

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: Hayden F

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

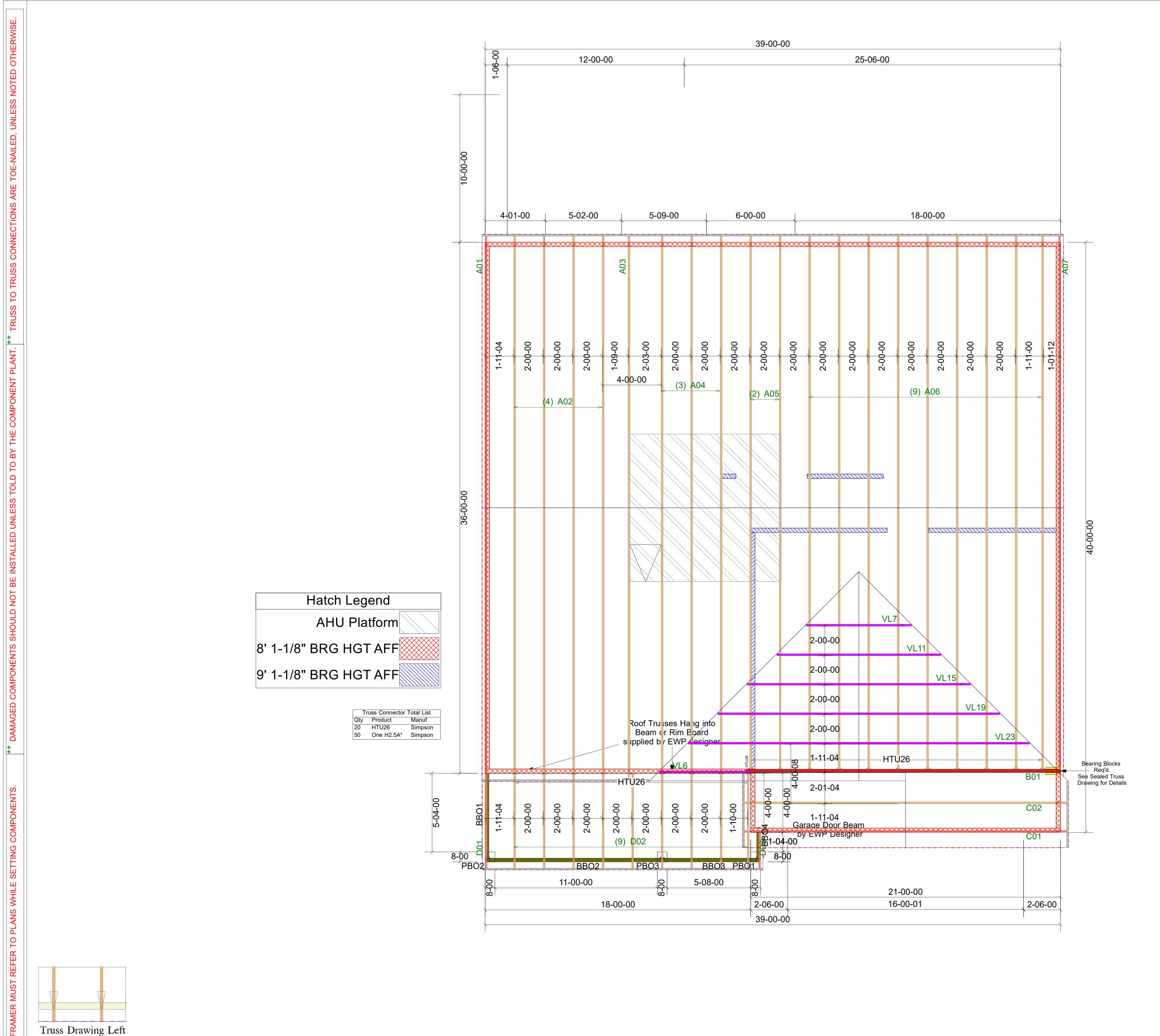
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

GIRDERS MUST BE FULLY CONNECTED TOGETHER		VIS ARE READ AS: FOOT-INCH-SIXTEENTH. A WIN GOME COMPOSE ANSI/TPI 1, all uplif	PRIOR TO ADDING ANY LOADS. DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. AN UPIIT CONNECTORS are the responsibility of the bldg designer and or contractor.	and or contractor.
Nate	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	F 00/00/ 00/00/ 00/00/ 00/00/
e Do Project 1002	7 Mason Ridge		each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor svstems and for the overall structure. The disign of the tuss support structure	/00 /00 /00
2024 gner: nald	Hayden F	Prince Por	building headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing	Ni Ni Ni Ni
SON er: A	ROOF PLACEMENT PLAN		or wood rruss available itom the rruss Plate insulute, boo D'Omino Drive. Madison, WI 53179	ame ame ame ame ame

RE: 24100227 Hayden-F-SLAB-Roof-All Levels Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:Customer: DR Horton IncProject Name:24100227Lot/Block: 7Model: Hayden FAddress:Subdivision: Mason RidgeCity:State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 19 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	169015966	A01	10/21/2024
2	169015967	A02	10/21/2024
3	169015968	A03	10/21/2024
4	169015969	A04	10/21/2024
5	169015970	A05	10/21/2024
6	169015971	A06	10/21/2024
7	169015972	A07	10/21/2024
8	169015973	B01	10/21/2024
9	169015974	C01	10/21/2024
10	169015975	C02	10/21/2024
11	169015976	D01	10/21/2024
12	169015977	D02	10/21/2024
13	169015978	D03	10/21/2024
14	169015979	VL6	10/21/2024
15	169015980	VL7	10/21/2024
16	169015981	VL11	10/21/2024
17	169015982	VL15	10/21/2024
18	169015983	VL19	10/21/2024
19	169015984	VL23	10/21/2024

The truss drawing(s) referenced above have been prepared by

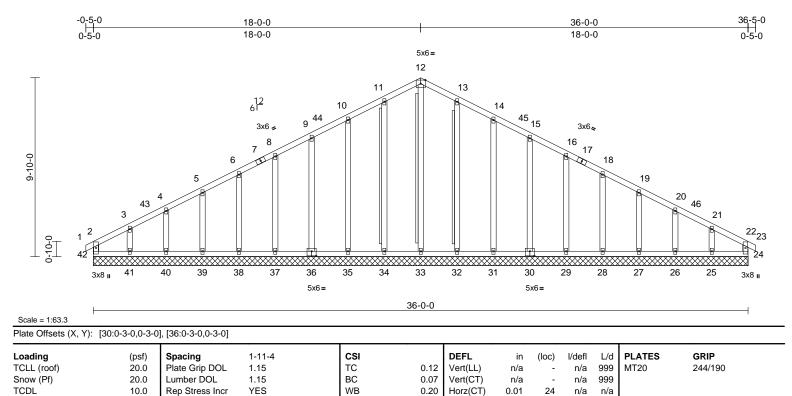
Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A01	Common Supported Gable	1	1	I69015966 Job Reference (optional)	

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:44 ID:vF2b2QneXVJP9E5IeL0ISzzyU_5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

