

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: 17 Mason Ridge Wilmington A

THE PLACEMENT PLAN NOTES:

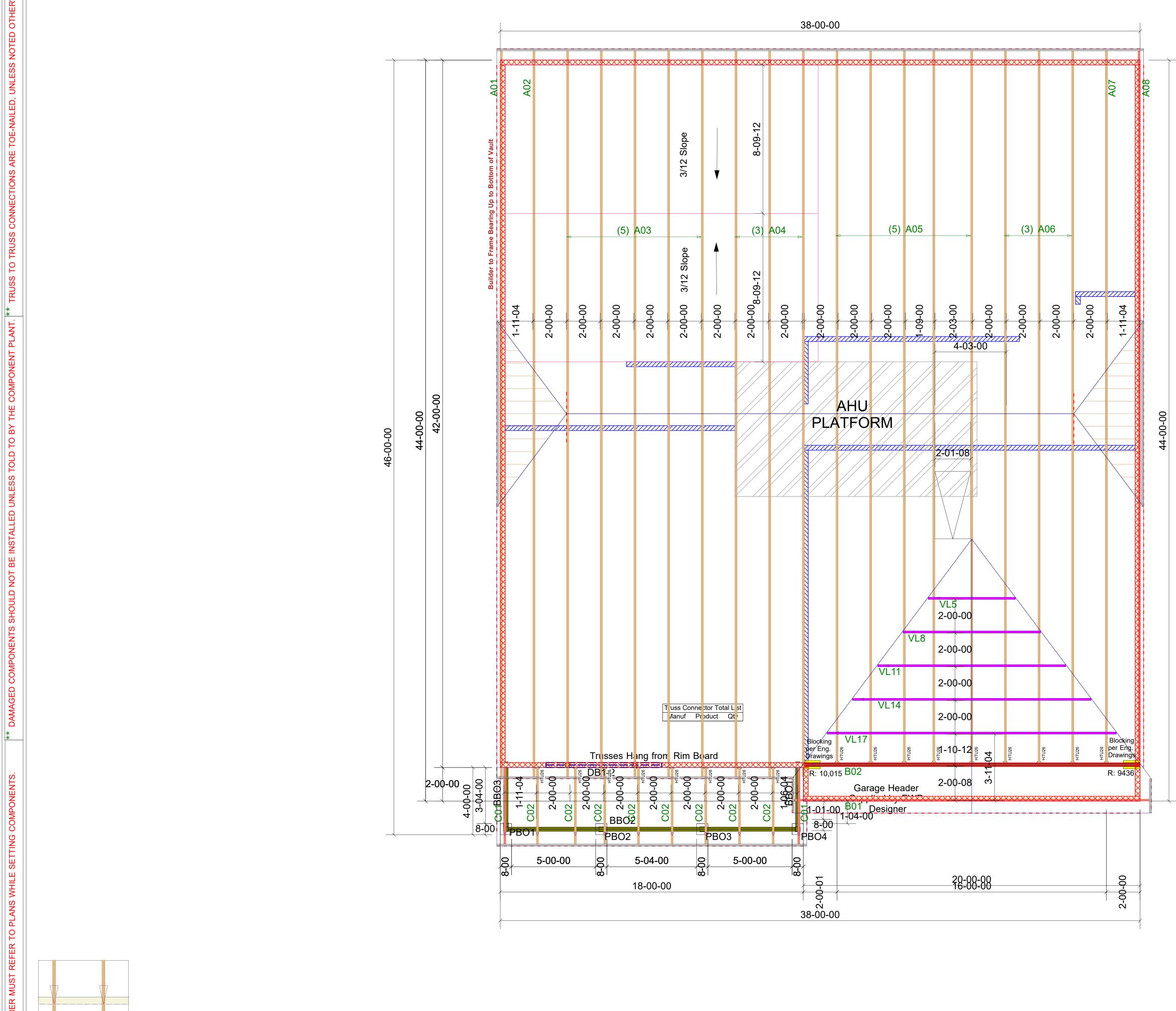
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

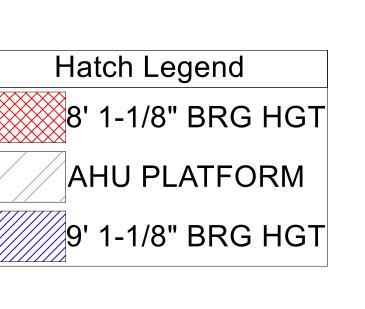
5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

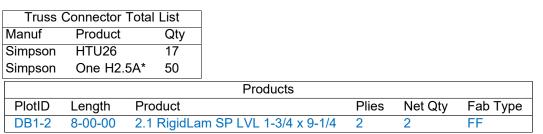

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

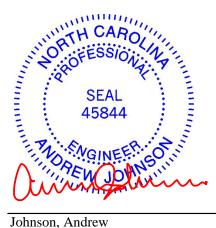

Date: _____



Truss Drawing Left End Indicator

GIRDERS MUST BE FUI		GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOK TO ADDING ANY LOADS. DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH	VS ARE READ AS: FOOI-INCH-SIXIEENIH. A W SPIN SOURCE	ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.	and or contractor.
Nat	Scale: Date:	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	00/00 00/00 00/00 00/00
Designer: e Donald Project Nun M240466 Sheet Num	<u>мт</u> я 11/5/202	17 Mason Ridge Wilmington A		each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing consult "Bracing	/00 M /00 M /00 M
dson nber: 5-A	4	ROOF PLACEMENT PLAN		of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	s Name Name Name Name

Trenco 818 Soundside Rd Edenton, NC 27932

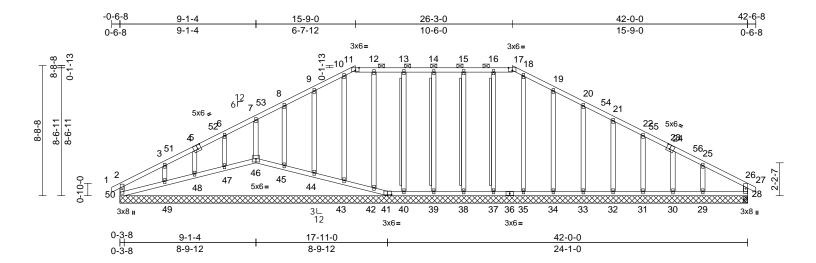

Re: 24110023-A Wilmington-A-FLEX+VMB-All Levels-Roof-Mason Ridge-17

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I69410550 thru I69410566

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844



November 6,2024

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A01	Нір	1	1	I69410550 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:39 ID:2ZGNrJXvm?s2Ly5SYjBV_wzvUcz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:77.1
---------	--------

Plate Offsets	(X, Y): [5:0-2-12,0-3-4	4], [11:0-3-0,Edge], [17:	0-3-0,Edge], [23:0-2	-12,0-3-4], [41:0-3-0	0,0-0-12]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.10 0.06 0.21	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.01	(loc) 49-50 49-50 28	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 280	GRIP 244/19 b FT = 2	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *Excep No.2(flat) Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-1 Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and web with 10d (0.13' 3in minimum end di	y applied or 10-0-0 oc 2x4 SP No.2 - 14-39, 13-40, 15-38, 16-37 I braces to narrow edge 1"x3") nails, 6in o.c.,witl	SP or FORCES TOP CHORD e of	32=22 34=22 37=20 39=21 41=16 43=19 45=21 47=21	1 (LC 1), 3 (LC 43) 6 (LC 43) 9 (LC 38) 7 (LC 38) 7 (LC 38) (LC 13), 1 (LC 41) 8 (LC 41) 9	31=206 (LC 4 33=220 (LC 35=190 (LC 35=190 (LC 40=213 (LC 40=213 (LC 42=203 (LC 3 44=227 (LC 48=139 (LC 50=157 (LC on/Maximum 4=-85/88, 7-8=-79/158, 20, 10-11=-11 10/214,	(3), 43), 43), 38), 38), (8), (41), 41), 1), 25)	this 2) Wir Vas II; E and to 9	balance design nd: ASC sd=103r Exp B; E d C-C Ex 9-9-12, E	13-40 10-43 6-47= 15-38 18-35 20-33 22-31 25-29 d roof li E 7-16; nph; TC inclose kterior(2 Exterior	-184/67, 14-39 =-179/59, 12-4 =-150/0, 9-44 =-172/75, 4-48 =-179/61, 16-3 =-150/0, 19-34 =-180/67, 21-3 =-164/71, 24-3 =-160/112 ve loads have (Vult=130mph CDL=6.0psf; B(d; MWFRS (en 2E) -0-6-8 to 3. (2R) 9-9-12 to Exterior(2E) 38	2=-169/33, -188/78, 8- -106/49, 3- 7=-169/32, =-186/78, 2=-183/67, 0=-108/53, been cons (3-second CDL=6.0ps velope) ex 7-14, Inter 32-2-5, Into	45=-172/64, 49=-160/11 dered for gust) f; h=25ft; Ca terior zone or (1) 3-7-14 erior (1)
REACTIONS	(size) 28=42-0- 31=42-0- 34=42-0- 38=42-0- 41=42-0- 41=42-0- 41=42-0- 47=42-0- 50=422-0- 50=422-0- Max Horiz 50=-115 Max Uplift 28=-11 (l 30=-25 (l 32=-43 (l 34=-54 (l 38=-39 (l 45=-39 (l 47=-49 (l	0, 29=42-0-0, 30=42-0- 0, 32=42-0-0, 33=42-0- 0, 35=42-0-0, 37=42-0- 0, 39=42-0-0, 40=42-0- 0, 42=42-0-0, 40=42-0- 0, 45=42-0-0, 46=42-0- 0, 48=42-0-0, 49=42-0- 0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	15-16=-110/214, 17-18=-114/212, 19-20=-97/177, 2 21-22=-69/109, 2 25-26=-107/40, 2 26-28=-138/51 49-50=-36/99, 48 46-47=-33/97, 45 43-44=-32/97, 42 40-41=-27/91, 39 37-38=-27/91, 32 30-31=-27/91, 29	18-19=-1 0-21=-79 2-24=-57 6-27=0/1 -49=-33/9 -46=-32/9 -43=-32/9 -43=-32/9 -40=-27/9 -37=-27/9	17/219, /139, /85, 24-25=-6 8, 2-50=-138/)6, 47-48=-32)6, 44-45=-32)7, 41-42=-28)1, 38-39=-27)1, 34-35=-27)1, 31-32=-27	253, 2/98, 2/97, 3/97, 2/91, 2/91, 2/91, 2/91,	righ for DO	nt expos reaction L=1.60	ed;C-C is show	right exposed for members a m; Lumber DO OR ALE SE 458 VOR ALE SE 458 Novem	ARO	& MWFRS te grip

