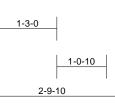


| RE: 2411-0618-A - The Farm at Neills Creek Lot 00<br>Site Information:<br>Project Customer: DRB Raleigh Project Name: The<br>Lot/Block: Subdivision<br>Model: Cooper III<br>Address: 503 Winding Creek Dr | 818 Soundside Rd<br>Edenton, NC 27932                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| City: Lillington State: NC<br>General Truss Engineering Criteria & Design Loads<br>Drawings Show Special Loading Conditions):                                                                             |                                                                                                                     |
| Design Code: IRC2021/TPI2014<br>Wind Code: ASCE 7-16<br>Wind Speed: 115 mph<br>Roof Load: 50.0 psf                                                                                                        | Design Program: MiTek 20/20 8.8<br>Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16<br>Floor Load: N/A psf |
| Mean Roof Height (feet): 25                                                                                                                                                                               | Exposure Category: B                                                                                                |
| No. Seal# Truss Name Date                                                                                                                                                                                 |                                                                                                                     |

| NO. | Seal#     | Truss Name | Date    |
|-----|-----------|------------|---------|
| 1   | 170003308 | FG2        | 12/5/24 |
| 2   | 170003309 | F4         | 12/5/24 |
| 3   | 170003310 | F8         | 12/5/24 |
| 4   | 170003311 | F2         | 12/5/24 |
| 5   | 170003312 | FG1        | 12/5/24 |
| 6   | 170003313 | F1         | 12/5/24 |
| 7   | 170003314 | FGE1       | 12/5/24 |
|     |           |            |         |

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters


My license renewal date for the state of North Carolina is December 31, 2024 **IMPORTANT NOTE:** The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction (a) lide the designs comply with ANSUTE (a) and (b) lide the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.



Gilbert, Eric

| Job         | Truss | Truss Type   | Qty | Ply | The Farm at Neills Creek Lot 00.0061 OWF |
|-------------|-------|--------------|-----|-----|------------------------------------------|
| 2411-0618-A | FG2   | Floor Girder | 1   | 1   | I70003308<br>Job Reference (optional)    |

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Thu Dec 05 09:28:17 ID:DwBLDAIDmz?1DPTTbRy3cXyCh?o-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



