1-2=0/17, 2-3=-71/ 4-5=-43/79, 5-6=-5	Argen and the second se	7, 3-(1), ch 8) All 9) Pr be 2, joi up 13 10) Th str	the bottom chord in all ar 6-00 tall by 2-00-00 wide ord and any other membe bearings are assumed to ovide mechanical connec aring plate capable of witi 5 lb uplift at joint 19, 7 lb it 21, 12 lb uplift at joint 2 iff at joint 15, 2 lb uplift at and 22 lb uplift at joint 2. s truss design requires tf uctural wood sheathing b ord and 1/2" gypsum sher	will fit betw ars. be SP No- tion (by oth astanding 2 uplift at join 2, 6 lb uplit joint 14, 1 hat a minime applied d	veen the bot 2. ers) of truss 22 lb uplift at t 20, 5 lb upl t at joint 16, 7 lb uplift at j um of 7/16" irectly to the	to joint ift at 8 lb oint top				SEA 0235	
	15-16=0/45, 14-15 12-13=-29/91	=0/43, 13-14=0/45,	the	bottom chord. CASE(S) Standard						14	NY R.	MILLENIN


December 10,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

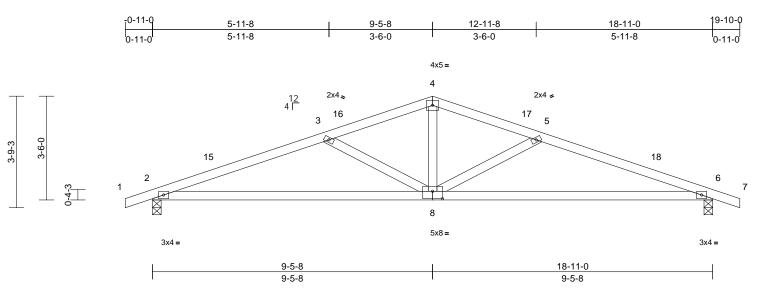
Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	B01	Common Supported Gable	1	1	Job Reference (optional)	170065052

Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15 ID:?vNYA1zggp13AcWEjS6lOtyCjmt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:38.9

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014 Wind: ASCE	CSI TC BC WB Matrix-AS 7-10; Vult=120mp	0.27 0.23 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 19	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%	
TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	Structural wood she Rigid ceiling directly (size) 2=18-11-(11=18-11 14=18-11 16=18-11 Max Horiz 2=-31 (LC Max Uplift 2=-28 (LC 10=-13 (L 14=-5 (LC 16=-28 (L Max Grav 2=255 (LC 10=452 (I 12=191 (I 12=191 (I 15=452 (I 19=255 (I (lb) - Maximum Com Tension 1-2=0/17, 2-3=-85/4 4-5=-63/107, 5-6=-6 7-8=-85/45, 8-9=0/1 2-15=0/73, 14-15=0, 11-12=0/52, 10-11= 5-12=-119/18, 4-14= 6-11=-38/73, 7-10=-	D, 8=18-11-0, 10=18- -0, 12=18-11-0, -0, 15=18-11-0, -0, 19=18-11-0, -0, 19=18-11-0, 29), 16=-31 (LC 9) 21), 15=-13 (LC 11), C 11), 19=-28 (LC 11), C 11), 19=-28 (LC 11), C 1), 15=-13 (LC 11), C 1), 15=-13 (LC 11), C 1), 15=-55 (LC 1), -C 1), 11=16 (LC 20), -C 1), 11=16 (LC 21), -C 1), 11=16 (LC 21), -C 1), 14=16 (LC 20), -C 1), 14=16 (LC 20), -C 1), 16=255 (LC 1), -C 1) apression/Maximum 3, 3-4=-94/93, 3/108, 6-7=-94/95, 7 /52, 12-14=0/52, 0/52, 8-10=0/73 -38/73, 3-15=-303/13 303/134	No.3 d. 11-0, 3) , 4) , 5)) 6) , 7) , , 8) 9) 9) 9) 10 34,	Vasd=95mpl B=45ft; L=24 MWFRS (dir 2-1-0, Exteri 12-5-8, Exteri left and right exposed; C-C reactions shi DOL=1.60 Truss desigr only. For stu- see Standarr or consult qu All plates are Gable requir Gable studs * This truss I on the bottor 3-06-00 tall It chord and ar All bearings Provide mec bearing plate 2, 28 lb upliff joint 15, 5 lb upliff at joint 1) This truss de structural wo	h; TCDL=6.0psf; É lft; eave=2ft; Cat. ectional) and C-C or (2) 2-1-0 to 9-5- rior (2) 12-5-8 to 1 exposed ; end ve C for members and own; Lumber DOL ned for wind loads uds exposed to wind d Industry Gable E ualified building de e 2x4 MT20 unless es continuous bott spaced at 2-0-0 o nas been designed n chord in all area by 2-00-00 wide w y other members. are assumed to be chanical connection e capable of withst t at joint 8, 5 lb uplit 2 and 28 lb uplit asign requires that bod sheathing be a 2" gypsum sheetre hord.	SCDL=6. II; Exp B II; Exp B Corner (-8, Corner -8, Corner -9-10-0 z 	Opsf; h=25ft; ; Enclosed; 3) -0-11-0 to ore; cantileve and right & MWFRS for ate grip ane of the tru: al to the face ills as applical s per ANSI/TF se indicated. d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss t t 14, 13 lb up t at joint 10, 2 um of 7/16" irectly to the t	er ss), ble, PI 1. Dpsf om oint lift at 28 lb				SEA 0235	94 EER.ER.MILLER.	a manual and a second a


