

Indicates Left End of Truss
(Reference Engineered Truss Drawing)
Do NOT Erect Truss Backwards

LOAD CH (BASE	ART FOR JAC	CK STUDS	BUILDER	Wellco Contractors, Inc.	CITY / CO.	Spring Lake / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement frawing. The building designer	
C (0 C C C C C C C C C C C C C C C C C C	HEADER/GIRDER	O) O) DS FOR EADER	JOB NAME	Lot 12 Overhills Creek	ADDRESS	87 Onslow Court	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
END REAC (UP T) REQ'D STU (2) PLY H	END REAC (UP Ti (UP Ti (UP Ti REQ'D STU (3) PLY H	END REAC (UP T REQ'D STL (4) PLY H	PLAN	Plan 13 / 2GRF	MODEL	Roof	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
1700 1 3400 2 5100 3	2550 1 5100 2 7650 3	3400 1 6800 2 10200 3	SEAL DATE	Seal Date	DATE REV.	04/18/24	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS
6800 4 8500 5 10200 6	102004127505153006	13600 4 17000 5	QUOTE #	Quote #	DRAWN BY	David Landry	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 o			JOB #	J0424-2257	SALES REP.	Lenny Norris	Signature David Landry	Fax: (910) 864-4444

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

LOAD CH	IART FOR JAC	CK STUDS	BUILDER	Wellco Contractors, Inc.	CITY / CO.	Spring Lake / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design sheets for each truss design identified on the placement drawing. The building designer	
D D D D D D D D D D D D D D D D D D D	HEADER/GIRDER	O O O O O O O O O O O O O O O O O O O	JOB NAME	Lot 12 Overhills Creek	ADDRESS	87 Onslow Court	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
END REAC (UP Ti (UP Ti (UP Ti (2) PLY HI	END REAC (UP TC (UP TC (3) PLY HI	END REAC (UP T (UP T (4) PLY H	PLAN	Plan 13 / 2GRF	MODEL	Roof	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
1700 1 3400 2 5100 3	2550 1 5100 2 7650 3	3400 1 6800 2 10200 3	SEAL DATE	Seal Date	DATE REV.	04/18/24	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS
6800 4 8500 5 10200 6	10200 4 12750 5 15300 6	13600 4 17000 5	QUOTE #	Quote #	DRAWN BY	David Landry	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 9			JOB #	J0424-2257	SALES REP.	Lenny Norris	Signature David Landry	Fax: (910) 864-4444

RE: J0424-2257 Lot 12 Overhills Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0424-2257 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: ASCE 7-10 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.4 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 27 individual, dated Truss Design Drawings and 1 Additional Drawings.

No	Seal#	Truss Name	Date	No	Seal#	Truss Name	Date
1	165027722	A1-GR	1/10/2024	21	165027742	1/1 \/1	1/10/2024
2	165027723	A1A-GR	4/10/2024	22	165027743	\/2	1/10/2024
2	165027724	Δ2	4/19/2024	22	165027744	V2 \/3	4/19/2024
4	165027725	Δ2Δ	4/19/2024	23	165027745	V3 V4	4/19/2024
т 5	165027726	Δ3	4/19/2024	25	165027746	V 1 X1	4/19/2024
6	165027727	A3A	4/19/2024	20	165027747	V1	4/19/2024
7	165027728		4/19/2024	20	165027748	71	4/19/2024
8	165027720	ΔΛΔ	4/19/2024	21	103021140	21	-/13/202-
a	165027730	Δ5	4/19/2024				
3 10	165027731	A5 A6	4/19/2024				
11	165027732	R1	4/19/2024				
12	165027722		4/19/2024				
12	100027733		4/19/2024				
13	103027734	DIGE	4/19/2024				
14	105027735		4/19/2024				
15	165027736	DIGE	4/19/2024				
16	165027737	LG1	4/19/2024				
17	165027738	M1	4/19/2024				
18	165027739	M1GE	4/19/2024				
19	165027740	M2	4/19/2024				
20	165027741	M2GE	4/19/2024				

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Tony Miller

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Tony Miller

Scale = 1:46.3

	H	4-0-0		12-0-8					20	-1-0		24-1-0	
		4-0-0		0-0-0		1			0-	0-8		4-0-0	
LOADING (psf		SPACING-	2-0-0	CSI.		DE	FL.	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL 20.0		Plate Grip DOL	1.15	TC	0.19	Ve	rt(LL)	-0.06	11	>999	360	MT20	244/190
TCDL 10.0		Lumber DOL	1.15	BC	0.22	Ve	rt(CT)	-0.12	9-11	>999	240		
BCLL 0.0	*	Rep Stress Incr	NO	WB	0.20	Ho	rz(CT)	0.02	7	n/a	n/a		
BCDL 10.0		Code IRC2015/T	PI2014	Matrix	-MS	Wi	nd(LL)	0.05	11	>999	240	Weight: 317 lb	FT = 25%

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (6-0-0 max.): 3-6. Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=80(LC 26) Max Uplift 2=-186(LC 8), 7=-186(LC 9) Max Grav 2=1498(LC 1), 7=1497(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-2437/323, 3-5=-3472/492, 5-6=-3472/492, 6-7=-2435/323

BOT CHORD 2-12=-289/2012, 11-12=-293/1989, 9-11=-230/1987, 7-9=-226/2010

WEBS 3-12=0/496, 3-11=-267/1597, 5-11=-665/323, 6-11=-269/1599, 6-9=0/496

NOTES-

1) 2-ply truss to be connected together with 10d (0.131"x3") nails as follows:

Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc.

Bottom chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Webs connected as follows: 2x4 - 1 row at 0-9-0 oc.

2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated.

3) Unbalanced roof live loads have been considered for this design.

4) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 186 lb uplift at joint 2 and 186 lb uplift at joint 7.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
 10) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 77 lb down and 64 lb up at

(b) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) // ib down and 64 ib up at 4-0-0, 82 lb down and 60 lb up at 6-0-4, 82 lb down and 60 lb up at 10-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 60 lb up at 12-0-4, 82 lb down and 64 lb up at 20-1-0 on top chord, and 214 lb down and 63 lb up at 10-0-4, and 82 lb down at 10-0-4, 48 lb down at 12-0-4, 80 lb down

LOAD CASE(S) Standard

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Lot 12 Overhills Creek
					165027722
J0424-2257	A1-GR	HIP GIRDER	1	2	
				_	Job Reference (optional)
Comtech, Inc,	Fayetteville, NC - 28314,			8.430 s J	an 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:11 2024 Page 2

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:11 2024 Page 2 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-6=-60, 6-8=-60, 13-16=-20

Concentrated Loads (lb)

Vert: 3=-25(B) 12=-214(B) 11=-41(B) 5=-25(B) 6=-25(B) 9=-214(B) 19=-25(B) 20=-25(B) 21=-25(B) 22=-25(B) 23=-25(B) 24=-25(B) 25=-41(B) 26=-41(B) 27=-41(B) 28=-41(B) 29=-41(B) 30=-41(B) 30

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

<u> </u>	5-4-10 5-4-10	<u>10-4-0</u> 4-11-6	<u> </u>		<u>20-1-0</u> 4-9-10		24-1-0 4-0-0			
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2015/TPI	2-0-0 CSI 1.15 TC 1.15 BC NO WB 2014 Mat	. DE 0.08 Ver 0.23 Ver 0.27 Hoi trix-MS Wir	L. in ((LL) -0.05 ((CT) -0.10 z(CT) 0.02 d(LL) 0.04	(loc) l/defl 11-13 >999 11-13 >999 8 n/a 13 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 334 lb	GRIP 244/190 FT = 25%		
LUMBER- TOP CHORD 2x6 SP BOT CHORD 2x6 SP WEBS 2x4 SP 2-15: 2	2 No.1 2 No.1 2 No.2 *Except* x6 SP No.1		BR/ TOF BO	CHORD	Structural wood sl except end vertica Rigid ceiling direc	heathing directly als, and 2-0-0 of tly applied or 10	y applied or 6-0-0 o c purlins (6-0-0 may 0-0-0 oc bracing.	c purlins, <.): 1-7.		
REACTIONS. (size Max H Max U Max G	e) 15=Mechanical, 8=0-3 orz 15=-103(LC 9) plift 15=-196(LC 4), 8=-18 irav 15=1365(LC 1), 8=14	-8 2(LC 4) 56(LC 20)								
FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. FOP CHORD 2-15=-1245/232, 2-3=-2085/295, 3-4=-2085/295, 4-6=-2963/438, 6-7=-2964/439, 7-8=-2269/330 BOT CHORD 13-14=-398/3050, 11-13=-398/3050, 10-11=-225/1844, 8-10=-224/1861 WEBS 2-14=-313/2224, 3-14=-344/180, 4-14=-1094/167, 4-13=0/295, 6-11=-379/185, 7-11=-196/1309, 7-10=0/345										
 NOTES- 1) 2-ply truss to be con Top chords connect Bottom chords conn Webs connected as 2) All loads are conside ply connections have 3) Unbalanced roof live 4) Wind: ASCE 7-10; V Lumber DOL=1.60 p 5) Provide adequate dr 6) This truss has been 7) * This truss has been 7) * This truss has been will fit between the b 8) Refer to girder(s) for 9) Provide mechanical at joint 8. 10) Graphical purlin rep 11) Hanger(s) or other 2-0-4, 82 lb down at up at 10-0-4, 82 lb down at down and 60 lb up 48 lb down at 6-0- 	Inected together with 10d (ed as follows: 2x6 - 2 rows ected as follows: 2x6 - 2 ro follows: 2x4 - 1 row at 0-9 ered equally applied to all p e been provided to distribu e loads have been conside (ult=130mph Vasd=103mp) late grip DOL=1.60 rainage to prevent water por designed for a 10.0 psf bo n designed for a 10.0 psf bo n down and 60 lb up at 12- at 18-0-4, and 77 lb down 4, 48 lb down at 8-0-4, 48	0.131"x3") nails as follow staggered at 0-9-0 oc. wws staggered at 0-9-0 oc o oc. blies, except if noted as 1 te only loads noted as (f red for this design. h; TCDL=6.0psf; BCDL= onding. ttom chord live load non of 30.0psf on the bottom members. russ to bearing plate cap ct the size or the orienta be provided sufficient to o down and 60 lb up at 6 0-4, 82 lb down and 60 l and 64 lb up at 20-1-0 lb down at 10-0-4, 48 lt	vs: ront (F) or back (B) face ⁻) or (B), unless otherwise 6.0psf; h=15ft; Cat. II; Ex- concurrent with any othe chord in all areas where bable of withstanding 196 tion of the purlin along th o support concentrated lo 5-0-4, 82 lb down and 60 lb up at 14-0-4, 82 lb dow on top chord, and 48 lb c o down at 12-0-4, 48 lb c	n the LOAD CA indicated. p C; Enclosed; live loads. a rectangle 3-6 lb uplift at joint e top and/or bo ad(s) 82 lb dow lb up at 8-0-4, <i>rn</i> and 60 lb up own at 2-0-4, - own at 14-0-4,	ASE(S) section. Ply MWFRS (envelop -0 tall by 2-0-0 wid tom chord. n and 60 lb up at 82 lb down and 60 at 16-0-4, and 82 48 lb down at 4-0- 48 lb down at 16	y to e); le ift 2 lb 4, -0-4	SEA 0235	AROLUMULTUM		