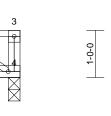
THA422

3x3 =

2

6

8


7

3x3 🛛

1

3x6 =

1-0-0



3x6 =

3x3 🛛

#### Scale = 1:20.1

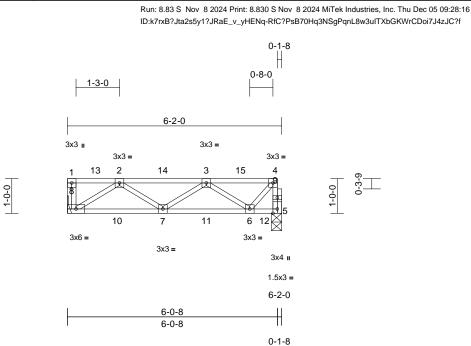
| 00010 - 1.20.1 |                                               |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
|----------------|-----------------------------------------------|----------------------|-----------------|-----------------|------|----------|-------|-------|--------|-----|---------------|-----------------|--|
| Loading        | (psf)                                         | Spacing              | 2-0-0           | CSI             |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP            |  |
| TCLL           | 40.0                                          | Plate Grip DOL       | 1.00            | TC              | 0.34 | Vert(LL) | -0.11 | 4-5   | >282   | 480 | MT20          | 244/190         |  |
| TCDL           | 10.0                                          | Lumber DOL           | 1.00            | BC              | 0.94 | Vert(CT) | -0.12 | 4-5   | >262   | 360 |               |                 |  |
| BCLL           | 0.0                                           | Rep Stress Incr      | YES             | WB              | 0.07 | Horz(CT) | 0.00  | 4     | n/a    | n/a |               |                 |  |
| BCDL           | 5.0                                           | Code                 | IRC2021/TPI2014 | Matrix-P        |      |          |       |       |        |     | Weight: 17 lb | FT = 20%F, 12%E |  |
| LUMBER         |                                               |                      | Uniform I       | oads (lb/ft)    |      |          |       |       |        |     |               |                 |  |
| TOP CHORD      | 2x4 SP No.2(flat)                             |                      |                 | 5=-10, 1-3=-100 |      |          |       |       |        |     |               |                 |  |
| BOT CHORD      | ( )                                           |                      |                 | ated Loads (lb) |      |          |       |       |        |     |               |                 |  |
| WEBS           | 2x4 SP No.3(flat)                             |                      |                 | =-183 (F)       |      |          |       |       |        |     |               |                 |  |
| BRACING        |                                               |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
| TOP CHORD      | Structural wood sheathing directly applied or |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
|                | 2-9-10 oc purlins, e                          |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
| BOT CHORD      |                                               | applied or 2-2-0 oc  |                 |                 |      |          |       |       |        |     |               |                 |  |
|                | bracing.                                      |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
| REACTIONS      | (size) 4=0-3-0,                               | 5= Mechanical        |                 |                 |      |          |       |       |        |     |               |                 |  |
|                | Max Grav 4=323 (L0                            | C 6), 5=318 (LC 3)   |                 |                 |      |          |       |       |        |     |               |                 |  |
| FORCES         | (lb) - Maximum Corr                           | npression/Maximum    |                 |                 |      |          |       |       |        |     |               |                 |  |
|                | Tension                                       |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
| TOP CHORD      | 1-5=-264/6, 3-4=-26                           | 2/20, 1-2=0/0, 2-3=0 | 0/0             |                 |      |          |       |       |        |     |               |                 |  |
| BOT CHORD      | 4-5=0/245                                     |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
| WEBS           | 2-5=-291/0, 2-4=-30                           | 6/0                  |                 |                 |      |          |       |       |        |     |               |                 |  |
| NOTES          |                                               |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
| 1) N/A         |                                               |                      |                 |                 |      |          |       |       |        |     |               |                 |  |
|                | are assumed to be: , J                        | oint 4 SP No.2 .     |                 |                 |      |          |       |       |        |     |               |                 |  |
| 5              |                                               | -                    |                 |                 |      |          |       |       |        |     |               |                 |  |

Refer to girder(s) for truss to truss connections.

- Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 5) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 6) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- Use Simpson Strong-Tie THA422 (Single Chord Girder) or equivalent at 1-5-7 from the left end to connect truss (es) to front face of top chord.
- 8) Fill all nail holes where hanger is in contact with lumber.
  9) In the LOAD CASE(S) section, loads applied to the face

of the truss are noted as front (F) or back (B).

- LOAD CASE(S) Standard
- 1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00






WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | The Farm at Neills Creek Lot 00.0061 OWF |
|-------------|-------|------------|-----|-----|------------------------------------------|
| 2411-0618-A | F4    | Floor      | 1   | 1   | I70003309<br>Job Reference (optional)    |



### Scale = 1:23.8

| TCLL 40.0 Plate Grip DOL 1.00 TC 0.59 Vert(LL) - |       |     | l/defl | L/U | PLATES        | GRIP            |
|--------------------------------------------------|-------|-----|--------|-----|---------------|-----------------|
|                                                  | -0.08 | 7-8 | >852   | 480 | MT20          | 244/190         |
| TCDL 10.0 Lumber DOL 1.00 BC 0.79 Vert(CT) -     | -0.09 | 7-8 | >799   | 360 |               |                 |
| BCLL 0.0 Rep Stress Incr YES WB 0.15 Horz(CT)    | 0.00  | 5   | n/a    | n/a |               |                 |
| BCDL 5.0 Code IRC2021/TPI2014 Matrix-P           |       |     |        |     | Weight: 33 lb | FT = 20%F, 12%E |