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	B02	Common	1	1	Job Reference (optional)	170065053

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15 ID:fxaf7KvXrHPm4reGxvXahqyCjmy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:38.9

Plate Offsets (X, Y): [3:0-0-0,0-0-0], [8:0-4-0,0-3-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.43	Vert(LL)	-0.08	8-14	>999		MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.71	Vert(CT)	-0.24	8-14	>927	180		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.15	Horz(CT)	0.04	6	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 77 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2		structural w		applied d	irectly to the						
TOP CHORD	Structural wood she	athing directly applie	ed.									

REACTIONS	(size)	2=0-3-8, 6=0-3-8
	Max Horiz	2=-31 (LC 9)
	Max Uplift	2=-28 (LC 11), 6=-28 (LC 11)
	Max Grav	2=812 (LC 1), 6=812 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD		2-3=-1664/136, 3-4=-1279/85,
	4-5=-1279	9/85, 5-6=-1664/135, 6-7=0/17

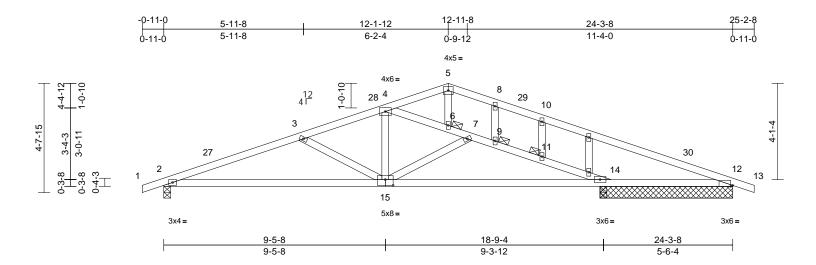
- BOT CHORD 2-6=-82/1555 WEBS 4-8=0/626, 5-8=-450/103, 3-8=-450/103 NOTES
- Unbalanced roof live loads have been considered for this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-11-0 to 2-1-0, Interior (1) 2-1-0 to 9-5-8, Exterior (2) 9-5-8 to 12-5-8, Interior (1) 12-5-8 to 19-10-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

4) All bearings are assumed to be SP No.2 .