down and 60 lb up at 18-0-4, and 77 lb down and 64 lb up at 20-1-0 on top chord, and 48 lb down at 2-0-4, 48 lb down at 4-0-4, 48 lb down at 6-0-4, 48 lb down at 8-0-4, 48 lb down at 10-0-4, 48 lb down at 12-0-4, 48 lb down at 14-0-4, 48 lb down at 16-0-4 , and 48 lb down at 18-0-4, and 214 lb down and 63 lb up at 20-0-4 on bottom chord. The design/selection of such connection Contidered (a) page 2 responsibility of others.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

April 19,2024

Job	Truss	Truss Type	Qty	Ply	Lot 12 Overhills Creek	
						165027723
J0424-2257	A1A-GR	HALF HIP GIRDER	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fa	yetteville, NC - 28314,			8.430 s J	an 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:10 2024	Page 2
		ID:sDG	qqS?97a5h	nuyVu1sq	ZuzPsQT-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J	4zJC?f

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-7=-60, 7-9=-60, 16-17=-20

Concentrated Loads (lb)

Vert: 7=-25(F) 10=-214(F) 20=-25(F) 21=-25(F) 22=-25(F) 23=-25(F) 24=-25(F) 25=-25(F) 26=-25(F) 27=-25(F) 28=-25(F) 29=-41(F) 30=-41(F) 31=-41(F) 32=-41(F) 33=-41(F) 35=-41(F) 35=-41(F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	6-0-0 6-0-0	12-0-8 6-0-8	<u>18-1-0</u> 6-0-8		24-1-0 6-0-0
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.17 WB 0.13 Matrix-AS	DEFL. in (loc) Vert(LL) -0.03 10 Vert(CT) -0.07 10 Horz(CT) 0.02 6 Wind(LL) 0.02 10	l/defl L/d >999 360 >999 240 n/a n/a >999 240	PLATES GRIP MT20 244/190 Weight: 162 lb FT = 25%
LUMBER-			BRACING-		

BOT CHORD

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 3-5.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD 2x6 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x4 SP No.2

REACTIONS. 2=0-3-8, 6=0-3-8 (size) Max Horz 2=-111(LC 10) Max Uplift 2=-34(LC 12), 6=-34(LC 13) Max Grav 2=1029(LC 1), 6=1029(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1429/357, 3-4=-1501/440, 4-5=-1501/440, 5-6=-1429/357

BOT CHORD 2-11=-158/1130, 10-11=-160/1124, 8-10=-165/1124, 6-8=-163/1130

WEBS 3-11=0/251, 3-10=-116/526, 4-10=-398/199, 5-10=-117/526, 5-8=0/251

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 6-0-0, Exterior(2) 6-0-0 to 12-0-8, Interior(1) 12-0-8 to 18-1-0, Exterior(2) 18-1-0 to 24-1-0, Interior(1) 24-1-0 to 25-2-1 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide 5) will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 2 and 34 lb uplift at ioint 6.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

l	6-0-0	12-0-8	18-1	-08		24-1-0	
Plate Offsets (X,Y)	[1:0-0-6,Edge], [5:0-0-5,Edge]	0-0-0	0-0-	0		0-0-0	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.18 WB 0.13 Matrix-AS	DEFL. in Vert(LL) -0.03 Vert(CT) -0.07 Horz(CT) 0.02 Wind(LL) 0.02	n (loc) l/defl 3 9 >999 7 9 >999 2 5 n/a 2 9 >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 159 lb	GRIP 244/190 FT = 25%
LUMBER- TOP CHORD 2x6 SF BOT CHORD 2x6 SF WEBS 2x4 SF	P No.1 P No.1 P No.2		BRACING- TOP CHORD BOT CHORD	Structural wood 2-0-0 oc purlins Rigid ceiling dir	I sheathing dire (6-0-0 max.): 2 ectly applied.	ectly applied, except 2-4.	
REACTIONS. (siz Max H Max U Max G	e) 1=Mechanical, 5=0-3-8 lorz 1=-106(LC 10) lplift 1=-19(LC 9), 5=-34(LC 13) irav 1=962(LC 1), 5=1030(LC 1)						
FORCES. (lb) - Max. TOP CHORD 1-2=- BOT CHORD 1-10= WEBS 2-10=	Comp./Max. Ten All forces 250 (b) .1437/376, 2-3=-1505/451, 3-4=-1505/ =-179/1138, 9-10=-181/1133, 7-9=-17(=0/252, 2-9=-115/524, 3-9=-398/198, 4	or less except when shown. 151, 4-5=-1431/358 /1127, 5-7=-169/1132 -9=-117/528, 4-7=0/251					
NOTES- 1) Unbalanced roof live 2) Wind: ASCE 7-10; V and C-C Exterior(2) 18-1-0 to 24-1-0, Int plate grip DOL=1.60 3) Provide adequate di 4) This truss has been 5) * This truss has bee will fit between the b 6) Refer to girder(s) for	e loads have been considered for this (/ult=130mph Vasd=103mph; TCDL=6. 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 6 erior(1) 24-1-0 to 25-2-1 zone;C-C for) rainage to prevent water ponding. designed for a 10.0 psf bottom chord I n designed for a live load of 30.0psf or bottom chord and any other members. r truss to truss connections	esign. Dpsf; BCDL=6.0psf; h=15ft; d 0-0, Exterior(2) 6-0-0 to 12- nembers and forces & MWf ve load nonconcurrent with the bottom chord in all area	Cat. II; Exp C; Encloser 0-8, Interior(1) 12-0-8 tr FRS for reactions show any other live loads. as where a rectangle 3-	d; MWFRS (envel o 18-1-0, Exterior n; Lumber DOL=* -6-0 tall by 2-0-0 v	ope) (2) 1.60 víde	TH C	ARO

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 19 lb uplift at joint 1 and 34 lb uplift at joint 5.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	8-0-0		16-1-0			24-1-0	
Plate Offsets (X,Y)	[2:0-0-2.Edge], [5:0-0-2.Edge]		8-1-0			8-0-0	
LOADING (psf)	SPACING- 2-0-0	CSI.	DEFL. ii	n (loc)	l/defl L	/d PLATES	GRIP
TCLL 20.0	Plate Grip DOL 1.15	TC 0.24	Vert(LL) -0.03	3 9-12	>999 36	60 MT20	244/190
TCDL 10.0	Lumber DOL 1.15	BC 0.24	Vert(CT) -0.06	5 9-12	>999 24	40	
BCLL 0.0 *	Rep Stress Incr YES	WB 0.08	Horz(CT) 0.02	2 5	n/a n	/a	
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.03	3 9-12	>999 24	Weight: 157	lb FT = 25%
		1					

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

BRACING-TOP CHORD BOT CHORD WEBS

D Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 3-4.
 D Rigid ceiling directly applied.
 T-Brace: 2x4 SPF No.2 - 3-7
 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance.
 Brace must cover 90% of web length.