Continued on page 2 WARNING - Verify

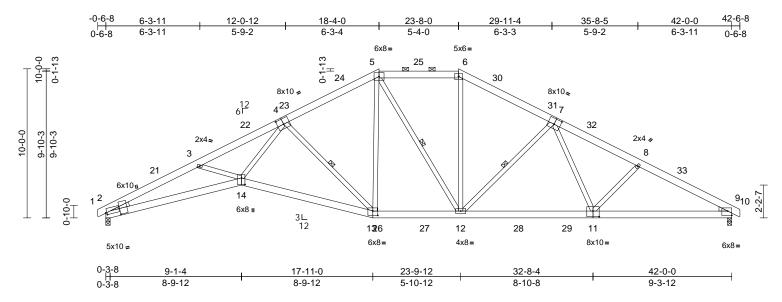
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com) TRENCO

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A01	Hip	1	1	I69410550 Job Reference (optional)

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- 11) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.
 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 52 lb uplift at joint 50, 43 lb uplift at joint 46, 17 lb uplift at joint 41, 11 lb uplift at joint 28, 23 lb uplift at joint 39, 39 lb uplift at joint 40, 13 lb uplift at joint 45, 54 lb uplift at joint 44, 39 lb uplift at joint 45, 49 lb uplift at joint 47, 20 lb uplift at joint 48, 108 lb uplift at joint 49, 37 lb uplift at joint 38, 8 lb uplift at joint 37, 54 lb uplift at joint 34, 43 lb uplift at joint 33, 43 lb uplift at joint 32, 48 lb uplift at joint 31, 25 lb uplift at joint 39, 90 lb uplift at joint 30, 49 lb uplift at joint 30, 40 lb uplift at joint 32, 48 lb uplift at joint 30 and 97 lb uplift at joint 29.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 16) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:39 ID:2ZGNrJXvm?s2Ly5SYjBV_wzvUcz-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A02	Нір	1	1	I69410551 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:40 ID:mksWbr3MGwaRpS_bvVuJBKzwUJc-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:77.3

Plate Offsets (X,	Y): [2:0-1-0,0-1-9],	, [2:0-3-13,0-11-10], [4:0-5-0,0-	4-8], [7:0-5-0,0	-4-8], [9:Edge,0-3	-8], [11:0	0-5-0,0-4-8], [13:0-4-0	0,0-3-8],	[14:0-5-4	4,0-2-1	2]	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.81 0.97 0.80	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.67 0.28	13-14 13-14	l/defl >999 >750 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 309 lb	GRIP 244/190 FT = 20%
BOT CHORD 2 WEBS TOP CHORD 2 BOT CHORD 4 WEBS REACTIONS (s MM FORCES (TOP CHORD 2 BOT CHORD 2 BOT CHORD 2 BOT CHORD 2 WEBS 3 NOTES	2.0E 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, exc 2-0 oc purlins (4-1 Rigid ceiling directly bracing, Except: 2-2-0 oc bracing: 13 1 Row at midpt ize) 2=0-3-8, § lax Horiz 2=148 (LC lax Uplift 2=-176 (L lax Grav 2=1975 (L (lb) - Maximum Com Tension 1-2=0/13, 2-3=-5842 5-6=-2230/352, 6-8= 8-9=-3477/339, 9-10 2-14=-624/5251, 13 12-13=-80/2211, 9-13 3-14=-76/197, 4-14= 4-13=-1952/334, 5-15 5-12=-227/251, 6-12 7-12=-762/218, 7-11	0-12 max.): 5-6. applied or 10-0-0 oc 1-14. 4-13, 5-12, 7-12 9=0-3-8 C 14) C 14), 9=-176 (LC 19 C 45), 9=1991 (LC 4 pression/Maximum 2/607, 3-5=-5796/522 3309/351,)=0/13 -14=-339/3744, 12=-213/3024 216/2817, 13=-79/793,	No.2 d or 3) 4) 5) 5) 6) 7) 8) 9) 9) 161	Vasd=103mp II; Exp B; En and C-C Ext to 12-4-12, E 29-7-5 to 38- cantilever lef right expose for reactions DOL=1.60 TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide adec This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearing at jo using ANSI' designer sho 0) One H2.5A S recommende UPLIFT at jf(and does noi 1) This truss is International	7-16; Vult=130m pb; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-5-14 t ixterior(2R) 12-4- 3-7, Exterior(2R) 12-4- 3-7, Exterior(2R) 12-4- 3-7, Exterior(2R) 13-7, Exterior(2R) tand right expose d;C-C for member shown; Lumber D 7-16; Pr=20.0 ps (15); Pf=20.0 ps (16); Pf=20.0 ps (16	BCDL=6 envelope o 3-8-9, 12 to 29- 38-3-7 to d; end v s and fo DOL=1.60 f (roof LI (Lum DC t B; Fully been cor for great for great for great for a fully been cor for a liv s where ill fit betw , with BC parallel in formul y of bear ie conne s to bear onces. dance w sections	6.0psf; h=25ft; a) exterior zor Interior (1) 3 7-5, Interior (' o 42-5-14 zon vertical left an rces & MWFF 0 plate grip L: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5 hsidered for th er of min roof oad of 20.0 p; water ponding 0 psf bottom other live loads. water ponding 0 psf bottom other live load a rectangle ween the botto CDL = 10.0psf to grain value a. Building ing surface. ctors ing walls due n is for uplift of ith the 2018 s R502.11.1 a	to ponly	or t bot		tation d.) Sta	ndard	Rojining the top and/or