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2 and 28 lb uplift at joint 6.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

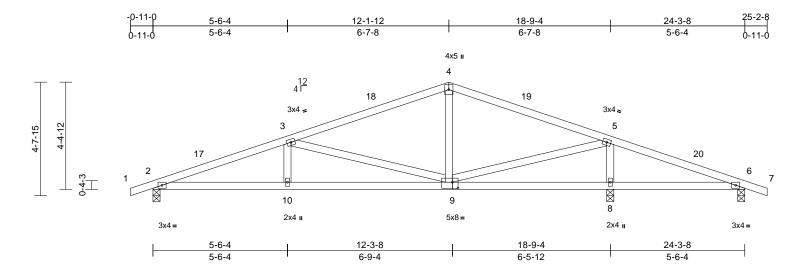
Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	C01	Common Structural Gable	1	1	Job Reference (optional)	170065054

Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15 ID:q3lpR41QGfoCuX_O4jD9d8yCjmn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:49.2

|--|


	(, .). [=	,], [
Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.00		тс	0.78	Vert(LL)		15-19	>999	240	MT20	244/190
TCDL		10.0	Lumber DOL	1.15		BC	0.82	Vert(CT)	-0.25	15-19	>909	180		
BCLL		0.0*	Rep Stress Incr	YES		WB	0.13	Horz(CT)	0.05	24	n/a	n/a		
BCDL		10.0	Code		5/TPI2014	Matrix-AS	0.10		0.00				Weight: 118 lb	FT = 20%
LUMBER			•	2)	Wind: ASCE	7-10; Vult=120mp	oh (3-seo	cond gust)						
TOP CHORD	2x4 SP No.	.2		,	Vasd=95mpl	h; TCDL=6.0psf; B	CDL=6.	0psf; h=25ft;						
BOT CHORD	2x4 SP No.	.2				ft; eave=4ft; Cat.								
WEBS	2x4 SP No.	.2			MWFRS (dir	ectional) and C-C	Exterior	(2) -0-11-0 to)					
OTHERS	2x4 SP No.	.3				or (1) 2-1-0 to 12-1								
BRACING					,	nterior (1) 15-1-12		,	lever					
TOP CHORD	Structural v	wood she	athing directly applied	Ι.		exposed ; end ver								
BOT CHORD						for members and			r					
JOINTS	1 Brace at					own; Lumber DOL	=1.60 pl	ate grip						
-	9, 11	(-) -)		<i></i>	DOL=1.60									
REACTIONS	(size) 2	2=0-3-8	12=5-8-0, 14=5-8-0,	3)		ed for wind loads								
	()		24=5-8-0			ids exposed to wir								
	Max Horiz 2	,				d Industry Gable E								
			2 11), 12=-23 (LC 11),	4		alified building de			PI 1.					
			C 11), 20=-9 (LC 11),	4)		e 2x4 MT20 unless		se indicated.						
		24=-23 (L		5) 6)		spaced at 2-0-0 of nas been designed		a load of 20 (Doof					
	Max Grav 2	2=821 (Ì.	C 1), 12=328 (LC 1),	6)		n chord in all area			opsi					
	1	14=905 (L	_C 1), 20=905 (LC 1),			by 2-00-00 wide wi			om					
	2	24=328 (L	_C 1)			by 2-00-00 wide will a will be		veen the bott	UIII					
FORCES	(lb) - Maxin	num Com	pression/Maximum	7)		are assumed to be		2						
	Tension			8)		hanical connection			n					
TOP CHORD	1-2=0/17, 2	2-3=-1692	2/120, 3-4=-1302/78,	0)		e capable of withst								
	4-5=-250/6	6, 5-8=-2	31/69, 8-10=-289/66,			at joint 14, 23 lb up								in the second se
	10-12=-302	2/23, 12-1	3=0/17, 4-6=-1027/4	5,		23 lb uplift at joint			and at				IN TH CA	Rollin
	6-7=-1052/	52, 7-9=-	1217/104,	9)		sign requires that		um of 7/16"				in	at it's	Addall
		6/105, 11	-14=-1324/141	- /		od sheathing be a			top			-	0.000	SKS Shin
BOT CHORD	2-14=-59/1	581, 12-1	4=0/220			2" gypsum sheetro							Sale	A A A
WEBS			/65, 10-11=-402/112,		the bottom c				, 				2	K 1
	4-15=0/528	3, 3-15=-4	43/87, 7-15=-282/92	10) Graphical pu	Irlin representation	does no	ot depict the s	size				SEA	1 1 1
NOTES					or the orienta	ation of the purlin a	along the	top and/or			=	:		
1) Unbalanc	ed roof live loa	ads have	been considered for		bottom chore	J.					=	:	0235	94 : =
this desig	n.			LC	AD CASE(S)	Standard								1 I I
-					()							-		1 2
													X. En	Ria S
												21	GIN	EF. CAS
												11	NV -	an Levis
													11. R.	MILIN
													10000	inne.
													Decembe	
													20001100	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