REACTIONS.	(size)	2=0-3-8, 5=0-3-8
	Max Horz	2=143(LC 11)
	Max Uplift	2=-47(LC 12), 5=-47(LC 13)
	Max Grav	2=1029(LC 1), 5=1029(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 2-3=-1345/337, 3-4=-1031/374, 4-5=-1346/337
- BOT CHORD 2-9=-114/1035, 7-9=-116/1030, 5-7=-126/1036
- WEBS 3-9=0/343, 4-7=0/343

NOTES-

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 8-0-0, Exterior(2) 8-0-0 to 14-2-11, Interior(1) 14-2-11 to 16-1-0, Exterior(2) 16-1-0 to 22-3-11, Interior(1) 22-3-11 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 47 lb uplift at joint 2 and 47 lb uplift at joint 5.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

9) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	8-0-0	10	6-1-0	2	4-1-0	
I	8-0-0	8	3-1-0 ¹	1 8	8-0-0	
Plate Offsets (X,Y)	[1:0-0-2,Edge], [4:0-0-1,Edge]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.24 BC 0.25 WB 0.08 Matrix-AS	DEFL. in (loc Vert(LL) -0.03 8-11 Vert(CT) -0.07 8-11 Horz(CT) 0.02 4 Wind(LL) 0.03 8-11) l/defl L/d 1 >999 360 1 >999 240 4 n/a n/a 1 >999 240	PLATES GRIP MT20 244/190 Weight: 153 lb FT = 25%	

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

BRACING-TOP CHORD Structural we 2-0-0 oc purl BOT CHORD Rigid ceiling WEBS T-Brace: Easten (2X)

Structural wood sheathing directly applied, except 2-0-0 oc purlins (6-0-0 max.): 2-3. Rigid ceiling directly applied. T-Brace: 2x4 SPF No.2 - 2-6 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS.	(size)	1=Mechanical, 4=0-3-8
	Max Horz	1=-138(LC 10)
	Max Uplift	1=-32(LC 12), 4=-48(LC 13)
	Max Grav	1=962(LC 1), 4=1030(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

- TOP CHORD 1-2=-1327/347, 2-3=-1032/379, 3-4=-1348/343
- BOT CHORD 1-8=-122/1041, 6-8=-124/1036, 4-6=-131/1038
- WEBS 2-8=0/344, 3-6=0/344

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 8-0-0, Exterior(2) 8-0-0 to 14-2-11, Interior(1) 14-2-11 to 16-1-0, Exterior(2) 16-1-0 to 22-3-11, Interior(1) 22-3-11 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 32 lb uplift at joint 1 and 48 lb uplift at joint 4.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

10) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

ł	8-0-8 8-0-8		16-0-8 8-0-0	24	I-1-0 -0-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.14 BC 0.30 WB 0.13 Matrix-AS	DEFL. in (loc) Vert(LL) -0.08 9-11 Vert(CT) -0.11 9-11 Horz(CT) 0.02 7 Wind(LL) 0.04 11-14	l/defl L/d >999 360 >999 240 / n/a n/a >999 240	PLATES MT20 Weight: 162 lb	GRIP 244/190 FT = 25%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 4-5.

Rigid ceiling directly applied.

LUMBER-

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=-175(LC 10) Max Uplift 2=-58(LC 12), 7=-58(LC 13) Max Grav 2=1055(LC 19), 7=1055(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1440/340, 3-4=-1313/382, 4-5=-913/333, 5-6=-1313/382, 6-7=-1440/340

BOT CHORD 2-11=-155/1247, 9-11=-39/945, 7-9=-168/1140

WEBS 3-11=-331/216, 4-11=-97/586, 5-9=-97/586, 6-9=-331/216

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 10-0-0, Exterior(2) 10-0-0 to 20-3-11, Interior(1) 20-3-11 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 58 lb uplift at joint 2 and 58 lb uplift at joint 7.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

8) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

<u> </u>	8-0-8	16-0-8	3	24-1-0	
Plate Offsets (X,Y)	<u>8-0-8</u> [1:0-0-6,0-0-2], [6:0-0-6,0-0-2]	8-0-0		8-0-8	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.15 BC 0.30 WB 0.13 Matrix-AS	DEFL. in (lo Vert(LL) -0.08 8-1 Vert(CT) -0.11 8-1 Horz(CT) 0.02 Wind(LL) 0.04 10-1	c) I/defl L/d 10 >999 360 10 >999 240 6 n/a n/a 13 >999 240	PLATES GRIP MT20 244/190 Weight: 158 lb FT = 25%

BRACING-TOP CHORD

BOT CHORD

Structural wood sheathing directly applied, except

2-0-0 oc purlins (6-0-0 max.): 3-4.

Rigid ceiling directly applied.

LUMBER-	

TOP CHORD	2x6 SP No.1
BOT CHORD	2x6 SP No.1
WEBS	2x4 SP No.2

- REACTIONS. (size) 1=Mechanical, 6=0-3-8 Max Horz 1=-170(LC 8) Max Uplift 1=-43(LC 12), 6=-59(LC 13)
 - Max Grav 1=993(LC 19), 6=1056(LC 20)
- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 1-2=-1431/350, 2-3=-1320/392, 3-4=-916/340, 4-5=-1315/391, 5-6=-1442/347
- BOT CHORD 1-10=-159/1254, 8-10=-46/948, 6-8=-174/1142
- WEBS 2-10=-329/219, 3-10=-101/593, 4-8=-95/586, 5-8=-330/214

NOTES-

1) Unbalanced roof live loads have been considered for this design.

- 2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.opsf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)
- and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 10-0-0, Exterior(2) 10-0-0 to 20-3-11, Interior(1) 20-3-11 to 25-2-1 zone;C-C
- for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Provide adequate drainage to prevent water ponding.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 43 lb uplift at joint 1 and 59 lb uplift at joint 6.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 9) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 *	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES	CSI. TC 0.80 BC 0.41 WB 0.43	DEFL. ir Vert(LL) -0.25 Vert(CT) -0.41 Horz(CT) 0.02	n (loc) l/defl L/d 12-14 >999 360 12-14 >699 240 10 n/a n/a	PLATES MT20	GRIP 244/190
BCDL 10.0	Code IRC2015/TPI2014	Matrix-AS	Wind(LL) 0.15	14-17 >999 240	Weight: 173 lb	FT = 25%
LUMBER- TOP CHORD 2x6 S BOT CHORD 2x6 S WEBS 2x4 S	SP No.1 SP No.1 SP No.2		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dir Rigid ceiling directly applied.	ectly applied.	
REACTIONS. (s Max	ze) 2=0-3-8, 10=0-3-8 Horz 2=210(LC 11)					

Max Uplift 2=-66(LC 12), 10=-66(LC 13)

Max Grav 2=1189(LC 19), 10=1189(LC 20)

- FORCES. (lb) Max. Comp./Max. Ten. All forces 250 (lb) or less except when shown.
- TOP CHORD 2-4=-1573/241, 4-5=-1103/311, 5-6=-155/877, 6-7=-155/878, 7-8=-1104/311,
- 8-10=-1574/241
- BOT CHORD 2-14=-40/1191, 12-14=-44/1192, 10-12=-40/1191 4-14=0/545, 8-12=0/546, 5-7=-2151/540
- WEBS

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-1-1 to 3-3-12, Interior(1) 3-3-12 to 12-0-8, Exterior(2) 12-0-8 to 16-5-5, Interior(1) 16-5-5 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 4x6 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 66 lb uplift at joint 2 and 66 lb uplift at joint 10.

7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

LOADING (ps TCLL 20 TCDL 10 BCLL 0 BCDL 10	sf)).0).0).0 *).0	SPACING- Plate Grip I Lumber DO Rep Stress Code IRC2	2-0-0 OL 1.15 - 1.15 Incr YES 015/TPI2014	CSI. TC BC WB Matri	0.80 0.41 0.44 x-AS	DEFL. Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in -0.25 1 -0.41 1 0.02 0.15 1	(loc) 1-13 1-13 9 3-16	l/defl >999 >698 n/a >999	L/d 360 240 n/a 240	PLATES MT20 Weight: 170 lb	GRIP 244/190 FT = 25%
LUMBER- TOP CHORD BOT CHORD WEBS	2x6 SF 2x6 SF 2x4 SF	9 No.1 9 No.1 9 No.2				BRACING- TOP CHOR BOT CHOR	D S D F	Structur Rigid ce	al wood sl iling direct	neathing dire	ectly applied.	
REACTIONS.	. (sizo Max H Max U Max G	e) 1=Mechanical lorz 1=-204(LC 8) lplift 1=-51(LC 12), lrav 1=1127(LC 19	9=0-3-8 9=-67(LC 13)), 9=1190(LC 20)									
FORCES. (II TOP CHORD BOT CHORD WEBS	b) - Max. 1-3=- 7-9=- 1-13= 3-13=	Comp./Max. Ten 1575/249, 3-4=-11 1579/244 =-49/1194, 11-13=- =0/545, 7-11=0/546	All forces 250 (lb))5/318, 4-5=-157/4 53/1195, 9-11=-4£ , 4-6=-2160/564	or less except 882, 5-6=-166/8 /1194	when showr 380, 6-7=-11	n. 07/312,						

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-0-0 to 4-4-13, Interior(1) 4-4-13 to 12-0-8, Exterior(2) 12-0-8 to 16-5-5, Interior(1) 16-5-5 to 25-2-1 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) All plates are 4x6 MT20 unless otherwise indicated.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 51 lb uplift at joint 1 and 67 lb uplift at joint 9.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affi 818 Soundside Road

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

ERENCO A MITEK Affilia

Continued on page 2

ᄊ WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Lot 12 Overhills Creek	
						165027733
J0424-2257	B1-GR	COMMON GIRDER	1	2		
				_	Job Reference (optional)	
Comtech, Inc, Fa	yetteville, NC - 28314,			8.430 s J	an 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:18 2024	Page 2
		ID:sDG	qqS?97a5h	nuyVu1sq	ZuzPsQT-RfC?PsB70Hq3NSqPqnL8w3ulTXbGKWrCDoi7J4	4zJC?f

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 9=-942(B) 17=-942(B) 18=-942(B) 19=-942(B) 20=-942(B) 21=-942(B) 22=-942(B) 23=-1345(B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

JOINTS

Rigid ceiling directly applied or 10-0-0 oc bracing.

