

Trenco 818 Soundside Rd Edenton, NC 27932

Re: B0114-0187 Riverbirch Elev. C

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Comtech, Inc - Fayetteville.

Pages or sheets covered by this seal: E7240273 thru E7240299

My license renewal date for the state of North Carolina is December 31, 2014.

North Carolina COA: C-0844

Lumber design values are in accordance with ANSI/TPI 1 section 6.3 These truss designs rely on lumber values established by others.

Lassiter, Frank

The seal on these drawings indicate acceptance of professional engineering responsibility solely for the truss components shown. The suitability and use of this component for any particular building is the responsibility of the building designer, per ANSI/TPI-1 Chapter 2. Engineering services provided by Truss Engineering Company.

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualiable from Truss Plate, Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Plane [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualiable from Truss Plate, Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

Jo	b	Truss	Truss Type	Qty	Ply	Riverbirch Elev. C	
в	0114-0187	A3	SPECIAL TRUSS	1	1	E7:	240275
						Job Reference (optional)	
(Comtech, Inc., Favetteville, NC 28	309				7.430 s Jul 25 2013 MiTek Industries, Inc. Fri Jan 10 11:46:58 2014 Pag	ne 2

ID:RqJAZok79a0X6krWVQ6UypzTsm5-_gUQKSwxBKsivIk3x2IWRvTUKry5uAgXeRbwWfzwnNx

Comtech, Inc., Favetteville, NC 28309

LOAD CASE(S)

Uniform Loads (plf) Vert: 1-2=16, 2-4=-14, 4-6=24, 6-7=13, 2-6=-10

Horz: 1-2=-28, 2-4=2, 4-6=36, 6-7=25

4) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=13, 2-4=24, 4-6=-14, 6-7=16, 2-6=-10

Horz: 1-2=-25, 2-4=-36, 4-6=-2, 6-7=28

5) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

- Vert: 1-2=56, 2-4=31, 4-6=15, 6-7=6, 2-6=-10
- Horz: 1-2=-68, 2-4=-43, 4-6=27, 6-7=18
- 6) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=6, 2-4=15, 4-6=31, 6-7=56, 2-6=-10
 - Horz: 1-2=-18, 2-4=-27, 4-6=43, 6-7=68
- 7) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)

Vert: 1-2=56, 2-4=31, 4-6=15, 6-7=6, 2-6=-10

- Horz: 1-2=-68, 2-4=-43, 4-6=27, 6-7=18 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf)
 - Vert: 1-2=6, 2-4=15, 4-6=31, 6-7=56, 2-6=-10
 - Horz: 1-2=-18, 2-4=-27, 4-6=43, 6-7=68
- 9) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
- Vert: 1-4=-60, 4-7=-20, 2-6=-20
- 10) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15
- Uniform Loads (plf)
 - Vert: 1-4=-20, 4-7=-60, 2-6=-20

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Plane [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Plane [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932

I	Job	Truss	Truss Type	Qty	Ply	Riverbirch Elev. C	
I	D0444.0407						E7240277
I	B0114-0187	A4A	HIP TRUSS	1	1	leb Reference (entional)	
L							
	Comtech Inc. Eavetteville NC 28	309				7 430 s Jul 25 2013 MiTek Industries Inc. Fri Jan 10 11:47:46 2014 J	Pane 2

Comtech, Inc., Fayetteville, NC 28309

ID:RqJAZok79a0X6krWVQ6UypzTsm5-avNZPsV2u4wvggPHI7cmO1Te7BGO7u0bhvDTDszwnNB

LOAD CASE(S) 2) Dead + 0.6 C-C Wind (Pos. Internal) Case 1: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=78, 2-3=37, 3-4=42, 4-5=37, 5-6=78, 2-5=-10 Horz: 1-2=-90, 2-3=-49, 4-5=49, 5-6=90 3) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=16, 2-3=-14, 3-4=39, 4-5=24, 5-6=13, 2-5=-10 Horz: 1-2=-28, 2-3=2, 4-5=36, 5-6=25 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=13, 2-3=24, 3-4=39, 4-5=-14, 5-6=16, 2-5=-10 Horz: 1-2=-25, 2-3=-36, 4-5=-2, 5-6=28 5) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=56, 2-3=31, 3-4=15, 4-5=15, 5-6=6, 2-5=-10 Horz: 1-2=-68, 2-3=-43, 4-5=27, 5-6=18 6) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=15, 4-5=31, 5-6=56, 2-5=-10 Horz: 1-2=-18, 2-3=-27, 4-5=43, 5-6=68 7) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=56, 2-3=31, 3-4=15, 4-5=15, 5-6=6, 2-5=-10 Horz: 1-2=-68, 2-3=-43, 4-5=27, 5-6=18 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=15, 4-5=31, 5-6=56, 2-5=-10 Horz: 1-2=-18, 2-3=-27, 4-5=43, 5-6=68 9) 1st Dead + Roof Live (unbalanced) + Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-20, 2-9=-60, 9-11=-20, 7-11=-60, 5-7=-20 10) 2nd Dead + Roof Live (unbalanced) + Uninhab. Attic Storage: Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-20, 3-4=-60, 4-6=-60, 2-9=-60, 9-11=-20, 7-11=-60, 5-7=-20