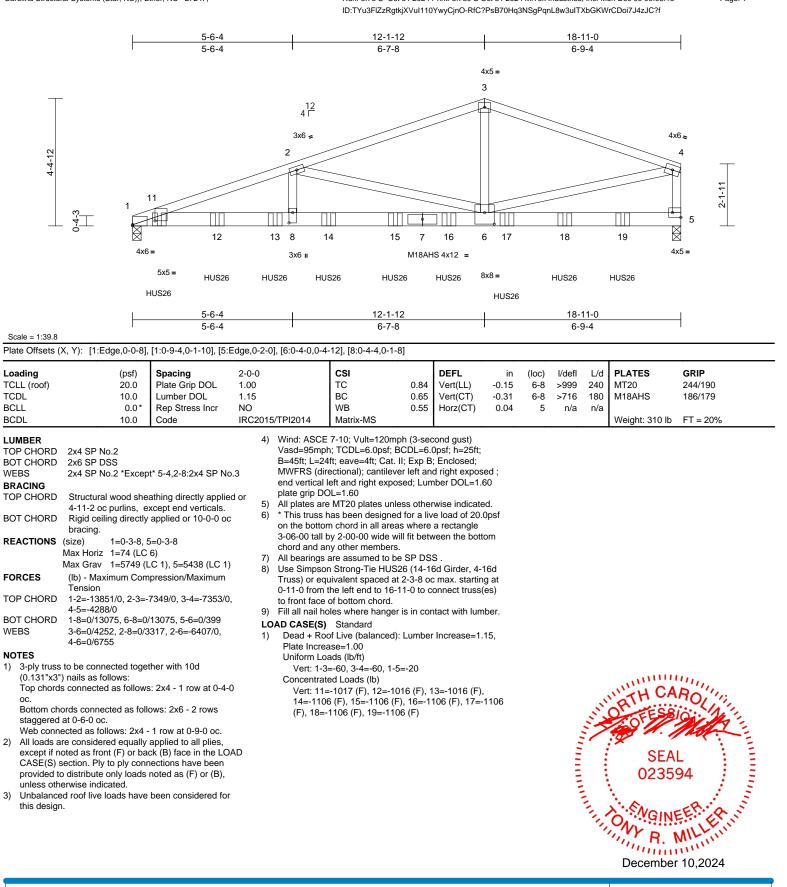
Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	C02	Common	2	1	Job Reference (optional)	170065055

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15 ID:VUZTp8c5q?fN?kqilBSz?9yCjd?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:47.3

Plate Offsets (X, Y): [9:0-2-12,0-3-0]