## LUMBER

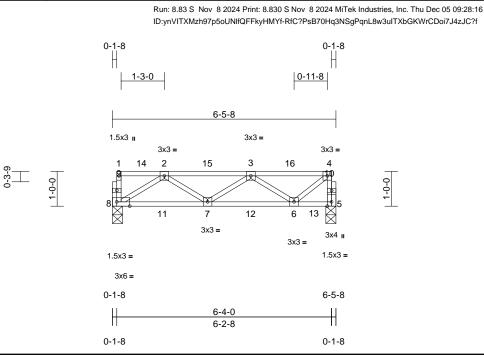
| 2x4 SP No.2(flat)                                                                     |
|---------------------------------------------------------------------------------------|
| 2x4 SP No.2(flat)                                                                     |
| 2x4 SP No.3(flat)                                                                     |
| 2x4 SP No.3(flat)                                                                     |
|                                                                                       |
| Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. |
| Rigid ceiling directly applied or 10-0-0 oc<br>bracing.                               |
| (size) 5=0-3-8, 8= Mechanical                                                         |
| Max Grav 5=323 (LC 16), 8=325 (LC 3)                                                  |
| (lb) - Maximum Compression/Maximum                                                    |
| Tension                                                                               |
| 1-8=-259/36, 4-5=-320/0, 1-2=0/0,                                                     |
| 2-3=-542/0, 3-4=-300/0                                                                |
| 7-8=0/392, 6-7=0/509, 5-6=0/45                                                        |
| 2-8=-464/0, 2-7=-62/285, 3-7=-151/195,                                                |
|                                                                                       |

#### NOTES

1) Bearings are assumed to be: , Joint 5 SP No.3 .

3-6=-357/0, 4-6=0/397

- 2) Refer to girder(s) for truss to truss connections.
- Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 4) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.
- LOAD CASE(S) Standard




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type | Qty | Ply | The Farm at Neills Creek Lot 00.0061 OWF |
|-------------|-------|------------|-----|-----|------------------------------------------|
| 2411-0618-A | F8    | Floor      | 1   | 1   | I70003310<br>Job Reference (optional)    |



Scale = 1:23.8

# Plate Offsets (X, Y): [8:0-4-8,Edge]

| Loading<br>TCLL      | (psf)<br>40.0      | Spacing<br>Plate Grip DOL             | 1-7-3<br>1.00                 | CSI<br>TC            | 0.95         | DEFL<br>Vert(LL)     | in<br>-0.08   | (loc)<br>7-8 | l/defl<br>>889 | L/d<br>480 |               | <b>GRIP</b><br>244/190 |
|----------------------|--------------------|---------------------------------------|-------------------------------|----------------------|--------------|----------------------|---------------|--------------|----------------|------------|---------------|------------------------|
| TCDL<br>BCLL<br>BCDL | 10.0<br>0.0<br>5.0 | Lumber DOL<br>Rep Stress Incr<br>Code | 1.00<br>NO<br>IRC2021/TPI2014 | BC<br>WB<br>Matrix-P | 0.97<br>0.28 | Vert(CT)<br>Horz(CT) | -0.10<br>0.01 | 7-8<br>5     | >776<br>n/a    | 360<br>n/a | Weight: 33 lb | FT = 20%F, 12%E        |
|                      | 3.0                | Code                                  |                               | bads (lb/ft)         |              | I                    |               |              |                |            | Weight. 55 lb | 1 1 - 20701, 1270L     |

Vert: 5-8=-8, 1-4=-170

| LOWIDER   |                                               |
|-----------|-----------------------------------------------|
| TOP CHORD | 2x4 SP No.2(flat)                             |
| BOT CHORD | 2x4 SP No.2(flat)                             |
| WEBS      | 2x4 SP No.3(flat)                             |
| OTHERS    | 2x4 SP No.3(flat)                             |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 6-0-0 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |
|           | bracing.                                      |
| REACTIONS | (size) 5=0-3-8, 8=0-3-8                       |
|           | Max Grav 5=597 (LC 18), 8=604 (LC 15)         |
| FORCES    | (Ib) - Maximum Compression/Maximum            |
|           | Tension                                       |
| TOP CHORD | 1-8=-294/6, 4-5=-594/0, 1-2=-21/0,            |
|           | 2-3=-1026/0, 3-4=-617/0                       |
| BOT CHORD | 7-8=0/783, 6-7=0/1095, 5-6=0/84               |
| WEBS      | 2-8=-924/0, 2-7=0/394, 3-7=-267/83,           |
|           |                                               |

### NOTES

1) All bearings are assumed to be SP No.3 .

Bearing at joint(s) 8, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 2) designer should verify capacity of bearing surface.