1 Brace at Jt(s): 23

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2OTHERS2x4 SP No.2

REACTIONS. All bearings 19-10-8.

(lb) - Max Horz 2=220(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 12, 2, 19, 20, 21, 22, 16, 15, 14

Max Grav All reactions 250 lb or less at joint(s) 12, 2, 20, 21, 22, 16, 15, 14 except 19=368(LC 19), 17=334(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated.

5) Gable requires continuous bottom chord bearing

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 12, 2, 19, 20, 21, 22, 16, 15, 14.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	5-11-8 5-11-8		<u> </u>	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.21 BC 0.17 WB 0.06 Matrix-AS	DEFL. in (loc) l/defl L/d Vert(LL) -0.02 6-9 >999 360 Vert(CT) -0.03 6-9 >999 240 Horz(CT) 0.01 4 n/a n/a Wind(LL) 0.04 6-12 >999 240	PLATES GRIP MT20 244/190 Weight: 53 lb FT = 25%

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

REACTIONS. (size) 2=0-3-0, 4=0-3-0 Max Horz 2=29(LC 8) Max Uplift 2=-217(LC 8), 4=-217(LC 9) Max Grav 2=552(LC 1), 4=-552(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-831/908, 3-4=-831/908

BOT CHORD 2-6=-773/742, 4-6=-773/742

WEBS 3-6=-359/270

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 5-11-8, Exterior(2) 5-11-8 to 10-4-5, Interior(1) 10-4-5 to 13-2-0 zone; porch left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=217, 4=217.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BRACING-TOP CHORD BOT CHORD

Structural wood sheathing directly applied. Rigid ceiling directly applied.

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 BCDL 10.0	SPACING-2-0-0Plate Grip DOL1.15Lumber DOL1.15Rep Stress IncrYESCode IRC2015/TPI2014	CSI. TC 0.17 BC 0.20 WB 0.08 Matrix-AS	DEFL. in Vert(LL) 0.04 Vert(CT) -0.04 Horz(CT) 0.01	(loc) 8 10-13 6	l/defl L/d >999 240 >999 240 n/a n/a	PLATES MT20 Weight: 57 lb	GRIP 244/190 FT = 25%
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x6 S WEBS 2x4 S OTHERS 2x4 S	P No.1 P No.1 P No.2 P No.2		BRACING- TOP CHORD BOT CHORD	Structura Rigid cei	al wood sheathing dir iling directly applied.	ectly applied.	
REACTIONS. (siz Max I Max (Max (ze) 2=0-3-0, 6=0-3-0 Horz 2=49(LC 12) Jplift 2=-309(LC 8), 6=-309(LC 9) Grav 2=552(LC 1), 6=552(LC 1)						
FORCES.(lb) - MaxTOP CHORD2-3=BOT CHORD2-10WEBS4-9=	. Comp./Max. Ten All forces 250 (lb) or 829/966, 3-4=-807/1003, 4-5=-807/1003 =-842/754, 9-10=-842/754, 8-9=-842/754 478/340	less except when shown. 3, 5-6=-829/966 4, 6-8=-842/754					
NOTES-							
 Unbalanced roof liv Wind: ASCE 7-10; gable end zone and Lumber DOL=1.60 Truss designed for Gable End Details Gable Studs spaced This truss has beer * This truss has beer * This truss has beer 	e loads have been considered for this de Vult=130mph Vasd=103mph; TCDL=6.0 J C-C Exterior(2) zone; porch left and rigi plate grip DOL=1.60 wind loads in the plane of the truss only. as applicable, or consult qualified building d at 2-0-0 oc. of designed for a 10.0 psf bottom chord live en designed for a live load of 30.0psf on the bottom chord and any other members	sign. sf; BCDL=6.0psf; h=15ft; tt exposed;C-C for memb For studs exposed to wir g designer as per ANSI/TF e load nonconcurrent with he bottom chord in all are	Cat. II; Exp C; Enclosed ers and forces & MWFR: nd (normal to the face), s PI 1. n any other live loads. eas where a rectangle 3-	l; MWFRS S for react see Standa 6-0 tall by	6 (envelope) tions shown; ard Industry 2-0-0 wide	NUMERIC C	ARO
 Provide mechanica 	I connection (by others) of truss to bearing	g plate capable of withsta	anding 100 lb uplift at joir	nt(s) excep	ot (it=lb)	NOTIFO	Cia Ala

() Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=309, 6=309.
8) This trues design requires that a minimum of 7/16" structure wood shoothing he applied directly to the ten short and 40".

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

	F		5-3-8	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.17	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.01 6-9 >999 360 MT20 244/190	
ICDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.17 WB 0.00 Matrix-AS	Vert(C1) -0.02 6-9 >999 240 Horz(CT) -0.00 2 n/a n/a Wind(LL) 0.03 6-9 >999 240 Weight: 25 lb FT = 25%	

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 2x6 SP No.1 BOT CHORD WEBS

2x4 SP No.2

REACTIONS. 2=0-3-0, 5=0-3-8 (size) Max Horz 2=81(LC 12) Max Uplift 2=-84(LC 8), 5=-60(LC 8) Max Grav 2=289(LC 1), 5=178(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 5-0-0 zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 84 lb uplift at joint 2 and 60 lb uplift at ioint 5.

5) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

	L		5-0-0				5-3-8	
	I		5-0-0				0-3-8	
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.18	DEFL. Vert(LL) (in (loc) 0.02 9-10	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
BCLL 0.0 * BCDL 10.0	Rep Stress Incr YES Code IRC2015/TPI2014	WB 0.02 Matrix-S	Horz(CT) -0).02 9-10).00 7	>999 n/a	n/a	Weight: 28 lb	FT = 25%
LUMBER-		<u> </u>	BRACING-					

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 2x4 SP No.2 WEBS OTHERS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 7=0-3-8 Max Horz 2=119(LC 12)

Max Uplift 2=-124(LC 8), 7=-84(LC 8) Max Grav 2=295(LC 1), 7=169(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone; porch left exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable studs spaced at 2-0-0 oc.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 124 lb uplift at joint 2 and 84 lb uplift at joint 7.

Structural wood sheathing directly applied or 5-0-0 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road

Plate Offse	ts (X,Y)	[2:0-3-0,0-1-10]										
	(psf)	SPACING-	2-0-0	CSL		DEFL	in	(loc)	l/defl	l /d	PLATES	GRIP
TCLL	20.0	Plate Grip DOL	1.15	TC	0.53	Vert(LL)	-0.07	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.40	Vert(CT)	-0.16	4-7	>618	240		
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	2	n/a	n/a		
BCDL	10.0	Code IRC2015/TF	912014	Matrix	k-AS	Wind(LL)	0.07	4-7	>999	240	Weight: 39 lb	FT = 25%
LUMBER-						BRACING-						

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1

REACTIONS. (size) 2=0-3-8, 4=0-1-8

Max Horz 2=83(LC 8) Max Uplift 2=-75(LC 8), 4=-44(LC 12) Max Grav 2=416(LC 1), 4=330(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 8-4-12 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 4) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.
- 6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 75 lb uplift at joint 2 and 44 lb uplift at ioint 4.
- 7) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Plate Offsets (X,Y)	[2:0-3-6,0-0-6]			
LOADING (psf) TCLL 20.0	SPACING- 2-0-0 Plate Grip DOL 1.15	CSI. TC 0.28	DEFL. in (loc) I/defl L/d Vert(LL) -0.10 8 >999 360	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0 * BCDL 10.0	Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	BC 0.47 WB 0.02 Matrix-AS	Vert(CT) -0.20 8-11 >497 240 Horz(CT) 0.01 2 n/a n/a Wind(LL) 0.13 8-11 >790 240	Weight: 43 lb FT = 25%
LUMBER-			BRACING-	

BOT CHORD

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. (size) 2=0-3-8, 6=0-1-8 Max Horz 2=118(LC 8) Max Uplift 2=-150(LC 8), 6=-107(LC 12) Max Grav 2=416(LC 1), 6=330(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) Gable studs spaced at 2-0-0 oc.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 6 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 6.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 150 lb uplift at joint 2 and 107 lb uplift at joint 6.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

Structural wood sheathing directly applied, except end verticals.

Rigid ceiling directly applied.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second design much reacting of design and the second design much reacting and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

 TOP CHORD
 2x4 SP No.1

 BOT CHORD
 2x4 SP No.1

 WEBS
 2x4 SP No.2

 OTHERS
 2x4 SP No.2

Structural wood sheathing directly applied or 6-0-0 oc purlins except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing, Except:

6-0-0 oc bracing: 6-7.

REACTIONS. All bearings 13-9-2.

(lb) - Max Horz 1=120(LC 9)

Max Uplift All uplift 100 lb or less at joint(s) 6 except 9=-109(LC 12), 7=-129(LC 13)

Max Grav All reactions 250 lb or less at joint(s) 1, 6 except 8=256(LC 1), 9=385(LC 19), 7=314(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

WEBS 2-9=-326/216, 4-7=-280/202

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 8-1-7, Exterior(2) 8-1-7 to 12-6-4, Interior(1) 12-6-4 to 13-6-7 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.
Browide mechanical connection (by chore) of trust to hooring plate conclusion of withstanding 100 lb unlift at init(a) 6 except (it-lb).