TOP CHORD2x6 SP No.1BOT CHORD2x6 SP No.1WEBS2x4 SP No.3

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 5-3-15 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 2=1333/0-5-8 (min. 0-1-9), 5=1333/0-5-8 (min. 0-1-9) Max Horz 2=-214(LC 3) Max Uplift 2=-285(LC 5), 5=-285(LC 6)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/23, 2-3=-1965/717, 3-4=-1506/713, 4-5=-1965/717, 5-6=0/23

BOT CHORD 2-9=-396/1518, 7-9=-396/1506, 5-7=-396/1518

WEBS 3-9=-47/494, 4-7=-47/494

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 285 lb uplift at joint 2 and 285 lb uplift at joint 5.

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-3=-60, 3-4=-60, 4-6=-60, 2-9=-20, 7-9=-60, 5-7=-20

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Prine [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Prine [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

Job	Truss	Truss Type	Qty	Ply	Riverbirch Elev. C	
B0114-0187	A5A	HIP TRUSS	1	1		E7240279
					Job Reference (optional)	

Comtech, Inc., Fayetteville, NC 28309

7.430 s Jul 25 2013 MiTek Industries, Inc. Fri Jan 10 11:48:17 2014 Page 2 ID:RqJAZok79a0X6krWVQ6UypzTsm5-AslHvTtUacpVuRHE38g18ZF?EhxJuvz9pEEboZzwnMi

LOAD CASE(S)

3) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=16, 2-3=-14, 3-4=39, 4-5=24, 5-6=13, 2-5=-10 Horz: 1-2=-28, 2-3=2, 4-5=36, 5-6=25 4) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=13, 2-3=24, 3-4=39, 4-5=-14, 5-6=16, 2-5=-10 Horz: 1-2=-25, 2-3=-36, 4-5=-2, 5-6=28 5) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=56, 2-3=31, 3-4=15, 4-5=15, 5-6=6, 2-5=-10 Horz: 1-2=-68, 2-3=-43, 4-5=27, 5-6=18 6) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=15, 4-5=31, 5-6=56, 2-5=-10 Horz: 1-2=-18, 2-3=-27, 4-5=43, 5-6=68 7) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=56, 2-3=31, 3-4=15, 4-5=15, 5-6=6, 2-5=-10 Horz: 1-2=-68, 2-3=-43, 4-5=27, 5-6=18 8) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-4=15, 4-5=31, 5-6=56, 2-5=-10 Horz: 1-2=-18, 2-3=-27, 4-5=43, 5-6=68 9) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-4=-60, 4-6=-20, 2-5=-20 10) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-4=-60, 4-6=-60, 2-5=-20

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southerm Pline [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

