

Trenco RE: 2411-0163-A - The Farm at Neills Creek Lot 00.0058 818 Soundside Rd Site Information: Edenton, NC 27932 Project Customer: DRB Raleigh/Durham Project Name: The Farm at Neills Creek Lot 00.0058 Subdivision: The Farm at Neills Creek Lot/Block: 00.0058 Model: Address: 339 Winding Creek Dr City: Lillington State: NC General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions): Design Code: IRC2021/TPI2014 Design Program: MiTek 20/20 8.8 Wind Code: ASCE 7-16 Design Method: MWFRS (Envelope)/C-C hybrid Wind ASCE 7-16 Wind Speed: 120 mph Floor Load: N/A psf Roof Load: 40.0 psf Exposure Category: B Mean Roof Height (feet): 25

No.	Seal#	Truss Name	Date
No. 12345678910112314 167189201222	Seal# 169846326 169846327 169846329 169846330 169846331 169846333 169846333 169846335 169846335 169846336 169846339 169846340 169846340 169846343 169846343 169846345 169846345 169846345	Truss Name C2G C2 C1G C1 G1G G1G G1G G2G P1G P1G B1GR A1G A1B A1A A1A A1SG A2G A2 V2	Date 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24 11/27/24
23	169846348	V1	11/27/24

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision based on the parameters

My license renewal date for the state of North Carolina is December 31, 2024 **IMPORTANT NOTE:** The seal on these truss component designs is a continue to that the engineer named is licensed in the jurisdiction (a) is a continue to the seal of th shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	C2G	Common Supported Gable	1	1	Job Reference (optional)	169846326

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:42 ID:VwLFzhGyrj2hYtejfzosKwyGxC0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12-7-0

DEFL

in

n/a

n/a

0.00

(loc)

9

Coolo	1.40.0	
Scale :	= 1:40.9	

Loading

TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1:	20.0 5.4/20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr Code	1.15 1.15 YES IRC202	1/TPI2014	TC BC WB Matrix-AS	0.22 0.23 0.10	Vert(LL) Vert(CT) Horz(CT)		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N Structural except er Rigid ceili (size) Max Horiz Max Uplift Max Grav	o.2 o.3 o.3 l wood shea d verticals. ing directly 9=12-7-0, 15=12-7-0 15=-82 (L1 10=-22 (L1 13=-7 (LC 15=-9 (LC 9=324 (LC 11=334 (L 13=331 (L	athing directly applied applied. 10=12-7-0, 11=12-7-), 13=12-7-0, 14=12-7) C 12) C 17), 11=-7 (LC 17), 16), 14=-22 (LC 16), 12) C 69), 10=334 (LC 68) C 67), 12=324 (LC 66) C 65), 14=344 (LC 66)	2) 4, 0, 7-0, 4) (), 5) 6), 6), 6)	Wind: ASCE Vasd=95mpl II; Exp B; En (3E) 0-1-12 t Corner(3R) 6 zone; cantile and right exp MWFRS for grip DOL=1.0 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0	7-16; Vult=120r h; TCDL=6.0psf; closed; MWFRS o 3-1-12, Exteric 5-3-8 to 9-3-8, E: ver left and right bosed;C-C for me reactions shown 60 med for wind load dis exposed to w d Industry Gable ialified building c 7-16; Pr=20.0 p; 0L = 1.15); IS=1 0; CS=1.00; Ct=1 snow loads have as been designed psf or 2.00 times	nph (3-sec BCDL=6.1 (envelope r(2N) 3-1. tterior(2N) exposed ambers an ; Lumber I s in the pl. <i>vi</i> nd (norm End Deta lesigner a: ssf (roof LL sf; Pf=15.4 .0; Rough .10 e been coi d for great s fat roof I	cond gust) Opsf; h=25ft; (and C-C Co -12 to 6-3-8, 9-3-8 to 13-7; end vertical d forces & DOL=1.60 pla ane of the tru al to the face ils as applical s per ANSI/TF 2: Lum DOL=1 4 psf (Lum DOL=1 4 psf (Lum DOL=1 ansidered for the er of min roof oad of 15.4 ps		
FORCES	(lb) - Max Tension	imum Com	pression/Maximum	7)	overhangs n Plates check	on-concurrent w ed for a plus or	ith other liv minus 5 de	ve loads. egree rotation		
I OP CHORD	1-15=-274 3-4=-93/1 6-7=-112/	4/46, 1-2=-' 55, 4-5=-94 '43, 7-8=0/4	4/155, 5-6=-73/103, 4/1, 7-9=-303/117	8) 9)	about its cen Gable require Truss to be f	iter. es continuous bo ully sheathed fro	ottom chor	d bearing.		
BOT CHORD	14-15=-30 11-12=-30	6/47, 13-14 6/47, 10-11	=-36/47, 12-13=-36/4 =-36/47, 9-10=-36/47	7, 10	braced agair	spaced at 2-0-0	nent (i.e. d oc.	liagonal web)		
WEBS	4-12=-262 5-11=-280	2/4, 3-13=-2 6/81, 6-10=	285/79, 2-14=-293/11 -286/98	9, 11	 Gable studs spaced at 2-0-0 oc. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live lo 					

2-0-0

NOTES

1) Unbalanced roof live loads have been considered for this design.

(psf)

Spacing

Cat. orner 7-0 left ate

CSI

- ss e), ble PI 1.
- 1.15 DL = lly
- his
- live sf on
- ads
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) All bearings are assumed to be SP No.2.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 9 lb uplift at joint 15, 7 lb uplift at joint 13, 22 lb uplift at joint 14, 7 lb uplift at joint 11 and 22 lb uplift at joint 10.

15) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

Weight: 64 lb

PLATES

MT20

GRIP

244/190

FT = 20%

Page: 1

16) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

l/defl

n/a 999

n/a

n/a n/a

L/d

999

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	C2	Common	4	1	Job Reference (optional)	169846327

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:42 ID:YBbMjxDNK_41cVV?3BkTlayGxDN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	6-3-8	12-7-0	
Scale = 1:42	6-3-8	6-3-8	
Plate Offsets (X, Y): [3:0-5-8,0-1-8]			

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.67	Vert(LL)	-0.13	6-7	>999	360	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.78	Vert(CT)	-0.15	5-6	>954	240			
TCDL	10.0	Rep Stress Incr	YES		WB	0.12	Horz(CT)	0.00	5	n/a	n/a			
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-AS		Wind(LL)	0.00	6	>999	240			
BCDL	10.0											Weight: 69 lb	FT = 20%	
LUMBER			5)	This truss ha	as been desiane	d for areat	er of min roc	f live						
TOP CHORD	2x4 SP No.2		- /	load of 12.0	psf or 2.00 time	s flat roof l	oad of 15.4 p	osf on						
BOT CHORD	2x4 SP No.2	No.2 overhangs non-concurrent with other live loads.												
WEBS	2x4 SP No.3 *Excep	7-1,5-3:2x6 SP No.2 6) Plates checked for a plus or minus 5 degree rotation												
BRACING				about its cen	iter.									
TOP CHORD	Structural wood she	athing directly applie	ed, 7)	7) This truss has been designed for a 10.0 psf bottom										
	except end verticals			chord live loa	ad nonconcurre	nt with any	other live lo	ads.						
BOT CHORD	Rigid ceiling directly	applied.	8)	* This truss h	has been desigr	hed for a liv	e load of 20	.0pst						
REACTIONS	(size) 5=0-3-8, 7	7=0-3-8		On the botton	n chord in all ar	eas where	a rectangle	tom						
	Max Horiz 7=-83 (LC	: 12)		shord and ar	Dy 2-00-00 wide	will lit betw	veen the bot	lom						
	Max Grav 5=562 (LC	C 2), 7=494 (LC 44)	Q)		are assumed to	he SP No.	2							
FORCES	(lb) - Maximum Com	pression/Maximum	1()) This truss ha	ale assumed to is been designe	d for a mo	vina concent	rated						
	Tension			load of 250 (lb live and 3 0	o dead loca	ated at all mi	d						
TOP CHORD	1-2=-552/76, 2-3=-5	57/77, 3-4=0/51,		panels and a	at all panel point	s along the	e Top Chord	and						
	1-7=-456/81, 3-5=-5	38/125		Bottom Chor	d. nonconcurre	nt with anv	other live lo	ads.						
BOT CHORD	6-7=-57/306, 5-6=-4	9/386	11) This truss de	sign requires th	at a minim	um of 7/16"							
WEBS	2-6=0/314, 1-6=-11/2	249, 3-6=-91/243		structural wo	od sheathing b	e applied d	irectly to the	top						
NOTES				chord and 1/	2" gypsum shee	etrock be a	pplied direct	ly to						
 Inholonoo 	d roof live loade have	heen considered for		the bottom c	hord.									

 Unbalanced roof live loads have been considered for this design.

 Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-12 to 3-2-12, Interior (1) 3-2-12 to 6-3-8, Exterior(2R) 6-3-8 to 9-3-8, Interior (1) 9-3-8 to 13-7-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Unbalanced snow loads have been considered for this design.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	C1G	Monopitch Supported Gable	1	1	Job Reference (optional)	169846328

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:41 ID:1pua1b4z3JUB5AGb4XVaX2yGxAz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:36 Plate Offsets (X, Y): [2:0-3-14,0-0-15]

		-											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP	912014	CSI TC BC WB Matrix-AS	0.46 0.59 0.61	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.06 -0.08 0.01 0.02	(loc) 8-9 8-9 8 8-9	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 52 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 30T CHORD WEBS DTHERS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD 30T CHORD 30T CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Left 2x4 SP No.3 1 Structural wood sheat except end verticals. Rigid ceiling directly (size) 2=0-3-0,8 Max Horiz 2=71 (LC Max Uplift 2=-80 (LC Max Grav 2=470 (LC (lb) - Maximum Com Tension 1-2=0/20, 2-4=-763/ 5-6=-82/37, 6-7=-63/ 2-11=-429/719, 8-9= 5-10=-80/275, 5-13= 12=13=-705/396, 8-1	I-6-0 athing directly applied applied. B= Mechanical 15) 12), 8=-64 (LC 12) 57), 8=448 (LC 46) pression/Maximum 364, 4-5=-727/371, '50, 7-8=-279/48 1=-429/719, -429/719, -210/400, 2=-742/416.	3) TC Pl: 1: Ex 4) Ur de 5) Th da 5) Th da 5) Th ab 7) Gr 8) Th 6) Pl: ab 7) Gr 8) Th 9) * 1 on 3-1 10 Be 11) Re 12) Pr be 8	CLL: ASCE ate DOL=1 15 Plate Do (p.; Ce=1.0 hbalanced : sign. his truss ha ad of 12.0 p verhangs no ates check bout its cen able studs : his truss ha nord live loa This truss ha nord live loa This truss ha nord live loa this truss ha nord all b hord and an earing are efer to girdo oaving plate	7-16; Pr=20.0 ps 15); Pg=20.0 ps DL = 1.15); Is=1.0; ; CS=1.00; Ct=1. snow loads have s been designed osf or 2.00 times on-concurrent wit def or a plus or m ter. spaced at 2-0-0 c s been designed dn onconcurrent nas been designed n chord in all area y 2-00-00 wide w yo other members assumed to be: er(s) for truss to the nanical connection capable of withs	sf (roof LL f; Pf=15.4 D; Rough 10 been cor for greate flat roof lc h other lin ininus 5 de roc. for a 10.0 with any d for a liv as where iill fit betw s. Joint 2 SF russ conr n (by oth tanding 6	: Lum DOL= psf (Lum DO Cat B; Partia isidered for t er of min roo aad of 15.4 p re loads. gree rotation 0 psf bottom other live load e load of 20. a rectangle reen the bott P No.2 . ections. ers) of truss 4 lb uplift at	1.15 OL = ally f live f live sf on n ads. 0psf om to					
NOTES 1) Wind: AS Vasd=95r II; Exp B; Exterior(2 zone; can and right members Lumber D 2) Truss des only. For see Stanc	6-12=-155/66, 9-13= CE 7-16; Vult=120mph nph; TCDL=6.0psf; BCI Enclosed; MWFRS (en E) -1-0-0 to 2-0-0, Inter tilever left and right exp exposed; porch left and and forces & MWFRS : OL=1.60 plate grip DO igned for wind loads in studs exposed to wind lard Industry Gable For	-58/138, 4-11=-121/1 (3-second gust) DL=6.0psf; h=25ft; C; velope) and C-C ior (1) 2-0-0 to 9-9-12 osed ; end vertical le I right exposed;C-C fc for reactions shown; L=1.60 the plane of the truss (normal to the face), 1 Details as applicable	25 13) Or rec UF at. do 14) Th 2 loa ft pa 5 tr ba 15) Th 5 tr 5 th the the the the the the the the the	ne H2.5A S commende PLIFT at jt(bes not con his truss ha ad of 250.0 anels and a bottom Chorn his truss de ructural wo hord and 1/2 e bottom cl	simpson Strong-T d to connect trus s) 2. This connect sider lateral force s been designed lb live and 3.0lb of t all panel points d, nonconcurrent sign requires that od sheathing be a 2" gypsum sheet nord. Standard	The connect s to bearing the string is for es. for a move dead locat along the with any t a minim applied di rock be applied the string the string is the string the string is the string is the string is the string the string is the string is the string is the string is the string the string is the string is	xtors ng walls due uplift only al ring concentri ted at all mic Top Chord a other live loa um of 7/16" rectly to the oplied directl	e to nd rated d and ads. top y to		1 Manual Street		SEA 0363	L 22 EER A

- and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss
- 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Bottom Chord, nonconcurrent with any other live loads. 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

G

11111111 November 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	C1	Monopitch	4	1	Job Reference (optional)	169846329

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:41 ID:5EM6JMgjWMfETiW0SKt30OyGxAC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

L	4-8-12	9-11-8
Γ	4-8-12	5-2-12

Scale = 1:36 Plate Offsets (X, Y): [2:0-3-14,0-0-11]

Loading	(psf)	Spacing	2-0-0		CSI	0.57	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (root)	20.0	Plate Grip DOL	1.15			0.57	Vert(LL)	-0.10	6-7	>999	360	MT20	244/190	
	10.4/20.0	Rep Stress Incr	VES		WB	0.70	Horz(CT)	-0.13	6-7	>940 n/a	240 n/a			
BCU	10.0	Code	IRC2021	/TPI2014	Matrix-AS	0.55	Wind(LL)	0.01	6-7	_000	2/0			
BCDL	10.0	Code	11(02021	/1112014	Mault-A0		WIND(LL)	0.05	0-7	2000	240	Weight: 47 lb	FT = 20%	
LUMBER			5)	Plates check	ked for a plus or r	ninus 5 de	egree rotation	n						
TOP CHORD	2x4 SP No.2		6)	This trues ha	iter.	for a 10 () nef hottom							
WERS	2X4 SP N0.2		0)	chord live lo	ad nonconcurrent	t with any	other live los	she						
SLIDER	Left 2x4 SP No.3 1	1-6-0	7)	* This truss h	has been designe	ed for a liv	e load of 20.	Opsf						
BRACING			,	on the bottor	m chord in all are	as where	a rectangle							
TOP CHORD	Structural wood she	athing directly applie	ed.	3-06-00 tall b	oy 2-00-00 wide v	vill fit betw	een the bott	om						
	except end verticals.		a)	chord and ar	ny other members	S.								
BOT CHORD	Rigid ceiling directly	applied.	8)	Bearings are	e assumed to be:	Joint 2 SH	NO.2.							
REACTIONS	(size) 2=0-3-0, 6	6= Mechanical	9) 10	Provide med	banical connection	nuss corri	ere) of truce	to						
	Max Horiz 2=71 (LC	15)	10	bearing plate	e capable of with	standing 6	4 lb uplift at	ioint						
	Max Uplift 2=-80 (LC	12), 6=-64 (LC 12)		6.		J								
	Max Grav 2=470 (LC	C 45), 6=448 (LC 44) 11) One H2.5A \$	Simpson Strong-T	Fie conne	ctors							
FORCES	(lb) - Maximum Com	pression/Maximum		recommende	ed to connect trus	ss to beari	ng walls due	to						
	1 2_0/20 2 4_ 774/	274 4 5- 104/40		UPLIFT at jt	(s) 2. This connection	ction is for	uplift only a	nd						
TOP CHORD	5-6299/87	374, 4-5=-104/49,	10	UDES NOL COR	sider lateral lord	es. I for a mov	ing concept	rated						
BOT CHORD	2-7=-436/733, 6-7=-4	436/733	12	load of 250 (Ib live and 3 0lb	dead loca	ted at all mic	aleu I						
WEBS	4-6=-717/402, 4-7=-4	48/318		panels and a	at all panel points	along the	Top Chord	and						
NOTES				Bottom Chor	d, nonconcurrent	t with any	other live loa	ads.						
1) Wind: AS	CE 7-16; Vult=120mph	(3-second gust)	13) This truss de	esign requires the	t a minim	um of 7/16"					minin	1111.	
Vasd=95n	nph; TCDL=6.0psf; BC	DL=6.0psf; h=25ft; 0	Cat.	structural wo	od sheathing be	applied di	rectly to the	top			0	WH CA	ROUL	
II; Exp B;	Enclosed; MWFRS (en	velope) and C-C		chord and 1/	2" gypsum sneet	госк ве а	oplied directi	y to			N	R	. Alle	
Exterior(2	E) -1-0-0 to 2-0-0, Inter	rior (1) 2-0-0 to 9-9-	12		Standard					/	S.	O' ESS	10/1Vin	
zone; can	tilever left and right exp	bosed ; end vertical	leπ LC	AD CASE(S)	Stanuaru					-	20	200	19 mg	· .
members	and forces & MWFRS	for reactions shown								1	÷.,	2		
Lumber D	OL=1.60 plate grip DO	L=1.60	,							-		SEA	1 : =	
2) TCLL: AS	CE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1	.15							=		0200		
Plate DOL	_=1.15); Pg=20.0 psf; F	Pf=15.4 psf (Lum DC)L =							1		0363	22 : :	
1.15 Plate	DOL = 1.15); ls=1.0; F	Rough Cat B; Partial	ly							-	8		1 3	
Exp.; Ce=	1.0; US=1.00; Ut=1.10	on considered for th	ic							S	-	· . A.	air E	
design	eu show loads have be	115								15	S. VGIN	EFRAN		
 This truss 	has been designed for	r greater of min roof	live	CARE							BEIN			

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 2) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.