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

November 6,2024

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A03	Roof Special	5	1	I69410552 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:41 ID:ei_OzHALbhuf1F4IrDJXICzvUqM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	-0-6-8	6-2-0	11-11-2		-0-12	21-0-0	27-11-0			-9-11			-0-0	42-6-8 0-6-8
	0-6-8	6-2-0	5-9-2	6-	1-10	2-11-4	6-11-0	I	6-	10-11		7-	2-5	0-6-8
T			61 ²		2 5 23	5x6= 6	26	2x4 ı	ı					
0-10-0	6x1 1 2	21	2x4z 3 14 6K8 II	8x10 =				27			8	8 8 8	28	910 2-2-2-
0	⊠			3∟ 12	1:		25	12				11		⊠
	5x10 :	=			6	x8=		8x10)=			2x4 II		6x8=
Scale = 1:76.5	0-3-8 		9-1-4 -9-12	<u>17-11-0</u> 8-9-12			<u>11-0</u> 0-0			-9-11 10-11			-0-0 2-5	
	X, Y): [2:0-	1-0,0-1-13	s], [2:0-3-13,0-11-10], [4:0-	-5-0,0-4-8], [8:	0-5-0,0-4-8],	[9:Edge,0-3-8], [12	2:0-4-8,0-4-8]	, [13:0-5-4	4,0-3-12], [14:0-	5-0,0-	2-12]		
oading	-	(psf)	Spacing 2-0)-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRI	Р
CLL (roof) Snow (Pf)		20.0 20.0	Plate Grip DOL 1.1 Lumber DOL 1.1	5	TC BC	0.72 0.87	Vert(LL) Vert(CT)		12-13 13-14	>999 >828	240 180	MT20		/190
CDL		10.0	Rep Stress Incr YE	S	WB	0.75	Horz(CT)	0.81	13-14 9	>828 n/a	n/a			
SCLL SCDL		0.0* 10.0	Code IR	C2018/TPI201	4 Matri	k-MSH						Weight: 315	b FT:	= 20%
OP CHORD OP CHORD OT CHORD VEBS	2.0E 2x4 SP No No.2 Left: 2x4 SR Right: 2x4 Structural 2-4-13 oc Rigid ceilin bracing. 1 Row at r (size) Max Horiz Max Uplift Max Grav (lb) - Maxi Tension 1-2=0/13, 5-6=-2348 7-9=-3202 2-14=-654 11-13=-19 3-14=-91/ 4-13=-175 6-13=-217 7-12=-554	2.3 *Excep 3.9 No.3 SP No.3 SP No.3 sp No.3 wood she purlins. ng directly nidpt 2=0-3-8, § 2=170 (LC 2=-170 (LC 2=	C 14) C 14), 9=-170 (LC 15) C 3), 9=1857 (LC 3) pression/Maximum 2/613, 3-5=-5343/520, 2795/462,	 and C-1 to 16-9 25-2-5 end ver forces - DOL=1 3) TCLL: Plate D DOL=1 Cs=1.0 4) Unbala design. 5) This tru chord li 3-06-00 chord a 8) Bearing using A design 9) One H2 recomr UPLIFT and do 10) This tru Interna R802.1 	C Exterior(2E -11, Exterior; to 38-3-9, Ex- tical left and & MWFRS fc .60 plate grip ASCE 7-16; OL=1.15); Is=1.0; 0; Ct=1.10 nced snow lo uss has been ve load nonc ve load nonc ve load nonc ve load nonc ve load nonc ottom chorco 0 tall by 2-00 ind any othel g at joint(s) 2 NSI/TPI 1 an er should ver 2.5A Simpson nended to cc 7 at jt(s) 2 an es not consid 0.2 and refer	Pr=20.0 psf (roof L =20.0 psf (Lum Di Rough Cat B; Fully pads have been co designed for grea .00 times flat roof current with other I designed for a li li nall areas where .00 wide will fit bet members, with B0 considers parallel gle to grain formu ify capacity of bea n Strong-Tie conne nnect truss to bea d 9. This connection ler lateral forces. ed in accordance v intial Code section renced standard A	Interior (1) 3 2-5, Interior (0 42-5-14 zoi for members Lumber L: Lum DOL= DL=1.15 Plat r Exp.; Ce=0. nsidered for 1 er of min roo oad of 20.0 p ve loads. 0 psf bottom other live loi ve load of 20.0 p ve loads. 0 psf bottom other live loi ve load of 20.0 p ve loads. 0 psf bottom other live loi ve load of 20.0 p ve load of 20.0 p ve loads. 0 psf bottom other live loi ve load of 20.0 p ve	-8-7 (1) he; s and =1.15 e 9; this if live 9; f live sof on ads. .0psf tom sf. e		Contraction	A	SE 45	EAL 844	
					SE(S) Stand							Nover	JOH nber 6,	2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Information. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A04	Roof Special	3	1	I69410553 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:41 ID:PUyzCTNt0PjWoBWHKfMm3nzvUVQ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

	-0-6-8 -	6-2-0 6-2-0	<u>11-11-2</u> 5-9-2	<u>18-0-12</u> 6-1-10) 2-11-4	6	7-11-0 5-11-0	+	<u>34-9-11</u> 6-10-11		ł	42-0-0 7-2-5	42-6-8 	
	P P P P P P P P P P P P P P	2x 3 26 9-1-4 8-9-12		27 8x10 =	5x6 2x4 II 5 28 5 5 28 5 5 28 5 5 15 28 5 15 28 5 15 28 5 15 28 5 15 28 5 15 28 5 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 28 15 15 15 15 28 15 15 15 15 15 15 15 15 15 15	15 16 2x4 2x4	30 3839□ 1/ 343513 11 4x8= 11 2x	∮¥8 () 3-4 2	<u>34-9-11</u> 6-10-11	112	110 x 8 1 1 xx4 II	<u>42-0-0</u> 7-2-5	8×10=	
Scale = 1:85.3					0-0-8		0-1-					-		
Plate Offsets (Loading TCLL (roof) Snow (Pf) TCDL BCLL BCLL BCDL	X, Y): [2:0-3-3,Edg (psf) 20.0 20.0 10.0 0.0 10.0	Spacing Plate Grip I Lumber DC Rep Stress * Code	2-0-0 DOL 1.15 L 1.15 Incr YES], [18:0-6-0,0-3 8/TPI2014	-8], [19:0-5-11,0-4- CSI TC BC WB Matrix-MSH	0] 0.89 1.00 0.84	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.38 -0.76 0.28	(loc) 16-18 16-18 9	l/defl >999 >660 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 328	GRIP 244/190 3 lb FT = 20%	
FORCES TOP CHORD BOT CHORD WEBS NOTES	Max Horiz 2=-170 Max Uplift 2=-30 (Max Grav 2=2118 (lb) - Maximum C Tension 1-2=0/13, 2-3=-60 5-6=-2908/125, 6 9-10=0/13 2-19=-230/5671, 16-18=0/2147, 12 9-11=0/3323, 15- 5-18=-353/163, 1 6-17=-73/1423, 3 4-18=-1970/232, 4-19=-42/2982, 8 6-14=-65/1609, 1 15-16=-227/0 ed roof live loads ha	SP No.2 xept* 18-6,19-4, 3 wheathing directly 5-18, 4-18 8, 9=0-3-8 (LC 14), 9=-3 (LI 3 (LC 3), 9=2173 ompression/May 313/139, 3-5=-66 -7=-3512/78, 7-5 18-19=0/4113, 2-16=0/2147, 11- 17=-27/131, 14- 7-18=-116/1352 -19=-32/243, 7-12=-545/251, -11=-32/74, 8-12 2-14=-93/1577,	2-6:2x4 SP y applied or 3) (4) (15) (1C 3) (1C 3) (1C 3) (15) (17) (1	Vasd=103m; II; Exp B; En, and C-C Ext to 16-9-11, E 25-2-5 to 38- C for member shown; Lumb TCLL: ASCE Plate DOL=1 DOL=1.15); I Cs=1.00; Ct= Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u 22-11-0 from apart. All plates are on the bottor 3-06-00 tall b chord and ar D) Bearing at jo using ANSI/I designer sho 1) One H2.5A S recommende UPLIFT at jt(and does sno 2) This truss is International	7-16; Vult=130mpl ph; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-5-14 to Exterior(2R) 16-9-17 -3-9, Exterior(2E) 3 ers and forces & MM ber DOL=1.60 plate E 7-16; Pr=20.0 psf (I Is=1.0; Rough Cat =1.10; Rough Cat =1.10; anow loads have b as been designed for psf or 1.00 times flaton-concurrent with unit load placed on a left end, supported a 2x4 MT20 unless as been designed for an chord in all areas poy 2-00-00 wide will yo other members, int(s) 2 considers p TPI 1 angle to grain puld verify capacity Simpson Strong-Tie ed to connect truss (s) 9 and 2. This co t consider lateral for designed in accord Residential Codes and referenced stand	SCDL=6 nvelope 3-8-7, 1 to 25-2 8-3-9 to VFRS fo grip D0 (roof LL Lum DC B; Fully een cor or greate at roof lc other lix the bott d at two other with or a 10.0 vith any for a liv where if the beari of beari e connee to bearinnection rces. ance wisections	.0psf; h=25ft) exterior zor nterior (1) 3- 2-5, Interior (' 42-5-14 zon or reactions DL=1.60 :: Lum DOL= :Lum DOL :Lum DOL= :Lum DOL :Lum DOL :Lu	to only	LOAD	C		OR TH C	EAL 844 NEERSO	
Design v a truss s building	IING - Verify design paran valid for use only with Mi ystem. Before use, the b design. Bracing indicate s required for stability and	Fek® connectors. Th uilding designer mus d is to prevent buckli	s design is based onl t verify the applicabili ng of individual truss	y upon parameters ty of design parame web and/or chord n al injury and proper	shown, and is for an inc eters and properly incorp nembers only. Addition	lividual bu orate this al tempora guidance	ilding componer design into the rv and permane	nt, not overall	Institute				ENCO A MITEK Affiliate	