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6 except (jt=lb) 9=109, 7=129.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) 0-5-15 to 4-10-12, Interior(1) 4-10-12 to 6-1-7, Exterior(2) 6-1-7 to 10-6-4, Interior(1) 10-6-4 to 11-9-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Gable requires continuous bottom chord bearing.

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5, 8, 6.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

BOT CHORD 2x4 SP No.1 OTHERS 2x4 SP No.2

REACTIONS. 1=8-1-13, 3=8-1-13, 4=8-1-13 (size) Max Horz 1=-58(LC 10) Max Uplift 1=-25(LC 12), 3=-31(LC 13) Max Grav 1=158(LC 1), 3=158(LC 1), 4=265(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3. 6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3x4 🥢

3x4 📎

Structural wood sheathing directly applied or 4-2-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

Plate Offsets (X,Y)	0-0-9 0-0-9 [2:0-2-0,Edge]		4-2-15 4-2-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.03 BC 0.09 WB 0.00 Matrix-P	DEFL. in (loc) l/defl L/d Vert(LL) n/a - n/a 999 Vert(CT) n/a - n/a 999 Horz(CT) 0.00 3 n/a n/a	PLATES GRIP MT20 244/190 Weight: 12 lb FT = 25%

BRACING-

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x4 SP No.1

REACTIONS. (size) 1=4-1-13, 3=4-1-13 Max Horz 1=-26(LC 8) Max Uplift 1=-7(LC 12), 3=-7(LC 13) Max Grav 1=130(LC 1), 3=130(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.6) Non Standard bearing condition. Review required.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

				I		4-0-0				1		
LOADING TCLL	(psf) 20.0	SPACING- Plate Grip DOL	2-0-0 1.15	CSI. TC	0.12	DEFL. Vert(LL)	in -0.00	(loc) 4-7	l/defl >999	L/d 360	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.09	Vert(CT)	-0.01	4-7	>999	240		
BCLL BCDL	0.0 * 10.0	Rep Stress Incr Code IRC2015/TP	YES 12014	WB Matrix	0.00 (-AS	Horz(CT) Wind(LL)	0.00 -0.01	3 4-7	n/a >999	n/a 240	Weight: 19 lb	FT = 25%

TOP CHORD

BOT CHORD

Structural wood sheathing directly applied.

Rigid ceiling directly applied.

```
LUMBER-
```

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=107(LC 12)

Max Uplift 3=-51(LC 12), 2=-6(LC 12) Max Grav 3=99(LC 19), 2=244(LC 1), 4=80(LC 3)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

 Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope) and C-C Exterior(2) -1-3-0 to 3-1-13, Interior(1) 3-1-13 to 3-11-4 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

6) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

	' 1-10-15									
LOADING (psf) TCLL 20.0 TCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15	CSI. TC 0.08 BC 0.03	DEFL. in (loc) l/defl L/d PLATES GRIP Vert(LL) -0.00 7 >999 360 MT20 244/190 Vert(CT) -0.00 7 >999 240 MT20 244/190							
BCDL 10.0	Code IRC2015/TPI2014	Matrix-MP	Horz(C1) 0.00 3 n/a n/a Wind(LL) -0.00 7 >999 240 Weight: 10 lb FT = 25%							

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1

REACTIONS. (size) 3=Mechanical, 2=0-3-8, 4=Mechanical

Max Horz 2=63(LC 12)

Max Uplift 3=-22(LC 12), 2=-16(LC 12)

Max Grav 3=41(LC 19), 2=176(LC 1), 4=34(LC 3)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope)

and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide

will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.

Structural wood sheathing directly applied or 1-10-15 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

			5-6-6	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr NO Code IRC2015/TPI2014	CSI. TC 0.26 BC 0.12 WB 0.00 Matrix-MP	DEFL. in (loc) l/defl L/d Vert(LL) -0.01 6-9 >999 360 Vert(CT) -0.02 6-9 >999 240 Horz(CT) 0.00 2 n/a n/a Wind(LL) 0.01 6-9 >999 240	PLATES GRIP MT20 244/190 Weight: 29 lb FT = 25%

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD2x4 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.2

WEBS 2x4 SP No.2 REACTIONS. (size) 6=Mecha

EACTIONS. (size) 6=Mechanical, 2=0-4-9 Max Horz 2=106(LC 23) Max Uplift 6=-42(LC 8), 2=-28(LC 8) Max Grav 6=202(LC 29), 2=332(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) Wind: ASCE 7-10; Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=15ft; Cat. II; Exp C; Enclosed; MWFRS (envelope); Lumber DOL=1.60 plate grip DOL=1.60

2) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

3) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 2-0-0 wide will fit between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 6, 2.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 62 lb down and 28 lb up at 2-9-8, and 62 lb down and 28 lb up at 2-9-8 on top chord, and 13 lb down and 2 lb up at 2-9-8, and 62 lb down and 2 lb up at 2-9-8 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-4=-20, 5-7=-20 Concentrated Loads (lb)

Vert: 11=3(F=2, B=2)

Structural wood sheathing directly applied or 5-6-6 oc purlins,

Rigid ceiling directly applied or 10-0-0 oc bracing.

except end verticals.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Indicates Left End of Truss
 (Reference Engineered Truss Drawing)
 Do NOT Erect Truss Backwards

LOAD CHART FOR JACK STUDS (BASED ON TABLES P502.5(1) & (b))		BUILDER	Wellco Contractors, Inc.	CITY / CO.	Spring Lake / Harnett	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual building components to be incorporated into the building design at the specification of the building designer. See individual design shorts for each trus design identified on the placement drawing. The building designer		
ZO LE CO SA HANDER OF J		ON CONTROL	JOB NAME	Lot 12 Overhills Creek	ADDRESS	87 Onslow Court	is responsible for temporary and permanent bracing of the roof and floor system and for the overall structure. The design of the truss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding bracing, consult BCSI-B1 and BCSI-B3 provided with the truss delivery package	соттесн
END REAC (UP TG (UP TG (2) PLY HE	END REAC (UP TG (UP TG (3) PLY HI	END REAC (UP T) (UP T) (UP T) (4) PLY H	PLAN	Plan 13 / 2GRF	MODEL	Roof	or online @ sbcindustry.com Bearing reactions less than or equal to 3000# are deemed to comply with the prescriptive Code requirements. The contractor shall refer to the attached Tables	ROOF & FLOOR
170013400251003	2550 1 5100 2 7650 3	3400 1 6800 2 10200 3	SEAL DATE	Seal Date	DATE REV.	04/18/24	(derived from the prescriptive Code requirements) to determine the minimum foundation size and number of wood studs required to support reactions greater than 3000# but not greater than 15000#. A registered design professional shall be retained to design the support system for any reaction that exceeds those	TRUSSES & BEAMS
6800 4 8500 5 10200 6	10200 4 12750 5 15300 6	13600 4 17000 5	QUOTE #	Quote #	DRAWN BY	David Landry	specified in the attached Tables. A registered design professional shall be retained to design the support system for all reactions that exceed 15000#.	Fayetteville, N.C. 28309 Phone: (910) 864-8787
11900 7 13600 8 15300 9			JOB #	J0424-2257	SALES REP.	Lenny Norris	Signature David Landry	Fax: (910) 864-4444