China China November 27,2024

GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	VA1	Valley	1	1	Job Reference (optional)	169846330

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:44 ID:4_1_VbClZhyA_LwoVUDEIMyGxDO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 ı

8-3-0

4x6 =

Scale = 1:27.2

Loading TCLL (roof) Snow (Pf/Pg) TCDI	(psf) 20.0 15.4/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.53 0.59 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.02	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	
BCLL BCDL	0.0* 10.0	Code	IRC2021	/TPI2014	Matrix-AS	0.00	110112(112)	0.02	Ū	n/a	n/u	Weight: 25 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD	2x4 SP SS 2x4 SP SS 2x4 SP No.3 Structural wood shee except end verticals. Rigid ceiling directly (size) 1=8-3-0, 3 Max Horiz 1=46 (LC Max Grav 1=415 (LC (lb) - Maximum Com Tension 1-2=-1180/227, 2-3= 1-3=-305/1140	athing directly applied applied. 3=8-3-0 13) 2 43), 3=415 (LC 42) pression/Maximum 336/137	8) 9) ^{d,} 10 11 12 LC	This truss ha chord live loa * This truss h on the bottom 3-06-00 tall b chord and an) All bearings a) This truss ha load of 250.0 panels and a Bottom Chor) This truss de structural wo chord and 1/2 the bottom ch	s been designed ad nonconcurrent has been designe n chord in all area y 2-00-00 wide w hy other members are assumed to b s been designed lib live and 3.01b of t all panel points d, nonconcurrent sign requires tha od sheathing be a 2" gypsum sheet hord. Standard	for a 10.0 with any d for a liv as where ill fit betw i. e SP SS for a moo dead loca along the with any t a minim applied d ock be ap) psf bottom other live loa e load of 20.1 a rectangle veen the bott ving concentri ted at all mic Top Chord a other live loa um of 7/16" rectly to the oplied directly	ads. Opsf om rated d and ads. top y to						

NOTES

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-1-0 to 3-1-0, Interior (1) 3-1-0 to 8-2-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.: Ce=1.0: Cs=1.00: Ct=1.10
- Unbalanced snow loads have been considered for this 4) design.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.
- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	G1G	Monopitch Supported Gable	1	1	Job Reference (optional)	169846331

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:43 ID:fBxj_JANrgDrFpr5KuHRaLyGxLA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 II

1-11-8

Scale = 1:17.5

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 1-11-8 oc purlins, e Rigid ceiling directly bracing. (size) 2=1-11-8, Max Horiz 2=30 (LC Max Uplift 2=-2 (LC Max Grav 2=315 (LC	athing directly applied xcept end verticals. applied or 10-0-0 oc 4=1-11-8, 5=1-11-8 15), 5=30 (LC 15) 16), 5=-2 (LC 16) 2 40), 4=284 (LC 42),	5) 6) d or 7) 8) 9) 10	This truss ha load of 12.0 overhangs n Plates check about its cere Gable requir Gable studs This truss ha chord live lo)) * This truss l on the bottoo 3-06-00 tall 1 chord and at) All bearings	as been designed psf or 2.00 times f on-concurrent with ted for a plus or m iter. es continuous bot spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w hy other members are assumed to bo	for great flat roof lo h other livinus 5 do tom chor c. for a 10.0 with any d for a liv as where ill fit betw e SP No.	er of min roof pad of 15.4 p: re loads. agree rotation d bearing. 0 psf bottom other live loa e load of 20.0 a rectangle reen the botto 2.	live sf on ds. Dpsf om					
FORCES TOP CHORD BOT CHORD NOTES 1) Wind: AS Vasd=95r II; Exp B; (3E) zone left and ri MWFRS I grip DOL 2) Trues des	(lb) - Maximum Com Tension 1-2=0/34, 2-3=-115/ 2-4=-44/52 CE 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (er e; cantilever left and rigi ght exposed;C-C for m for reactions shown; Lu =1.60 signed for wind loads in	(3-second gust) (3-second gust) (DL=6.0psf; h=25ft; C vvelope) and C-C Con ht exposed ; end verti embers and forces & imber DOL=1.60 plate	12 13 at. LC mer ical e	 Provide mec bearing plate and 2 lb upli This truss ha load of 250.0 panels and a Bottom Choi DAD CASE(S) 	thanical connection e capable of withst ft at joint 2. Is been designed Dib live and 3.0lb c at all panel points a rd, nonconcurrent Standard	n (by oth tanding 2 for a mov dead loca along the with any	ers) of truss t Ib uplift at jo ving concentr ted at all mid Top Chord a other live loa	o int 2 ated and ds.				ORTH CA	ROLIN

- 2) ied for wind loads only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	G1	Monopitch	5	1	Job Reference (optional)	169846332

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:42 ID:PeJ1OoSkzEfL2bGZpICN8hyGxM6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

1-4-12

1-8-2

1-11-8

Scale = 1:17.5

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.20 0.00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in 0.00 -0.01 0.00 0.00	(loc) 4-7 4-7 2 4-7	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 9 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHOR BOT CHOR WEBS BRACING TOP CHOR BOT CHOR REACTION FORCES TOP CHOR BOT CHOR BOT CHOR BOT CHOR BOT CHOR NOTES 1) Wind: A Vasd=9 II; Exp E Exterior vertical Exterior vertical Exterior vertical Exterior vertical Exterior vertical Exterior vertical SDL=1. 2) TCLL: A Plate DD 1.15 Pla Exp; C 3) Unbalar design. 4) This tru: coverhar 5) Plates C about it: 6) This tru: chord liv	D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D Structural wood she 1-11-8 oc purlins, e D Rigid ceiling directly bracing. S (size) 2=0-5-8, 4 Max Horiz 2=30 (LC Max Uplift 2=-2 (LC Max Uplift 2=-2 (LC Max Grav 2=315 (LC (Ib) - Maximum Com Tension D 1-2=0/34, 2-3=-66/63 D 2-4=-44/52 SCE 7-16; Vult=120mph 5mph; TCDL=6.0psf; BC 3; Enclosed; MWFRS (er (2E) zone; cantilever left left and right exposed;C- MWFRS for reactions s 60 plate grip DOL=1.60 SCE 7-16; Pr=20.0 psf; P te DOL = 1.15); Pg=20.0 psf; OL=1.10; SCE 7-10; Cs=1.00; Ct=1.10; I2.0 psf or 2.00 times flat gs non-concurrent with c hecked for a plus or minits s canter. ss has been designed for i e load nonconcurrent with	athing directly applie xcept end verticals. applied or 10-0-0 oc 4= Mechanical 15) 16) 2 40), 4=284 (LC 42) pression/Maximum 9, 3-4=-267/41 (3-second gust) DL=6.0psf; h=25ft; 0 velope) and C-C and right exposed ; C for members and hown; Lumber roof LL: Lum DOL=1 2f=15.4 psf (Lum DC Rough Cat B; Partial een considered for th r greater of min roof t roof load of 15.4 ps other live loads. us 5 degree rotation r a 10.0 psf bottom th any other live loads	 7) * This trus on the bot 3-06-00 ta chord and 8) Bearings a 9) Refer to gi 10) Provide m bearing plies 11) This truss load of 250 panels and Bottom Chord CASE(s) Cat. Cat. end 1.15 bL = ly is live of on bear is a second se	s has been designe com chord in all are il by 2-00-00 wide v any other members re assumed to be: rder(s) for truss to i echanical connection ate capable of withs has been designed 0.0lb live and 3.0lb d at all panel points ord, nonconcurrent 5) Standard	ed for a live seas where will fit betw s. Joint 2 SF truss conn on (by oth standing 2 d for a mov dead loca a along the t with any	e load of 20. a rectangle veen the bott > No.2 . lections. ers) of truss ! b uplift at jo /ing concent ted at all mic other live load	Opsf form to pint 2. rated d and ads.		Contraction of the second se		SEA 0363	AROUNT AROUNT AL B22 AL BEER AL AL BEER AL AL BEER AL BEER AL AL BEER AL AL AL BEER AL AL AL AL AL AL
 about its This true chord live 	s center. ss has been designed for load nonconcurrent wi	us a degree rotation r a 10.0 psf bottom th any other live load	ds.								Novembe	61LBF

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	G2	Monopitch	5	1	Job Reference (optional)	169846333

-1-0-0

Structural, LLC, Thurmont, MD - 21788,

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:43 ID:uBVYRCVhjfU9Mpq5rMIYdqyGxKm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:21.1

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.41	DEFL Vert(LL)	in -0.01	(loc) 5-8	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.19	Vert(CT)	0.00	5-8	>999	240		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MP		Wind(LL)	0.00	5-8	>999	240		
BCDL	10.0										Weight: 12 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 2-0-0 oc purlins, ext Rigid ceiling directly bracing. (size) 2=0-5-8, 5 Max Horiz 2=54 (LC Max Ublift 2=-2 (LC	athing directly applie cept end verticals. applied or 10-0-0 oc 5= Mechanical 13) 12, 5=-68 (LC 13)	 6) This trus chord live 7) * This trus on the box 3-06-00 from 60 or chord an 8) Bearings 9) Refer to 10) Provide researing post of the second for 5 and 2 1 11) This trus trus the second for the second	has been designed load nonconcurrent ss has been designe ttom chord in all are all by 2-00-00 wide v any other members are assumed to be: jirder(s) for truss to the echanical connection late capable of withs puplift at joint 2.	I for a 10.0 t with any ed for a liv as where will fit betw s. Joint 2 SF truss conr on (by oth standing 6	 psf bottom other live load e load of 20. a rectangle veen the bott P No.2 . ections. ers) of truss 8 lb uplift at . 	ads. Opsf om to joint rated					
FORCES	Max Grav 2=292 (LC (lb) - Maximum Com Tension 1-2=0/34, 2-3=-121/2	C 40), 5=351 (LC 42) pression/Maximum 74, 3-4=-72/0,	panels a Bottom C LOAD CASE	ad at all panel points hord, nonconcurrent (S) Standard	along the any	Top Chord a other live loa	and ads.					
	3-5=-343/224											
BOT CHORD	2-5=-104/42											
NOTES		(*										
 Wind: ASI Vasd=95r II; Exp B; Exterior(2 zone; can and right t MWFRS f grip DOL= TCLL: AS Plate DOI 1.15 Plate Exp.; Ce= 	CE 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) 1-0-0 to 1-10-4, Intr titlever left and right exp exposed;C-C for memb for reactions shown; Lu =1.60 CE 7-16; Pr=20.0 psf; F = DOL = 1.15); Pg=20.0 psf; F = DOL = 1.15); Is=1.0; F	(3-second gust) DL=6.0psf; h=25ft; C welope) and C-C erior (1) 1-10-4 to 3- bosed ; end vertical livers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1 Pf=15.4 psf (Lum DO Rough Cat B; Partiall	Cat. 11-8 eft te .15 L = ly						4	2	SEA 0363	L 22

2-0-0

- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- 5) Plates checked for a plus or minus 5 degree rotation about its center.