3-6=-677/0, 4-6=0/708

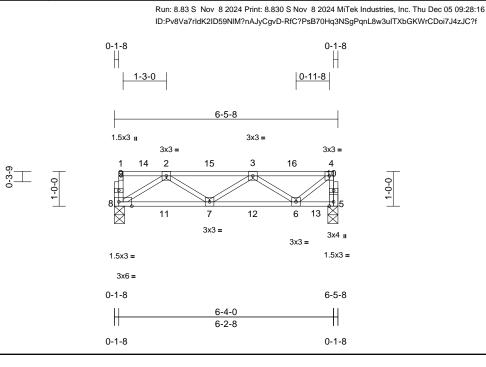
- 3) Load case(s) 1 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.
- 4) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Dead + Floor Live (balanced): Lumber Increase=1.00, 1) Plate Increase=1.00




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Edenton, NC 27932

| Job         | Truss | Truss Type | Qty | Ply | The Farm at Neills Creek Lot 00.0061 OWF |
|-------------|-------|------------|-----|-----|------------------------------------------|
| 2411-0618-A | F2    | Floor      | 6   | 1   | I70003311<br>Job Reference (optional)    |



Scale = 1:23.8

Plate Offsets (X, Y): [8:0-4-8,Edge]

| Loading | (psf) | Spacing         | 1-7-3           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d | PLATES        | GRIP            |
|---------|-------|-----------------|-----------------|----------|------|----------|-------|-------|--------|-----|---------------|-----------------|
| TCLL    | 40.0  | Plate Grip DOL  | 1.00            | TC       | 0.64 | Vert(LL) | -0.08 | 7-8   | >889   | 480 | MT20          | 244/190         |
| TCDL    | 10.0  | Lumber DOL      | 1.00            | BC       | 0.80 | Vert(CT) | -0.09 | 7-8   | >832   | 360 |               |                 |
| BCLL    | 0.0   | Rep Stress Incr | YES             | WB       | 0.16 | Horz(CT) | 0.00  | 5     | n/a    | n/a |               |                 |
| BCDL    | 5.0   | Code            | IRC2021/TPI2014 | Matrix-P |      |          |       |       |        |     | Weight: 33 lb | FT = 20%F, 12%E |

LUMBER

| LOWIDER   |                                               |
|-----------|-----------------------------------------------|
| TOP CHORD | 2x4 SP No.2(flat)                             |
| BOT CHORD | 2x4 SP No.2(flat)                             |
| WEBS      | 2x4 SP No.3(flat)                             |
| OTHERS    | 2x4 SP No.3(flat)                             |
| BRACING   |                                               |
| TOP CHORD | Structural wood sheathing directly applied or |
|           | 6-0-0 oc purlins, except end verticals.       |
| BOT CHORD | Rigid ceiling directly applied or 10-0-0 oc   |
|           | bracing.                                      |
| REACTIONS | (size) 5=0-3-8, 8=0-3-8                       |
|           | Max Grav 5=326 (LC 18), 8=327 (LC 15)         |
| FORCES    | (lb) - Maximum Compression/Maximum            |
|           | Tension                                       |
| TOP CHORD | 1-8=-260/40, 4-5=-321/0, 1-2=-19/3,           |
|           | 2-3=-569/0, 3-4=-355/0                        |
| BOT CHORD | 7-8=0/401, 6-7=0/559, 5-6=0/45                |
| WEBS      | 2-8=-474/0, 2-7=-50/301, 3-7=-172/178,        |
|           | 3-6=-342/9, 4-6=0/414                         |
| NOTES     |                                               |

#### NOTES

1) All bearings are assumed to be SP No.3 .

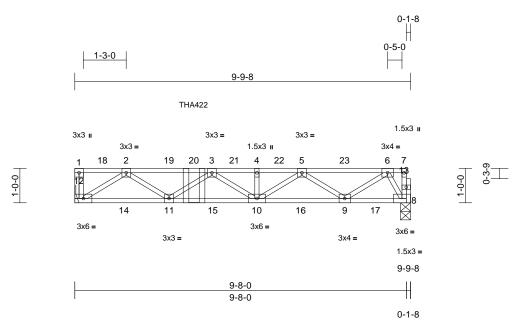
- Bearing at joint(s) 8, 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building 2) designer should verify capacity of bearing surface.
- 3) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




| Job         | Truss | Truss Type   | Qty | Ply | The Farm at Neills Creek Lot 00.0061 OWF |
|-------------|-------|--------------|-----|-----|------------------------------------------|
| 2411-0618-A | FG1   | Floor Girder | 1   | 1   | I70003312<br>Job Reference (optional)    |

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Thu Dec 05 09:28:16

ID:NMBR5ZPs\_4VOyFCyQo\_ytNyHMYc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural, LLC, Thurmont, MD - 21788.