END REACTION (UP TO) REQ'D STUDS FO (2) PLY HEADER

1700 1

3400 2

5100 3

6800 4

8500 5

10200 6

11900 7

13600 8

15300 9

		Client:	Wellco Co	ntractors, Inc.		Dat	e: 4/22	/2024				Page 1 of 5
Tie	Design	Projec	:			Inpu	utby: Dav	id Landry	Crock			
	Design	Addres	5.			Job	iect #	2 Overnins	Стеек			
BM1 I	Corto_S I VI	1 750	" X 24 0	00" 2.	Dlv - D		Level: L	.evel				
		1.750	~ ~ ~	00 2-	-	AUGED						
			5									
	4		<u> </u>				2					
							3			_		
		2										
		2										
• •			•		• •	· · · ·	· · · ·	•	· · · · ·		Π	
											W	
	a rittle			alt for The	1000		AN ON THE .				M	2'
		And a strength		- Addition of the local		107	ALT . REPORT		· · · ·	_	Ш	
1 SPF End	l Grain 0-3-8							2 SPF End	Grain 0-3-8	1		
				20'					· · ·	1	13	1/2"
∤				20'						ł		
Member In	formation					Reactions			(Uplift)			
Туре:	Girder	Ap	plication:	Floor		Brg Direc	tion	Live	Dead	Snow	Wind	Const
Plies:	2	De	sign Method:	ASD		1 Vertic	al 2	2730	4527	1030	0	0
Moisture Cond	dition: Dry	Bu	ilding Code:	IBC/IRC 2015	5	2 Vertic	al 2	2730	4527	1030	0	0
Deflection TL:	360	De	eck:	Not Checked								
Importance:	Normal - II	Ce	iling:	Gypsum 1/2'	,							
Temperature:	Temp <= 100°F					Destination						
						Bearings	anath Dia	Can		Total		I d Camb
						Bearing L	_ength Dir. 3.500" Ver	t 71%	4527 / 2820	D IOTAI	Ld. Case	Ld. Comb.
						End		. 11/0	4021 / 2020	, 1041	-	D:0.70(E:0)
Analysis Re	sults					Grain		+ 710/	4507 / 2020	7247		
Analysis	Actual Lo	cation Allowe	d Capacit	y Comb.	Case	End	5.500 Vei	L 7170	452772020	5 7547	L	D+0.73(L+3)
Moment	34713 ft-lb 35144 ft-lb	10' 73185	tt-lb 0.474(4 ft_lb 0.997	7%) D+L D+0 75/L-	L +S) I	Grain						
Unbraced		10 00247	(100%)	D:0.70(E	.0) L							
Shear	6525 lb 17	7'8 1/2" 17920	lb 0.364 (3	6%) D+L	L							
LL Defl inch	0.134 (L/1755) 10	0' 1/16" 0.489	L/480) 0.273 (2 L/200) 0.504 (5)	7%) 0.75(L+S)								
TL Defl inch	0.348 (L/674) 10	0.652	L/360) 0.534 (5	3%) D+0.75(L+	+S) L	-						
Design Not	:es	novement and r	otation at the end	l bearings Lat	aral support	4						
may also b	e required at the interior	bearings by the	building code.	i bearings. Lau	erai support							
2 Fasten all p to exceed 6	blies using 3 rows of 10c 5".	d Box nails (.128	5x3") at 12" o.c. N	Aaximum end o	listance not							
3 Refer to las	t page of calculations fo	or fasteners req	lired for specified	l loads.								
4 Girders are	designed to be support	ted on the botto	n edge only.									
6 Top must b	e laterally braced at a m	naximum of 5' 1	2" o.c.									
7 Lateral sler	nderness ratio based on	single ply width										
ID	Load Type	Locati	on Trib Width	Side	Dead 0.9	Live 1	Snow 1.15	Wind 1	.6 Const.	1.25 Co	mments	
1	Uniform			Near Face	83 PLF	0 PLF	83 PLF	0 P	LF 0	PLF M2		
2	Uniform			Far Face	91 PLF	273 PLF	0 PLF	0 P	LF 0	PLF F3		
3	Uniform			Тор	120 PLF	0 PLF	0 PLF	0 P	LF 0	PLF Wa		
4	Uniform		a (a-	Тор	120 PLF	0 PLF	0 PLF	0 P	LF 0	PLF B1	GΕ	
5 Continued on T	Tie-In Far	0-0-0 to 20-0	-0 1-0-0	Тор	20 PSF	0 PSF	20 PSF	0 P	SF 0	PSF Ro	ot	
Communed on pa	uye ∠											
Notes		chemicals		6. For f	lat roofs provide p	proper drainage to pr	revent Manufa	acturer Info		Comte	ch, Inc.	NC
Calculated Structured structural adequacy	Designs is responsible only of the of this component based on the	Handling & Ins 1. LVL beams must	tallation not be cut or drilled	pondi	чч		Metsä V 301 Me	Nood rritt 7 Building	, 2nd Floor	28314	o Relliy Rd.,	, NC
responsibility of the of ensure the comport	 ioadings shown. It is the customer and/or the contractor to ient suitability of the intended 	 Refer to mar regarding insta fastening details 	ufacturer's product in llation requirements, beam strength values	nformation multi-ply and code			Norwal (800) 6	k, CT 06851 22-5850		(910)	864-8787	
application, and to ver	ify the dimensions and loads.	approvals 3. Damaged Beams	must not be used				www.m	etsawood.con	n/us			
 Dry service condition LVL not to be treat 	ions, unless noted otherwise ted with fire retardant or corrosive	 Design assumes Provide lateral s lateral displacem 	op edge is laterally restra upport at bearing points ent and rotation	to avoid		until 6/20/2022				C	:omt	есн
1				inis	o u c siyiri is valla	a untui 0/20/2026	1					

Version 23.40.705 Powered by iStruct[™] Dataset: 24041102.2907

		Client:	Wellco Contractors	s, Inc.	Date:	4/22/2024	Page 2 of 5
	isDesign	Project:			Input by:	David Landry	
	130631311	Address.			Project #	: J0424-2258	
BM1	Kerto-S LVL	1.750"	X 24.000"	2-Ply - PA	SSED	Level: Level	
				•			
	4		5				
					3		
		2	1				
-	• • • • • •	· · ·		· · · · ·	· · · ·	• • • •	Π \uparrow
				· · ·			
	a rinte		1	m and	The state	ritte	2.
	End Grain 0-3-8			•	•	2 SPF End Grain 0-3-8	Ш _/_
			201	•			2 1/2"
			20	1			5 1/2
			20			I	
Continued	d from page 1						
ID	Load Type	Location	Trib Width Side	e Dead 0.9	Live 1 Sn	ow 1.15 Wind 1.6 Const. 1.2	25 Comments
5	Tie-In Near	0-0-0 to 20-0-0	0-0-0 Тор	20 PSF	0 PSF	20 PSF 0 PSF 0 PS	SF Roof
	Sell Weight			19 FLF			
						Manufacture 1.4	
Notes Calculated Stru	uctured Designs is responsible only of the	chemicals Handling & Installat	ion	6. For flat roofs provide prop- ponding	er drainage to prevent	Manufacturer Info Metsä Wood	Comtech, Inc. 1001 S Reilly Rd., NC
structural adeq design criteria responsibility o	quacy of this component based on the a and loadings shown. It is the of the customer and/or the contractor to	1. LVL beams must not be 2. Refer to manufactur regarding installation	cut or drilled rer's product information			301 Merritt 7 Building, 2nd Floor Norwalk, CT 06851	28314 (910) 864-8787
ensure the c application, and	to verify the dimensions and loads.	regarding installation fastening details, beam approvals	strength values, and code			(800) 622-5850 www.metsawood.com/us	
1. Dry service	conditions, unless noted otherwise	 Damaged Beams must r Design assumes top edg Provide lateral support 	to be used the is laterally restrained at bearing points to avoid				соттесн
Version 22.40	705 Powered by iStructTM Dates	ateral displacement and	rotation	This design is valid ur	ntil 6/28/2026		
version 25.40	oo i oweren by ionuct Datasi	C. 27071102.2301					

		Client:	Wellco Contractors,	Inc.	Date:	4/22/2024		Page 3 of 5
4		Project:			Input	by: David Landry		-
	isDesign	Address:			Job N	ame: Lot 12 Overhills Cre	ek	
–					Proje	ct #: J0424-2258		
BM1	Kerto-SIV	/1 1 750"	X 24 000"	2-Plv -	PASSED	Level: Level		
			X 24.000	- y	TACCED			
-								
								— —
•		• • •	• • •	• •	• •	• • • •	•••	M 1
								2
							· · ·	2'
							· · []	¥ III L
1 SPF	End Grain 0-3-8					2 SPF End Gra	in 0-3-8 /	$\overline{\mathbf{x}}$
			20'					3 1/2"
			20'				/	
			20				1	
L								
Multi-Ply	y Analysis							
Eacton all	l plies using 3 row	s of 10d Box pails	(128v2") at 12"	o c Maximi	um and distance	not to avcord 6"		
Capacity	i piles using 5 tow		(.120X5) at 12			e not to exceed o .		
Load		182 0 PLF						
Yield Limit p	er Foot	245.6 PLF						
Yield Limit p	er Fastener	81.9 lb.						
См		1						
Yield Mode		IV						
Edge Distan	ice	1 1/2"						
Iviin. End Dis Load Combi	ination	3 D+I						
Duration Fac	ctor	1.00						
Notes		chemicals		6. For flat roofs prov	vide proper drainage to prev	Manufacturer Info		Comtech, Inc.
Calculated Struc	ctured Designs is responsible only o	of the Handling & Installa	ition	ponding		Metsä Wood		1001 S Reilly Rd., NC
structural adequ design criteria	uacy of this component based or a and loadings shown. It is	the 1. LVL beams must not be the 2. Refer to manufact	e cut or drilled urer's product information			301 Merritt 7 Building, 2r Norwalk, CT 06851	d Floor	28314 (910) 864-8787
responsibility of ensure the co	omponent suitability of the inte	nded regarding installatio rded fastening details, bea	n requirements, multi-ply m strength values, and code			(800) 622-5850	ł	
application, and Lumber	to verify the dimensions and loads.	approvals 3. Damaged Beams must	not be used			www.metsawood.com/us		
1. Dry service of	conditions, unless noted otherwise	4. Design assumes top e 5. Provide lateral suppo	dge is laterally restrained rt at bearing points to avoid					соттесн
2. LVL 101 10 D	So a sealed with me relatuant of COM	lateral displacement ar	id rotation	This design is	valid until 6/28/2026			

Version 23.40.705 Powered by iStruct[™] Dataset: 24041102.2907

isDesign	Client: Wellco Contract Project: Address:	tors, Inc. E II J	Date: 4/22/2024 nput by: David Landry ob Name: Lot 12 Overhills Creek	Page 5
		F	Project #: J0424-2258	
GDH Kerto-S	LVL 1.750" X 11.875	2-Ply - PASSE		
• • •	• • • • •	• • • •	• • • •	
				· · • • • • • • • • • • • • • • • • • •
1 SPF End Grain 0-3-8			2 SPF End Grai	n 0-3-8
·		16'10"		3 1/2"
f		16'10"		
ulti-Ply Analysis				
sten all plies using 2 r	ows of 10d Box nails (.128x3") at 1	2" o.c Maximum end dista	nce not to exceed 6".	
oacity id	0.0 % 0.0 PLF			
d Limit per Foot	163.7 PLF			
a Limit per Fastener	81.9 D. 1			
d Mode	IV			
e Distance	1 1/2"			
d Combination	3			
ration Factor	1.00			
otes	chemicals	6. For flat roofs provide proper drainage to	prevent Manufacturer Info	Comtech, Inc.
culated Structured Designs is responsible	only of the Handling & Installation	ponding	Metsä Wood	1001 S Reilly Rd., NC 28314
ign criteria and loadings shown. ponsibility of the customer and/or the co	t is the 2. Refer to manufacturer's product informatin Infractor to requiring installation continuous multi-	ion nlv	Norwalk, CT 06851	(910) 864-8787
ure the component suitability of the lication, and to verify the dimensions and	intended fastening details, beam strength values, and co pads. approvals	de vid	(800) 622-5850 www.metsawood.com/us	
	3. Damaged Beams must not be used 4. Design assumes top edge is laterally restrained			
LVL not to be treated with fire retardant of	5. Provide lateral support at bearing points to av	oid		Comtec

RE: J0424-2258 Lot 12 Overhills Creek Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: Project Name: J0424-2258 Lot/Block: Address: City:

Model: Subdivision: State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2015/TPI2014 Wind Code: N/A Roof Load: N/A psf Design Program: MiTek 20/20 8.4 Wind Speed: N/A mph Floor Load: 55.0 psf

This package includes 10 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	165027749	ET1	4/19/2024
2	165027750	ET2	4/19/2024
3	165027751	ET3	4/19/2024
4	165027752	ET4	4/19/2024
5	165027753	F1	4/19/2024
6	165027754	F2	4/19/2024
7	165027755	F3	4/19/2024
8	165027756	F4	4/19/2024
9	165027757	F5	4/19/2024
10	165027758	FG1	4/19/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Comtech, Inc - Fayetteville.