Plate Offsets (X,Y): [2	<u>3-2-14</u> 2:0-2-11,0-1-13], [3:0-4-0,0-2-13], [5:0-	4-0,0-2-13], [6:0-2-11,0-1	<u></u> 1-13]		9-2-14
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING2-0-0Plates Increase1.15Lumber Increase1.15Rep Stress IncrNOCode IRC2009/TPI2007	CSI TC 0.39 BC 0.43 WB 0.41 (Matrix)	DEFL in Vert(LL) 0.09 Vert(TL) -0.16 Horz(TL) 0.05	(loc) l/defl L/d 8-10 >999 360 6-8 >999 240 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 190 lb FT = 20%
LUMBER TOP CHORD 2x6 SP BOT CHORD 2x8 SP WEBS 2x4 SP REACTIONS (Ib/Size) Max Ho Max Un	No.1 No.1 No.3 2=1692/0-5-8 (min. 0-2-0), 6=1731, rz 2=152(LC 3) lift 2=-786(LC 4), 6=-841(LC 5)	′0-5-8 (min. 0-2-1)	BRACING TOP CHORD BOT CHORD	Structural wood sheathin Rigid ceiling directly appli MiTek recommends tha be installed during truss Installation guide.	g directly applied or 4-8-6 oc purlins. ed or 7-0-14 oc bracing. t Stabilizers and required cross bracing e erection, in accordance with Stabilizer
FORCES (lb) - Maxim TOP CHORD 1-2=(BOT CHORD 2-10=WEBS 3-10=	hum Compression/Maximum Tension //26, 2-3=-2378/1246, 3-4=-2468/1281 1091/1918, 8-10=-1643/2859, 6-8=-1 369/929, 4-10=-594/630, 4-8=-535/50	, 4-5=-2496/1298, 5-6=-2 040/1955 34, 5-8=-317/903	2430/1295, 6-7=0/26		
NOTES 1) Unbalanced roof live 2) Wind: ASCE 7-05; 1 grip DOL=1.60 3) Provide adequate di 4) * This truss has bee the bottom chord an 5) Provide mechanical joint 6. 6) Hanger(s) or other of 68 lb down and 128 up at 14-1-12, 68 lb down and 128 lb up down and 128 lb up down and 128 lb up adown and 128 lb up down and 128 lb up down and 128 lb up adown and 128 lb up down and 128 lb up down and 128 lb up adown and 128 lb up down and 128 lb up	e loads have been considered for this of 10mph; TCDL=6.0psf; BCDL=5.0psf; I rainage to prevent water ponding. In designed for a live load of 20.0psf or d any other members. connection (by others) of truss to bear onnection device(s) shall be provided Ib up at 8-1-12, 68 lb down and 128 ll down and 128 lb up at 16-1-12, 68 lb at 21-1-0, and 26 lb down and 44 lb u tt 2-1-12, 107 lb down and 57 lb up at 12, 25 lb down at 14-1-12, 25 lb down own and 57 lb up at 23-0-4, and 54 lb) is the responsibility of others. S) section, loads applied to the face of dard alanced): Lumber Increase=1.15, Plat (0, 3-5=-60, 5-7=-60, 2-6=-20	design. n=25ft; Cat. II; Exp C; en n the bottom chord in all a ing plate capable of with sufficient to support cond o up at 10-1-12, 68 lb do down and 128 lb up at p at 23-0-4, and 66 lb d 4-1-12, 25 lb down at 6 at 16-1-12, 25 lb down down and 15 lb up at 2 the truss are noted as fr e Increase=1.15	closed; MWFRS (low-rise areas with a clearance gro standing 786 lb uplift at jo centrated load(s) 68 lb do wn and 128 lb up at 12- 18-1-12, 68 lb down and -1-12, 25 lb down at 8-1 at 18-1-12, 25 lb down at 5-0-4 on bottom chord. T ont (F) or back (B).	e); Lumber DOL=1.60 plat eater than 6-0-0 between bint 2 and 841 lb uplift at wn and 128 lb up at 6-1-(1-12, 68 lb down and 128 128 lb up at 20-1-12, 68 l I-4 on top chord, and 54 lt -12, 25 lb down at 10-1-1 t 20-1-12, 25 lb down at 'he design/selection of suc	SEAL 030652

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rew. 02/26/2013 BEFORE USE Design valid for use only with MITek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualable from Truss Pitcle Institute, 281 N. Lee Street, Suite 312, Alarding, DSB-89 and BCSI Building Component Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

Job	Truss	Truss Type	Qty	Ply	Riverbirch Elev. C
					E7240280
B0114-0187	A6	Hip Truss	1	1	
					Job Reference (optional)
Comtech, Inc., Fayetteville,	NC 28309				7.430 s Jul 25 2013 MiTek Industries, Inc. Fri Jan 10 06:43:11 2014 Page 2

ID:RqJAZok79a0X6krWVQ6UypzTsm5-pGi8xoxkqgCBIXFRrNUnxtAqBcq6FvTZAGuReyzwqyU

LOAD CASE(S) Standard

Concentrated Loads (lb)

Vert: 3=-68(F) 5=-68(F) 9=-25(F) 8=-25(F) 11=-68(F) 12=-68(F) 13=-68(F) 14=-68(F) 15=-68(F) 16=-68(F) 17=-68(F) 18=14(F) 19=-26(F) 20=-54(F) 21=-107(F) 22=-25(F) 23=-25(F) 23=-25(F) 24=-25(F) 25=-25(F) 26=-25(F) 28=-25(F) 29=-107(F) 30=-54(F)