Scale - 1.23.8

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

2) 3)

4)

5)

6)

(lb) - Maximum Compression/Maximum

1-12=-258/35, 7-8=-239/170, 1-2=0/0, 2-3=-1326/0, 3-4=-1623/0, 4-5=-1623/0,

11-12=0/883, 10-11=0/1730, 9-10=0/1431,

2-12=-1047/0, 2-11=0/541, 3-11=-493/0, 3-10=-288/179, 4-10=-247/71, 5-10=-95/340, 5-9=-619/0, 6-9=0/660, 6-8=-737/0

5-6=-924/0, 6-7=-17/12

1) Bearings are assumed to be: , Joint 8 SP No.3 . Refer to girder(s) for truss to truss connections.

Bearing at joint(s) 8 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid

panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

Recommend 2x6 strongbacks, on edge, spaced at 10-00-00 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means. CAUTION, Do not erect truss backwards.

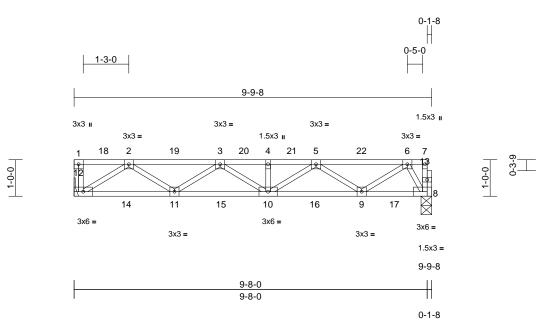
Tension

8-9=0/383

| Loading   | (psf)                                   | Spacing                | 2-0-0    |                                                        | CSI               |               | DEFL          | in    | (loc) | l/defl | L/d | PLATES        | GRIP            |
|-----------|-----------------------------------------|------------------------|----------|--------------------------------------------------------|-------------------|---------------|---------------|-------|-------|--------|-----|---------------|-----------------|
| TCLL      | 40.0                                    | Plate Grip DOL         | 1.00     |                                                        | TC                | 0.74          | Vert(LL)      | -0.09 | 11-12 | >999   | 480 | MT20          | 244/190         |
| TCDL      | 10.0                                    | Lumber DOL             | 1.00     |                                                        | BC                | 0.94          | Vert(CT)      | -0.10 | 10-11 | >999   | 360 |               |                 |
| BCLL      | 0.0                                     | Rep Stress Incr        | NO       |                                                        | WB                | 0.31          | Horz(CT)      | 0.02  | 8     | n/a    | n/a |               |                 |
| BCDL      | 5.0                                     | Code                   | IRC2021  | /TPI2014                                               | Matrix-S          |               |               |       |       |        |     | Weight: 51 lb | FT = 20%F, 12%E |
| LUMBER    |                                         |                        | 7)       | Use Simpso                                             | on Strong-Tie TH  | A422 (Sind    | le Chord Gi   | rder) |       |        |     |               |                 |
| TOP CHORD | 2x4 SP No.2(flat)                       |                        | ,        |                                                        | nt at 3-5-12 from |               | •             | ,     |       |        |     |               |                 |
| BOT CHORD | 2x4 SP No.2(flat)                       |                        |          | (es) to back                                           | face of top choi  | rd.           |               |       |       |        |     |               |                 |
| WEBS      | 2x4 SP No.3(flat)                       |                        | 8)       | Fill all nail h                                        | oles where hang   | ger is in cor | tact with lum | nber. |       |        |     |               |                 |
| OTHERS    | 2x4 SP No.3(flat)                       |                        | 9)       | In the LOAD                                            | CASE(S) secti     | on, loads a   | oplied to the | face  |       |        |     |               |                 |
| BRACING   |                                         |                        |          | of the truss                                           | are noted as fro  | nt (F) or ba  | ck (B).       |       |       |        |     |               |                 |
| TOP CHORD | Structural wood she                     | athing directly applie | ed or LC | AD CASE(S                                              | Standard          |               |               |       |       |        |     |               |                 |
|           | 6-0-0 oc purlins, except end verticals. |                        |          | 1) Dead + Floor Live (balanced): Lumber Increase=1.00, |                   |               |               |       |       |        |     |               |                 |
| BOT CHORD |                                         |                        |          | Plate Incre                                            | ase=1.00          |               |               |       |       |        |     |               |                 |
| bracing.  |                                         |                        |          | Uniform Loads (Ib/ft)                                  |                   |               |               |       |       |        |     |               |                 |
| REACTIONS | (size) 8=0-3-8.                         | 12= Mechanical         |          | Vert: 8-                                               | 12=-10, 1-7=-10   | 0             |               |       |       |        |     |               |                 |
|           | ()                                      | C 1), 12=606 (LC 1)    |          |                                                        | ted Loads (lb)    |               |               |       |       |        |     |               |                 |