	A, 1). [9.0-2-12,0-3-0]										
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.51 0.47 0.72	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.15 0.03	(loc) 9-10 9-10 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep Structural wood she Rigid ceiling directly	athing directly applie applied. 5=0-3-8, 8=0-3-8 9) 11), 6=-28 (LC 11), C 1), 6=175 (LC 21), C 1)	5) Provide n bearing p 6, 3 lb up No.3 6) This truss structural chord and the botton LOAD CASE 8=-3	hechanical connection late capable of withs lift at joint 8 and 29 I design requires that wood sheathing be 1 1/2" gypsum sheet	standing 2 b uplift at t a minim applied d	28 lb uplift at jo joint 2. um of 7/16" irectly to the to	oint op					
TOP CHORD BOT CHORD WEBS	(ii) - Maximum com Tension 1-2=0/17, 2-3=-1638 4-5=-803/90, 5-6=-2 2-10=-43/1531, 8-10 4-9=0/127, 5-8=-101 5-9=-10/1002, 3-9=-	3/95, 3-4=-797/88, 3/341, 6-7=0/17)=-271/1531, 6-8=-27 2/119, 3-10=0/129,	71/38									
this design 2) Wind: ASC Vasd=95m B=45ft; L= MWFRS ((2-1-0, Inte to 15-1-12 left and rig exposed;C reactions s DOL=1.60 3) * This trus: on the bott 3-06-00 ta chord and	ed roof live loads have CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC :24ft; eave=4ft; Cat. II; directional) and C-C E trior (1) 2-1-0 to 12-1-1 , Interior (1) 15-1-12 to pht exposed ; end verti shown; Lumber DOL=	been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; xterior (2) -0-11-0 to 2, Exterior (2) 12-1- 25-2-8 zone; cantilic cal left and right orces & MWFRS for 1.60 plate grip or a live load of 20.0 where a rectangle fit between the botto	12 ever psf						W. Manner		SEA 02359	


g te Institute (www.tpinst.org)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	C03	Common Girder	1	3	Job Reference (optional)	170065056

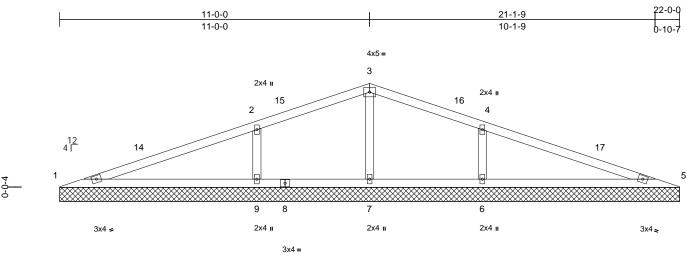
Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	V01	Valley	1	1	Job Reference (optional)	170065057

Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:15 ID:vgMyUAIYxXNzomxxX2d_ZjyCiQe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3-4-8 3-8-4 7-0-0