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	G2G	Monopitch	1	1	Job Reference (optional)	169846334

2-7-2

ID:8YjWk9rJamTPBtpQrAEadEyGxJ1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -1-0-0 2-0-0 3-11-8 2-0-0 1-11-8

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:43

2-0-0

Scale = 1:21.1

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 15 4/20 0	Spacing Plate Grip DOL	2-0-0 1.15 1.15		CSI TC BC	0.41	DEFL Vert(LL) Vert(CT)	in n/a n/a	(loc)	l/defl n/a n/a	L/d 999 999	PLATES MT20	GRIP 244/190	
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	2	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MP									
BCDL	10.0											Weight: 12 lb	FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 2-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=2-0-0,	eathing directly applie ccept end verticals. / applied or 10-0-0 or 5=2-0-0, 6=2-0-0	4) 5) ed or 6) c 7) 8) 9)	Unbalanced design. This truss ha load of 12.0 j overhangs n Plates check about its cen Gable require Gable studs This truss ha chord live loa	snow loads have is been designed psf or 2.00 times on-concurrent wit ed for a plus or n ter. es continuous bo spaced at 2-0-0 d is been designed	been cor for greate flat roof lo th other liv ninus 5 de ttom chor pc. for a 10.0 with any	nsidered for the er of min roof pad of 15.4 p: re loads. egree rotation d bearing.) psf bottom other live loa	his f live sf on n						
FORCES	Max Horiz 2=54 (LC Max Uplift 2=-2 (LC (LC 12) Max Grav 2=292 (L 6=292 (L (lb) - Maximum Cor Tension	: 13), 6=54 (LC 13) 12), 5=-68 (LC 13), C 40), 5=351 (LC 42 C 40) npression/Maximum	6=-2 ¹⁰), 11 12	 * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mechanism 	has been designe n chord in all area by 2-00-00 wide v hy other members are assumed to b hanical connectic o canable of withs	ed for a liv as where vill fit betw s. be SP No. bn (by oth standing 2	e load of 20.0 a rectangle veen the botto 2. ers) of truss t	om to						

TOP CHORD 1-2=0/34, 2-3=-211/74, 3-4=-72/0, 3-5=-343/438 BOT CHORD 2-5=-104/42

NOTES

Wind: ASCE 7-16; Vult=120mph (3-second gust) 1) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) -1-0-0 to 1-10-4, Exterior(2N) 1-10-4 to 3-11-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- 68 lb uplift at joint 5 and 2 lb uplift at joint 2.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	P1G	Monopitch Supported Gable	1	1	Job Reference (optional)	169846335

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:43 ID:Vad637j5OBg2R5vSd?2h4dyGxHu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-			
S	<u> </u>	. 1.22	7
JUCI	C =	- 1.2.2	

Plate Offsets (X, Y): [2:Edge.0-0-9], [2:0-0-10.0-6-9]

	(/,, /). [<u>L.L.u.go</u> ,o o o],	[=:0 0 :0;0 0 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP 7-16; Pr=20.0 ps	0.33 0.36 0.04	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.03 -0.05 0.01 0.02	(loc) 6 6 2 6	l/defl >999 >972 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 19 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES	 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 4-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=0-3-0, 4 Max Horiz 2=54 (LC Max Uplift 2=-17 (LC Max Grav 2=353 (LC (lb) - Maximum Corr 	athing directly applie cept end verticals. applied or 10-0-0 oc 5= Mechanical 15) C 12), 5=-26 (LC 13) C 44), 5=327 (LC 43) poression/Maximum	4) 5) d or 6) 7) 8) 9)	Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 J overhangs m Plates check about its cen Gable studs This truss ha chord live loa * This truss ha on the bottor 3-06-00 tail h	(15); $Pg=20.0 \text{ ps}$ (15); $Pg=20.0 \text{ psf}$ (DL = 1.15); Is=1.0); Cs=1.00; Ct=1.1 snow loads have I s been designed f psf or 2.00 times f pon-concurrent with ed for a plus or m ter. spaced at 2-0-0 or s been designed f ad nonconcurrent has been designed n chord in all area w 2-00-00 wide w	Ff=15.4 Pf=15.4 Ff=15.4 Rough 0 peeen cor or great lat roof lu o ther li inus 5 do c. c. cor a 10.1 with any l for a liv s where ll fit between	4 psf (Lum DCL 4 psf (Lum D Cat B; Partia asidered for t er of min roo bad of 15.4 p ve loads. egree rotation 0 psf bottom other live loa e load of 20. a rectangle	oL = OL = ally this f live ssf on n ads. 0psf						
TOP CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=95 II: Exp B:	Tension 1-2=0/34, 2-3=-180/ 4-5=-289/88 2-6=-80/130, 5-6=-2 3-6=-133/115 CE 7-16; Vult=120mph mph; TCDL=6.0psf; BC Enclosed; MWERS (ar	54, 3-4=-63/72, 9/31 (3-second gust) DL=6.0psf; h=25ft; C Duelone) and C-C	10 11 12 13 at.	chord and ar bearings are chord and ar bearing state chords are bearing plate chords are chords are	y other members. assumed to be: J er(s) for truss to tr hanical connectior capable of withst Simpson Strong-Ti ed to connect truss s) 2. This connect	oint 2 Sl uss conr h (by oth anding 2 e conne to bear ion is for	P No.2 . nections. ers) of truss 26 lb uplift at ctors ing walls due r uplift only a	to joint e to nd				MATH CA	ROLIN	
 a, Lap B, Exterior(2 zone; car and right members Lumber IL Truss des only. For see Standor or consul 	Electored, WWH RG (el tec) -1-0-0 to 2-0-0, Inte exposed; porch left and and forces & MWFRS DOL=1.60 plate grip DC signed for wind loads in studs exposed to wind dard Industry Gable En t qualified building desi	rior (1) 2-0-0 to 3-10- posed ; end vertical lu d right exposed;C-C f for reactions shown; DL=1.60 the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP	4 14 or s LC le, l 1.	does not con) This truss ha load of 250.0 panels and a Bottom Chor DAD CASE(S)	sider lateral force s been designed f lb live and 3.0lb d t all panel points a d, nonconcurrent Standard	s. or a more ead location along the with any	ving concent tted at all mit e Top Chord other live loa	rated d and ads.		A. COLUMN		SEA 0363	EER.K	Non manage

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

March A. GILBE

November 27,2024

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	P1	Monopitch	4	1	Job Reference (optional)	169846336

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:43 ID:W7gyBI7QNeyDWJV_d8ffSoyGxHM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Ра

- ·		
Scale	= '	1:23.7

ľ

Plate Offsets (X, Y): [2:Edge,0-0-9], [2:0-0-10,0-6-9]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCLL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC C BC C WB C Matrix-AS).45).48).00	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.04 -0.05 0.01 0.02	(loc) 4-7 4-7 2 4-7	l/defl >999 >915 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
UMBER OP CHORD OT CHORD VEBS VEDGE BRACING OP CHORD BOT CHORD CHORD COP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood shea except end verticals. Rigid ceiling directly (size) 2=0-3-0,4 Max Horiz 2=54 (LC Max Uplift 2=-17 (LC Max Grav 2=353 (LC (lb) - Maximum Com Tension 1-2=0/34, 2-3=-181/6 2-4=-80/130	athing directly applied applied. == Mechanical 15) 12), 4=-26 (LC 13) 2 43), 4=327 (LC 42) pression/Maximum 53, 3-4=-290/97	 6) This truss has chord live lo 7) * This truss lo on the botton 3-06-00 tall l chord and at 8) Bearings are 9) Refer to gird 10) Provide mee bearing plate 4. 11) One H2.5A 3 recommendi UPLIFT at jt does not cor 12) This truss ha load of 250.0 panels and a Bottom Cho 	as been designed for a ad nonconcurrent with has been designed for m chord in all areas wi by 2-00-00 wide will fit by other members. a assumed to be: Joint er(s) for truss to truss thanical connection (b) a capable of withstand Simpson Strong-Tie co ed to connect truss to (s) 2. This connection haider lateral forces. as been designed for a bib live and 3.0lb dead at all panel points alon	a 10.0 a any - r a live here a betw t 2 SF conn y othe diling 2 onnec bearii is for a mov I loca: g the g any -	P psf bottom other live load a load of 20.0 a rectangle een the botto P No.2 . ections. ers) of truss to 6 lb uplift at ju- tors ng walls due uplift only an ing concentra- ted at all mid Top Chord a other live load	ds.)psf om oint to id ated ind					
) Wind ASC	F 7-16: Vult-120mph	(3-second quist)	13) This truss de	esign requires that a m	ninimu	um of 7/16"						

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 3-10-4 zone; cantilever left and right exposed; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation about its center.

- Bottom Chord, nonconcurrent with any other live loads.
 3) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	B1G	Common Supported Gable	1	1	Job Reference (optional)	169846337

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:41 ID:ET_iO70WJIAVrSU2CYAGMUyGwwG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.5 Plate Offsets (X, Y): [10:0-5-0.0-1-8], [16:0-5-0.0-1-8]