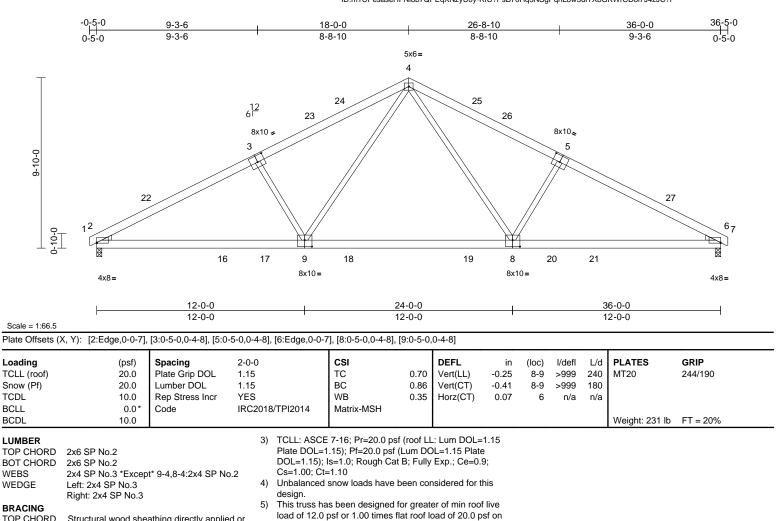
TODE	10.0			0.20 11012	2(01) 0.01	24 11/a 11/a	
BCLL	0.0*	Code IR0	C2018/TPI2014	Matrix-MR			
BCDL	10.0						Weight: 244 lb FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	No.2(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and web with 10d (0.13 3in minimum end d	y applied or 10-0-0 oc 2x4 SP No.2 - 12-33, 11-34, 13-32 I braces to narrow edge of 1"x3") nails, 6in o.c.,with	FORCES TOP CHORD	Max Grav 24=114 (LC 27), 25=1 26=155 (LC 22), 27=1 28=156 (LC 22), 29=1 30=170 (LC 22), 31=2 32=236 (LC 22), 33=1 34=236 (LC 21), 35=2 36=170 (LC 21), 37=1 38=156 (LC 21), 39=1 40=155 (LC 21), 41=1 42=137 (LC 30) (lb) - Maximum Compression/Ma Tension 2-42=-105/38, 1-2=0/15, 2-3=-15 3-4=-99/81, 4-5=-78/100, 5-6=-6 6-8=-54/146, 8-9=-72/190, 9-10= 10-11=-108/280, 11-12=-124/318 12-13=-124/318, 13-14=-108/280	155 (LC 35), 55 (LC 35), 2) 155 (LC 35), 2) 21 (LC 22), 89 (LC 27), 21 (LC 21), 155 (LC 34), 155 (LC 34), 155 (LC 34), 155 (LC 34), 155 (LC 34), 156 (LC 34), 3) 54/76, 0/122, -89/233, 8, 4) 4)	this design. Wind: ASCE 7-16; Vasd=103mph; TC II; Exp B; Enclosed and C-C Corner(3) to 14-4-15, Corner 21-7-2 to 32-9-15, C for members an shown; Lumber DC Truss designed for only. For studs ex see Standard Indu or consult qualified TCLL: ASCE 7-16 Plate DOL=1.15);	ve loads have been considered for Vult=130mph (3-second gust) CDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. d; MWFRS (envelope) exterior zone E) -0-5-0 to 3-2-2, Exterior(2N) 3-2-2 (3R) 14-4-15 to 21-7-2, Exterior(2N) Corner(3E) 32-9-15 to 36-5-0 zone;C- d forces & MWFRS for reactions DL=1.60 plate grip DOL=1.60 r wind loads in the plane of the truss rposed to wind (normal to the face), stry Gable End Details as applicable, d building designer as per ANSI/TPI 1. ; Pr=20.0 psf (roof LL: Lum DOL=1.15 Pf=20.0 psf (Lum DOL=1.15 Plate Depende 12 E full Ence 0.0 20
	27=36-0- 30=36-0- 33=36-0- 39=36-0- 39=36-0- 42=36-0- 42=36-0- Max Horiz 42=141 (Max Uplift 24=-6 (LC 26=-30 (l 28=-42 (l 30=-42 (l 32=-35 (l 35=-46 (l) 35=-46 (l) 35=-47 (l)		BOT CHORD WEBS	$\begin{array}{l} 14.15 = .89/233, 15.16 = .72/190, \\ 16.18 = .54/146, 18.19 = .39/102, \\ 19.20 = .49/62, 20.21 = .68/44, 21 \\ 22.23 = 0/15, 22.24 = .90/24 \\ 41-42 = .22/110, 38.39 = .22/110, \\ 37.38 = .22/110, 38.39 = .22/110, \\ 37.38 = .22/110, 31.32 = .22/110, \\ 32.33 = .22/110, 31.32 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 27.28 = .22/110, 28.29 = .22/110, \\ 28.38 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 28.29 = .22/110, \\ 29.31 = .22/110, 29.29 = .21/10, \\ 29.31 = .22/110, 29.31 = .21/10, \\ 19.33 = .21/10, 29.31 = .21/10, \\ 19.33 = .21/10, 29.31 = .21/10, \\ 19.33 = .21/10, 29.29 = .21/10, \\ 29.31 = .22/110, 29.29 = .21/10, \\ 29.31 = .22/110, 29.29 = .21/10, \\ 29.31 = .21/10, 29.29 = .21/10, 29.20 = .21/10, \\ 29.31 = .21/10, 29.20 = .21/10, 29.20 = .21/10, 29.20 = .21/10, \\ 2$	-37=-116/75,	Cs=1.00; Ċt=1.10 Unbalanced snow design.	Rough Cat B; Fully Exp.; Ce=0.9; loads have been considered for this SEAL 036322 VGINEER 4. GILBER October 21,2024

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A01	Common Supported Gable	1	1	Job Reference (optional)	169015966

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 34 lb uplift at joint 42, 6 lb uplift at joint 24, 37 lb uplift at joint 34, 46 lb uplift at joint 35, 42 lb uplift at joint 36, 43 lb uplift at joint 37, 41 lb uplift at joint 38, 47 lb uplift at joint 39, 26 lb uplift at joint 40, 114 lb uplift at joint 41, 35 lb uplift at joint 32, 46 lb uplift at joint 31, 42 lb uplift at joint 30, 43 lb uplift at joint 29, 42 lb uplift at joint 28, 46 lb uplift at joint 27, 30 lb uplift at joint 26 and 97 lb uplift at joint 25.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.


LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:44 ID:vF2b2QneXVJP9E5leL0ISzzyU_5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A02	Common	4	1	Job Reference (optional)	169015967

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:45 ID:m1UPesaseHFNi6b7QPEqXNzyU0y-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

 TOP CHORD
 Structural wood sheathing directly applied or 3-7-0 oc purlins.

 BOT CHORD
 Rigid ceiling directly applied or 10-0-0 oc bracing.

 REACTIONS
 (size)
 2=0-3-8, 6=0-3-8

	Max Horiz 2=146 (LC 14)
	Max Uplift 2=-145 (LC 14), 6=-145 (LC 15)
	Max Grav 2=1637 (LC 3), 6=1637 (LC 3)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/10, 2-4=-2709/339, 4-6=-2709/339,
	6-7=0/10
BOT CHORD	2-6=-281/2334
WEBS	3-9=-568/296, 5-8=-568/296, 4-9=-138/1074,
	4-8=-139/1074

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-4-6 to 3-2-12, Interior (1) 3-2-12 to 14-4-15, Exterior(2E) 14-4-15 to 21-7-2, Interior (1) 21-7-2 to 32-9-4, Exterior(2E) 32-9-4 to 36-4-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 chord live load nonconcurrent with any other live loads.
* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
8) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to

overhangs non-concurrent with other live loads.

This truss has been designed for a 10.0 psf bottom

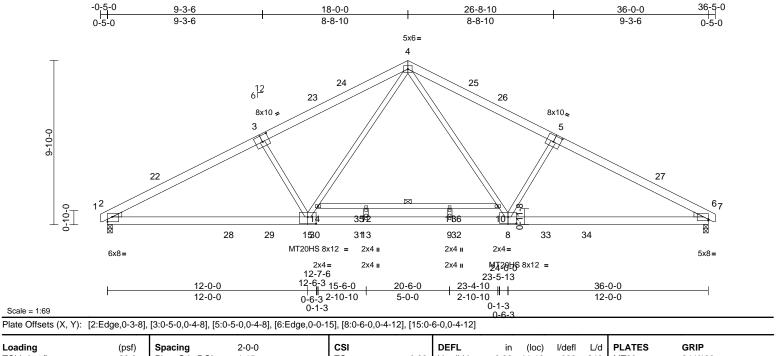
- UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces. 9) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

6)

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) ERGINEERING BY A MITEK Affiliate


818 Soundside Road

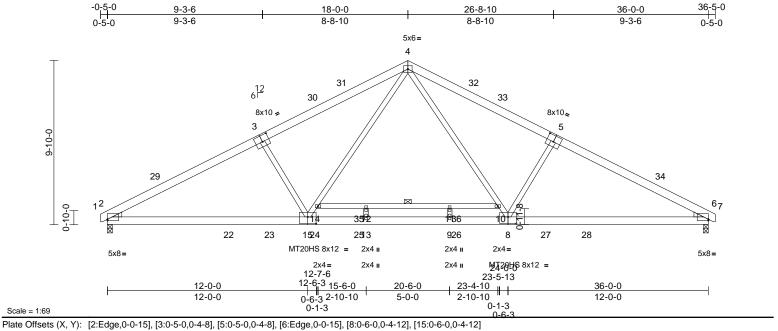
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A03	Common	1	1	Job Reference (optional)	169015968