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job Truss	Truss Type	Qty	Ply	Lot 12 Overhills Creek		105007740
J0424-2258 ET1	GABLE	1	1			165027749
2	0.011			Job Reference (optional)		
Comtech, Inc, Fayetteville, NC - 28314,			8.430 s	Jan 6 2022 MiTek Industries,	Inc. Fri Apr 19 07:13:4	12 2024 Page 1
	ID:sD	GgqS?97a	5hnuyVu1s	qZuzPsQT-RfC?PsB70Hq3N	SgPqnL8w3ulTXbGKW	rCDoi7J4zJC?f
0-1-8						0-1-8
						Scale = 1:40.1
	3x4 =	3x6 F	Р=			
1 2 3 4 5	6 7 8 9 10	11 12	13	14 15 16	17 18 1	9 20
			-0	A A	a a	
						42 O
40 39 38 37 36	35 34 33 32 31 30	29	28	27 26 25	24 23 2	2 21
3x4 =	3x6 FP=					3x4 =
	3x4 =					
1-4-0 2-8-0 4-0-0 5-4-0 6-8	0 8-0-0 9-4-0 10-8-0 12-0-0 13-4-() 14-8-0	16-0-0	17-4-0 18-8-0 20-0-0) 21-4-0 22-8-0	24-1-0

	1-4-0 1-4	-0 1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-3-0
Plate Off	sets (X,Y)	[10:0-1-8,Ed	lge], [31:0-	1-8,Edge]													
LOADIN	G (psf)	SPAC	CING-	2-0-0		CSI.			DEFL.	in	(loc)	l/defl	L/d		PLATES	GF	RIP
TCLL	40.0	Plate	Grip DOL	1.00		TC	0.06		Vert(LL)	n/a	-	n/a	999		MT20	24	4/190
	10.0	Lumb	er DOL	1.00 VES		BC	0.01		Vert(CT)	n/a	-	n/a	999				
BCDI	0.0	Code		TE3		VVD Matri	0.03 v-S			0.00	21	n/a	n/a		Weight: 107		T - 20%F 11%F
DODL	5.0	Code	11(02013/	11 12014		wau	<u>^-0</u>								weight. 107		1 = 20701, 1170L
	2_								BRACING	<u>-</u>							

TOP CHORD 2x4 SP No.1(flat) TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD2x4 SP No.1(flat)WEBS2x4 SP No.3(flat) except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 24-1-0.

(Ib) - Max Grav All reactions 250 lb or less at joint(s) 40, 21, 39, 38, 37, 36, 35, 34, 33, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCB Building Component Scietu Information available from the Structural Building Component Section Component Scietul Information available from the Structural Building Component Scietul Information** and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

REACTIONS. All bearings 7-4-0.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 14, 8, 13, 12, 11, 10, 9

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type		Qty	Ply	Lot 12 Overhills Creek			105007754
10424-2258	FT3	GABLE		1	1				165027751
00121 2200					•	Job Reference (optional)			
Comtech, Inc, Fayettev	ville, NC - 28314,				8.430 s Ja	an 6 2022 MiTek Industrie	s, Inc. Fri Apr 19 0	7:13:43 2024	Page 1
			ID:sDGgo	qS?97a5h	nuyVu1sq2	2uzPsQT-RfC?PsB70Hq3N	NSgPqnL8w3ulTXb	GKWrCDoi7J	4zJC?f
0-4-0									0 ₁ 18
								s	Scale: 1/2"=1'
2x6 2x6			3x4 =	=					
1 2 2	1 5 6	7	9 0		10	11	10 1	12 1	1
		,							т п т
		<u> </u>	P A		- P	<u> </u>		e	
q - - -									
7-4									
			H = H		H			Нг	<u>++-</u>
		·····		~~~~~		<u> </u> ₽ ╲╲╲╲╲╲╲╲╲	 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					~~~~~~	×××4
26 25	24 23	22	21 20		19	18	17 1	ю	15
			3x4 =					3	3x4 =

Q-4-Q 1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	9-4-0	1	10-8-0	12-0-0	13-4-0	14-6-12
0-4-0 1-0-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	I	1-4-0	1-4-0	1-4-0	1-2-12
Plate Offsets (X,Y)	[2:0-3-0,Edge]	], [9:0-1-8,Edg	ge], [21:0-1-8,Edg	e]							
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACII Plate G Lumber Rep Str Code I	NG- 2 irip DOL r DOL ress Incr RC2015/TPI2	2-0-0 1.00 1.00 YES 014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-S	DEFL. Vert(LL) Vert(CT) Horz(CT)	in -0.00 -0.00 0.00	(loc) 1 15	l/defl n/r n/r n/a	L/d 180 120 n/a	<b>PLATES</b> MT20 Weight: 68 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER-           TOP CHORD         2x4 SP No.1(flat)           BOT CHORD         2x4 SP No.1(flat)           WEBS         2x4 SP No.3(flat)						RD RD	Structu except Rigid c	ral wood : end vertic eiling dire	sheathing direc cals. ctly applied or	tly applied or 6-0-0 10-0-0 oc bracing.	) oc purlins,

REACTIONS. All bearings 14-6-12.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 26, 15, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES-

OTHERS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lot 12 Overhills Creek	
						165027752
J0424-2258	ET4	GABLE	1	1		
					Job Reference (optional)	
Comtech, Inc, Faye	tteville, NC - 28314,			8.430 s Ja	an 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:43 2024	Page 1

8.430 s Jan 6 2022 MiTek Industries, Inc. Fri Apr 19 07:13:43 2024 Page 1 ID:sDGgqS?97a5hnuyVu1sqZuzPsQT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Rigid ceiling directly applied or 10-0-0 oc bracing.

Scale = 1:22.3



1	1-4-0	2-8-0	4-0-0	5-4-0	6-8-0	8-0-0	1	9-4-0	1	10-8-0	12-0-0	13-5-12
Г	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1-4-0	1	1-4-0	1	1-4-0	1-4-0	1-5-12
Plate C	Offsets (X,Y)	[1:Edge,0-1-8], [5:	:0-1-8,Edge], [17:0-	1-8,Edge], [22:	Edge,0-1-8]							
LOADI TCLL TCDL BCLL	NG (psf) 40.0 10.0 0.0	SPACING- Plate Grip I Lumber DC Rep Stress	2-0-0 DOL 1.00 DL 1.00 s Incr YES	CSI. TC BC WB	0.07 0.01 0.03	<b>DEFL.</b> Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	<b>GRIP</b> 244/190
BCDL	5.0	Code IRC2	2015/TPI2014	Matri	x-S						Weight: 63 lb	FT = 20%F, 11%E
LUMBI TOP C BOT C	ER- HORD 2x4 SF HORD 2x4 SF	P No.1(flat) P No.1(flat)		·		BRACING- TOP CHOR	:D	Structu except	ral wood end verti	sheathing dire	ectly applied or 6-0-0	oc purlins,

BOT CHORD

OTHERS 2x4 SP No.3(flat)

**REACTIONS.** All bearings 13-5-12.

2x4 SP No.3(flat)

(lb) - Max Grav All reactions 250 lb or less at joint(s) 22, 12, 21, 20, 19, 18, 17, 16, 15, 14, 13

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

WEBS

1) All plates are 1.5x3 MT20 unless otherwise indicated.

2) Plates checked for a plus or minus 1 degree rotation about its center.

3) Gable requires continuous bottom chord bearing.

4) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

5) Gable studs spaced at 1-4-0 oc.

6) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

7) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)



⁰¹¹⁸ 



<b> </b>	<u>13-6-12</u> 13-6-12		<u> </u>				
Plate Offsets (X,Y)	[4:0-1-8,Edge], [11:0-1-8,Edge], [12:0-1-	8,Edge], [23:0-1-8,Edge]					
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.48 BC 0.72 WB 0.35 Matrix-S	DEFL. Vert(LL) -0. Vert(CT) -0. Horz(CT) 0.4	in (loc) I/defl L/d 11 24-25 >999 480 15 24-25 >999 360 03 15 n/a n/a	PLATES MT20 Weight: 124 lb	<b>GRIP</b> 244/190 FT = 20%F. 11%E	
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S PEACTIONS (Si	P No.1(flat) P No.1(flat) P No.3(flat) 70) 27-0-3-8 20-0-3-8 15-0-3-8		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o 6-0-0 oc bracing: 20-21,19-20	ectly applied or 6-0-0 o r 10-0-0 oc bracing, E	c purlins, xcept:	

Max Grav 27=707(LC 10), 20=1437(LC 1), 15=526(LC 4)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-1214/0, 3-4=-1797/0, 4-5=-1862/0, 5-6=-1862/0, 6-7=-1020/0, 7-8=0/805, 8-10=0/805, 10-11=-649/81, 11-12=-1034/0, 12-13=-815/0 26-27=0/746, 25-26=0/1658, 24-25=0/1862, 23-24=0/1862, 21-23=0/1515, 20-21=-92/531, BOT CHORD 19-20=-236/296, 18-19=0/1034, 17-18=0/1034, 16-17=0/1034, 15-16=0/556 WEBS 2-27=-991/0, 2-26=0/650, 3-26=-617/0, 7-20=-1128/0, 7-21=0/744, 6-21=-769/0,

6-23=0/646, 5-23=-276/0, 10-20=-858/0, 10-19=0/555, 11-19=-627/0, 13-15=-738/0, 13-16=0/361, 12-16=-297/43

## NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scitut Information**. Building from the Structure Building Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)







1		13-4-0	1	31-5-0								
I		13-4-0			18-1-0	2		1				
Plate C	Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [24:0-1	-8,Edge], [25:0-1-8,Edge],	[31:0-1-8,Edge]								
LOAD TCLL TCDL BCLL BCDL	NG (psf) 40.0 10.0 0.0 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.89 BC 0.90 WB 0.58 Matrix-S	DEFL. Vert(LL) -0.: Vert(CT) -0.: Horz(CT) 0.1	in (loc) l/defl 24 23-24 >904 32 23-24 >664 05 21 n/a	L/d 480 360 n/a	<b>PLATES</b> MT20 Weight: 164 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E				
LUMB TOP C BOT C WEBS	ER- HORD 2x4 SF HORD 2x4 SF 2x4 SF	P No.1(flat) P No.1(flat) No.3(flat)	BRACING- TOP CHORD BOT CHORD	Structural wood s except end vertica Rigid ceiling direct	sheathing dire als. ctly applied or	ctly applied or 2-2-0 c 6-0-0 oc bracing.	oc purlins,					
REAC	REACTIONS. (size) 35=Mechanical, 29=0-3-8, 21=0-3-8 Max Grav 35=645(LC 3), 29=2028(LC 1), 21=872(LC 4)											
FORC TOP C	E <b>S.</b> (Ib) - Max. HORD 2-3=- 8-9= 14-15	Comp./Max. Ten All forces 250 (lb) ( 1067/0, 3-4=-1506/127, 4-5=-1467/35) 0/1953, 9-11=-412/262, 11-12=-1851/( 5-2816/0 15-16=-2816/0 16-17=-255	r less except when shown 7, 5-6=-1467/357, 6-7=-50 9, 12-13=-1851/0, 13-14=-2 2/0, 17-18=-2552/0, 18-19	n. 7/978, 7-8=0/1953, 2816/0, =-1561/0								
BOT C	14-15=-2616/0, 15-16=-2616/0, 16-17=-2552/0, 17-18=-2552/0, 16-19=-1561/0 IT CHORD 34-35=0/668, 33-34=-5/1444, 32-33=-357/1467, 31-32=-357/1467, 30-31=-692/1051, 29-30=-1253/0, 27-29=-849/0, 26-27=-19/1227, 25-26=0/2345, 24-25=0/2816, 23-24=0/2795, 22-23=0/2162, 21-22=0/939											
WEBS	2-35= 6-31= 18-22 13-26	889/0, 2-34=-8/555, 3-34=-525/39, 7- -0/888, 4-33=0/413, 4-32=-285/0, 5-31 2=-835/0, 18-23=0/530, 9-29=-1598/0, 5=-708/0, 13-25=0/867, 16-23=-331/0,	29=-1265/0, 7-30=0/869, ( =-359/0, 19-21=-1248/0, 1 9-27=0/1208, 11-27=-116( 16-24=-264/291, 14-25=-4	6-30=-920/0, 9-22=0/865, 6/0, 11-26=0/883, 27/0								

- NOTES-
- 1) Unbalanced floor live loads have been considered for this design.
- 2) All plates are 3x4 MT20 unless otherwise indicated.
- 3) Plates checked for a plus or minus 1 degree rotation about its center.
- 4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

- Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



		1	13-5-12			
Plate Offsets (X,Y)	[1:Edge,0-1-8], [4:0-1-8,Edge], [11:0-1-8	Edge]				
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	CSI. TC 0.36 BC 0.63 WB 0.32 Matrix-S	DEFL. in Vert(LL) -0.10 Vert(CT) -0.13 Horz(CT) 0.03	n (loc) l/defl L/d 12-13 >999 480 12-13 >999 360 9 n/a n/a	<b>PLATES</b> MT20 Weight: 71 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S WEBS 2x4 S	P No.1(flat) P No.1(flat) P No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,

13-5-12

REACTIONS. (size) 15=Mechanical, 9=0-3-8 Max Grav 15=728(LC 1), 9=721(LC 1)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-1244/0, 3-4=-1858/0, 4-5=-1958/0, 5-6=-1958/0, 6-7=-1230/0

BOT CHORD 14-15=0/764, 13-14=0/1700, 12-13=0/1958, 11-12=0/1958, 10-11=0/1680, 9-10=0/770 WEBS

2-15=-1017/0, 2-14=0/668, 3-14=-633/0, 3-13=0/294, 4-13=-309/52, 7-9=-1022/0,

7-10=0/641, 6-10=-625/0, 6-11=0/529

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Refer to girder(s) for truss to truss connections.

5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)





			<u>14-6-12</u> 14-6-12			
Plate Offsets (X,Y)	[13:0-1-8,Edge]					
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING-2-0-0Plate Grip DOL1.00Lumber DOL1.00Rep Stress IncrYESCode IRC2015/TPI2014	<b>CSI.</b> TC 0.66 BC 0.87 WB 0.36 Matrix-S	DEFL. in Vert(LL) -0.19 Vert(CT) -0.24 Horz(CT) 0.03	(loc) l/defl L/d 11-12 >908 480 11-12 >706 360 9 n/a n/a	<b>PLATES</b> MT20 Weight: 76 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	⁹ No.1(flat) ⁹ No.1(flat) ⁹ No.3(flat)		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTIONS. (siz	e) 15=0-3-8, 9=0-3-8					

Max Grav 15=781(LC 1), 9=781(LC 1)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-1353/0, 3-4=-2269/0, 4-5=-2269/0, 5-6=-2111/0, 6-7=-1373/0

BOT CHORD 14-15=0/838, 13-14=0/1868, 12-13=0/2269, 11-12=0/2269, 10-11=0/1892, 9-10=0/830

WEBS 2-15=-1113/0, 2-14=0/717, 3-14=-717/0, 3-13=0/721, 7-9=-1102/0, 7-10=0/755,

6-10=-722/0, 6-11=0/380, 5-11=-424/5, 4-13=-340/0

0 10- 122/0, 0 11-0/000

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)





Q-4-Q			14-6-12			1
0-4-0			14-2-12			1
Plate Offsets (X,Y)	[1:0-3-0,Edge], [5:0-1-8,Edge], [6:0-1-8,E	Edge]				
LOADING         (psf)           TCLL         40.0           TCDL         10.0           BCLL         0.0           BCDL         5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2015/TPI2014	<b>CSI.</b> TC 0.50 BC 0.82 WB 0.51 Matrix-S	DEFL. in Vert(LL) -0.16 Vert(CT) -0.20 Horz(CT) 0.02	i (loc) I/defi L/d 12-13 >999 480 12-13 >841 360 10 n/a n/a	<b>PLATES</b> MT20 Weight: 77 lb	<b>GRIP</b> 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF	<ul> <li>No.1(flat)</li> <li>No.1(flat)</li> <li>No.3(flat)</li> </ul>		BRACING- TOP CHORD BOT CHORD	Structural wood sheathing dire except end verticals. Rigid ceiling directly applied o	ectly applied or 6-0-0 r 10-0-0 oc bracing.	oc purlins,
REACTIONS. (siz Max G	e) 10=0-3-8, 1=0-3-8 3rav 10=766(LC 1), 1=772(LC 1)					

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-2=-815/0, 2-4=-815/0, 4-5=-1780/0, 5-6=-2201/0, 6-7=-2048/0, 7-8=-1340/0

BOT CHORD 15-16=0/1403, 14-15=0/2201, 13-14=0/2201, 12-13=0/2201, 11-12=0/1841, 10-11=0/814

1-16=0/1061, 8-10=-1081/0, 8-11=0/732, 7-11=-696/0, 7-12=0/359, 6-12=-410/19,

WEBS

4-16=-799/0, 4-15=0/525, 5-15=-664/0

NOTES-

1) Unbalanced floor live loads have been considered for this design.

2) All plates are 3x4 MT20 unless otherwise indicated.

3) Plates checked for a plus or minus 1 degree rotation about its center.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails.

Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) Gap between inside of top chord bearing and first diagonal or vertical web shall not exceed 0.500in.

6) CAUTION, Do not erect truss backwards.



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



Vert: 5-8=-10, 1-4= Concentrated Loads (lb) Vert: 2=-672



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