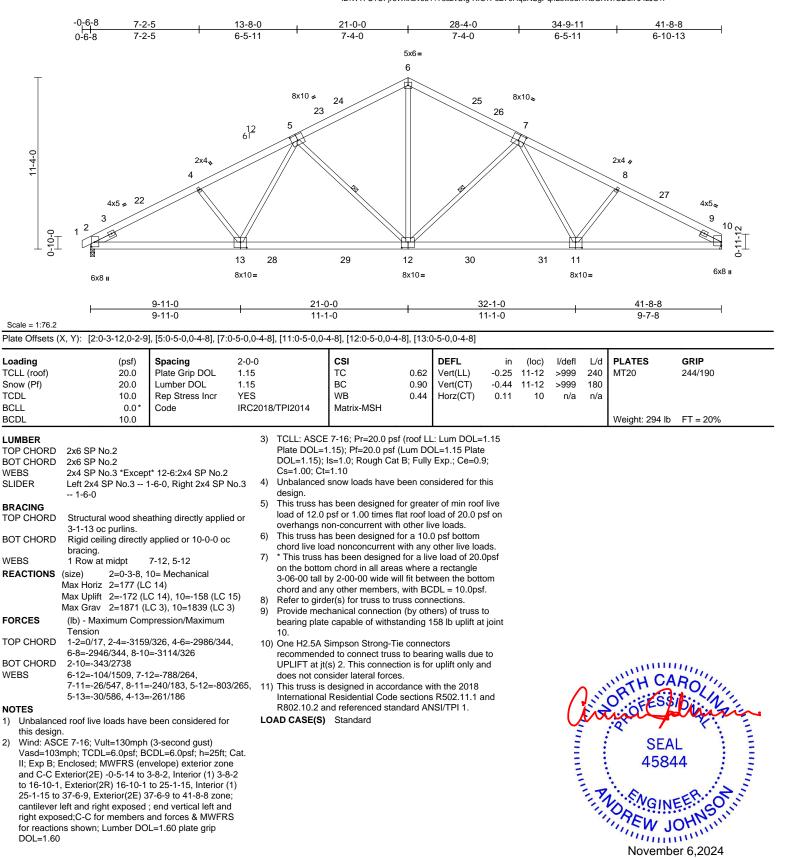
bu billing design. Dialong indicated is to prevent obligation bucking of individual usas were and/or on the index of the prevent obligation bucking of individual usas were and/or on the index of the prevent obligation and be personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A05	Common	5	1	I69410554 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:41 ID:ka8lyh7OIYpx1IIEB?qJtEzvUK7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

NGINEEDING

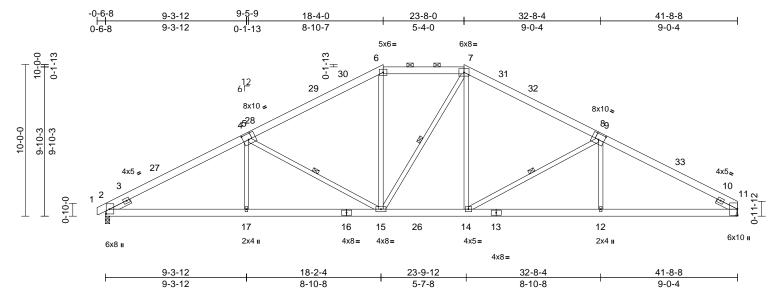

818 Soundside Road Edenton, NC 27932

-0-6-8 - - 0-6-8	7-2-5 7-2-5	13-8-0 6-5-11	18-0-12 21-0-0 4-4-12 2-11-4 5x6	27-11-0 6-11-0	<u>34-9-11</u> 6-10-11	<u>41-8-8</u> 6-10-13
$\begin{array}{c} 0 \\ 0 \\ + 1 \\ - \\ + 1 \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$	" <u>9-11-0</u> 9-11-0	19 31 8x10=	39 40 39 40 39 40 30 40 40 40 40 40 40 40 40 40 4	23 29 29 16 16 14 3536 3713 2x4 2x4= 2x4 2x4= 2x4 2x4= 2x4 2x4= 2x4 2x4= 2x4 -2x-11 4 -2-2 27-3-4 4 -2-4 01-2 0-7-1	10= -0 -0 	8x10 9 30 4x5 10 11 2x4 II 6x10 II 41-8-8 6-10-13
ow (Pf) 20 DL 10 LL 0	Spacing 0.0 Plate Grip DOL 0.0 Lumber DOL 0.0 Rep Stress Incr 0.0* Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.59 BC 0.94 WB 0.57 Matrix-MSH	Vert(LL) -0.25 1	(loc) l/defl L/d 6-17 >999 240 6-17 >975 180 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 331 lb FT = 20%
No.2, 17-15:2x ES 2x4 SP No.3 *E IDER Left 2x4 SP No. - 1-6-0 ACING P CHORD Structural wood 3-0-1 oc purlins T CHORD Rigid ceiling dii bracing, Exce 2-2-0 oc bracin ES 1 Row at midpt ACTIONS (size) 2=0- Max Horiz 2=17 Max Uplift 2=-3 Max Grav 2=21 RCES (lb) - Maximum Tension P CHORD 7-8=-3464/83, i 2-4=-3661/64, - T CHORD 2-14=-113/318 11-12=-19/317 ES 8-13=-561/250 5-19=-112/408 7-15=-85/1512 17-18=-66/138	ixcept* 13-7,18-7:2x4 SP .3 1-6-0, Right 2x4 SP N d sheathing directly applie s. rectly applied or 10-0-0 oc pt: g: 2-19. 6-18, 5-18 3-8, 11= Mechanical '7 (LC 14)	Vasd=103r P II; Exp B; E and C-C Ex- No.2 to 16-10-1, No.3 25-1-15 to end vertica MWFRS fo grip DOL=1 3) TCLL: ASC Plate DOL= DOL=1.15) Cs=1.00; C 4) Unbalanced design. 5) This truss f load of 12.(overhangs 6) 200.0lb AC 22-11-0 fro apart. 7) All plates a 100 8) This truss f chord live live 6/45 9) * This truss on the bottom 3-06-00 tall chord and a 10) Refer to gir	E 7-16; Pr=20.0 psf (roof LL =1.15); Pf=20.0 psf (Lum DC ; Is=1.0; Rough Cat B; Fully	Opsf; h=25ft; Cat.) exterior zone interior (1) 3-8-2 -15, Interior (1) o 41-8-8 zone; ers and forces & JOL=1.60 plate : Lum DOL=1.15 L=1.15 Plate Exp.; Ce=0.9; sidered for this er of min roof live iad of 20.0 psf on e loads. om chord, points, 5-0-0 se indicated. opsf bottom other live loads. a load of 20.0psf a rectangle iven the bottom DDL = 10.0psf. ections.	Ale Thomas and the second seco	SEAL 45844

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A06	Common	3	1	I69410555 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:41 ID:WTFSTUFjr6Wkhbv681?78szvUIg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A07	Нір	1	1	I69410556 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:41 ID:WTFSTUFjr6Wkhbv681?78szvUlg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

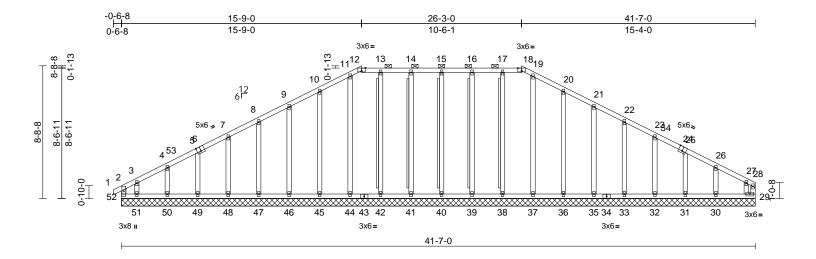
Scale = 1:76

Plate Offsets (X, Y): [2:0-3-12,0-2-9], [5:0-4-4,0-4-8], [9:0-4-8,0-4-8], [11:0-5-2,0-0-1]