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:46 ID:x5dHLZ07xxWiH_D17EEI8szyTqm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

LUMBER TOP CHORD BOT CHORD EST WEBS33TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15 Plate<	Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.76 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.78 0.07	(loc) 11-12 11-12 6	l/defl >999 >554 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 248 lb	GRIP 244/190 187/143 FT = 20%
BOT CHORD 2-13=-61/2988, 9-13=0/2232, 6-9=-23/2988, 12-14=-202/0, 11-12=-202/0, 10-11=-202/0 WEBS 3-15=-540/312, 4-10=0/1467, 8-10=0/1306, 14-15=0/1309, 4-14=0/1471, 5-8=-544/316, 9-11=-199/0, 12-13=-199/0 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wint: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 10-4-6 to 3-2-12; Interior (1) 3-2-12 to 14-4-15, Exterior(2R) 14-4-15 to 21-7-2, Interior (1) 3-2-12 to 14-4-15, Exterior(2R) 132-9-4 to 36-4-6 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 SEAL 036322	TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalance this desigr 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 14-4-15 21-7-2 to 5	2x6 SP 2400F 2.0E No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 2-5-6 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=146 (LC Max Grav 2=1967 (L (lb) - Maximum Com Tension 1-2=0/10, 2-4=-3444 6-7=0/10 2-13=-61/2988, 9-13 12-14=-202/0, 11-12 3-15=-540/312, 4-10 14-15=0/1309, 4-14 9-11=-199/0, 12-13= ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bf Enclosed; MWFRS (er Exterior(2E) -0-4-6 to 3, 5, Exterior(2E) 132	t* 8-4,15-4:2x4 SP No athing directly applied applied or 6-0-0 oc 3=0-3-8 2 14) .C 3), 6=1967 (LC 3) pression/Maximum 4/0, 4-6=-3455/0, a=0/2232, 6-9=-23/294 =-202/0, 10-11=-202/ 1=0/1467, 8-10=0/130 =0/1471, 5-8=-544/31 -199/0 been considered for (3-second gust) CDL=6.0psf; h=25ft; C ivelope) exterior zone -2-12, Interior (1) 3-2- to 21-7-2, Interior (1) -9-4 to 36-4-6 zone;C	5.2 4) 5) 1 or 6) 7) 8) 9) 9) 10 38, 0 6, 6, 6, 6, 2at. 12 5-C	Plate DOL=1 DOL=1.15); I Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 p overhangs no 200.0lb AC u from left end, All plates are This truss ha on the botton 3-06-00 tall b chord and an 0) This truss is of International R802.10.2 ar	.15); Pf=20.0 psf (I s=1.0; Rough Cat I snow loads have b s been designed for some loads have b s been designed for supported at two p MT20 plates unles s been designed for d nonconcurrent with n chord in all areas y 2-00-00 wide will y other members, designed in accord Residential Code s and referenced stand	een cor or great at roof le other lit the both or a 10. vith any for a liv where fit betw with BC ance w sections	DL=1.15 Plate Exp.; Ce=0.9 asidered for the er of min roof pad of 20.0 ps ve loads. om chord, 18 5-0-0 apart. wise indicated 0 ps bottom other live load e load of 20.0 a rectangle veen the botto: DL = 10.0psf it th the 2018 : R502.11.1 a); live sf on -0-0 d. ds. opsf			in	O. FESS	


GI China China October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A04	Common	3	1	Job Reference (optional)	169015969

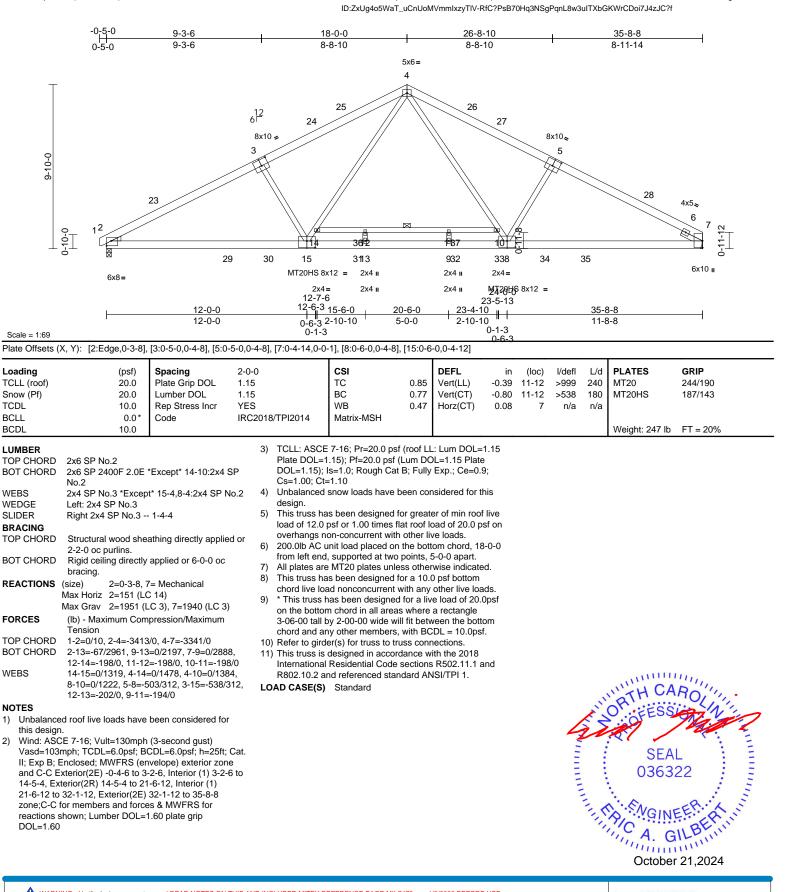
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:46 ID:5n1bX0I2OIdsE9NkoPgROwzyTt_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	18/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.76 0.46	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.78 0.07	(loc) 11-12 11-12 6	l/defl >999 >550 n/a	L/d 240 180 n/a	PLATES MT20HS MT20 Weight: 248 lb	GRIP 187/143 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	Max Horiz 2=-146 (L Max Grav 2=1967 (L (Ib) - Maximum Com	t* 8-4,15-4:2x4 SP t athing directly applie applied or 6-0-0 oc S=0-3-8 C 15) _C 3), 6=1967 (LC 3	SP No.2 4 5 ed or 6 7 8	Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n 200.0lb AC u from left end All plates are This truss ha chord live loa * This truss h	7-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Ca =1.10 snow loads have as been designed psf or 1.00 times on-concurrent wit unit load placed o , supported at two MT20 plates unit as been designed ad nonconcurrent mas been designed m chord in all area by 2-00-00 wide v	f (Lum DC at B; Fully been con for great flat roof li th other li n the botto o points, i less other for a 10. : with any d for a li as where	DL=1.15 Plate Exp.; Ce=0. hsidered for t er of min roo bad of 20.0 p ve loads. om chord, 18 5-0-0 apart. wise indicate 0 psf bottom other live load e load of 20. a rectangle	e 9; his f live sf on 3-0-0 ed. ads. 0psf					
TOP CHORD BOT CHORD WEBS	Tension 1-2=0/10, 2-4=-3455 6-7=0/10 2-13=-159/2988, 9-1 12-14=-202/0, 11-12 3-15=-544/316, 4-10 14-15=0/1307, 4-14 12-13=-199/0, 9-11=	3=0/2231, 6-9=-23/2 2=-202/0, 10-11=-20 0=0/1469, 8-10=0/13 =0/1469, 5-8=-544/3	2988, 2/0 L 07, L	 This truss is International 	ny other members designed in acco Residential Code nd referenced sta Standard	rdance w	ith the 2018 R502.11.1 a					TH CA	RO
this design 2) Wind: ASC Vasd=103 II; Exp B; I and C-C E to 14-4-15 21-7-2 to 3 for member	ed roof live loads have	been considered fo (3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zor -2-12, Interior (1) 3-7 to 21-7-2, Interior (1) -9-4 to 36-4-6 zone; RS for reactions sho	Cat. ne 2-12) C-C								N. A.	SEA 0363 SCA. G October	EP A I

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A05	Common	2	1	Job Reference (optional)	169015970

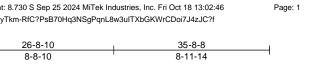
1)