Concentrated Loads (lb) Vert: 20=-125 (B)




Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Derive use, the building designer host verify the applications of design had been and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

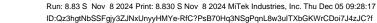
| Job         | Truss | Truss Type | Qty Ply The Farm at Neil |   | The Farm at Neills Creek Lot 00.0061 OWF |
|-------------|-------|------------|--------------------------|---|------------------------------------------|
| 2411-0618-A | F1    | Floor      | 4                        | 1 | I70003313<br>Job Reference (optional)    |

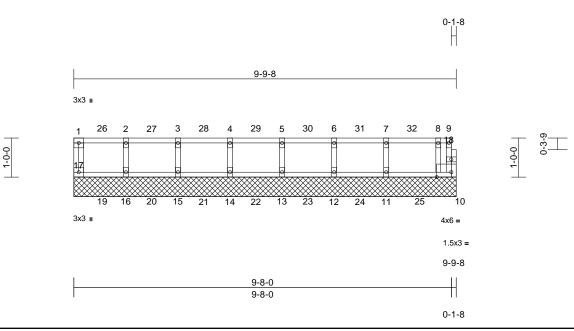
# Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Thu Dec 05 09:28:14 ID:ynVITXMzh97p5oUNIfQFFkyHMYf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



### Scale = 1:23.8

|                           |                                                       |                        |                 | _        |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|---------------------------|-------------------------------------------------------|------------------------|-----------------|----------|------|----------|-------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| Loading                   | (psf)                                                 | Spacing                | 1-7-3           | CSI      |      | DEFL     | in    | (loc) | l/defl | L/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLATES        | GRIP            |
| TCLL                      | 40.0                                                  | Plate Grip DOL         | 1.00            | TC       | 0.59 | Vert(LL) | -0.09 | 11-12 | >999   | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MT20          | 244/190         |
| TCDL                      | 10.0                                                  | Lumber DOL             | 1.00            | BC       | 0.82 | Vert(CT) | -0.10 | 11-12 | >999   | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
| BCLL                      | 0.0                                                   | Rep Stress Incr        | YES             | WB       | 0.22 | Horz(CT) | 0.01  | 8     | n/a    | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
| BCDL                      | 5.0                                                   | Code                   | IRC2021/TPI2014 | Matrix-S |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight: 51 lb | FT = 20%F, 12%E |
| LUMBER                    |                                                       |                        |                 |          |      |          | -     |       | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| TOP CHORD                 | 2x4 SP No.2(flat)                                     |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| BOT CHORD                 |                                                       |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| WEBS                      | 2x4 SP No.3(flat)                                     |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| OTHERS                    | 2x4 SP No.3(flat)                                     |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| BRACING                   | ,                                                     |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| TOP CHORD                 | ) Structural wood she                                 | eathing directly appli | ed or           |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | 6-0-0 oc purlins, ex                                  |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| BOT CHORD                 |                                                       |                        | с               |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | bracing.                                              |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| REACTIONS                 | (size) 8=0-3-8,                                       | 12= Mechanical         |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | Max Grav 8=415 (L                                     | C 1), 12=420 (LC 1)    |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| FORCES                    |                                                       | npression/Maximum      |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | Tension                                               |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| TOP CHORD                 |                                                       |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | 2-3=-880/0, 3-4=-11                                   |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | 5-6=-667/0, 6-7=-17                                   |                        | 22              |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| BOT CHORD                 | 11-12=0/595, 10-11<br>8-9=0/285                       | =0/1133, 9-10=0/10     | 22,             |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| WEBS                      |                                                       | 0/429, 3-11=-330/50    |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| WEBS                      | 3-10=-220/225, 4-10                                   |                        | ,               |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | 5-10=-133/303, 5-9                                    |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