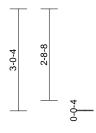
22-0-0

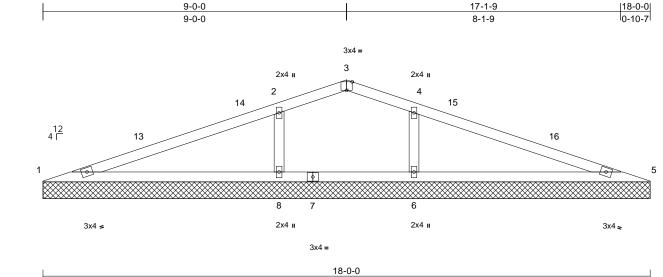
Scale = 1:40.9

Scale = 1:40.9												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TP	CSI TC BC WB I2014 Matrix-AS	0.49 0.39 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she Rigid ceiling directly (size) 1=22-0-0, 7=22-0-0, Max Horiz 1=-32 (LC Max Uplift 6=-22 (LC Max Grav 1=142 (LC	athing directly applied. 5=22-0-0, 6=22-0-0 9=22-0-0 9) 11), 9=-22 (LC 11) 20), 5=142 (LC 21) C 20), 7=420 (LC 1).	6) * T on 3-(- chi ed. 7) All 8) Pro 9 a 9) Th str chi), the	bble studs spaced at 4-0 his truss has been desig the bottom chord in all a b6-00 tall by 2-00-00 wid ord and any other memb bearings are assumed t ovide mechanical conne aring plate capable of wi and 22 lb uplift at joint 6. is truss design requires uctural wood sheathing lo ord and 1/2" gypsum she bottom chord. CASE(S) Standard	gned for a liv areas where le will fit betw pers. to be SP No. ction (by oth ithstanding 2 that a minim be applied d	a rectangle veen the botto 2 . ers) of truss t 2 lb uplift at j um of 7/16" rectly to the t	om co oint					
FORCES	(lb) - Maximum Corr	,										
TOP CHORD BOT CHORD WEBS	4-5=-259/493	405/143, 6-7=-405/1	43,									
NOTES												
this design 2) Wind: ASK Vasd=95m B=45ft; L= MWFRS (3-0-12, E) to 14-0-12 cantilever right expo for reaction DOL=1.60 3) Truss dess only. For see Stand or consult	CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =24ft; eave=2ft; Cat. II; (directional) and C-C C xterior (2) 3-0-12 to 11- 2, Exterior (2) 14-0-12 t left and right exposed osed;C-C for members ons shown; Lumber DC 0 signed for wind loads in studs exposed to wind adrd Industry Gable En t qualified building desi	(3-second gust) :DL=6.0psf; h=25ft; Exp B; Enclosed; orner (3) 0-0-12 to :0-12, Corner (3) 11- to 22-0-12 zone; ; end vertical left and and forces & MWFR DL=1.60 plate grip the plane of the trus I (normal to the face) d Details as applicat gner as per ANSI/TF	0-12 d S ss l,								SEA 0235	• -
Gable req	uires continuous botto	m chord bearing.									The H.	in the

4) Gable requires continuous bottom chord bearing.

December 10,2024


R. H. M.L.

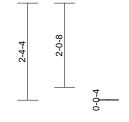

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

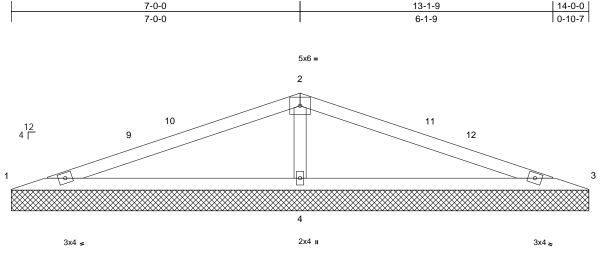
Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	V02	Valley	1	1	Job Reference (optional)	170065058

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:16 ID:gUNPkj3D2CXQlbLIVoar4?yCiQF-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:34.1

Plate Offsets (X, Y): [3:0-2-0,Edge]


Plate Offsets (X, Y): [3:0-2-0,Edge]					-						
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.59 0.38 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 58 lb	GRIP 244/190 FT = 20%
BCDL LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m B=45ft; L= MWFRS (c 3-0-12, Ex to 12-0-12 cantilever right expos	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=18-0-0, 8=18-0-0 Max Horiz 1=-26 (LC Max Uplift 6=-13 (LC Max Uplift 6=-13 (LC (lb) - Maximum Com 1-2=-293/438, 2-3=- 4-5=-293/438 1-8=-349/271, 6-8=- 2-8=-457/206, 4-6=- ed roof live loads have b. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC :24ft; eave=2ft; Cat. II; directional) and C-C C terrior (2) 3-0-12 to 9-0 , Exterior (2) 12-0-12 to Eft and right exposed sed;C-C for members	Code athing directly applied applied. 5=18-0-0, 6=18-0-0, 5=0 11), 8=-13 (LC 11) 2 2), 5=153 (LC 21) 2 1), 8=593 (LC 20) pression/Maximum 45/331, 3-4=-44/331, 349/159, 5-6=-349/27 457/206 been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; orner (3) 0-0-12 to 12, Corner (3) 9-0-1 to 18-0-12 zone; ; end vertical left and and forces & MWFRS	IRC2015/TPI2014 6) * This truss H on the bottor 3-06-00 tall H chord and ar 7) All bearings 8) Provide mec bearing plate 8 and 13 lb 0 9) This truss de structural wc chord and 11 the bottom c LOAD CASE(S)	Matrix-AS mas been designed in chord in all areas by 2-00-00 wide win yo other members. are assumed to be hanical connection e capable of withst uplift at joint 6. usign requires that word sheathing be a 2" gypsum sheetro hord.	I for a liv s where II fit betw s SP No. a (by oth anding 1 a minim pplied d	re load of 20.0 a rectangle veen the bottc 2. ers) of truss to 13 lb uplift at jo um of 7/16" irectly to the to	opsf om o oint op					ROLLATIN
 DOL=1.60 3) Truss desi only. For see Stand- or consult 4) Gable required 	igned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig uires continuous bottoo	the plane of the trus I (normal to the face), d Details as applicab gner as per ANSI/TP	e,						10.5	and the second s		EER. FR. MILLER
5) Gable Stud	ds spaced at 2-0-0 oc.										Decembe	