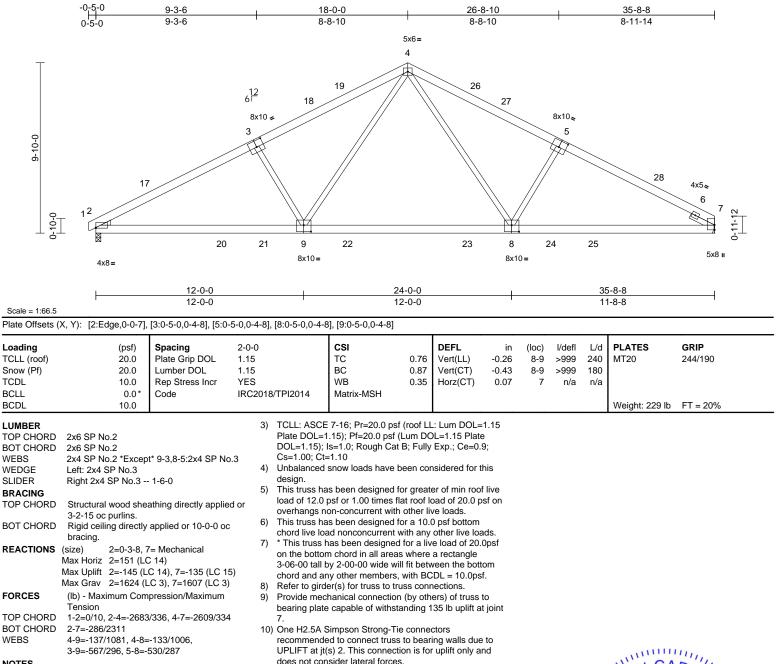

2)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:46

Page: 1

818 Soundside Road


Edenton, NC 27932



Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A06	Common	9	1	Job Reference (optional)	169015971

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:46 ID:hzqSxsf_WwvDL?aqct6oirzyTkm-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

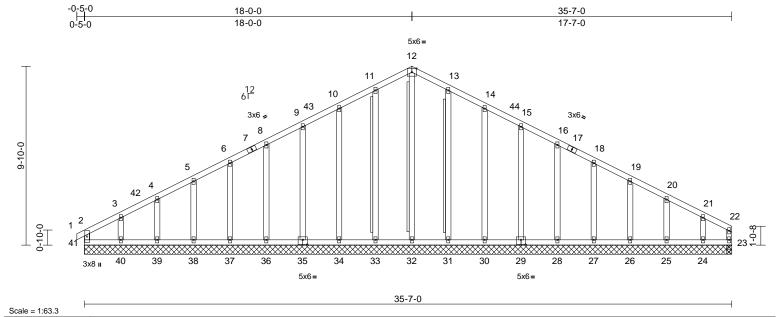
NOTES

Unbalanced roof live loads have been considered for 1) this design

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II: Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-4-6 to 3-2-6, Interior (1) 3-2-6 to 14-5-4, Exterior(2R) 14-5-4 to 21-6-12, Interior (1) 21-6-12 to 32-1-12, Exterior(2E) 32-1-12 to 35-8-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A07	Common Supported Gable	1	1	Job Reference (optional)	169015972

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:46 ID:ISAbvuJkJjelkMZSOkGIQ2zyTwq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [29:0-3-0,0-3-0], [35:0-3-0,0-3-0]

	(, 1): [20:0 0 0,0 0 0	,], [66:6 6 6,6 6 6]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC 0.13 BC 0.07 WB 0.21 Matrix-MR	DEFL in Vert(LL) 0.00 Vert(CT) 0.00 Horz(CT) 0.01	40-41	1 >999 1 >999	L/d 240 180 n/a	PLATES MT20 Weight: 242 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS	2x4 SP No.3 *Excep No.2(flat) Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. T-Brace: Fasten (2X) T and	r applied or 10-0-0 oc 2x4 SP No.2 - 12-32, 11-33, 13-31 I braces to narrow edg	or FORCES TOP CHORD ie of	27=161 (LC 22), 29=175 (LC 22), 31=244 (LC 22), 33=244 (LC 21), 35=175 (LC 21), 37=161 (LC 21), 39=160 (LC 1), 41=144 (LC 26) (lb) - Maximum Compressi Tension	26=159 (LC 35), 28=160 (LC 35), 30=228 (LC 22), 32=202 (LC 27), 34=228 (LC 21), 36=160 (LC 34), 38=160 (LC 34), 40=162 (LC 24), on/Maximum =-108/92, 6-8=-59/159,	V. II; ar 3. (2 2. 7. 0 3.) Tr 0 5. 0 0 4.) Tr	asd=103n ; Exp B; E nd C-C Cc -1-12 to 14 2N) 21-6-1 one;C-C fc octions sl OL=1.60 OL=1.60 russ desig nly. For s ee Standa r consult c CLL: ASC	nph; T(nclose prner(3 4-5-4, (2 to 31 pr mem hown; I gned fo tuds ex rd Indu qualified E 7-16	d; MWFRS (enve E) -0-5-0 to 3-1-1 Corner(3R) 14-5- I-10-8, Corner(3R) hers and forces Lumber DOL=1.6 r wind loads in th xposed to wind (n d building design ; Pr=20.0 psf (roo	DL=6.0psf; h=25ft; Cat. elope) exterior zone 12, Exterior(2N) 4 to 21-6-12, Exterior E) 31-10-8 to 35-5-4 & MWFRS for
$\begin{array}{r} \mbox{Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c.,with 3in minimum end distance. Brace must cover 90% of web length. \\ \mbox{REACTIONS} (size) 23=35-7-0, 24=35-7-0, 25=35-7-0, 26=35-7-0, 30=35-7-0, 31=35-7-0, 32=35-7-0, 33=35-7-0, 33=35-7-0, 33=35-7-0, 33=35-7-0, 33=35-7-0, 38=35-7-0, 39=35-7-0, 41=35-7-0, 38=35-7-0, 39=35-7-0, 41=35-7-0 \\ \mbox{Max Horiz} 41=155 (LC 14) \\ \mbox{Max Uplift} 23=-4 (LC 18), 24=-111 (LC 15), 25=-32 (LC 15), 26=-47 (LC 15), 27=-43 (LC 15), 229=-43 (LC 15), 31=-36 (LC 15), 31=-36 (LC 15), 33=-39 (LC 14), 34=-47 (LC 14), 35=-43 (LC 14), 36=-44 (LC 14), 35=-43 (LC 14), 38=-48 (LC 14), 39=-26 (LC 14), 38=-48 (LC 14), 39=-26 (LC 14), 40=-119 (LC 14), 41=-43 (LC 15) \end{array}$			-0, -0, -0, -0, -0, -0, -0, -0, -0, -0,	11-12=-131/332, 12-13=-1 13-14=-114/292, 14-15=-9 15-16=-77/199, 16-18=-59 18-19=-41/109, 19-20=-45 21-22=-103/34, 2-41=-111	51/332, 5/244, (154, (64, 20-21=-63/40, (46, 22-23=-64/9) (8, 38-39=-21/88, (8, 31-32=-21/88, (8, 27-28=-21/88, (8, 27-28=-21/88, (8, 24-25=-21/88, (4, 65, (76, 8-36=-120/77, (7, 4-39=-120/77, (4, 65, (5/76, (1/78, 3)/97,	D C 5) U de 6) T lo	OL=1.15) s=1.00; C nbalanced esign. his truss h ad of 12.0 verhangs	; Is=1.(t=1.10 d snow has bee) psf or non-co	D; Rough Cat B; F loads have been en designed for g 1.00 times flat ro incurrent with oth	Fully Exp.; Ce=0.9; n considered for this reater of min roof live pof load of 20.0 psf on
			this design	n.					October	r 21 2024

October 21,2024

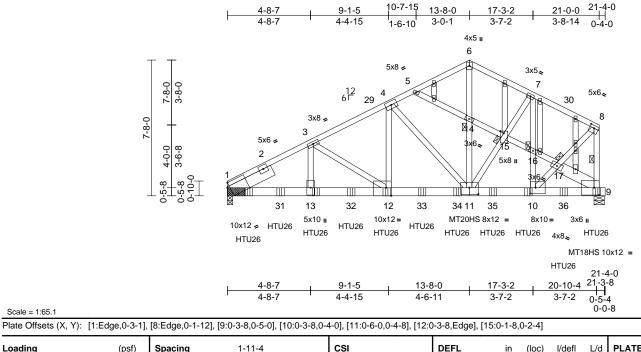
Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	A07	Common Supported Gable	1	1	Job Reference (optional)	169015972

- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Truss to be fully sheathed from one face or securely 8) braced against lateral movement (i.e. diagonal web). Gable studs spaced at 2-0-0 oc. 9)
- 10) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads. 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
- chord and any other members. 12) Bearings are assumed to be: , Joint 23 User Defined .
- 13) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 41, 33, 34, 35, 36, 37, 38, 39, 40, 31, 30, 29, 28, 27, 26, 25, 24, and 23. This connection is for uplift only and does not consider lateral forces.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:46 ID:ISAbvuJkJjelkMZSOkGIQ2zyTwq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	B01	Common Girder	1	2	Job Reference (optional)	169015973

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:qdHuCSNJkkLV_VCNLN62azyTNu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:65.1
---------	--------

Continued on page 2

WARNING

Loading TCLL (roof) Snow (Pf)	(psf) 20.0 20.0	Spacing Plate Grip DOL Lumber DOL	1-11-4 1.15 1.15		CSI TC BC	0.95 0.64	DEFL Vert(LL) Vert(CT)	in -0.15 -0.28	12-13	l/defl >999 >905	L/d 240 180	PLATES MT20 MT18HS	GRIP 244/190 244/190
TCDL	10.0	Rep Stress Incr	NO		WB	0.95	Horz(CT)	0.06	9	n/a	n/a	MT20HS	187/143
BCLL BCDL	0.0* 10.0	Code	IRC2018/T	PI2014	Matrix-MSH							Weight: 397 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS JOINTS	2x4 SP 2400F 2.0E No.2 2x6 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2, 17-9:2x8 SP 2 2x4 SP No.3 Left 2x8 SP 2400F 2 Structural wood she 3-9-14 oc purlins, e Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 14, 15, 16, 17	t* 11-6,8-10,4-12:2x 400F 2.0E 2.0E 2-8-14 athing directly applie xcept end verticals.	4 SP d or NOTE 1) 2 ((T o B si	S ply truss to .131"x3") op chords 2. 2. 2. 2.		8-17=-2 7-16=-1 7-15=-3 1-12=-47 3-13=-24 4-15=-1 16-17=- gether wi ws: 2x4	38/6544, 709/469, 72/1402, 1/5389, 2/2881, 235/145, 1452/164, th 10d th 10d th 10d x6 - 2 rows	-0	only see or c 7) TC Pla DO Cs 8) Unl des 9) All 10) All 11) Gal 12) Thi chc 13) * Tl	y. For si Standa consult q LL: ASC te DOL= L=1.15): =1.00; C polates an plates an plates an plates as s truss h ord live lo	tuds ex ard Indu qualified E 7-16 =1.15); ; Is=1.(t=1.10 d snow re MT2 re 2x4 s space has bee bad not has be	r wind loads in th kposed to wind (n sistry Gable End I d building designed ; Pr=20.0 psf (Lun 0; Rough Cat B; F loads have been 20 plates unless of MT20 unless oth md at 2-0-0 oc. an designed for a nconcurrent with	e plane of the truss ormal to the face), Details as applicable, er as per ANSI/TPI 1. of LL: Lum DOL=1.15 h DOL=1.15 Plate Fully Exp.; Ce=0.9; h considered for this htherwise indicated. erwise indicated. 10.0 psf bottom any other live loads. a live load of 20.0psf
	(size) 1=(0-3-8 - 0-3-12), 9 Max Horiz 1=170 (LC Max Uplift 1=-781 (L Max Grav 1=9014 (L	C 12) C 12))' E m - 5) 2) A	xcept merr ember 4-1 1 row at 0- Il loads are	cted as follows: 2x- ber 7-10 2x4 - 1 ro 2 2x4 - 1 row at 0- 3-0 oc, 2x8 - 2 row considered equal red as front (F) or b	ow at 0-7 7-0 oc, r /s stagge ly applie	7-0 oc, Except nember 3-13 ered at 0-9-0 o d to all plies,	2x4 oc.	3-0	6-00 tall	by 2-0		between the bottom
FORCES	(lb) - Maximum Com Tension	pression/Maximum	C	ASE(S) se	ction. Ply to ply co distribute only load	nnection	s have been					"TH CA	ROUL
TOP CHORD	1-3=-13516/1164, 3- 4-5=-6951/550, 5-6= 6-7=-6089/480, 7-8= 8-9=-7115/287 1-13=-1145/11944, 1 10-12=-829/9509, 9-	6194/493, 5198/211, 12-13=-1145/11944,	3) 2. 3) 2. a n. is 4) U	nless other (6 SP 2400 tached to ails spaced assumed	wise indicated. DF 2.0E bearing bl each face with 3 r 1 3" o.c. 12 Total fa to be SP 2400F 2. roof live loads hav	ock 12" I ows of 1 asteners 0E.	ong at jt. 1 0d (0.131"x3" per block. Be	aring		0.000	A	OR SEA	• -
			5) V	ind: ASCE	7-16; Vult=130mp ph; TCDL=6.0psf;			Cat.		1111			

II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left exposed; Lumber DOL=1.60 plate grip DOL=1.60

A. GIL October 21,2024

G

818 Soundside Road

Edenton, NC 27932

C

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev, 1/2/2023 BEFORE USE

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	B01	Common Girder	1	2	Job Reference (optional)	169015973
Carter Components (Sanford, N	r Components (Sanford, NC), Sanford, NC - 27332, Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47				Page: 2	

ID:qdHuCSNJkkLV_VCNLN62azyTNu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 14) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 1. This connection is for uplift only and does not consider lateral forces
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 16) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-2-8 from the left end to 17-0-0 to connect truss(es) to back face of bottom chord.
- 17) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 1-10-4 oc max. starting at 19-0-0 from the left end to 20-10-4 to connect truss(es) to back face of bottom chord.
- 18) Fill all nail holes where hanger is in contact with lumber.
- 19) LGT2 Hurricane ties must have two studs in line below the truss.

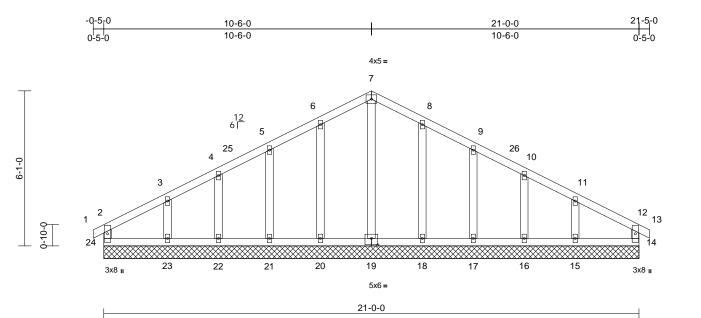
LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-6=-58, 6-8=-58, 9-25=-19

Concentrated Loads (lb)


- Vert: 9=-1628 (B), 10=-1409 (B), 12=-1409 (B), 13=-1409 (B), 27=-1409 (B), 31=-1409 (B), 32=-1409 (B), 33=-1409 (B), 34=-1409 (B), 35=-1409 (B),
- 36=-1622 (B)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	C01	Common Supported Gable	1	1	Job Reference (optional)	169015974

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:soQIgSV4E6qUu99PoH5mGuzyTQJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