	,,,,,): [10:0 0 0;0 1 0], [10:0 0 0,0 1 0]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing2-Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYICodeIR	0-0 15 15 ES C2021	/TPI2014	CSI TC BC WB Matrix-AS	0.21 0.19 0.12	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 10	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 MT20HS Weight: 62 lb	GRIP 244/190 187/143 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she except end verticals Rigid ceiling directly (size) 10=10-7- 13=10-7- 16=10-7- Max Horiz 16=-99 (L 12=-23 (L 15=-46 (L Max Grav 10=299 (L 14=339 (L) 16=299 (L) 16=2	athing directly applied, applied. 0, 11=10-7-0, 12=10-7-0, 0, 14=10-7-0, 15=10-7-0, 0, C 14) C 13), 11=-43 (LC 17), C 17), 14=-23 (LC 16), C 16), 16=-39 (LC 12) LC 69), 11=310 (LC 68), LC 67), 13=333 (LC 66), LC 65), 15=310 (LC 64), LC 63)	2) 3) 4) 5) 6)	Wind: ASCE Vasd=95mph II; Exp B; End (3E) -1-0-0 tc (3R) 5-3-8 to cantilever left right exposed for reactions DOL=1.60 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha	7-16; Vult=120mph ; TCDL=6.0psf; BC closed; MWFRS (er 2-0-0, Exterior(2N) t and right exposed t;C-C for members shown; Lumber DC ed for wind loads ir ds exposed to wind l ndustry Gable En alified building desi 7-16; Pr=20.0 psf; I OL = 1.15); Is=1.0; ; Cs=1.00; Ct=1.10 shown loads have be so been designed for the shown of the	(3-sec DL=6.(hvelope) 2-0-0 8-3-8 t ; end v and for DL=1.60 h the pla (norm d Detai gner as (roof LL Pf=15.4 Rough een cor	cond gust) Dpsf; h=25ft; C. and C-C Cor to 5-3-8, Corn- to 11-7-0 zone vertical left and cces & MWFRS plate grip ane of the truss ane of the truss ane of the truss b per ANSI/TPI .: Lum DOL=1. b psf (Lum DOL Cat B; Partially insidered for this per of min roof li	at. ner er ; 6 e, 1. 15 - = / s	 15) Provestimate the second second	vide mec ring plat 25 lb up t at joint 11. truss hi of 250. els and 1 om Cho truss di ctural we d and 1 bottom C CASE(S)	chanicc e capa lift at jo 15, 22 as beee Olb live at all p rd, nor esign n cod sh /2" gyry shord.	al connection (by able of withstandii oint 10, 23 lb uplif 3 lb uplift at joint 1 en designed for a e and 3.0lb dead banel points along inconcurrent with requires that a mi neathing be applife posum sheetrock b indard	others) of truss to g 39 lb uplift at jo t at joint 14, 46 lb l2 and 43 lb uplift moving concentra located at all mid the Top Chord a any other live load nimum of 7/16" d directly to the to e applied directly	o point ated nd ds. op to
FORCES	(lb) - Maximum Con Tension	npression/Maximum	7)	overhangs no	on-concurrent with	other liv	/e loads.	UII				mmm	un.	
TOP CHORD	2-16=-286/73, 1-2=(3-4=-112/75, 4-5=-1 6-7=-112/75, 7-8=-1 8-10=-286/73	0/60, 2-3=-102/74, 16/164, 5-6=-116/164, 02/74, 8-9=0/60,	() 8) 9)	Plates check about its cen Gable require	ed for a plus or min ter. es continuous botto	us 5 de	d bearing.			6	- AL	ORTH CA	2111	~
BOT CHORD	15-16=-48/95, 14-15 12-13=-48/95, 11-12	5=-48/95, 13-14=-48/95, 2=-48/95, 10-11=-48/95	10)	braced again	st lateral movemen	t (i.e. d	iagonal web).							11
WEBS	5-13=-245/15, 4-14 6-12=-289/126, 7-1	=-289/126, 3-15=-269/11 =-269/111	1, 12)	This truss ha chord live loa	s been designed fo ad nonconcurrent w as been designed f	r a 10.0 ith any for a liv) psf bottom other live load e load of 20.0c	s. osf		11111		SEA 0363	L 22	NULLIN
NOTES			.0)	on the botton	n chord in all areas	where	a rectangle					÷.		-

1) Unbalanced roof live loads have been considered for this design.

3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 14) All bearings are assumed to be SP No.2 .

November 27,2024

G 111111111

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	B1GR	Common Girder	1	2	Job Reference (optional)	169846338

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:41 ID:X2JUIn5P5?QH3bsXczB_iLyGwoQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:42.6

Plate Offsets (X, Y): [1:Edge,0-1-9], [7:Edge,0-1-9], [7:0-0-0,0-0-0], [8:0-4-0,0-6-0]

				_											
Loading		(psf)	Spacing	2-0-0		CSI	0.21	DEFL	in 0.02	(loc)	l/defl	L/d	PLATES	GRIP	
CLL (1001)	16	20.0	Fiale Grip DOL	1.15			0.21	Vert(LL)	-0.03	0-11	>999	300	101120	244/190	
SHOW (FI/FY)	10	10.0	Lumber DOL Bon Stroop Inor	1.15 NO			0.30		-0.05	0-11	>999	240			
		10.0	Rep Siless Inci				0.02		0.01	0.45	11/a	11/a			
		10.0	Code	IRC202	1/1912014	watrix-wis		wind(LL)	0.00	8-15	>999	240	Mainht 140 lb	FT 200/	
BCDL		10.0											weight: 149 lb	FI = 20%	
LUMBER				4)	Wind: ASCE	7-16: Vult=120mp	h (3-seo	ond aust)			Vert: 1-4	4=-51.	4-7=-51. 9-13=-2	0	
TOP CHORD	2x4 SP No	o.2		,	Vasd=95mph	; TCDL=6.0psf; B	CDL=6.0	.) Dpsf; h=25ft; 0	Cat.	Co	oncentra	ted Lo	ads (lb)		
BOT CHORD	2x8 SP D	SS			II; Exp B; En	closed; MWFRS (e	envelope	e); cantilever l	eft		Vert: 15	=-1308	3 (B), 21=-1201 (E	3), 23=-120	1 (B),
WEBS	2x4 SP No	o.3			and right exp	osed ; end vertical	left and	l right expose	ed;		24=-120	D1 (B),	26=-1301 (B)	,,	())
SLIDER	Left 2x4 S	P No.3 1	I-6-0, Right 2x4 SP N	lo.3	Lumber DOL	=1.60 plate grip D	OL=1.60)							
	1-6-0			5)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	: Lum DOL=1	1.15						
BRACING					Plate DOL=1	.15); Pg=20.0 psf;	Pf=15.4	psf (Lum DC)L =						
TOP CHORD	Structural	wood shea	athing directly applied	d or	1.15 Plate D	OL = 1.15; Is=1.0;	Rough	Cat B; Partia	lly						
	6-0-0 oc p	ourlins.		0)	Exp.; Ce=1.0); Cs=1.00; Ct=1.10	0								
BOT CHORD	Rigid ceili	ng directly	applied or 10-0-0 oc	6)	Unbalanced	snow loads have b	een cor	isidered for tr	IIS						
	bracing.			7)	Diates check	ed for a plue or mi	oue 5 de	aree rotation							
REACTIONS	(size)	1=0-3-8, 7	/=0-3-8	')	about its cen	ter	103 5 0	Server rotation							
	Max Horiz	1=-69 (LC	8)	8)	This truss ha	s been designed fo	or a 10.0) psf bottom							
	Max Grav	1=3656 (L	.C 25), 7=4491 (LC 2)	chord live loa	ad nonconcurrent w	vith anv	other live loa	ds.						
FORCES	(lb) - Maxi	mum Com	pression/Maximum	9)	* This truss h	as been designed	for a liv	e load of 20.0)psf						
	Tension				on the botton	n chord in all areas	where	a rectangle							
TOP CHORD	1-3=-3439	/0, 3-4=-3	386/0, 4-5=-3386/0,		3-06-00 tall b	y 2-00-00 wide wil	l fit betv	veen the botto	om						
	5-7=-3438	8/0			chord and an	y other members.									
BOICHORD	1-8=0/262	0, 7-8=0/2	584	10) All bearings a	are assumed to be	SP DS	S.							
WEBS	4-8=0/409	0, 3-8=-15	2/113, 5-8=-178/86	11) This truss ha	s been designed fo	or a mov	/ing concentra	ated						
NOTES					load of 250.0	lb live and 3.0lb de	ead loca	ited at all mid					minin	1111	
 2-ply truss 	to be conne	ected toget	ther with 10d		panels and a	t all panel points a	long the	e Top Chord a	ind				WH CA	Ro	
(0.131"x3") nails as fo	llows:			Bollom Chon		with any	Other live load	us.			1.1	R14		11.
l op chord	s connected	as follows	s: 2x4 - 1 row at 0-9-0) 12		ivalent spaced at	2-0-0 0	max starting	bu ter			51	O' EESS	GAN	1.4
OC.			aura: 0x0 0 raura		2-0-12 from t	he left end to 6-0-1	12 to co	nnect truss(e	s) to		2	\$ 5			Vin
staggorod	orus connec	leu as ioni	JWS. 2X0 - 2 10WS		back face of	hottom chord	12 10 00		5) 10				.0 -		-
Web conn	at 0-0-0 00.	ows: 2x4 -	1 row at 0-9-0 oc	13) Use Simpsor	Strong-Tie LUS2	8 (6-SD	9112 Girder.	4-		-		CEA.	1 1	
2) All loads a	re consider	equally	applied to all plies		SD9212 Trus	s, Single Ply Girde	er) or ec	uivalent spac	ed		=	:	SEA	L	: =
except if n	oted as fron	t (F) or ba	ck (B) face in the LO	٩D	at 2-0-0 oc m	nax. starting at 8-0-	12 from	the left end t	0		1	:	0363	22	: =
CASE(S) s	section. Ply	to ply conn	ections have been		10-0-12 to co	onnect truss(es) to	back fa	ce of bottom				1			2
provided to	o distribute o	only loads	noted as (F) or (B),		chord.							2	S		
unless oth	erwise indic	ated.		14) Fill all nail ho	les where hanger i	is in cor	tact with lum	ber.			2.1	N. ENG	-ER. X	E
Unbalance	ed roof live lo	oads have	been considered for	LO	DAD CASE(S)	Standard						1	GIN	A	1
this desigr	1.			1)	Dead + Sno	w (balanced): Lum	nber Inc	rease=1.15, F	Plate			1	CA C	II BE	N.
					Increase=1.	.15							1, A. G	1 Linn	
					Uniform Loa	ads (lb/ft)							2011111	111.	