`													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	1 1	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.92 0.98 0.45	Vert(CT)	in -0.21 -0.37 0.13	(loc) 12-14 12-14 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 297 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Excep Left 2x4 SP No.3 7 1-6-0	t* 15-7:2x4 SP No.2 1-6-0, Right 2x4 SP No	2) p.3	Vasd=103m II; Exp B; En and C-C Ext to 14-2-1, Ex 27-9-15 to 3	7-16; Vult=130mp ph; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-5-14 to tterior(2R) 14-2-1 to 7-6-9, Exterior(2E)	BCDL=6 envelope o 3-8-2, to 27-9-1 37-6-9	6.0psf; h=25ft e) exterior zo Interior (1) 3- 5, Interior (1 to 41-8-8 zon	ne ·8-2) ie;	or t bot		tation (rd.	of the purlin along	es not depict the size g the top and/or
BRACING TOP CHORD	Structural wood she 2-2-0 oc purlins, exo 2-0-0 oc purlins (4-9		or	right expose	ft and right expose d;C-C for members shown; Lumber D	s and fo	rces & MWFF						
BOT CHORD		applied or 10-0-0 oc	3)	Plate DOL=1 DOL=1.15);	7-16; Pr=20.0 psi 1.15); Pf=20.0 psf Is=1.0; Rough Cat	(Lum DC	DL=1.15 Plate	e					
		C 14), 11=-141 (LC 1		design. This truss ha load of 12.0	=1.10 snow loads have I as been designed f psf or 1.00 times fi on-concurrent with	or great at roof l	er of min root oad of 20.0 p	f live					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	6) 7)	Provide adeo	quate drainage to pass been designed f	orevent	water pondin	g.					
TOP CHORD		=0/17, 2-4=-3306/388, =-2566/403,	8)	chord live loa * This truss h	ad nonconcurrent v nas been designed n chord in all area	with any I for a liv	other live loa e load of 20.					TH CA	Route
BOT CHORD	2-17=-262/2875, 15- 14-15=-124/2160, 12 11-12=-249/2846		9)	3-06-00 tall t chord and ar	by 2-00-00 wide winy other members, er(s) for truss to trust	ll fit betv with BC	veen the bott DL = 10.0ps					of ites	Distria
WEBS	6-15=-18/701, 7-15=	253/260, 7-14=-36/6 337/253, 9-12=0/317,	-,)) Provide mec	chanical connection capable of withst	n (by oth	ers) of truss					SEA	• • • •
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for	11) One H2.5A S recommende UPLIFT at jt(Simpson Strong-Ti ed to connect truss (s) 2. This connect	to bear ion is fo	ing walls due			LITE.	P	4584	14

- does not consider lateral forces. 12) This truss is designed in accorda International Residential Code s
 - 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


818 Soundside Road Edenton, NC 27932

November 6,2024

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A08	Hip Supported Gable	1	1	I69410557 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:42 ID:3_zLxHIk22pmSZKbX0XIUUzvUG1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:75.6

Plate Offsets (X, Y): [6:0-3-0,	Edge],	[12:0-3-0,Edge], [18	8:0-3-0,E	dge], [24:0-3-0),Edge]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	2 2 1	psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	018/TPI2014	CSI TC BC WB Matrix-	MR	0.12 0.06 0.19	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.01	(loc) - - 29	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 293	GRIP 244/1 b FT = 2	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 * SP No.2(flat)	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 *Except* 0-0,0-0,0-0,0-0,0-0:2x4					Max Grav 29=107 (LC 27), 30=197 (LC 43), 31=150 (LC 22), 32=204 (LC 43), 33=223 (LC 43), 35=220 (LC 43), 36=226 (LC 43), 37=191 (LC 43), 38=210 (LC 38), 39=219 (LC 38), 40=216 (LC 38), 41=219 (LC 38), 42=210 (LC 38), 44=192 (LC 41), 42=210 (LC 41), 42=210 (LC 41), 42=210 (LC 41), 42=210 (LC 41), 42=210 (LC 41								4=-152/3, =-178/76, -119/76, 4 =-179/71, 7=-151/0,	8-47=-183/77 -50=-126/114
TOP CHORD	6-0-0 oc purlir 2-0-0 oc purlir	ns, exc ns (6-0-	cept end verticals, a -0 max.): 12-18.	nd		45=224 (LC 41), 46=218 (LC 41), 47=222 (LC 41), 48=190 (LC 41), 49=158 (LC 54), 50=169 (LC 39),							25-31	=-184/77, 23-3 =-114/81, 26-3 =-112/21		,
BOT CHORD	bracing.				FORCES	(lb) - Ma: Tension		· · ·	on/Maximum	'	,	alance		ive loads have	been cons	sidered for
WEBS	14-41, 13-42, 16-39,				TOP CHORD	2-52=-12			3=-174/69, -7=-80/106,		this design.					
	17-38, 10-39, 17-38 77-38 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131*x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length.				7-8=-79/ 10-11=-1 12-13=-9 14-15=-9	148, 8-9=- 03/289, 1 98/279, 13 98/279, 15	70/193, 1-12=-1(-14=-98/ -16=-98/	9-10=-83/23)2/277, 279, 279,	88,							
REACTIONS	3in minimum end distance.		-7-0, -7-0, -7-0, -7-0, -7-0, -7-0, 15),	BOT CHORD	18-19=-1 20-21=-8 22-23=-6 25-26=-6 28-29=-3 51-52=-2 48-49=-2 45-46=-2 41-42=-2 38-39=-2	89/100 23/99, 50-5 23/99, 47-4 23/99, 44-4 23/99, 40-4 23/99, 37-3	9-20=-1(-22=-65/ -25=-52/ 27=-89/3 51=-23/9 18=-23/9 15=-23/9 11=-23/9 88=-23/9)3/289, 193, 102, 1, 27-28=-2(9, 49-50=-2: 9, 49-50=-2: 9, 49-47=-2: 9, 42-44=-2: 9, 39-40=-2: 9, 36-37=-2:	3/99, 3/99, 3/99, 3/99, 3/99,		C	Ler'	OR THES	i i i	INTE	
									9, 32-33=-2: 9, 29-30=-2:			197	Number of Street	SE 458 NOPEW Nover	VEER JOHN ber 6,20	024

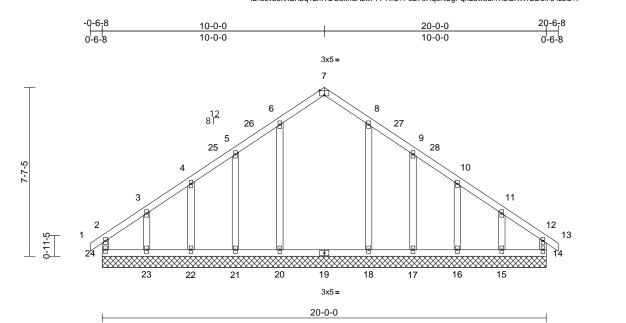
Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent oullapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, rection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria and DSP2.2 available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	A08	Hip Supported Gable	1	1	I69410557 Job Reference (optional)

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-6-8 to 3-7-6, Exterior(2N) 3-7-6 to 11-7-1, Corner(3R) 11-7-1 to 19-10-14, Exterior(2N) 19-10-14 to 22-1-2, Corner(3R) 22-1-2 to 30-4-15, Exterior(2N) 30-4-15 to 37-0-0, Corner(3E) 37-0-0 to 41-5-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) Provide adequate drainage to prevent water ponding.
- 8) All plates are 2x4 MT20 unless otherwise indicated.
- 9) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- 12) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 13) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 14) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 57 lb uplift at joint 52, 24 lb uplift at joint 40, 32 lb uplift at joint 41, 12 lb uplift at joint 42, 53 lb uplift at joint 45, 42 lb uplift at joint 46, 44 lb uplift at joint 47, 43 lb uplift at joint 48, 46 lb uplift at joint 49, 36 lb uplift at joint 50, 149 lb uplift at joint 51, 32 lb uplift at joint 39, 11 lb uplift at joint 38, 55 lb uplift at joint 32, 42 lb uplift at joint 32, 43 lb uplift at joint 33, 48 lb uplift at joint 32, 26 lb uplift at joint 31 and 102 lb uplift at joint 30.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 17) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:42 ID:3_zLxHIk22pmSZKbX0XIUUzvUG1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	B01	Common Supported Gable	1	1	I69410558 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:42 ID:3svb5hhSXbq1LmTDC3xnuAzwPrT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:51.9