|                           | 6-8=-564/0                                            | 100,0,0,00,000,100,    |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                 |
| NOTES                     |                                                       |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | minin         | 11111           |
| 1) Bearings               | are assumed to be: , J                                | oint 8 SP No.3 .       |                 |          |      |          |       |       |        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WAH CA        | Rollin          |
|                           | girder(s) for truss to tru                            |                        |                 |          |      |          |       |       |        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R             | Stall -         |
|                           | at joint(s) 8 considers p                             |                        | •               |          |      |          |       |       |        | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | U. FESS       | 2N Sin          |
|                           | SI/TPI 1 angle to grain                               |                        |                 |          |      |          |       |       | 4      | ŨĎ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | 1. 4.           |
|                           | should verify capacity                                |                        | a ta al         |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .Q.           | 1 1 2           |
|                           | s has been designed fo                                |                        |                 |          |      |          |       |       | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ś SEA         | 1 : =           |
|                           | 50.0lb live and 3.0lb de<br>nd at all panel points al |                        |                 |          |      |          |       |       | Ξ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | • -             |
|                           | chord, nonconcurrent w                                |                        |                 |          |      |          |       |       | 8      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0363          | 22 : 3          |
|                           | end 2x6 strongbacks, o                                |                        |                 |          |      |          |       |       |        | - 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>:</b>      | 1 2             |
|                           | oc and fastened to eac                                |                        |                 |          |      |          |       |       |        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·             | A 1. 3          |
| (0.131" X                 | 3") nails. Strongbacks                                | s to be attached to w  | alls            |          |      |          |       |       |        | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NGIN          | FERMAN          |
|                           | uter ends or restrained                               |                        |                 |          |      |          |       |       |        | and the second sec | AC AGIN       | E. C. N.        |
| <ol><li>CAUTION</li></ol> | N, Do not erect truss ba                              | ackwards.              |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Decomb        | ILBUIN          |
| LOAD CASE                 | (S) Standard                                          |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11111         |                 |
|                           |                                                       |                        |                 |          |      |          |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Decemb        | or 5 2024       |


December 5,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



| Job         | Truss | Truss Type            | Qty Ply |   | The Farm at Neills Creek Lot 00.0061 OWF |
|-------------|-------|-----------------------|---------|---|------------------------------------------|
| 2411-0618-A | FGE1  | Floor Supported Gable | 1       | 1 | I70003314<br>Job Reference (optional)    |





## Scale = 1:23.8

Plate Offsets (X, Y): [10:0-4-8,Edge]