Uniform Loads (lb/ft)

November 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A1G	Common Supported Gable	1	1	Job Reference (optional)	169846339

Structural LLC Thurmont MD - 21788

Scale = 1:77.5

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

WEDGE

SLIDER

WEBS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Run: 8.83 S. Nov. 8 2024 Print: 8.830 S.Nov. 8 2024 MiTek Industries. Inc. Tue Nov. 26.07:25:36

Page: 1

10-35=-272/60, 9-36=-275/54, 8-37=-277/55, 7-38=-270/55, 5-39=-283/55, 4-40=-287/56,

3-41=-275/59. 13-31=-272/43. 14-29=-272/60, 15-28=-275/54 16-27=-277/55, 17-26=-280/55,

19-25=-283/55, 20-24=-287/56

21-23=-275/82

G

111111111

November 27,2024

Continued on page 2

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A1G	Common Supported Gable	1	1	Job Reference (optional)	169846339
Structural, LLC, Thurmont, MD -	21788,	Run: 8.83 S Nov 8 2	024 Print: 8.	830 S Nov 8	2024 MiTek Industries, Inc. Tue Nov 26 07:25:36	Page: 2

ID:4W2zdtXxt9wmKfY31IwawryGwuJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural, LLC, Thurmont, MD - 21788,

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads.
- Plates checked for a plus or minus 5 degree rotation 7) about its center.
- 8) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2, 33, 35, 36, 37, 38, 39, 40, 41, 31, 29, 28. 27. 26. 25. 24. 23. and 22. This connection is for uplift only and does not consider lateral forces.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A1B	Common	3	1	Job Reference (optional)	169846340

Structural LLC Thurmont MD - 21788

Scale = 1:79.6

Loading

TCDL

BCLL

BCDL

WEBS

SLIDER

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

this design

WEBS

NOTES

1)

2)

FORCES

LUMBER

TOP CHORD

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Plate Offsets (X, Y): [2:Edge,0-0-1]

2x4 SP No.2

2x4 SP No.3

2x4 SP SS

-- 1-6-0

Tension

(size)

11-1-4 10-9-1

Ϋ́Ι

(psf)

20.0

10.0

0.0

10.0

Rigid ceiling directly applied.

Max Horiz 2=169 (LC 13)

15.4/20.0

-1-0-0

 \vdash

1-0-0

27

3x4 3

5x6 u

Spacing

Code

2=0-3-8, 12= Mechanical

Max Grav 2=1655 (LC 34), 12=1591 (LC 35)

(Ib) - Maximum Compression/Maximum

1-2=0/47. 2-4=-2699/71. 4-6=-2573/103.

2-18=-11/2230, 16-18=0/1977, 15-16=0/1418,

4-18=-247/82, 6-18=0/416, 6-16=-613/117,

7-16=-27/921, 7-15=-27/911, 8-15=-598/117,

6-7=-2205/160, 7-8=-2201/161

8-10=-2543/106. 10-12=-2664/74

13-15=0/1967, 12-13=-65/2196

8-13=0/399, 10-13=-237/84

Unbalanced roof live loads have been considered for

Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

Wind: ASCE 7-16; Vult=120mph (3-second gust)

II; Exp B; Enclosed; MWFRS (envelope) and C-C

Exterior(2E) -1-0-0 to 2-5-10, Interior (1) 2-5-10 to

17-5-8, Exterior(2R) 17-5-8 to 20-11-2, Interior (1) 20-11-2 to 34-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown;

Lumber DOL=1.60 plate grip DOL=1.60

Plate Grip DOL

Rep Stress Incr

Lumber DOL

Run: 8.83 S. Nov. 8 2024 Print: 8.830 S.Nov. 8 2024 MiTek Industries. Inc. Tue Nov. 26 07:25:36 Page: 1 ID:NXFTBh3TmnQ7Zyq9vIo2T1yGx_4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 10-9-5 5-9-14 17-5-8 24-1-11 29-1-2 34-8-0 5-9-14 4-11-7 6-8-3 6-8-3 4-11-7 5-6-14 34-8-0 4x6 **I** 7 29³⁰ 31₃₂ 7¹² 3x4 3x4 🧉 8 6 3x4 🧔 3x4 28 33 9 2x4 / 5 10 34 3x4. 11 12., đ -6<u>-</u>] 35 18 36 37 17 16 38 39 40 15 14 42 43 13 44 6x6 II 41 3x4= 3x4= 3x4= 3x4= 3x4= 3x4= 7-9-6 13-8-15 21-2-1 27-1-10 34-8-0 7-9-6 5-11-9 7-5-2 5-11-9 7-6-6 2-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP 1.15 тс 0.86 Vert(LL) -0.21 15-16 >999 360 MT20 244/190 1.15 BC 0.51 Vert(CT) -0.36 15-16 >999 240 WB Horz(CT) YES 0.62 0.09 12 n/a n/a IRC2021/TPI2014 Matrix-AS Wind(LL) 0.05 16-18 >999 240 Weight: 203 lb FT = 20% 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 4) Unbalanced snow loads have been considered for this desian. This truss has been designed for greater of min roof live 5) load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on Structural wood sheathing directly applied.

- overhangs non-concurrent with other live loads. 6) Plates checked for a plus or minus 5 degree rotation about its center.
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Bearings are assumed to be: Joint 2 SP SS
- 10) Refer to girder(s) for truss to truss connections.

11) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.

- 12) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A1A	Common	2	1	Job Reference (optional)	169846341

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:35 ID:JqFWK7G4JW6UepoT2RcZo6yGx?6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-6-14	12-3-9	17-5-8	22-7-7	28-4-2	34-8-0	L
Scale = 1:79.6	6-6-14	5-8-10	5-1-15	5-1-15	5-8-10	6-3-14	

Plate Offsets (X, Y): [2:Edge,0-0-1], [14:0-4-0,0-3-4], [16:0-4-0,0-3-4]

											_			
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.84 0.57 0.68	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.34 -0.77 0.08 0.05	(loc) 15 15 12 16	l/defl >999 >540 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 219 lb	GRIP 244/190 FT = 20%	_
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 *Excep Left 2x4 SP No.3 - 1 1-6-0 Structural wood shee Rigid ceiling directly (size) 2=0-3-8, 1 Max Horiz 2=169 (LC Max Grav 2=1550 (L (lb) - Maximum Com Tension 1-2=0/47, 2-4=-2363 6-7=-2164/0, 7-8=-2 10-12=-2332/0 2-17=0/1941, 15-17=	t* 18-19:2x4 SP SS -6-0, Right 2x4 SP N athing directly applied applied. [2= Mechanical C 13) C 2), 12=1480 (LC 2 pression/Maximum 1/0, 4-6=-2101/0, 159/0, 8-10=-2094/0, =0/1941, 13-15=0/19	3) lo.3 4) 5) d. 6) () 7) 8) 9) 13,	TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp.; Ce=1.0 Unbalanced design. This truss ha load of 12.0 p overhangs no 200.0lb AC u from left end, Plates check about its cen This truss ha chord live loa * This truss ha on the bottom 3-06-00 tall b chord and an	7-16; Pr=20.0 ps 1.15); Pg=20.0 ps 1.15); Is=1.0; (CS=1.00; Ct=1.1 snow loads have l s been designed 1 bs been designed 1 bs concurrent with nit load placed on supported at two ed for a plus or m ter. s been designed 1 id nonconcurrent ' as been designed n chord in all area n chord in all area y 2-00-00 wide wid y other members.	f (roof LL ; Pf=15.4 ; Rough 0 been cor for great lat roof la o ther lin o the bott points, s inus 5 de for a 10.0 with any d for a liv s where ill fit betv.	: Lum DOL= psf (Lum DO Cat B; Partia isidered for t er of min rooi bad of 15.4 p re loads. om chord, 17 5-0-0 apart. gree rotation 0 psf bottom other live loa e load of 20. a rectangle veen the bott	Al.15 OL = ally this f live psf on 7-5-8 n ads. 0psf tom						
WEBS NOTES 1) Unbalance this design 2) Wind: ASC Vasd=95m II; Exp B; E Exterior(2E 17-5-8, Ex 20-11-2 to exposed ; members a	12-13=-32/1913 16-18=0/1078, 7-18= 19-20=-12/208, 15-2 8-14=-395/123, 7-19 4-17=-39/266, 10-13 4-16=-313/110, 10-1 ed roof live loads have b. E7-16; Vult=120mph nph; TCDL=6.0psf; BC Enclosed; MWFRS (en j-1-0-0 to 2-5-10, Inti terior(2R) 17-5-8 to 20 34-8-0 zone; cantileve end vertical left and rig and forces & MWFRS	=0/1005, 18-20=-12/2 0=0/187, 6-16=-391/ =0/995, 14-19=0/106 =-49/255, 4=-289/114 been considered for (3-second gust) DL=6.0psf; h=25ft; C velope) and C-C erior (1) 2-5-10 to h-11-2, Interior (1) or left and right ght exposed; C-C for for reactions shown;	10 208, 1 123, 1 8, 1 8, 1 3 at. L	 b) Bearings are c) Refer to girdé c) This truss ha load of 250.0 panels and a Bottom Chorn b) This truss de structural wo chord and 1/2 the bottom chord c) CAD CASE(S) 	assumed to be: J ar(s) for truss to tr b live and 3.0lb d t all panel points a d, nonconcurrent sign requires that od sheathing be a 2" gypsum sheetro nord. Standard	loint 2 SI uss conr for a mor lead loca along the with any a minim applied d bock be a	SS. lections. ving concentited at all mic Top Chord a other live loa um of 7/16" rectly to the oplied directl	rated d and ads. top y to		A HILLING		SEA 0363		

ed; MWFRS (envelop Exterior(2E) -1-0-0 to 2-5-10, Interior (1) 2-5-10 to 17-5-8, Exterior(2R) 17-5-8 to 20-11-2, Interior (1) 20-11-2 to 34-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

G 11111111 November 27,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A1	Common	5	1	Job Reference (optional)	169846342

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:34 ID:QNfjk7eOqeXTMLk5IHnWS2yGx6N-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

	6-6-14	12-3-9	17-5-8	22-7-7	28-4-2	34-11-0	
Scale = 1:79.6	6-6-14	5-8-10	5-1-15	5-1-15	5-8-10	6-6-14	
Plate Offsets (X, Y): [2:Edge,0-0-1], [12:Edge	,0-0-1], [12:0-0-0,0-0	-0], [15:0-4-0,0-3-4]	, [17:0-4-0,0-3-4]				