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	V03	Valley	1	1	Job Reference (optional)	170065059

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:16 ID:wCPodoAtxzf9t_XTXBEyyuyCiQ6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

14-0-0

Scale = 1:27.9

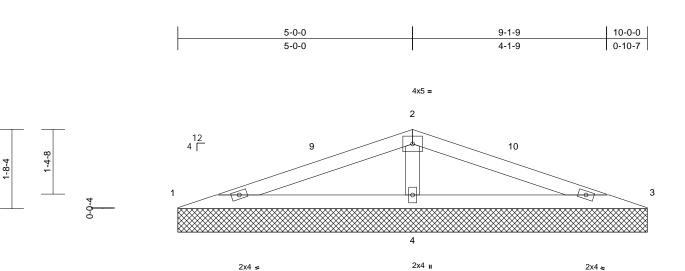
Scale = 1:27.9													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.49 0.47 0.16	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 43 lb	GRIP 244/190 FT = 20%
	Rigid ceiling directly	, 3=14-0-0, 4=14-0-0 C 9) C 21), 3=-16 (LC 20), C 11) C 20), 3=124 (LC 21)	9)	on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 16 lb uplift This truss de structural wo		as where will fit betw s. De SP No. Don (by oth standing 1 Ib uplift a tt a minim applied d	a rectangle veen the botto 2. ers) of truss t 6 lb uplift at j at joint 4. um of 7/16" irectly to the t	om co oint cop					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Com Tension 1-2=-200/629, 2-3=- 1-4=-537/220, 3-4=- 2-4=-755/319 ed roof live loads have	- 200/629 537/220											
this desigr 2) Wind: ASC		(3-second gust)											Un.

2) White AGCE 7-10, Volte T2/MpH (0-second gdst) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-12 to 3-0-12, Exterior (2) 3-0-12 to 7-0-12, Corner (3) 7-0-12 to 10-0-12, Exterior (2) 10-0-12 to 14-0-12 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Gable requires continuous bottom chord bearing.

5) Gable studs spaced at 4-0-0 oc.



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063
Q-2402834	V04	Valley	1	1	I70065060 Job Reference (optional)

Run: 8.73 S Oct 31 2024 Print: 8.730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:16 ID:Kn5xFqClEu1jkSG2CJofZXyCiQ3-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

Scale = 1:24.5						10-0-0)					
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	тс	0.24	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.24	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.09	Horiz(TL)	0.00	4	n/a	n/a		

LUMBER TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP N 2x4 SP N	0.2 0.3
TOP CHORD	Structural	l wood sheathing directly applied.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	1=10-0-0, 3=10-0-0, 4=10-0-0
	Max Horiz	1=-14 (LC 9)
	Max Uplift	1=-1 (LC 11), 3=-1 (LC 11), 4=-5 (LC 11)
	Max Grav	1=113 (LC 20), 3=113 (LC 21), 4=632 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-177/	/345, 2-3=-177/345
	1-4287/	162 3-4287/162

10.0

Code

BOT CHORD 1-4=-287/162. 3-4=-287/162 WEBS 2-4=-460/121

NOTES

BCDL

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; B=45ft; L=24ft; eave=4ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-12 to 3-0-12, Interior (1) 3-0-12 to 5-0-12, Exterior (2) 5-0-12 to 8-3-15, Interior (1) 8-3-15 to 10-0-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.