Plate Offsets (X, Y): [7:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.18	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.14	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.17	Horz(CT)	0.01	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 114 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	JMBER DP CHORD 2x4 SP No.2 DT CHORD 2x4 SP No.2 EBS 2x4 SP No.3 THERS 2x4 SP No.3 THERS 2x4 SP No.3 THERS 2x4 SP No.3 CHORD Structural wood sheathing directly applied or 6-0-0 cc purlins, except end verticals. DT CHORD Rigid ceiling directly applied or 10-0-0 cc bracing. EACTIONS (size) 14=20-0-0, 15=20-0-0, 16=20-0-0, 21=20-0-0, 22=20-0-0, 23=20-0-0, 24=20-0-0 Max Horiz 24=-165 (LC 12) Max Horiz Max Horiz 24=-165 (LC 12) Max Uplift 14=-14 (LC 11), 15=-157 (LC 15), 16=-29 (LC 15), 17=-93 (LC 15), 21=-91 (LC 14), 22=-28 (LC 14), 23=-160 (LC 14), 24=-23 (LC 10) Max Grav 14=216 (LC 28), 15=-208 (LC 26), 16=207 (LC 26), 17=-195 (LC 22), 18=360 (LC 6), 20=360 (LC 5), 21=195 (LC 21), 22=207 (LC 25), 23=211 (LC 25), 24=220 (LC 27)			 (FBS 6-20=-248/41, 5-21=-168/104, 4-22=-143/66, 3-23=-145/138, 8-18=-248/36, 9-17=-168/107, 10-16=-143/65, 11-15=-145/136 (TES 0) Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads have been considered for this design. (Unbalanced roof live loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. (TCLL: ASCE 7-16; Pr=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.;							here a rectangle between the bottom n BCDL = 10.0psf. others) of truss to ng 23 lb uplift at joint ft at joint 21, 28 lb t 23, 93 lb uplift at 157 lb uplift at joint ew with the 2018 ions R502.11.1 and		
FORCES	(lb) - Maximum Com		6)	design. This truss ha	s been designed fo	or great	er of min roof I	ive			A A	ONFESS	- ANA VIA
TOP CHORD	Tension HORD 1-2=0/23, 2-3=-195/92, 3-4=-132/58, 4-5=-127/44, 5-6=-125/74, 6-7=-150/83, 7-8=-150/83, 8-9=-125/66, 9-10=-120/36, 10-11=-127/49, 11-12=-187/81, 12-13=0/23, 2-24=-163/23, 12-14=-159/16			overhangs no All plates are Gable require Truss to be fu braced again) Gable studs s) This truss ha	esign. his truss has been designed for greater of min roof live ad of 12.0 psf or 1.00 times flat roof load of 20.0 psf on verhangs non-concurrent with other live loads. Il plates are 2x4 MT20 unless otherwise indicated. able requires continuous bottom chord bearing. russ to be fully sheathed from one face or securely raced against lateral movement (i.e. diagonal web). able studs spaced at 2-0-0 oc. his truss has been designed for a 10.0 psf bottom hord live load nonconcurrent with any other live loads. No. No. No. No. No. No. No. No. No. No.								EER. ON THE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO AMITEK Affiliate

818 Soundside Road Edenton, NC 27932

November 6,2024

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	B02	Common Girder	1	2	I69410559 Job Reference (optional)

10-0-0

4-11-14

Carter Components (Sanford, NC), Sanford, NC - 27332,

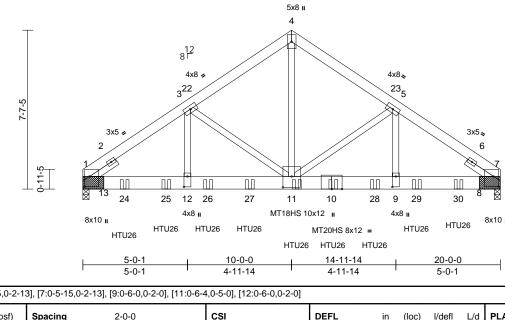
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:42 ID:PTv5C6lkKROx2GY0tKS8s4zvUAt-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

20-0-0

5-0-1

14-11-14

4-11-14


Ш ПП ПП Π 27 11 10 28 9 29 30 MT18HS 10x12 II 4x8 II 8x10 🛛 HTU26 HTU26 HTU26 MT20HS 8x12 = HTU26 HTU26 HTU26 14-11-14 20-0-0 4-11-14 5-0-1

November 6,2024

Page: 1

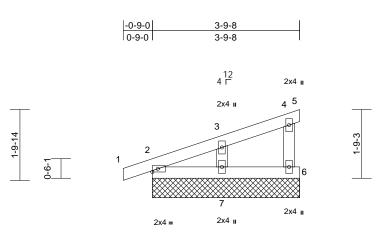
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

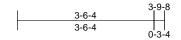
818 Soundside Road Edenton, NC 27932

Scale =	1:55.2
---------	--------

Plate Offsets (X, Y): [1:0-5-15,0-2-13], [7:0-5-15,0-2-13], [9:0-6-0, 0-2-0], [11:0-6-4,0-5-0], [12:0-6-0,0-2-0]

5-0-1


5-0-1


				0 2 0],[1.10 0									
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.69	Vert(LL)		11-12		240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.53	Vert(CT)	-0.25	11-12	>935	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	NO		WB	0.86	Horz(CT)	0.06	7	n/a	n/a	MT18HS	244/190
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 344 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	2x8 SP 2400F 2.0E 2x4 SP No.3 *Excep Left 2x4 SP No.3 1-6-0 Structural wood she 3-6-1 oc purlins. Rigid ceiling directly bracing. (size) 1=(0-3-8 -	1-6-0, Right 2x4 SP i athing directly applie applied or 10-0-0 oc + bearing block), (red (0-3-8 + bearing blo 15) C 10) (LC 5), 7=9436 (LC 6) pression/Maximum	3) ed or c 4) q. ck), 5) 6) 6)	except if not CASE(S) see provided to c unless other 2x8 SP 2400 attached to e nails spaced is assumed t 2x8 SP 2400 attached to e nails spaced is assumed t Unbalanced this design. Wind: ASCE Vasd=103m II; Exp B; En cantilever lef	considered equal ed as front (F) or It tion. Ply to ply co tistribute only load wise indicated. IF 2.0E bearing bl each face with 4 r 3" o.c. 16 Total fa o be SP 2400F 2. IF 2.0E bearing bl each face with 4 r 3" o.c. 16 Total fa o be SP 2400F 2. roof live loads hav 7-16; Vult=130m 7-16; Vult=130m (c), TCDL=6.0ps; closed; MWFRS (t and right exposed d; Lumber DOL=1	back (B) nnection is noted ock 12" I ows of 1 asteners 0E. ock 12" I ows of 1 asteners 0E. ve been ph (3-see BCDL=6 enveloped i, enveloped	face in the LC s have been as (F) or (B), ong at jt. 1 Dd (0.131"x3" per block. Be ong at jt. 7 Dd (0.131"x3" per block. Be considered fo considered fo cons) aring) aring r Cat. ne; d	14- spa enc bott 15) Use 14- ma: con 16) Fill LOAD (1) De In: Ur Co	10dx1 1. iced at 7 it to 17-1 tom choice s Simpson 10dx1 1. ix. startini innect true all nail h CASE(S ead + Sri crease= niform Lo Vert: 1 oncentra Vert: 1 25=-185	/2 Trus 7-9-0 or 1-15 to rd. on Stro /2 Trus ig at 1 ss(es) noles w) Sta now (ba 1.15 oads (I 4=-60, ated Lo 0=-1642 50 (B),	Ing-Tie HTU26 (2 ss, Single Ply Girc c max. starting at c connect truss(es b, or equivalent s l-11-15 from the l to back face of bc there hanger is in ndard alanced): Lumber b/ft) 4-7=-60, 14-18=- ads (lb) 2 (B), 11=-1850 (I	0-10d Girder, Jer) or equivalent 1-11-15 from the left s) to back face of 0-16d Girder, paced at 2-0-0 oc eft end to 15-11-15 to pacet at 2-0-0 oc eft end to 15-11-15 to eft en
BOT CHORD		,	7)		7-16; Pr=20.0 ps .15); Pf=20.0 psf							mm	un,
(0.131"x3" Top chord staggered Bottom ch staggered Web conn	4-11=0/9866, 5-11=- 5-9=-604/3281, 3-11 s to be connected toge ') nails as follows: ls connected as follows: ls connected as follows at 0-9-0 oc. lords connected as follows at 0-5-0 oc. lected as follows: 2x4 - ember 4-11 2x4 - 1 row	=-3439/0, 3-12=0/4(ther with 10d s: 2x6 - 2 rows ows: 2x8 - 3 rows 1 row at 0-9-0 oc,	8) 9) 1(1 ⁻	DOL=1.15); Cs=1.00; Ct: Unbalanced design. All plates are D) The Fabricat D) The Fabricat D) This truss ha chord live loa 2) * This truss h on the bottor 3-06-00 tall h	Is=1.0; Rough Ca =1.10 snow loads have e MT20 plates unli ion Tolerance at j is been designed ad nonconcurrent nas been designed n chord in all area by 2-00-00 wide w	t B; Fully been cor oint 11 = for a 10.1 with any d for a liv as where rill fit betw	Exp.; Ce=0.9 hisidered for the use indicate 12% 0 psf bottom other live loa e load of 20.0 a rectangle); d. ds.)psf		Continue	200	SEA 4584	L DHNSTIN DHNSTIN
		1:	 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 										