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.78 0.57 0.68	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.34 -0.77 0.08 0.05	(loc) 16 16 12 17	l/defl >999 >541 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 222 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x4 SP No.2 2x4 SP SS 2x4 SP No.3 *Excep Left 2x4 SP No.3 1 1-6-0	t* 19-20:2x4 SP SS I-6-0, Right 2x4 SP I	3) No.3 4)	TCLL: ASCE Plate DOL=1 1.15 Plate D Exp.; Ce=1.0 Unbalanced design.	7-16; Pr=20.0 ps .15); Pg=20.0 ps OL = 1.15); Is=1.0; Cs=1.00; Ct=1. snow loads have	sf (roof LL f; Pf=15.4 0; Rough 10 been cor	Lum DOL= psf (Lum DO Cat B; Partia	1.15 DL = Illy his					
BRACING TOP CHORD BOT CHORD REACTIONS	RACING Structural wood sheathing directly applied. DT CHORD Rigid ceiling directly applied. EACTIONS (size) 2=0-3-8, 12=0-3-8 Max Horiz 2=-172 (LC 14) Max Grav 2=1554 (LC 2), 12=1554 (LC 2)			 b) This trusts has been designed for greater of him too live load of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) 200.0lb AC unit load placed on the bottom chord, 17-5-8 from left end, supported at two points, 5-0-0 apart. 7) Plates checked for a plus or minus 5 degree rotation about its center. 									
FORCES	(lb) - Maximum Com Tension	pression/Maximum	8)	This truss ha	is been designed	for a 10.0) psf bottom	de					
TOP CHORD	1-2=0/47, 2-4=-2369 6-7=-2171/0, 7-8=-2 10-12=-2369/0, 12-1	//0, 4-6=-2108/0, 171/0, 8-10=-2108/0 3=0/47	, 9)	 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom 									
BOT CHORD	2-18=0/1949, 16-18= 12-14=0/1952	=0/1949, 14-16=0/19	52, 1(chord and ar	ny other members	s. e SP SS							
WEBS NOTES	7-20=0/1005, 15-20= 7-19=0/1005, 19-21= 16-21=0/187, 6-17=- 4-17=-313/110, 10-1 4-18=-39/265, 10-14	=0/1078, 17-19=0/10 =-12/209, 20-21=-12 391/123, 8-15=-391 5=-313/110, =-39/265	 10) All beamigs are assumed to be 50 ° 00 ° 00 ° 00 ° 00 ° 00 ° 00 ° 00						ALL ALL	ORTH CA	ROUN		
 Unbalance this design 	ed roof live loads have	been considered for		the bottom c	∠ gypsum sneeti hord.	IUCK DE A	opilea alrecti	y 10		-	1	KI /	

Wind: ASCE 7-16; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -1-0-0 to 2-5-14, Interior (1) 2-5-14 to 17-5-8, Exterior(2R) 17-5-8 to 20-11-6, Interior (1) 20-11-6 to 35-11-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A1SG	Common Supported Gable	1	1	Job Reference (optional)	169846343

15-9-4 17-5-8

19-1-12

23-1-9

Structural LLC Thurmont MD - 21788

TCDL

BCLL

BCDL

WEBS

WEBS

JOINTS

-1-0-0

6-6-14

11-9-7

Run: 8.83 S. Nov. 8 2024 Print: 8.830 S.Nov. 8 2024 MiTek Industries. Inc. Tue Nov. 26 07:25:37 ID:cl2Blg5jRvq0zq4XpVjjbVyGhul-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

27-5-7

Page: 1

35-11-0

34-11-0

818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A1SG	Common Supported Gable	1	1	Job Reference (optional)	169846343
Structural, LLC, Thurmont, MD - 21788.		Run: 8.83 S Nov 8 2	2024 MiTek Industries. Inc. Tue Nov 26 07:25:37	Page: 2		

ID:cl2Blg5jRvq0zq4XpVjjbVyGhul-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A2G	Common Supported Gable	1	1	Job Reference (optional)	169846344

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:39 ID:sghYjUsxzyn9XZyCTOuNO1yGwsb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.2 Plate Offsets (X, Y): [2:0-1-12,0-0-3], [22:0-1-12,0-0-3]

	(), E = , = = =	3) E 1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-AS	0.20 0.20 0.30	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 22	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 233	GRIP 244/190 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.3 Left 2x4 SP No.3 1-6-0 Structural wood shee Rigid ceiling directly 1 Row at midpt (size) 2=32-11- 24=32-11 26=32-11 31=32-11 33=32-11 36=32-11 38=32-11 38=32-11 45=32-11 Max Horiz 2=163 (LC Max Uplift 2=-28 (LC 25=5)(LC 38=-12 (L 38=-12 (L) 38=-12 (L 38=-12 (L) 38=-12 (L) 38	1-6-0, Right 2x4 SP N athing directly applied 12-32, 11-33, 13-31 0, 22=32-11-0, -0, 25=32-11-0, -0, 30=32-11-0, -0, 33=32-11-0, -0, 37=32-11-0, -0, 37=32-11-0, -0, 37=32-11-0, -0, 37=32-11-0, -0, 37=32-11-0, -0, 41=32-11-0, -0, 41=32-11-0, -0 C 15), 41=163 (LC 15 12), 24=-29 (LC 17), -0 C 15), 41=163 (LC 15 12), 24=-29 (LC 17), -0 C 16), 31=3 (LC 16), C 16, 32=10 (LC 17), -0 C 16), 31=-30 (LC 17), -0 C 16), 31=-30 (LC 17), -0 C 16), 41=-28 (LC 12), -0 C	FORCES TOP CHORD BOT CHORD), WEBS NOTES 1) Unbalance this design	Max Grav 2=324 (24=349 26=334 28=333 31=334 108), 33 (LC 106 37=333 (LC 107 (LC 117 (lb) - Maximum Co Tension 1-2=0/41, 2-4=-18 5-6=-112/93, 6-8= 9-10=-98/126, 10- 11-12=-134/202, 7 13-14=-116/167, 7 13-14=-116/167, 7 13-14=-116/167, 7 13-14=-116/167, 7 13-14=-116/167, 7 13-13=-54/119, 32 32-33=-54/119, 32 32-33=-54/119, 22 25-26=-54/119, 22 25-26=-54/119, 22 25-26=-54/119, 22 25-26=-54/119, 22 25-26=-54/119, 24 25-26=-54/119, 24 25-26=-54	(LC 81), 2 (LC 81), 2 (LC 115 (LC 113 (LC 113) (LC 113) (LC 111) (LC 109 3=334 (L 3), 36=33 (LC 104 9=328 (L 1), 41=32 7) pmpressi 49/128, 4 -106/90, .11=-116, 12-13=-11 14-15=-9 .40=5-54/1 6-37=-54, 3-34=-54, 1-32=-54, 3-32=-54, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-22=-22, 3-23=-24, 3-23=-25, 3-23=-24, 3-23=-25, 3-23=-	22=324 (LC 1), 25=328 (LC), 27=333 (LC), 30=333 (LC), 30=333 (LC C 107), 34=33 3 (LC 105),), 38=334 (LC C 102), 40=34 4 (LC 81), 45: on/Maximum 5=-119/102, 8-9=-100/89, '167, 34/202, 34	17), 114), 114), 112), 110), 100, 10	 Wir Vas Vas (3E (3E (3R zon anc MW grip 3) Tru only see or c 4) TCl Pla 1.1: Exp 5) Unh des 6) This load ove 	Id: ASCI id:=95mp ixp B; Ei) -10-0) 16-5-8 e; cantil i right ex /FRS for DOL=1 ss desig /. For st Standa consult q L: ASC te DOL= 5 Plate ID 0.; Ce=1. salancec ign. s truss h d of 12.0 rhangs i	E 7-16; hh; TCI nclosee to 2-5- to 19- ever le posed reacti .60 ned fo uds ey rd Indu ualifie E 7-16 1.15); JOL = 0; Cs= 1 snow as bee psf or non-co	Vult=120mph DL=6.0psf; BC d; MWFRS (er 8, Exterior(2N) 9-0, Exteri	(3-second gust) DL=6.0psf; h=25ft; Cat. ivelope) and C-C Corner) 2-5-8 to 16-5-8, Corner N) 19-9-0 to 33-11-0 posed; end vertical left pers and forces & imber DOL=1.60 plate the plane of the truss (normal to the face), d Details as applicable, gner as per ANS/ITPI 1. roof LL: Lum DOL=1.15 ² f=15.4 psf (Lum DOL = Rough Cat B; Partially een considered for this r greater of min roof live t roof load of 15.4 psf on other live loads.	
													_
Continued on	page 2											To CALE AND AND A	
I WARN	NING - Verify design paramete	ers and READ NOTES ON T	HIS AND INCLUDED MITEK	REFERENCE PAGE MII	-7473 rev. 1	/2/2023 BEFORE	USE.				ENGINE	ERING BY	

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MIT-4/37 rev. 1/2/2/2/3 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A2G	Common Supported Gable	1	1	Job Reference (optional)	169846344
Structural, LLC, Thurmont, MD -	21788,	Run: 8.83 S Nov 8 2	Page: 2			

ID:sghYjUsxzyn9XZyCTOuNO1yGwsb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Structural, LLC, Thurmont, MD - 21788,

- 7) Plates checked for a plus or minus 5 degree rotation about its center.
- Gable requires continuous bottom chord bearing. 8)
- Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) All bearings are assumed to be SP No.2 .
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2, 5 lb uplift at joint 33, 13 lb uplift at joint 34, 10 lb uplift at joint 36, 10 lb uplift at joint 37, 12 lb uplift at joint 38, 4 Ib uplift at joint 39, 34 lb uplift at joint 40, 3 lb uplift at joint 31, 14 lb uplift at joint 30, 10 lb uplift at joint 28, 10 Ib uplift at joint 27, 12 lb uplift at joint 26, 5 lb uplift at joint 25, 29 lb uplift at joint 24 and 28 lb uplift at joint 2.
- 14) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 15) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	A2	Common	4	1	Job Reference (optional)	169846345