|                                                                                                      | (/(, / /): [/0.0 / 0,20g0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .1                                                                                                                                                                              |                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Loading<br>TCLL                                                                                      | (psf)<br>40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Spacing<br>Plate Grip DOL                                                                                                                                                       | 1-7-3<br>1.00                        |                                                                                                                                                                                                                                                           | CSI<br>TC                                                                                                                                                                                                                                                                                                                                                                            | 0.29                                                                                                                                                                                                    | DEFL<br>Vert(LL)                                                                                                                                                                                                                                   | in<br>n/a                                      | (loc) | l/defl     | L/d<br>999 | PLATES<br>MT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>GRIP</b><br>244/190 |
| TCDL                                                                                                 | 40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lumber DOL                                                                                                                                                                      | 1.00                                 |                                                                                                                                                                                                                                                           | BC                                                                                                                                                                                                                                                                                                                                                                                   | 0.29                                                                                                                                                                                                    | Vert(LL)                                                                                                                                                                                                                                           | n/a<br>n/a                                     | -     | n/a<br>n/a | 999<br>999 | 101120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 244/190                |
| BCLL                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rep Stress Incr                                                                                                                                                                 | YES                                  |                                                                                                                                                                                                                                                           | WB                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                    | Horiz(TL)                                                                                                                                                                                                                                          | 0.00                                           | 10    | n/a        | n/a        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| BCDL                                                                                                 | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Code                                                                                                                                                                            |                                      | 1/TPI2014                                                                                                                                                                                                                                                 | Matrix-R                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                    | 110112(12)                                                                                                                                                                                                                                         | 0.00                                           | 10    | n/a        | Π/a        | Weight: 41 lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FT = 20%F, 12%E        |
|                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                 |                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    | -                                              |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                      |
| LUMBER<br>TOP CHORE<br>BOT CHORE<br>WEBS<br>OTHERS<br>BRACING<br>TOP CHORE<br>BOT CHORE<br>REACTIONS | <ul> <li>2x4 SP No.2(flat)</li> <li>2x4 SP No.3(flat)</li> <li>2x4 SP No.3(flat)</li> <li>2x4 SP No.3(flat)</li> <li>Structural wood she</li> <li>6-0-0 oc purlins, ex</li> <li>Rigid ceiling directly bracing.</li> <li>(size) 10=9-9-8.</li> <li>13=9-9-8.</li> <li>16=9-9-8.</li> <li>Max Uplift 10=-1 (LC 13=-1 (LC 16=-27 (L 16=-27 (L 12=283 (I 12=28) (I</li></ul> | r applied or 6-0-0 oc<br>, 11=9-9-8, 12=9-9-8,<br>, 14=9-9-8, 15=9-9-8,<br>, 17=9-9-8<br>0 9), 12=-19 (LC 26),<br>2 25), 14=-1 (LC 24),<br>, C 11), 17=-12 (LC 2 <sup>4</sup> ) | 8)<br>9)<br>1)<br>33), 1(<br>31), 1( | Bearing at jo<br>using ANSI/<br>designer shot<br>Provide mec<br>bearing plate<br>17, 1 lb uplift<br>at joint 14, 1<br>12.<br>This truss ha<br>load of 250.0<br>panels and a<br>Bottom Chor<br>Recommend<br>10-00-00 oc<br>(0.131" X 3")<br>at their outer | are assumed to b<br>int(s) 10 consider<br>IPI 1 angle to gra<br>vuld verify capacit<br>hanical connectio<br>capable of withs<br>at joint 10, 27 lb<br>lb uplift at joint 13<br>is been designed<br>lb live and 3.0lb o<br>it all panel points<br>d, nonconcurrent<br>2x6 strongbacks<br>and fastened to e<br>nails. Strongbac<br>ends or restraine<br>to not erect truss<br>Standard | s parallel<br>in formula<br>y of bearin<br>n (by oth<br>tanding 1<br>uplift at js<br>3 and 19 l<br>for a mov<br>dead loca<br>along the<br>with any<br>, on edge<br>each truss<br>ks to be<br>ed by othe | I to grain valu<br>a. Building<br>ing surface.<br>ers) of truss t<br>2 lb uplift at j<br>bint 16, 1 lb u<br>lb uplift at joir<br>ving concentr<br>tited at all mid<br>other live loa<br>a, spaced at<br>s with 3-10d<br>attached to w<br>er means. | to<br>oint<br>plift<br>ated<br>I<br>and<br>ds. |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| FORCES                                                                                               | (lb) - Maximum Con<br>Tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LC 28), 17=270 (LC 2<br>npression/Maximum                                                                                                                                       | 27)                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| TOP CHORD                                                                                            | 0 1-17=-263/20, 9-10=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5, 4-5=-54/5, 5-6=-54                                                                                                                                                           | /5,                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                |       |            |            | TH CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ROL                    |
| BOT CHORD                                                                                            | 0 16-17=-5/54, 15-16=<br>13-14=-5/54, 12-13=<br>10-11=-5/54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | , , ,                                                                                                                                                                           |                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                |       | 4          | in         | OFES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dart                   |
| WEBS                                                                                                 | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =-273/10, 4-14=-272/<br>=-271/19, 7-11=-276/                                                                                                                                    | ,                                    | SEAL<br>036322                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                |       |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |
| indicated<br>2) Gable red<br>3) Truss to<br>braced a                                                 | s are 1.5x3 (  ) MT20 ur<br>l.<br>quires continuous botto<br>be fully sheathed from o<br>gainst lateral movemen<br>uds spaced at 1-4-0 oc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m chord bearing.<br>one face or securely<br>t (i.e. diagonal web).                                                                                                              |                                      |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                    |                                                |       | 1111       |            | in the second se | EEREAL                 |

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



December 5,2024

Page: 1