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	C01	Monopitch Supported Gable	2	1	I69410560 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:42 ID:U5QFVIeIxXRFdnTjJFF5o7zw9dU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29.7

Scale = 1.29.7												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.06 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: AS Vasd=100 II; Exp B; and C-C (to 3-9-8 z for reaction DOL=1.6 2) Truss des only. For see Stand	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 3-9-8 oc purlins, ex Rigid ceiling directly bracing. (size) 2=3-9-8, 5 8=3-9-8 Max Horiz 2=59 (LC Max Uplift 2=59 (LC Max Uplift 2=518 (LC (LC 21), 7 21) (lb) - Maximum Com Tension 1-2=0/21, 2-3=-98/4 4-6=-120/123 2-7=-46/25, 6-7=0/0 3-7=-162/173 CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er Corner(3E) -0-9 to 2-3 ons shown; Lumber DO 	cept end verticals. applied or 10-0-0 oc 5=3-9-8, 6=3-9-8, 7= 10), 8=59 (LC 10) (2 10), 5=-28 (LC 21), (3 0), 7=-38 (LC 14), (2 1), 5=9 (LC 10), 6 (2 2), 5=9 (LC 10), 6 (LC 10), 7=-38 (LC 10), 7=-38 (Plate DOL= DOL=1.15); Cs=1.00; Cl 4) Unbalanced design. 5) This truss h load of 12.0 overhangs r 6) Gable requi 3-9-8, 7) Gable studs 8) This truss h chord live lo 9) * This truss h chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide me bearing plat 2, 28 lb upli joint 7 and 2 11) This truss is Internationa R802.10.2 a LOAD CASE(S) Cat. e -0 S	I snow loads have as been designed psf or 1.00 times on-concurrent wit res continuous bot spaced at 2-0-0 c as been designed wad noncourrent has been designe m chord in all area by 2-00-00 wide w ny other members chanical connectio e capable of withs ft at joint 5, 30 lb u 24 lb uplift at joint 2 designed in acco I Residential Code and referenced sta	(Lum DC t B; Fully been cor for great flat roof It h other Ii ttom chor oc. for a 10.1 with any d for a liv as where vill fit betv 5. n (by oth tanding 2 pilift at joi 2. rdance we sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof bad of 20.0 p ve loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the both ers) of truss t 24 lb uplift at j nt 6, 38 lb up ith the 2018 s R502.11.1 a	e); live sf on Opsf om oint lift at		Culture	in	NHTH CA	ROLLAN LAA
											Novemb	per 6,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	C02	Monopitch	8	1	I69410561 Job Reference (optional)

3-9-8

3-9-8

12 4 Г

3-6-4 3-6-4

DEFL

Vert(LL)

Vert(CT)

Horz(CT)

-0-9-0

0-9-0

2

2x4 =

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:42 ID:m4jm85hMIZcJHoWkltroegzw9ei-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2x4 ı

3 4 ٣

> P 6 5 2x4 II

> > in

0.03

0.02

-0.01

(loc)

6-9

6-9

2

1-9-3

l/defl

>999

>999

n/a n/a

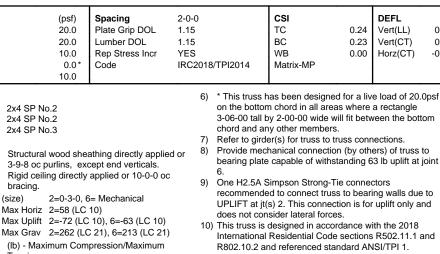
L/d

240

180

PLATES

Weight: 15 lb


MT20

GRIP

244/190

FT = 20%

1-9-14

မှ

LOAD CASE(S) Standard

HILLING WAY

818 Soundside Road

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:28.9

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

4)

5)

TOP CHORD

BOT CHORD

DOL=1.60

desian.

Cs=1.00; Ct=1.10

REACTIONS (size)

bracing.

Tension

2-6=-83/56, 5-6=0/0

Wind: ASCE 7-16; Vult=130mph (3-second gust)

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

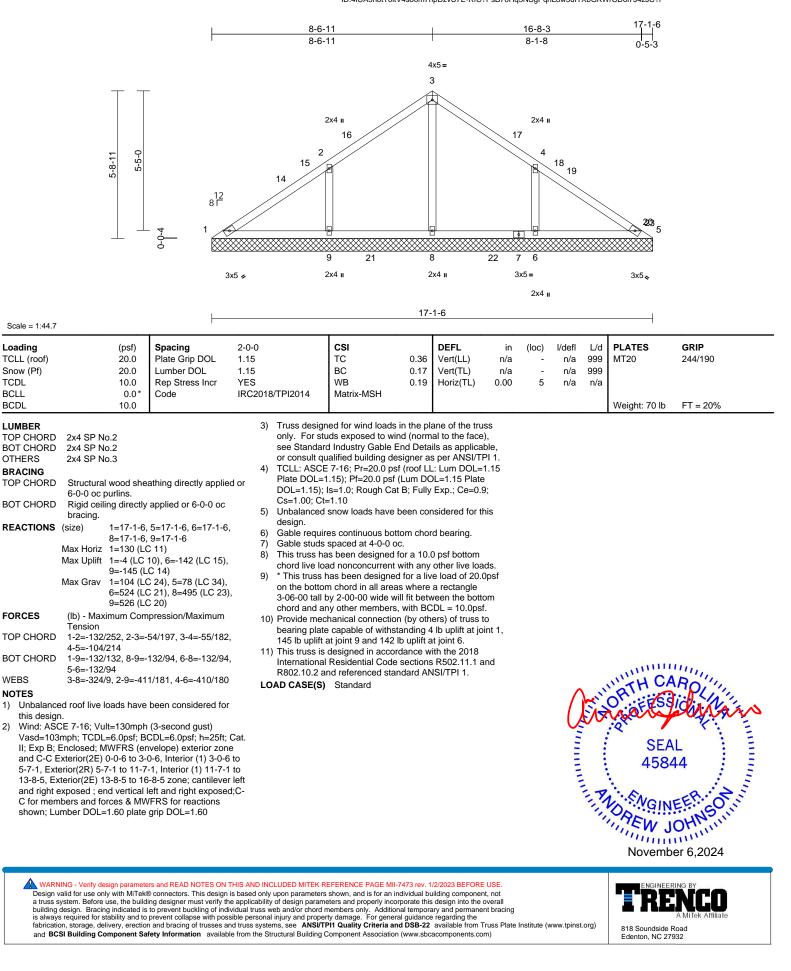
load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

1-2=0/21, 2-3=-54/54, 3-4=-8/0, 3-6=-157/134

BRACING

TCDL


BCLL

BCDL

WFBS

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	VL17	Valley	1	1	I69410562 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:43 ID:4IUA5n6tT0ltV4so0m7npDzvU7E-RtC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	VL14	Valley	1	1	I69410563 Job Reference (optional)

Scale = 1:37.8 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

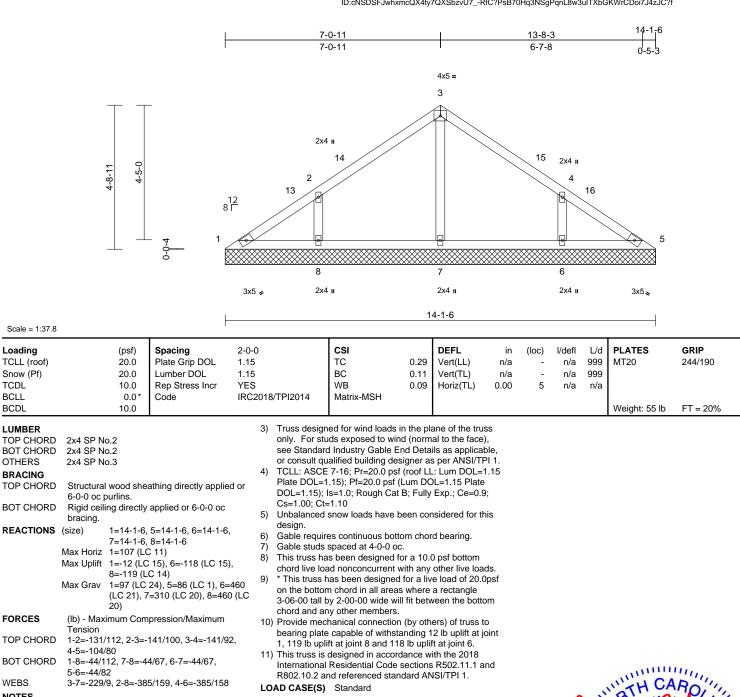
BOT CHORD

FORCES

WEBS

TOP CHORD

BOT CHORD


TCDL

BCLL

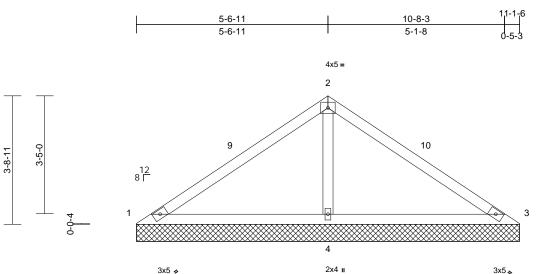
BCDL

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:43 ID:cNSDSFJwhxmcQX4ty7QXSbzvU7_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