WARNING -Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualable from Truss Pitcle Institute, 281 N. Lee Street, Suite 312, Auandra, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE beign valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding Hechor. Additional permanent blocing of the overall structure is the responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure of the second structure occurrence occurrence

818 Soundside Re

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Riverbirch Elev. C
P0114 0197	A6A		1	1	E7240281
60114-0187	AOA		1		Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28	3309				7.430 s Jul 25 2013 MiTek Industries, Inc. Fri Jan 10 11:49:04 2014 Page 2
		ID:RqJAZ	ok79a0X6	krWVQ6U [,]	ypzTsm5-lv52nXRzW2kq1fNHJW03YUh0OeyKP7b4d26bxLzwnLz

NOTES

7) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 107 lb down and 155 lb up at 6-1-0, 67 lb down and 126 lb up at 8-0-12, 67 lb down and 126 lb up at 10-0-12, 67 lb down and 126 lb up at 12-0-12, 67 lb down and 126 lb up at 13-7-0, 68 lb down and 128 lb up at 15-0-4, 68 lb down and 128 lb up at 13-0-4, and 68 lb down and 128 lb up at 19-0-4, and 68 lb down and 128 lb up at 21-1-0 on top chord, and 42 lb down at 2-0-12, 107 lb down and 57 lb up at 4-0-12, 25 lb down at 6-0-12, 25 lb down at 8-0-12, 25 lb down at 10-0-12, 25 lb down at 12-0-12, 25 lb down at 13-7-0, 25 lb down at 13-0-4, 25 lb down at 17-0-4, 25 lb down at 19-0-4, 25 lb down at 21-0-4, and 107 lb down and 57 lb up at 23-0-4, and 54 lb down and 15 lb up at 25-0-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others. 8) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required. 9) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B). LOAD CASE(S) 1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-7=-60, 2-6=-20 Concentrated Loads (lb) Vert: 3=-67(B) 5=-68(B) 12=-42(B) 11=-25(B) 10=-25(B) 4=-67(B) 13=-67(B) 14=-67(B) 15=-67(B) 16=-68(B) 17=-68(B) 18=-68(B) 19=-107(B) 20=-25(B) 21=-25(B) 10=-25(B) 10 22=-25(B) 23=-25(B) 24=-25(B) 25=-25(B) 26=-25(B) 27=-107(B) 28=-54(B) 2) Dead + 0.6 MWFRS Wind (Pos. Internal) Left: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=16, 2-3=-14, 3-5=39, 5-6=24, 6-7=13, 2-6=-10 Horz: 1-2=-28, 2-3=2, 5-6=36, 6-7=25 Drag: 3-4=-0, 4-5=0 Concentrated Loads (lb) Vert: 3=155(B) 5=104(B) 12=-16(B) 11=-12(B) 10=-12(B) 4=102(B) 13=102(B) 14=102(B) 15=102(B) 16=104(B) 17=104(B) 18=104(B) 19=57(B) 20=-12(B) 21=-12(B) 22=-12(B) 23=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 26=-12(B) 27=57(B) 28=15(B) 3) Dead + 0.6 MWFRS Wind (Pos. Internal) Right: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=13, 2-3=24, 3-5=39, 5-6=-14, 6-7=16, 2-6=-10 Horz: 1-2=-25, 2-3=-36, 5-6=-2, 