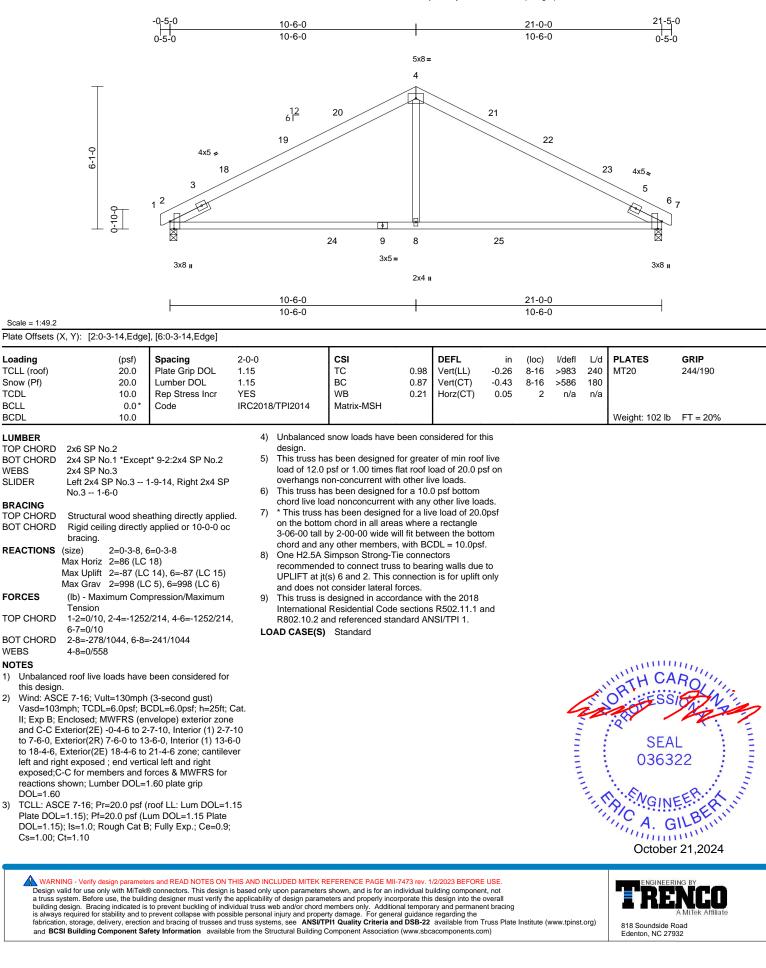
Scale = 1:45.2

Plate Offsets (X, Y): [19:0-3-0,0-3-0]

Loading (pst) Spacing 1-11-4 (Pata Gip DDL CSI (CLL (rol) DEFL (CLL (rol) (n) (n) <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th></th<>								-						
TCLL (root) 20.0 Plate Grip DOL 1.15 TC 0.07 Vert(CT) n/a - n/a 999 MT20 24/190 Snow (P) 20.0 Rep Stress Incr YES WB 0.04 Vert(CT) n/a - n/a 999 MT20 24/4/190 BCLL 0.0* Code IRC2018/TPI2014 Matrix-MR WeB 0.08 Horz(CT) 0.0 14 n/a n/a n/a 999 BCL 0.0* Code IRC2018/TPI2014 Matrix-MR WeB 0.08 Horz(CT) 0.0 14 n/a n/a n/a n/a 999 MT20 24/4/190 LUMBER 1.0.0 Code IRC2018/TPI2014 Matrix-MR Matrix-MR WeBS 2.9 1.15 Intervention 1.15 1.15 Intervention 1.15	Loading	(psf)	Spacing	1-11-4		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCDL 10.0 BCLL Rep Stress Incr YES Code WB 0.09 Matrix-MR Horz(CT) 0.00 14 n/a Weight: 113 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 WEBS 7.19=132/20, 6-20=198/72, 5-21=184/80, 10-16=-132/72, 5-21=-184/80, 10-16=-12/72, 5-21=-184/80, 10-16=-12/72, 5-21=-20, 20=-2/72, 5-21=-20=-0, 2=-2/72-00, 2=-21-00, 2=-	TCLL (roof)		Plate Grip DOL	1.15		TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL BCLL 10.0 Cde Rep Stress Inor Code YES Code WB Matrix-MR 0.09 Matrix-MR Horz(CT) 0.00 14 n/a Weight: 113 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 WEBS 7.19=-132/20, 6-20=-198/72, 5-21=-184/80, 0.17=-134/124 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 50 C CHORD 2/4 SP No.2 WEBS 7.19=-132/20, 6-20=-198/72, 5-21=-184/80, 0.17=-148/80, 10-16=-126/53, 23=-134/124 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 50-00 cp uplic sport BTCOLMORD 2x4 SP No.3 TT DP CHORD 3/4 SP No.2 WEBS 7.19=-132/20, 6-20=-198/72, 5-21=-184/80, 0.115=-134/124 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 50-00 call by 20-00-00 wide with lit between the bottom chord and any other members. BOT CHORD Structural wood sheating directly applied or 10-00 co bracing. 11-15=-134/124 10 11-15=-134/124 13 10 10 11-15=-134/124 13 10 11-15=-134/124 13 10 11-15=-136/124 11-15=-16 14 14 14 14 14 14 14 14	Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999		
BCLL BCD 0.0* BCD Code IRC2018/TPI2014 Matrix-MR Weight: 113 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 Weight: 113 lb FT = 20% Weight: 113 lb FT = 20% DT OF CHORD 2x4 SP No.3 WEBS 7.19=-132/20, 6-20=-198/72, 5-21=-184/80, 10-16=-126/65, 123=-134/124, 8-18=-198/72, 5-21=-184/80, 10-16=-126/65, 11-15=-134/124 10.1 Notes 11.15=-134/124 Notes 11.15=-134/124 10.1 Notes 11.15=-134/124 10.1 Notes 11.15=-134/124 Notes 11.15=-134/124 10.1 Notes 11.15=-134/124 Notes 11.15=-134/124 Notes 10.1 Notes 11.15=-134/124 Notes 12.0 Notes 12.0 Notes 12.0 Notes 12.0 Notes 12.0 Notes 12.0	. ,	10.0	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	14	n/a	n/a		
BCDL 10.0 Weight 113 lb FT = 20% LUMBER TOP CHORD 2x4 SP No.2 WEBS 7-19=-132/20, 6-20=-198/72, 5-21=-184/80, 4-22=-126/65, 5-23=-134/124, 8-18=-198/72, 9-17=-184/80, 10-16=-126/65, 11-15=-134/124 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 where line bottom chord and any other members. BOT CHORD STRUCtural wood sheathing directly applied or 6-00 oc purins, except end verticals. NOTES 10.0 NOTES 10.0 10.0 10.0 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 where line bottom chord and any other members. 10.0 9.0 0.00	BCLL	0.0*	Code	IRC2018/TPI201	4	Matrix-MR		. ,						
LUMBER TOP CHORD 2x4 SP No.2 TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING 11-15=-134/124 BOT CHORD Structural wood sheathing directly applied or 6-0-0 co purins, except end verticals. BOT CHORD Structural wood sheathing directly applied or 6-0-0 co purins, except end verticals. BOT CHORD (size) 14=21-0-0, 15=21-0-0, 16=21-0-0, 23=21-0-0, 24=21-0-0, 23=21-0-0, 24=21-0-0. 14=21-0-0, 16=21-0-0, 23=21-0-0, 24=21-0-0. Max Uplift 14=21-0-0, 15=21-0-0, 23=21-0-0, 24=21-0-0. 15=chocsed; MWFRS (ervelope) exterior zone and C-C Corner(38) 7-6-0 to 12-6-0. Exterior(2N) 13-6-0. 14=61 bolton for ada trained in the joint 15. Max Uplift 14=12 (L C 14), 15=-74 (L C 15), 16=-33 (L C 15), 17=-46 (L C 15), 16=-33 (L C 15), 17=-46 (L C 15), 16=-33 (L C 15), 17=-46 (L C 15), 16=-62 (L C 22), 17=-223 (L C 14), 22=-87 (L C 21), 23=-138 (L C 34), 16=-162 (L C 22), 19=-146 (L C 27), 20=237 (L C 21), 23=-183 (L C 34), 16=-162 (L C 22), 19=-146 (L C 27), 20=237 (L C 21), 23=-183 (L C 34), 16=-162 (L C 22), 19=-146 (L C 27), 20=237 (L C 21), 23=-183 (L C 34), 16=-162 (L C 22), 19=-146 (L C 27), 20=237 (L C 21), 23=-183 (L C 34), 16=-162 (L C 22), 19=-146 (L C 27), 20=237 (L C 21), 23=-183 (L C 34), 16=-162 (L C 22), 19=-146 (L C 27), 20=237 (L C 21), 23=-183 (L C 34), 16=-162 (L C 22), 19=-146 (L C 27), 20=237 (L C 21), 23=-1					·								Weight: 113 lb	FT = 20%
16-17=-13/56, 15-16=-13/56, 14-15=-13/56	BCDL LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD	10.0 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=21-0-(20=21-0-(23=-81/(2)-(23=-21-0-(23=-21-0-(athing directly applied cept end verticals. applied or 10-0 oc 0, 15=21-0-0, 16=21-0 0, 21=21-0-0, 22=21-0 0, 21=21-0-0, 22=21-0 0, 24=21-0-0 C 15) C 14), 15=-74 (LC 15) C 15), 17=-46 (LC 15) C 15), 20=-42 (LC 14) C 14), 22=-31 (LC 14) C 14), 22=-31 (LC 14) C 14), 22=-31 (LC 15) .C 2), 17=223 (LC 2) .C 2), 19=146 (LC 2) .C 21), 21=223 (LC 2) .C 21), 21=223 (LC 2) .C 21), 21=223 (LC 2) .C 21), 23=183 (LC 34) .C 1) pression/Maximum /15, 2-3=-81/57, /129, 5-6=-69/175, =-52/90, 11-12=-68/4 109/84 =-13/56, 21-22=-13/5	WEBS 1) Unbala this de 2) Wind: Vasd= I; Exp -0, and C- -0, to 7-6- -0, to 7-6- -0, to 7-6- 0, and C- -0, to 7-6- 0, and C- -0, to 7-6- 0, and C- -0, to 7-6- 1, see St 0, only. f 0, see St 0, or Com- 1, See St 0, Se	7.4 9. 1. SCE 7. 03mpld 3; Enc 0. Corm 0, Corr 1. 00L= 00L= 00L=1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	-19=-132/20, 6-20 -22=-126/65, 3-23 -17=-184/80, 10-1 1-15=-134/124 oof live loads have 7-16; Vult=130mpl h; TCDL=6.0psf; E losed; MWFRS (e ner(3E) -0-5-0 to 2 ner(3E) 18-5-0 to 1 forces & MWFRS =1.60 plate grip DC ed for wind loads i ds exposed to wind Industry Gable Er alified building des 7-16; Pr=20.0 psf (15); Pf=20.0 psf (15) =1.0; Rough Cat 1.10 snow loads have b a been designed for sis continuous botto ly sheathed from st lateral movemer spaced at 2-0-0 oc 5 been designed for	=-134/ ² 6=-126 e been h (3-sea 3CDL=6 movelope -6-0, E2 3-6-0, E 21-5-0 S for rea 21-5-0 S for rea 20L=1.6 S for lea S for	124, 8-18=-19 765, considered for song gust) 5.0psf; h=25ft terior(2N) 2-6 xterior(2N) 12; zone;C-C for terior(2N) 12; zone;C-C for terior(2N) 12; zone;C-C for terior(2N) 12; zone;C-C for terior(2N) 12; zone;C-C for terior(2N) 2-6 xterior(2N) 2	98/72, or ; Cat. ne 5-0 3-6-0 n; ss), ble, PI 1. 1.15 2; His sf on	on 3-0 chc 13) Pro 14, upli 23, upli 14) Thi Inte R80 LOAD	the botto 6-00 tall ord and a vide me aring plata 30 lb up ff at join 42 lb up ff at join 42 lb up ff at join 5 truss is ernationa 02.10.2 a CASE(S)	m cho by 2-0 ny oth chanicc e cappa lift at jc 1; 21, 3 ilift at jc 1; 3 ilift	sen designed for rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi oint 24, 42 lb uplif 1 lb uplift at joint oint 18, 46 lb uplif ned in accordance dential Code sect erenced standard ndard	a live load of 20.0psf here a rectangle between the bottom v others) of truss to ing 18 lb uplift at joint ft at joint 20, 46 lb 22, 81 lb uplift at joint ft at joint 17, 33 lb bint 15. se with the 2018 tions R502.11.1 and d ANSI/TPI 1.