- NOTES Unbalanced roof live loads have been considered for 1) this design. 2)
- Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-1-1, Interior (1) 3-1-1 to 4-1-1, Exterior(2R) 4-1-1 to 10-1-1, Interior (1) 10-1-1 to 11-1-1, Exterior(2E) 11-1-1 to 14-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

mmm November 6,2024


SEAL

ANNIN THEFT

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	VL11	Valley	1	1	I69410564 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:43 ID:KI3?ZgRBL00Bd4roYDbtsizvU6q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

3x5 🍫

11-1-6

Scale = 1:33.4			I									I	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.52 0.20	- ()	in n/a n/a 0.01	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 39 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins. Rigid ceiling directly bracing.	applied or 6-0-0 oc , 3=11-1-6, 4=11-1-6 C 10) C 21), 3=-76 (LC 20) .C 14)	6 7 8 6 9	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Gable requir Gable studs This truss ha chord live lo * This truss I on the bottoo 3-06-00 tall chord and at 0) Provide med	7-16; Pr=20.0 pi 1.15); Pf=20.0 psi Is=1.0; Rough Ca =1.10 snow loads have res continuous bo spaced at 4-0-0 d as been designed ad nonconcurrent has been designed m chord in all are by 2-00-00 wide v ny other members: shanical connectid e capable of withs	(Lum DC tt B; Fully been cor ttom choroc. for a 10.1 with any d for a liv as where vill fit betw s. on (by oth	DL=1.15 Plate Exp.; Ce=0.9 Insidered for t rd bearing. 0 psf bottom other live loa re load of 20.1 a rectangle ween the bott uers) of truss	e); his ds. Dpsf om					
this desig 2) Wind: AS Vasd=103 II; Exp B;	(lb) - Maximum Com Tension 1-2=-120/487, 2-3=- 1-4=-294/168, 3-4=- 2-4=-723/251 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er Exterior(2E) 0-0-6 to 3-	120/487 294/168 been considered fo (3-second gust) CDL=6.0psf; h=25ft; nvelope) exterior zor	1 Jur ; Cat. ne	1, 76 lb uplif 1) This truss is International	t at joint 3 and 10 designed in acco Residential Code nd referenced sta	4 lb uplift rdance w sections	at joint 4. vith the 2018 s R502.11.1 a			ſ	I I I I I I I I I I I I I I I I I I I	NITH CA	ROLIN

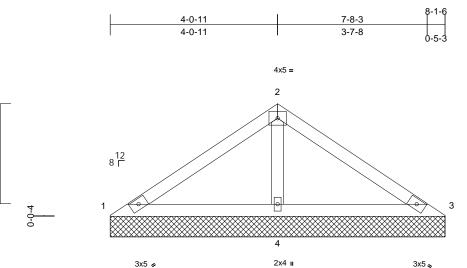
- to 8-1-12, Exterior(2E) 8-1-12 to 11-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

A. S. Summer 104 mmm November 6,2024

SEAL

45844

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	VL8	Valley	1	1	I69410565 Job Reference (optional)

2-5-0

2-8-11

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:43 ID:1Efnf5YT_4Hmqccj7JnDGpzvU6g-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-1-6

3x5 🍫

Scale - 1.27 9

Scale = 1:27.9													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.32 0.32 0.10	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 28 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 8-1-6 oc purlins. Rigid ceiling directly a bracing. (size) 1=8-1-6, 3: Max Horiz 1=60 (LC 1 Max Uplift 1=-28 (LC 4=-66 (LC Max Grav 1=105 (LC 4=609 (LC (lb) - Maximum Comp Tension 1-2=-96/293, 2-3=-96 1-4=-202/149, 3-4=-2 2-4=-443/193	applied or 6-0-0 oc =8-1-6, 4=8-1-6 11) 21), 3=-28 (LC 20), 14) 20), 3=105 (LC 21 21) oression/Maximum 5/293	6 7 8 9 ,), 1 1	 Plate DOL= DOL=1.15); Cs=1.00; C¹ Unbalanced design. Gable requi Gable studs This truss h chord live lc * This truss on the botto 3-06-00 tall chord and a Provide me bearing plat 1, 28 lb upli This truss is Internationa 	I snow loads have res continuous bo s spaced at 4-0-0 as been designed ad nonconcurren has been designed m chord in all are by 2-00-00 wide v ny other member chanical connectii e capable of with ft at joint 3 and 66 designed in acco I Residential Cod and referenced sta	f (Lum DC at B; Fully be been cor- bottom chor oc. d for a 10. t with any ed for a liv ass where will fit betv 's. on (by oth standing 2 b lb uplift a ordance w le sections	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle veen the botth ers) of truss i 28 lb uplift at j ti, bott 4. ith the 2018 s R502.11.1 a	e 9; his dds. 0psf om to ioint					
this desigr 2) Wind: ASC	ed roof live loads have b n. CE 7-16; Vult=130mph (mph; TCDL=6.0psf; BC	(3-second gust)								ſ	1 miles	WITH CA	ROLIN

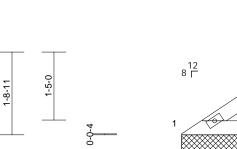
II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-6 to 3-0-6, Exterior(2R) 3-0-6 to 5-1-12, Exterior(2E) 5-1-12 to 8-1-12 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

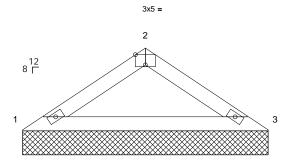
Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-A-FLEX+VMB-All Levels-Roof-Mason
24110023-A	VL5	Valley	1	1	I69410566 Job Reference (optional)

2-6-11 2-6-11


Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Nov 05 16:40:42 ID:k9GZIWgkd9YL08NejQyZgwzvU6W-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-8-3

2-1-8

5-1-6

2x4 🍫

2x4 💊

5-1-6

Scale = 1:24

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.21 0.16 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
3CDL 10.0 LUMBER OP CHORD 2x4 SP No.2 3OT CHORD 2x4 SP No.2 3GT CHORD 2x4 SP No.2 3RACING OP CHORD Structural wood she 5-1-6 oc purlins. 3OT CHORD Rigid ceiling directly bracing. SEACTIONS (size) 1=5-1-6, 3 REACTIONS (size) 1=5-1-6, 1 Max Horiz 1=-36 (LC Max Uplift 1=-19 (LC Max Grav 1=243 (LC ORCES (lb) - Maximum Com Tension FOR CES (lb) - Maximum Com Tension TOP CHORD 1-2=-367/129, 2-3=-30T CHORD 1-3=-94/293 SOTES)) Unbalanced roof live loads have this design. :) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; B II; Exp B; Enclosed; MWFRS (er and C-C Exterior(2E) zone; cant exposed ; end vertical left and rimembers and forces & MWFRS Lumber DOL=1.60 plate grip DC :0) Truss designed for wind loads in only. For studs exposed to wind only see Standard Industry Gable En or consult qualified building desi :0) TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat E Cs=1.00; Ct=1.10 :0) Unbalanced snow loads have be design. :0) Gable requires continuous botto	applied or 10-0-0 or 3=5-1-6 (10) (14), 3=-19 (LC 15) (20), 3=243 (LC 21) pression/Maximum 367/129 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon ilever left and right ght exposed; C-C for for reactions shown; L=1.60 the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1.15 Plate ; Fully Exp.; Ce=0.9 pen considered for the trus (applied of the trus) (b) (12) (12) (12) (12) (12) (12) (12) (12	7) Gable stuc 8) This truss chord live 9) * This truss on the bott 3-06-00 ta chord and 10) Provide m bearing pla 1 and 19 lt 11) This truss Internation R802.10.2 LOAD CASE(S Cat. e S he, 11. .15	is spaced at 4-0-0 has been designed oad nonconcurrent shas been designed om chord in all are l by 2-00-00 wide v any other members echanical connection the capable of withs o uplift at joint 3. is designed in acco al Residential Cod and referenced sta 5) Standard	I for a 10.0 t with any ed for a liv as where will fit betw s. on (by oth standing 1 ordance w e sections	other live loa re load of 20.0 a rectangle veen the both ers) of truss t 9 lb uplift at j ith the 2018 \$ R502.11.1 a	Opsf om to oint		Culture		TEW J	44 EER.ON

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