6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SP No.2 . 7)

Matrix-AS

Provide mechanical connection (by others) of truss to 8) bearing plate capable of withstanding 1 lb uplift at joint 1, 1 lb uplift at joint 3 and 5 lb uplift at joint 4.

This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

IRC2015/TPI2014

Weight: 29 lb

FT = 20%

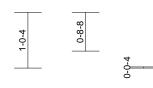
Page: 1

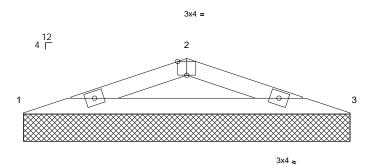
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design that the operating of the second se and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	VASQUEZ: 2024-SAN-063	
Q-2402834	V05	Valley	1	1	Job Reference (optional)	170065061

Run: 8,73 S Oct 31 2024 Print: 8,730 S Oct 31 2024 MiTek Industries, Inc. Mon Dec 09 09:08:16 ID:hluqIXGu2Rg0rD80?tOqGayCiQ_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


5-1-9


2-1-9

6-0-0

0-10-7

6-0-0

3x4 =

3-0-0

3-0-0

Scale =	1.21.2

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading (psf) TCLL (roof) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.27	DEFL Vert(LL)	in n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL 10.0	Lumber DOL	1.15	BC	0.25	Vert(TL)	n/a	-	n/a	999		
BCLL 0.0*	Rep Stress Incr	YES	WB	0.00	Horiz(TL)	0.01	3	n/a	n/a		
BCDL 10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 16 lb	FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood she BOT CHORD Rigid ceiling directly REACTIONS (size) 1=6-0-0, 3 Max Horiz 1=8 (LC 1 Max Uplift 1=-2 (LC Max Grav 1=240 (LC FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-578/177, 2-3=- BOT CHORD 1-3=-157/540 NOTES 1) Unbalanced roof live loads have this design. 2) Wind: ASCE 7-10; Vult=120mph Vasd=95mph; TCDL=6.0psf; BC B=45ft; L=24ft; eave=4ft; Cat. II; MWFRS (directional) and C-C EI cantilever left and right exposed right exposed; C-C for members a for reactions shown; Lumber DO DOL=1.60 3) Truss designed for wind loads in only. For studs exposed to wind see Standard Industry Gable En- or consult qualified building desig 4) Gable requires continuous bottoo 5) Gable studs spaced at 2-0-0 oc. 6) * This truss has been designed for on the bottom chord in all areas: 3-06-00 tall by 2-00-00 wide will chord and any other members. 7) All bearings are assumed to be S	e=6-0-0 0) 11), 3=-2 (LC 11) 1), 3=240 (LC 1) pression/Maximum 578/177 been considered for (3-second gust) DL=6.0psf; h=25ft; Exp B; Enclosed; terior (2) zone; end vertical left and and forces & MWFRS L=1.60 plate grip the plane of the truss (normal to the face), d Details as applicabl ner as per ANSI/TPI n chord bearing. or a live load of 20.0p where a rectangle it between the bottom	bearing plat and 2 lb upl 9) This truss d d. structural w chord and 1 the bottom o LOAD CASE(S) s e, 1.	esign requires that bod sheathing be a /2" gypsum sheetro chord.	anding 2 a minim oplied d	t lb uplift at jo um of 7/16" irectly to the t	int 1 top				SEA 0235 WGIN R. Decembe	

- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 7) All bearings are assumed to be SP No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