October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	C02	Common	1	1	Job Reference (optional)	169015975

1)

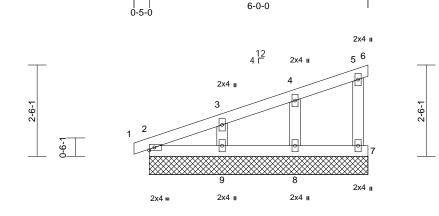
2)

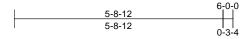
3)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:PzU3IBWmSwPZz4aYjwcSfbzyTP?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	D01	Monopitch Supported Gable	1	1	Job Reference (optional)	169015976

6-0-0


-0-5-0


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:RPFco9iHZuPKmp1rZQ1BZjzw85G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:31.6

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.05 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=6-0-0, 9=6-0-0, Max Horiz 2=78 (LC Max Uplift 6=-16 (LC 8=-28 (LC Max Grav 2=124 (LI (LC 21), 8	cept end verticals. • applied or 10-0-0 or 6=6-0-0, 7=6-0-0, 8= 10=6-0-0 10), 10=78 (LC 10) 5 21), 7=-26 (LC 14), 5 10), 9=-48 (LC 14)	Plate DOL DOL=1.15 Cs=1.00; 4) Unbalance design. 5) This truss load of 12 overhangs 6) Gable req 7) Gable stu 8) This truss chord live 9) * This truss chord live 9) * This truss chord live 3-06-00 ta 3-06-00 ta chord and	CE 7-16; Pr=20.0 p =1.15); Pf=20.0 ps); Is=1.0; Rough C Ct=1.10 d snow loads have has been designed 0 psf or 1.00 times non-concurrent wi uires continuous bo Is spaced at 2-0-0 has been designed load nonconcurren s has been designed tom chord in all are II by 2-00-00 wide ' any other member echanical connecti	If (Lum DC at B; Fully be been cool of or great flat roof I ith other li ottom choo oc. d for a 10. t with any ed for a li isas where will fit betw s.	DL=1.15 Plate Exp.; Ce=0.1 nsidered for t er of min rool oad of 20.0 p ve loads. d bearing. 0 psf bottom other live loa re load of 20.1 a rectangle veen the bott	e); live sf on ds. Dpsf				wegnit. 25 ib	PT = 2076
FORCES	(lb) - Maximum Com Tension	pression/Maximum		ate capable of with lift at joint 7, 28 lb nt 9.								
TOP CHORD BOT CHORD	4-5=-35/20, 5-6=-13	/5, 5-7=-103/103	11) This truss Internation	is designed in acco al Residential Cod and referenced sta	le section:	s R502.11.1 a	ind				mm	uun.
WEBS	4-8=-170/166, 3-9=-	179/186	LOAD CASE("TH CA	Bolly
Vasd=103 II; Exp B; and C-C (to 6-0-0 z vertical le MWFRS f grip DOL= 2) Truss des only. For	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) -0-5-0 to 2- tone; cantilever left and ft exposed; C-C for mer for reactions shown; Lu =1.60 signed for wind loads in studs exposed to wind dard Industry Gable En	CDL=6.0psf; h=25ft; velope) exterior zon 7-0, Exterior(2N) 2-7 iright exposed; end mbers and forces & imber DOL=1.60 pla the plane of the trus (normal to the face) d Details as applicat	ne 7-0 te SS						Contraction of the second seco		SEA 0363	• –

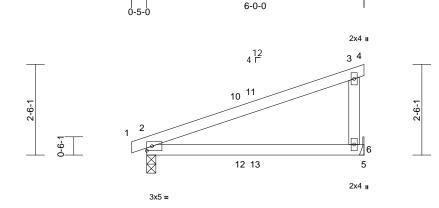
- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss 2)
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G 11111111 October 21,2024

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	D02	Monopitch	9	1	Job Reference (optional)	169015977

6-0-0


0-5-0


Carter Components (Sanford, NC), Sanford, NC - 27332,

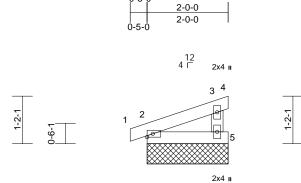
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:krHzYocKvxshGLGFSgtm6Xzw845-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.8