6-7=28 Drag: 3-4=-0, 4-5=0 Concentrated Loads (lb) Vert: 3=118(B) 5=104(B) 12=-16(B) 11=-12(B) 10=-12(B) 4=102(B) 13=102(B) 14=102(B) 15=102(B) 16=104(B) 17=104(B) 18=104(B) 19=57(B) 20=-12(B) 10=-12(B) 10=-21=-12(B) 22=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 26=-12(B) 27=57(B) 28=15(B) 4) Dead + 0.6 MWFRS Wind (Pos. Internal) 1st Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=56, 2-3=31, 3-5=15, 5-6=15, 6-7=6, 2-6=-10 Horz: 1-2=-68, 2-3=-43, 5-6=27, 6-7=18 Drag: 3-4=-0, 4-5=0 Concentrated Loads (lb) Vert: 3=110(B) 5=128(B) 12=-16(B) 11=-12(B) 10=-12(B) 4=126(B) 13=126(B) 14=126(B) 15=126(B) 16=128(B) 17=128(B) 18=128(B) 19=57(B) 20=-12(B) 10=-12(B) 10=-21=-12(B) 22=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 26=-12(B) 27=57(B) 28=15(B) 5) Dead + 0.6 MWFRS Wind (Pos. Internal) 2nd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-5=15, 5-6=31, 6-7=56, 2-6=-10 Horz: 1-2=-18, 2-3=-27, 5-6=43, 6-7=68 Drag: 3-4=-0, 4-5=0 Concentrated Loads (lb) Vert: 3=126(B) 5=128(B) 12=-16(B) 11=-12(B) 10=-12(B) 4=126(B) 13=126(B) 14=126(B) 15=126(B) 16=128(B) 17=128(B) 17= 18=128(B) 19=57(B) 20=-12(B) 21=-12(B) 22=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 26=-12(B) 27=57(B) 28=15(B) 20=-12(B) 21=-12(B) 21=-12(B) 22=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 6) Dead + 0.6 MWFRS Wind (Pos. Internal) 3rd Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=56, 2-3=31, 3-5=15, 5-6=15, 6-7=6, 2-6=-10 Horz: 1-2=-68, 2-3=-43, 5-6=27, 6-7=18 Drag: 3-4=-0, 4-5=0 Concentrated Loads (lb) Vert: 3=110(B) 5=128(B) 12=-16(B) 11=-12(B) 10=-12(B) 4=126(B) 13=126(B) 14=126(B) 15=126(B) 16=128(B) 17=128(B) 18=128(B) 19=57(B) 20=-12(B) 21=-12(B) 22=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 26=-12(B) 27=57(B) 28=15(B) 7) Dead + 0.6 MWFRS Wind (Pos. Internal) 4th Parallel: Lumber Increase=1.60, Plate Increase=1.60 Uniform Loads (plf) Vert: 1-2=6, 2-3=15, 3-5=15, 5-6=31, 6-7=56, 2-6=-10 Horz: 1-2=-18, 2-3=-27, 5-6=43, 6-7=68 Drag: 3-4=-0, 4-5=0 Concentrated Loads (lb) Vert: 3=126(B) 5=128(B) 12=-16(B) 11=-12(B) 10=-12(B) 4=126(B) 13=126(B) 14=126(B) 15=126(B) 16=128(B) 17=128(B) 17= 18=128(B) 19=57(B) 20=-12(B) 21=-12(B) 22=-12(B) 23=-12(B) 24=-12(B) 25=-12(B) 26=-12(B) 27=57(B) 28=15(B) 26=-12(B) 8) 1st Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 5-7=-20, 2-6=-20 Concentrated Loads (Ib) Vert: 3=-67(B) 5=-68(B) 12=-42(B) 11=-25(B) 10=-25(B) 4=-67(B) 13=-67(B) 14=-67(B) 15=-67(B) 16=-68(B) 17=-68(B) 17= 18=-68(B) 19=-107(B) 20=-25(B) 21=-25(B) 22=-25(B) 23=-25(B) 24=-25(B) 25=-25(B) 26=-25(B) 27=-107(B) 28=-54(B) 9) 2nd Dead + Roof Live (unbalanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-3=-20, 3-5=-60, 5-7=-60, 2-6=-20 Continued on page 3