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:39 ID:zr45IBBgpTpTubcibyykg5yGi_d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-6-14 5-2-9 3-11-12 6-6-14 5-2-9 4 1-11-12 1-8-4 1-8-4

Scale = 1:77.3

Plate Offsets (X, Y): [2:Edge,0-0-1], [14:Edge,0-0-1]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 15.4/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-AS	0.68 0.88 0.90	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.19 -0.36 0.08 0.11	(loc) 18-19 18-19 14 18-19	l/defl >999 >999 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 226 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 30T CHORD WEBS SLIDER BRACING TOP CHORD 30T CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 *Excep Left 2x4 SP No.3 - 1 1-6-0 Structural wood shea Rigid ceiling directly 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=-163 (L	t* 23-17:2x4 SP SS t* 7-21:2x4 SP No.2 I-6-0, Right 2x4 SP I athing directly applie applied. 7-21, 6-21 I4=0-3-8 C 14)	2) No.3 ed. 3)	Wind: ASCE Vasd=95mph II; Exp B; Enc Exterior(2E) Exterior(2R) 33-11-0 zone vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 1.15 Plate DO Exp: (c = 1.0	7-16; Vult=120mp i; TCDL=6.0psf; B closed; MWFRS (e -1-0-0 to 2-3-8, Int 16-5-8 to 19-9-0, I c; cantilever left an nd right exposed; C FRS for reactions ate grip DOL=1.6C 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; OL = 1.15); Is=1.0 v Cs-100; Ct=11	ch (3-sec iCDL=6.0 envelope terior (1) Interior (1) interior (1) interior (1) interior (1) interior (1) choice	ond gust))psf; h=25ft;) and C-C 2-3-8 to 16-5 1) 19-9-0 to xposed ; enc hembers and Lumber : Lum DOL= psf (Lum DC Cat B; Partia	Cat. 5-8, 1 1.15 DL = Illy						
FORCES	Max Grav 2=1374 (L (lb) - Maximum Com	C 2), 14=1374 (LC 2), pression/Maximum	2) 4)	Unbalanced design.	snow loads have b	been cor	sidered for t	his						
TOP CHORD	1-2=0/47, 2-4=-2063 6-7=-1479/146, 7-8= 9-10=-1574/139, 10- 12-14=-2056/61, 14-	62, 4-6=-1735/104, -1460/184, 8-9=-784 12=-1751/106, 15=0/47	4/85, 6)	 b) This has been designed for greater or mininoon inveload of 12.0 psf or 2.00 times flat roof load of 15.4 psf on overhangs non-concurrent with other live loads. 6) Plates checked for a plus or minus 5 degree rotation about its conter. 										
BOT CHORD	2-24=0/1687, 22-24= 20-21=0/1134, 19-20 16-18=0/1683, 14-16	=0/1687, 21-22=0/13 D=0/1134, 18-19=0/1	378, 7) 1398,	 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. a) this trust has been designed for a live load of 20 0 psf 										
NEBS NOTES 1) Unbalance this design	21-25=-30/693, 25-2 7-28=-402/101, 19-2 9-26=-26/487, 25-27 20-27=-12/102, 9-28 8-28=-142/1176, 4-2 6-22=0/418, 6-21=-5 12-18=-364/57, 10-1 10-18=-12/634 ad roof live loads have h.	 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) All bearings are assumed to be SP No.2. 10) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 11) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord. LOAD CASE(S) Standard 							The manual and					

- the bottom chord. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058			
2411-0163-A	V3	Valley	1	1	Job Reference (optional)	169846346		

Run: 8.83 S. Nov. 8.2024 Print: 8.830 S. Nov. 8.2024 MiTek Industries. Inc. Tue Nov.26.07:25:44 ID:vFaNi5EB0bkwnL3uMJ3sATyGx?9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale - 1.22.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.49	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.69	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.11	Horiz(TL)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-AS									
BCDL	10.0											Weight: 31 lb	FT = 20%	
LUMBER			5)	Unbalanced	snow loads hav	e been con	sidered for th	nis						
TOP CHORD	2x4 SP No.2		,	design.										
BOT CHORD	2x4 SP No.3		6)	Plates check	s checked for a plus or minus 5 degree rotation									
OTHERS	2x4 SP No.3			about its cen	ter.									
BRACING	7) (Gable requires continuous bottom chord bearing. 										
TOP CHORD	Structural wood sheathing directly applied			Gable studs	spaced at 4-0-0	OC.								
BOT CHORD	Rigid ceiling directly applied. 9			This truss has been designed for a 10.0 psf bottom										

- **REACTIONS** (size) 1=8-1-14, 3=8-1-14, 4=8-1-14 Max Horiz 1=-52 (LC 12) Max Uplift 1=-55 (LC 45), 3=-55 (LC 44) Max Grav 1=270 (LC 47), 3=270 (LC 51), 4=588 (LC 44)
- FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-210/290, 2-3=-210/290 BOT CHORD 1-4=-207/153, 3-4=-207/153 WEBS 2-4=-495/195

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to 4-1-4, Exterior(2R) 4-1-4 to 7-4-13, Interior (1) 7-4-13 to 8-2-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

- chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.3 .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 55 lb uplift at joint 1 and 55 lb uplift at joint 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.
- 14) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058	
2411-0163-A	V2	Valley	1	1	Job Reference (optional)	169846347

Structural LLC Thurmont MD - 21788

Run: 8.83 S. Nov. 8.2024 Print: 8.830 S. Nov. 8.2024 MiTek Industries. Inc. Tue Nov.26.07:25:44 ID:Aaa1F?r6r8HeX8r9quPIFJyGwwV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

S

Scale = 1:18.2				1									
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	тс	0.27	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15	BC	0.36	Vert(TL)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a			
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-AS									
BCDL	10.0										Weight: 19 lb	FT = 20%	
LUMBER TOP CHORD	2x4 SP No.2		6) Plates cheo about its ce	cked for a plus or enter.	minus 5 de	egree rotatior	ı						

5-4-5

BOT CHORD	2x4 SP N	0.3
OTHERS	2x4 SP N	0.3
BRACING		
TOP CHORD	Structural	wood sheathing directly applied.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	1=5-4-5, 3=5-4-5, 4=5-4-5
	Max Horiz	1=-33 (LC 14)
	Max Uplift	1=-29 (LC 50), 3=-29 (LC 48)
	Max Grav	1=277 (LC 47), 3=277 (LC 51),
		4=420 (LC 53)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·

TOP CHORD 1-2=-213/184, 2-3=-213/184 1-4=-95/146, 3-4=-95/146 BOT CHORD WEBS 2-4=-294/104

NOTES

Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.

- 7) Gable requires continuous bottom chord bearing.
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) All bearings are assumed to be SP No.3 .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 29 lb uplift at joint 1 and 29 lb uplift at joint 3.
- 13) This truss has been designed for a moving concentrated load of 250.0lb live and 3.0lb dead located at all mid panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads. 14) This truss design requires that a minimum of 7/16"
- structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	The Farm at Neills Creek Lot 00.0058				
2411-0163-A	V1	Valley	1	1	Job Reference (optional)	169846348			

1-3-6

1-3-6

Structural, LLC, Thurmont, MD - 21788.

Run: 8.83 S Nov 8 2024 Print: 8.830 S Nov 8 2024 MiTek Industries, Inc. Tue Nov 26 07:25:44 ID:3MqY4MudvNn30m8x3kUhQ9yGwwR-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-6-11

1-3-6

2-6-11

Scale =	1:13.8
---------	--------

Plate Offsets (X, Y): [2:0-2-0,Edge]

-													
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.14	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	15.4/20.0	Lumber DOL	1.15		BC	0.27	Vert(TL)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horiz(TL)	0.00	3	n/a	n/a		
BCLL	0.0*	Code	IRC2021/	TPI2014	Matrix-MP								
BCDL	10.0											Weight: 7 lb	FT = 20%
LUMBER			7)	Gable require	es continuous bott	om chor	d bearing.						
TOP CHORD	2x4 SP No.2		8)	Gable studs	spaced at 4-0-0 oc	c.	0						
BOT CHORD	2x4 SP No.3		9)	This truss ha	s been designed f	or a 10.0) psf bottom						
BRACING	aRACING chord live load nonconcurrent with any other live loads.												
TOP CHORD	OP CHORD Structural wood sheathing directly applied or 10) * This truss has been designed for a live load of 20.0psf												
	2-6-11 oc purlins.			3-06-00 tall b	v 2-00-00 wide wi	I fit boty	a reclarigie	h					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 or	0	chord and any other members.									
			11)	All bearings	are assumed to be	SP No.	3.						
REACTIONS	(SIZE) 1=2-6-11, Max Hariz 1 14 (LC	3=2-6-11	12)	This truss ha	s been designed f	or a mo	ing concentr	ated					
	Max Grav 1=304 (LC	14) (47) 3=304 (IC 51))	load of 250.0	lb live and 3.0lb de	ead loca	ited at all mid						
FORCES	(lb) - Maximum Com	pression/Maximum	/	panels and at all panel points along the Top Chord and Bottom Chord, nonconcurrent with any other live loads.									
	Tension	procession											
TOP CHORD	1-2=-329/53, 2-3=-32	29/53	LUA	AD CASE(S)	Standard								
BOT CHORD	1-3=-32/249												
NOTES													
1) Unbalance	ed roof live loads have	been considered for	r										
this desig	n.												
Wind: AS	CE 7-16; Vult=120mph	(3-second gust)											
Vasd=95	mph; TCDL=6.0psf; BCI	DL=6.0psf; h=25ft; 0	Cat.										
II; Exp B;	Enclosed; MWFRS (en	velope) and C-C										, in the second	1111
Exterior(2	t and right exposed:C	and right exposed ;	WAR CARO							Roill			
forces & MWERS for reactions shown: Lumber									A LAN				
101003 01		Contraction Contraction									A	U	

- DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable,
- or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=15.4 psf (Lum DOL = 1.15 Plate DOL = 1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) Plates checked for a plus or minus 5 degree rotation about its center.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

