

Company:		Date:	3/27/2025
Engineer:		Page:	1
Project:	Fowler - North Carolina		•
Address:			
Phone:			
E-mail:			

1.Project information

Project description:

Location:

Design name: Design

2. Input Data & Anchor Parameters

General

Design method:ACI 318-19 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor Material: F1554 Grade 36 Diameter (inch): 0.625

Effective Embedment depth, hef (inch): 9.000

Code report: ICC-ES ESR-4057

Anchor category: -Anchor ductility: Yes h_{min} (inch): 10.38 c_{ac} (inch): 15.92 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Recommended Anchor

Anchor Name: SET-3G™ - SET-3G w/ 5/8"Ø F1554 Gr. 36

Code Report: ICC-ES ESR-4057

Comment: Wind Uplift LRFD = 4378#

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 24.00

State: Cracked

Compressive strength, f'c (psi): 3000

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental edge reinforcement: Not applicable

Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No

Hole condition: Dry concrete Inspection: Continuous

Temperature range, Short/Long: 150/110°F

Reduced installation torque (for AT-3G): Not applicable

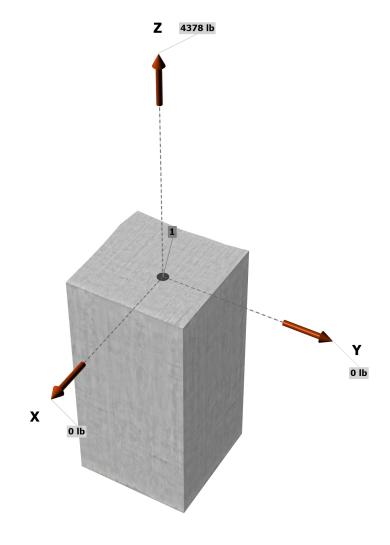
Ignore 6do requirement: Not applicable

Build-up grout pad: No

Company:		Date:	3/27/2025
Engineer:		Page:	2
Project:	Fowler - North Carolina	•	•
Address:			
Phone:			
E-mail:			

Load and Geometry Load factor source: ACI 318 Section 5.3

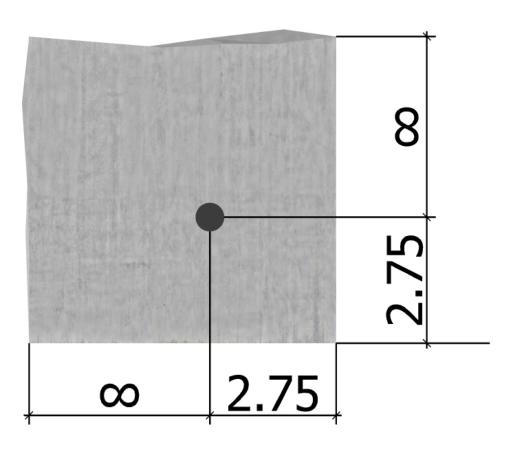
Load combination: not set Seismic design: No


Anchors subjected to sustained tension: No Apply entire shear load at front row: Yes

Anchors only resisting wind and/or seismic loads: Yes

Strength level loads:

N_{ua} [lb]: V_{uax} [lb]: V_{uay} [lb]: 4378 0 0


<Figure 1>

Company:		Date:	3/27/2025
Engineer:		Page:	3
Project:	Fowler - North Carolina		•
Address:			
Phone:			
E-mail:			

<Figure 2>

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	4378.0	0.0	0.0	0.0
Sum	4378.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 4378 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e^i_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e^i_{Ny} (inch): 0.00

Company:		Date:	3/27/2025
Engineer:		Page:	4
Project:	Fowler - North Carolina		-
Address:			
Phone:			
E-mail:		<u> </u>	

4. Steel Strength of Anchor in Tension (Sec. 17.6.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)	
13110	0.75	9833	

5. Concrete Breakout Strength of Anchor in Tension (Sec. 17.6.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. 17.6.2.2.1)

k c	λa	f'c (psi)	h _{ef} (in)	N_b (lb)
17.0	1.00	3000	9.000	25140

 $\phi N_{cb} = \phi (A_{Nc}/A_{Nco}) \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. 17.5.1.2 & Eq. 17.6.2.1a)

A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)	
264.06	729.00	2.75	0.761	1.00	1.000	25140	0.65	4505	Ī

6. Adhesive Strength of Anchor in Tension (Sec. 17.6.5)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat} (f'_c / 2,500)^n$

	,	,						
τ _{k,cr} (psi)	f short-term	K _{sat}	f'_c (psi)	n	τ _{k,cr} (psi)			
1356	1.00	1.00	3000	0.24	1417			
$N_{ba} = \lambda_a \tau_{cr} \pi_0$	d _a h _{ef} (Eq. 17.6.5	5.2.1)						
λa	τ _{cr} (psi)	da (in)	h _{ef} (in)	N _{ba} (lb)				
1.00	1417	0.63	9.000	25034				
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{cj}	_{o,Na} N _{ba} (Sec. 17	.5.1.2 & Eq. 17.6	5.5.1a)				
A_{Na} (in ²)	A_{Na0} (in ²)	c _{Na} (in)	c _{a,min} (in)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{cp}, extsf{Na}}$	N_{ba} (lb)	ϕ	ϕN_a (lb)
132.53	307.10	8.76	2.75	0.794	1.000	25034	0.65	5577

11. Results

Interaction of Tensile and Shear Forces (Sec. 17.8)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	4378	9833	0.45	Pass
Concrete breakout	4378	4505	0.97	Pass (Governs)
Adhesive	4378	5577	0.79	Pass

Company:		Date:	3/27/2025
Engineer:		Page:	5
Project:	Fowler - North Carolina		•
Address:			
Phone:			
E-mail:			

SET-3G w/ 5/8"Ø F1554 Gr. 36 with hef = 9.000 inch meets the selected design criteria.

12. Warnings

- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.