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Prine [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

Job	Truss	Truss Type	Qty	Ply	Riverbirch Elev. C
					E7240281
B0114-0187	A6A	HIP TRUSS	1	1	
					Job Reference (optional)
Comtech, Inc., Fayetteville, NC 28	309				7.430 s Jul 25 2013 MiTek Industries, Inc. Fri Jan 10 11:49:04 2014 Page 3

ID:RqJAZok79a0X6krWVQ6UypzTsm5-Iv52nXRzW2kq1fNHJW03YUh0OeyKP7b4d26bxLzwnLz

LOAD CASE(S)

Concentrated Loads (lb) Vert: 3=-107(B) 5=-68(B) 12=-42(B) 11=-25(B) 10=-25(B) 4=-67(B) 13=-67(B) 14=-67(B) 15=-67(B) 16=-68(B) 17=-68(B) 18=-68(B) 19=-107(B) 20=-25(B) 21=-25(B) 22=-25(B) 23=-25(B) 25=-25(B) 25=-25(

WARNING -Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualable from Truss Pitcle Institute, 281 N. Lee Street, Suite 312, Auandra, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualiable from Truss Plate, Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

			9-10-0						
Plate Offsets (X,Y): [2:0	-0-5,Edge]		9-10-0					-	
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING2-0-0Plates Increase1.15Lumber Increase1.15Rep Stress IncrYESCode IRC2009/TPI2007	CSI TC 0.60 BC 0.42 WB 0.30 (Matrix)	DEFL Vert(LL) Vert(TL) Horz(TL)	in -0.03 -0.26 0.01	(loc) 2-7 2-7 7	l/defl >999 >427 n/a	L/d 360 240 n/a	PLATES MT20 Weight: 40 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP N BOT CHORD 2x4 SP N WEBS 2x4 SP N	0.1 0.1	· · ·	BRACING TOP CHOP	RD	Structu end ve	ural wood erticals.	I sheathing	directly applied or 6-0	-0 oc purlins, except
REACTIONS (Ib/size) Max Horz	7=384/Mechanical, 2=441/0-3-8 (n 2=90(LC 3)	nin. 0-1-8)			MiTe be in Insta	ek recoming difference estalled d	mends that uring truss e ide.	Stabilizers and require erection, in accordance	ed cross bracing e with Stabilizer

Max Uplift 7=-109(LC 3), 2=-153(LC 3)

FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD

- 1-2=0/8, 2-3=-917/373, 3-4=-166/0, 4-5=-1/0, 4-7=-113/90
- 2-7=-426/882, 6-7=0/0 BOT CHORD
- WEBS 3-7=-761/442

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 109 lb uplift at joint 7 and 153 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING -Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Asandria, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

818 Soundside Road Edenton, NC 27932

LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING 2-0-0 Plates Increase 1.15 Lumber Increase 1.15 Rep Stress Incr YES Code IBC2009/TPI2007	CSI TC 0.28 BC 0.17 WB 0.12 (Matrix)	DEFL in Vert(LL) 0.02 Vert(TL) 0.04 Horz(TL) 0.00	(loc) 1 1 6	l/defl n/r n/r n/a	L/d 120 90 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
BODE 10:0		(Matrix)					Weight: 50 lb	11 - 20%
LUMBER TOP CHORD 2x4 BOT CHORD 2x4 WEBS 2x4 OTHERS 2x4	SP No.1 SP No.1 SP No.3 SP No.3		BRACING TOP CHORD BOT CHORD	Structu end ve Rigid c	ural wood erticals. ceiling dir	d sheathing o	lirectly applied or 6-0	-0 oc purlins, except
				be in Insta	stalled d	mends that s uring truss e uide.	rection, in accordanc	e with Stabilizer

REACTIONS (lb/size) 6=106/9-10-0 (min. 0-1-8), 2=249/9-10-0 (min. 0-1-8), 7=-28/9-10-0 (min. 0-1-8), 8=501/9-10-0 (min. 0-1-8) Max Horz 2=126(LC 3)

Max Uplift 6=-57(LC 3), 2=-152(LC 3), 7=-28(LC 1), 8=-258(LC 3) Max Grav 6=106(LC 1), 2=249(LC 1), 7=12(LC 3), 8=501(LC 1)

FORCES (Ib) - Maximum Compression/Maximum Tension

1-2=0/8, 2-3=-98/20, 3-4=-45/0, 4-5=-21/0, 5-6=-72/84 TOP CHORD

BOT CHORD 2-8=-15/16, 7-8=-15/16, 6-7=-15/16

WEBS 4-7=-1/19, 3-8=-346/387

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) gable end zone and C-C Exterior(2) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry

Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

3) Gable requires continuous bottom chord bearing.

4) Gable studs spaced at 2-0-0 oc.

5) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 6, 152 lb uplift at joint 2, 28 lb uplift at joint 7 and 258 lb uplift at joint 8.

LOAD CASE(S) Standard

January 10,2014

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding Hechor. Additional permanent blocing of the overall structure is the responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure of the second structure occurrence occurrence

8-8-8

	I		8-8-8			0-1-8 1-0-0
Plate Offsets (X,Y): [2	2:0-3-7,0-0-2]					
LOADING (psf) TCLL 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING 2-0-0 Plates Increase 1.15 Lumber Increase 1.15 Rep Stress Incr NO Code IRC2009/TPI2007	CSI TC 0.89 BC 0.71 WB 0.02 (Matrix)	DEFL in Vert(LL) 0.20 Vert(TL) -0.47 Horz(TL) 0.00	(loc) 2-6 > 2-6 > 5	l/defl L/d ≥564 360 ≥247 240 n/a n/a	PLATES GRIP MT20 244/190 Weight: 42 lb FT = 20%
LUMBER TOP CHORD 2x4 SP BOT CHORD 2x6 SP WEBS 2x6 SP	No.1 No.1 No.1		BRACING TOP CHORD BOT CHORD	Structura Rigid ceil MiTek i be insta	al wood sheathing d ling directly applied recommends that S alled during truss en tion quide	irectly applied or 6-0-0 oc purlins. or 10-0-0 oc bracing. itabilizers and required cross bracing rection, in accordance with Stabilizer
REACTIONS (Ib/size Max Ho Max Up) 2=480/0-3-8 (min. 0-1-8), 5=645/N orz 2=84(LC 3) Jift2=-164(LC 3), 5=-143(LC 3)	lechanical		motana	allori guldo.	
FORCES (lb) - Maxin TOP CHORD 1-2=(BOT CHORD 2-6=- WEBS 3-6=-	num Compression/Maximum Tension)/13, 2-3=-87/0, 3-4=-4/0 :25/34, 5-6=0/0 :229/170					
NOTES 1) Wind: ASCE 7-05; 1 zone;C-C for memb 2) * This truss has bee the bottom chord ar 3) Refer to girder(s) fo 4) Provide mechanical joint 5. 5) Hanger(s) or other of on bottom chord. T	10mph; TCDL=6.0psf; BCDL=5.0psf; ers and forces & MWFRS for reaction in designed for a live load of 20.0psf of id any other members. r truss to truss connections. connection (by others) of truss to bea connection device(s) shall be provided he design/selection of such connection	h=25ft; Cat. II; Exp C; en s shown; Lumber DOL=1 in the bottom chord in all iring plate capable of with sufficient to support con- n device(s) is the respons	nclosed; MWFRS (low-ris .60 plate grip DOL=1.60 areas with a clearance g nstanding 164 lb uplift at centrated load(s) 300 lb sibility of others.	e) and C-(reater than joint 2 and down and	C Interior(1) n 6-0-0 between I 143 lb uplift at 110 lb up at 9-0-0	
LOAD CASE(S) Stan 1) Dead + Roof Live (b Uniform Loads (plf) Vert: 1-4=-6 Concentrated Loads Vert: 6=-30	dard valanced) + Uninhab. Attic Storage + / \$0, 2-6=-20, 5-6=-70 \$ (lb) 0	Attic Floor: Lumber Increa	ase=1.15, Plate Increase	=1.15		SEAL 030652

R. LASSITUTION Januar

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualable from Truss Pide Institute, 281 N. Lee Street, Suite 312, Auandra, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

ENGINEERING E 818 Soundside Road Edenton, NC 27932

8-10_r0 9-10-0

TOP CHORD

LUMBER	R
--------	---

TOP CHORD 2x4 SP No.1 BOT CHORD 2x6 SP No.1 WEBS 2x6 SP No.1 *Except* 3-6: 2x4 SP No.3

Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

> MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (Ib/size) 2=203/0-3-0 (min. 0-1-8), 6=415/0-3-8 (min. 0-1-8), 5=200/0-1-8 (min. 0-1-8) Max Horz 2=90(LC 3) Max Uplift 2=-151(LC 3), 6=-190(LC 3), 5=-53(LC 3)

FORCES (Ib) - Maximum Compression/Maximum Tension

1-2=0/13, 2-3=-128/0, 3-4=-140/17, 4-5=-147/106 TOP CHORD

BOT CHORD 2-6=-37/108, 5-6=-37/108 WEBS 3-6=-301/212

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1) zone; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

3) Bearing at joint(s) 5 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 151 lb uplift at joint 2, 190 lb uplift at joint 6 and 53 lb uplift at joint 5.

LOAD CASE(S) Standard

January 10,2014

WARNING -Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Asandria, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

REACTIONS (Ib/size) 1=405/0-3-0 (min. 0-1-8), 5=1031/0-3-8 (min. 0-1-8), 4=603/0-1-8 (min. 0-1-8) Max Horz 1=76(LC 2) Max Uplift 1=-86(LC 2), 5=-249(LC 2), 4=-147(LC 2)

 FORCES
 (lb) - Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=-278/15, 2-3=-298/58, 3-4=-116/78

 BOT CHORD
 1-5=-73/263, 4-5=-73/263

 WEBS
 2-5=-319/167

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise); Lumber DOL=1.60 plate grip DOL=1.60

2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

3) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.

4) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 86 lb uplift at joint 1, 249 lb uplift at joint 5 and 147 lb uplift at joint 4.

6) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 320 lb down and 70 lb up at 1-1-4, 320 lb down and 70 lb up at 3-1-4, and 320 lb down and 70 lb up at 3-1-4, and 320 lb down and 70 lb up at 8-9-4 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

7) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Roof Live (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-3=-60, 1-4=-20Concentrated Loads (lb)

Vert: 6=-320(B) 7=-320(B) 8=-320(B) 9=-320(B)

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Steps Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Ptine [SP1 lumber is specified, the design values are those effective 06/01/2013 by ALSC

818 Soundside Road Edenton, NC 27932

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Plane [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

RENCO

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Prine [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

4) Refer to girder(s) for truss to truss connections.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 60 lb uplift at joint 1 and 60 lb uplift at joint 3.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualiable from Truss Plate, Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

REACTIONS (lb/size) 3=128/Mechanical, 2=238/0-3-8 (min. 0-1-8), 4=45/Mechanical Max Horz 2=204(LC 5) Max Uplift 3=-143(LC 5), 2=-24(LC 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/22, 2-3=-169/68 BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between

the bottom chord and any other members.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 143 lb uplift at joint 3 and 24 lb uplift at joint 2.

LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria**, DSB-89 and BCSI Building Component Safety Information quality control, storage, the specified, the design values are those effective 06/01/2013 by ALSC ounderly 10,201

Max Uplift 3=-141(LC 5), 2=-33(LC 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/27, 2-3=-170/67 BOT CHORD 2-4=-7/0

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between

the bottom chord and any other members.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 141 lb uplift at joint 3 and 33 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Plane [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC January 10,2014

1-2=0/22, 2-3=-103/34, 3-4=-0/0 TOP CHORD

2-6=-8/6, 5-6=0/0 BOT CHORD

WEBS 3-6=-120/159

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Provide adequate drainage to prevent water ponding.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between the bottom chord and any other members.

5) Refer to girder(s) for truss to truss connections.

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 4, 63 lb uplift at joint 2 and 47 lb uplift at joint 5.

LOAD CASE(S) Standard

January 10,2014

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE beign valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding effector. Additional permanent bracing on the overall structure is the responsion of the bound dougnet to general guedrator of general

🕼 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding Hechor. Additional permanent blocing of the overall structure is the responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure of the second structure occurrence occurrence

🛦 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with Mifek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding Hechor. Additional permanent blocing of the overall structure is the responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the Oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure responsibility of the oscing occurrence of the second structure of the second structure occurrence occurrence

January 10,2014

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information qualiable from Truss Plate, Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Pine (SP) lumber is specified, the design values are those effective 06/01/2013 by ALSC

818 Soundside Road Edenton, NC 27932

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 3=40/Mechanical, 2=153/0-3-8 (min. 0-1-8), 4=19/Mechanical Max Horz 2=94(LC 5) Max Uplift 3=-38(LC 5), 2=-69(LC 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/23, 2-3=-47/18 BOT CHORD 2-4=0/0

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between

the bottom chord and any other members.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 38 lb uplift at joint 3 and 69 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult **ANSI/TPI1 Quality Criteria**, DSB-89 and BCSI Building Component Safety Information quality control, storage, the specified, the design values are those effective 06/01/2013 by ALSC A MITEK AFfiliate

818 Soundside Road Edenton, NC 27932

BRACING

TOP CHORD

BOT CHORD

LUMBER

TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 *Except* 2-4: 2x6 SP No.1

Structural wood sheathing directly applied or 2-1-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS (lb/size) 3=60/Mechanical, 2=153/0-3-8 (min. 0-1-8) Max Horz 2=94(LC 5) Max Uplift 3=-28(LC 5), 2=-69(LC 5)

FORCES (Ib) - Maximum Compression/Maximum Tension

TOP CHORD 1-2=0/23, 2-3=-40/31 BOT CHORD 2-4=-5/0

NOTES

1) Wind: ASCE 7-05; 110mph; TCDL=6.0psf; BCDL=5.0psf; h=25ft; Cat. II; Exp C; enclosed; MWFRS (low-rise) and C-C Interior(1)

zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

2) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas with a clearance greater than 6-0-0 between

the bottom chord and any other members.

3) Refer to girder(s) for truss to truss connections.

4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 3 and 69 lb uplift at joint 2.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability druing construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP11 Quality Criteria, DSB-89 and BCSI Building Component Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southern Plane [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 02/26/2013 BEFORE USE Design valid for use only with MiTek connectors. This design is based only upon parameters shown, and is for an individual building component. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not trus designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to insure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult Safety Information available from Truss Plate Institute, 281 N. Lee Street, Suite 312, Alexandria, VA 22314. If Southerm Pline [SP] lumber is specified, the design values are those effective 06/01/2013 by ALSC

A MiTek Atfiliate B18 Soundside Road Edenton, NC 27932