		· · · · · · · · · · · · · · · · · · ·										
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.75	Vert(LL)	0.21	6-9	>335	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.63	Vert(CT)	0.17	6-9	>414	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	-0.02	2	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0				-				_		Weight: 22 lb	FT = 20%
LUMBER				iss has been designe			osf					
TOP CHORD				ottom chord in all area								
BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.3			tall by 2-00-00 wide w d any other members		ween the bottor	n					
BRACING	2X4 SP N0.5			girder(s) for truss to t		nections.						
TOP CHORD	Structural wood she	athing directly appli		nechanical connectio								
	6-0-0 oc purlins, ex		bearing	plate capable of withs	tanding 1	103 lb uplift at je	oint					
BOT CHORD			c 6.									
	bracing.			5A Simpson Strong-T ended to connect trus			0					
REACTIONS	()	6= Mechanical		at it(s) 2. This connec		0						
	Max Horiz 2=80 (LC		does not	consider lateral force								
	Max Uplift 2=-87 (LC Max Grav 2=350 (LC	<i>,,</i>	(TO) This trus	s is designed in acco								
FORCES	(lb) - Maximum Con			onal Residential Code			d					
FORCES	Tension	ipression/iviaximum	1.00EIII0	.2 and referenced sta (S) Standard	indard Ar	NSI/TPT1.						
TOP CHORD	1-2=0/12, 2-3=-87/7	9, 3-4=-8/0, 3-6=-25	50/213	(S) Stanuaru								
BOT CHORD	2-6=-163/150, 5-6=0	0/0										
NOTES												
	CE 7-16; Vult=130mph											
	Smph; TCDL=6.0psf; B											
	Enclosed; MWFRS (er Exterior(2E) -0-5-0 to 2											
	erior(2E) 3-0-0 to 6-0-0											11111
,	exposed ; end vertical	,									TH CA	Roilin
	exposed;C-C for mem									N	A SECO	ich i'r
	or reactions shown; Lu	umber DOL=1.60 pla	ate							20	i	Nin
grip DOL=	=1.60 CE 7-16; Pr=20.0 psf (1 15								:02	N. I.
	_=1.15); Pf=20.0 psf (L								1	1		
	5); Is=1.0; Rough Cat E								=		SEA	AL : E
Cs=1.00;	Ct=1.10								1		0363	22 : =
,	ed snow loads have be	een considered for th	his						-			- : :
design.	has been designed fo	r grootor of min	livo						CONTRACTOR OF CONTRACTOR	-	·	2 1 E
	has been designed fo .0 psf or 1.00 times fla									3.0	NOIN	FERMAN
	s non-concurrent with									14	2/0 ····	H. Friday
5) This truss	has been designed fo	r a 10.0 psf bottom									Octoba	HLP.
chord live	load nonconcurrent w	ith any other live loa	ds.								· · · · · · · · ·	111111
											Ootobo	r 21 2024

October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	D03	Monopitch Supported Gable	1	1	Job Reference (optional)	169015978

-0-5-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:Z4Ix46WIUgAB8iwTnDC768zw82x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

2x4 =

Scale = 1:28.4

-		1										
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		0.04	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		0.03	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MP								
BCDL	10.0										Weight: 8 lb	FT = 20%
	Max Horiz 2=30 (LC Max Uplift 2=-17 (LC 5=-39 (LC Max Grav 2=112 (LC	cept end verticals. applied or 10-0-0 oc 4=2-0-0, 5=2-0-0, 6=2 10), 6=30 (LC 10) 2 10), 4=-42 (LC 21), 2 14), 6=-17 (LC 10)	 load of 12.0 overhangs r Gable requi Gable studs This truss h chord live lo * This truss so on the botto 3-06-00 tall chord and a Provide mec bearing plat 2, 42 lb uplii uplift at joint 		a 10.0 ther live a 10.0 th any or a live where fit betw by oth iding 1 t at joi	bad of 20.0 ps re loads. d bearing. D psf bottom other live loa e load of 20.0 a rectangle veen the botto ers) of truss t 7 lb uplift at jint 5 and 17 lb	sfon ds.)psf om oint					
FORCES	(lb) - Maximum Com Tension	,. (<i>)</i>	Internationa	designed in accorda Residential Code se	ections	R502.11.1 a	nd					
TOP CHORD	1-2=0/10, 2-3=-37/2 3-5=-131/144	1, 3-4=-20/14,	R802.10.2 a LOAD CASE(S)	nd referenced standa Standard	ard AN	ISI/TPI 1.						
BOT CHORD	2-5=-44/18											
NOTES												
 Wind: ASC Vasd=103/ II; Exp B; E and C-C C exposed; and forces DOL=1.60 Truss desi only. For s see Standa or consult TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; C 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; Bi Enclosed; MWFRS (er orner(3E) zone; cantil end vertical left expos & MWFRS for reactio plate grip DOL=1.60 gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desig CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L); Is=1.0; Rough Cat E Ct=1.10	CDL=6.0psf; h=25ft; ivelope) exterior zone ever left and right ed;C-C for members ins shown; Lumber the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1 um DOL=1.15 Plate b; Fully Exp.; Ce=0.9;	s le, 1. .15						A STITUTE		SEA 0363	• -

4) Unbalanced snow loads have been considered for this design.

GI The Given

October 21,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	VL6	Valley	1	1	Job Reference (optional)	169015979

2-1-0

2-1-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:LhLH_y89wqDstMwtGhh4zBzyU9G-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-1-0

4-0-0

Page: 1

Scale = 1:31	Scale	= '	1:31
--------------	-------	-----	------

Scale = 1:31													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.04 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASG Vasd=103 II; Exp B; and C-C C exposed ; reactions DOL=1.60 2) Truss des only. For see Stand or consult 3) TCLL: AS Plate DOL	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 cc purlins, ex Rigid ceiling directly bracing. (size) 1=6-1-0, § Max Horiz 1=104 (LC Max Uplift 5=-16 (LC 7=-38 (LC (LC 20), 7 (lb) - Maximum Com Tension 1-2=-226/75, 2-3=-1 4-5=-69/70 1-7=-103/80, 6-7=0/ 3-6=-206/214, 2-7=- CE 7-16; Vult=130mph Bmph; TCDL=60psf; B Enclosed; MWFRS (er Corner(3E) zone; cantil C-C for members and shown; Lumber DOL=') igned for wind loads in studs exposed to wind lard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (L =1.15); Pf=20.0 psf (L	cept end verticals. applied or 10-0-0 o 5=6-1-0, 6=6-1-0, 7= C 14) C 14), 6=-48 (LC 14) C 14) 20), 5=85 (LC 20), 17= 256 (LC 20) 17=256 (LC 20) 17=256 (LC 20) 184/49, 3-4=-48/23, 0, 5-6=0/0 184/166 1 (3-second gust) CDL=6.0psf; h=25ft; 1.60 plate grip 1.60 plate grip 1.60 plate grip 1.60 plate grip 1.60 plate grip 1.60 plate sa applical gner as per ANSI/TF roof LL: Lum DOL= 1.50 Plate	<pre>design. 5) Gable re 6) Gable str 7) This trus chord livv ed or 6 =6-1-0 6=243 ; Cat. ne ss), ble, Pl 1. 1.15 3</pre>	ced snow loads hav quires continuous b Jds spaced at 2-0-6 s has been designe e load nonconcurre iss has been design totom chord in all ar fall by 2-00-00 wide d any other membe mechanical connect Jolate capable of with uplift at joint 6 and 3 s is designed in acc onal Residential Co 2 and referenced s (S) Standard	bottom choi o c. ed for a 10. nt with any need for a live reas where e will fit betw ers. tion (by oth hstanding - 88 lb uplift a cordance w de sections	rd bearing. 0 psf bottom other live loa re load of 20.0 a rectangle ween the botto lers) of truss t 16 lb uplift at j at joint 7. rith the 2018 s R502.11.1 a	ids. Opsf om oont				SEA 0363	ROUN ROUN AL 322	and an and a second s
											1	·	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	VL7	Valley	1	1	Job Reference (optional)	169015980

3-6-4

3-6-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-5-10

1-9-6

(psf)

20.0

20.0

10.0

10.0

0.0

Code

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:47 ID:DnG3jXeMlcnMjr?e3AbZAezyTkn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-5-9

2-11-5

GRIP

244/190

FT = 20%

7-0-8

0-6-15

4x5 =2 9 10 12 6 Г 3 4 2x4 🍃 2x4 II 2x4 👟 7-0-8 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES in (loc) Plate Grip DOL 1.15 TC 0.19 Vert(LL) n/a n/a 999 MT20 BC Lumber DOL 1 15 0.22 Vert(TL) n/a n/a 999 Rep Stress Incr YES WB 0.06 Horiz(TL) 0.00 4 n/a n/a Matrix-MP IRC2018/TPI2014 Weight: 22 lb TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. plied or Gable requires continuous bottom chord bearing. 6) Gable studs spaced at 4-0-0 oc. 7) oc 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9) on the bottom chord in all areas where a rectangle 15), 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 21), 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint ım 1, 16 lb uplift at joint 3 and 35 lb uplift at joint 4. 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Scale = 1:24.1

Loading

TCLL (roof)

Snow (Pf)

TCDL

BCLL

BCDL

LUMBER TOP CHORD BOT CHORD OTHERS		0.2
BRACING		
TOP CHORD	Structural 7-0-8 oc p	l wood sheathing directly app ourlins.
BOT CHORD		ing directly applied or 6-0-0 c
REACTIONS	(size)	1=7-0-8, 3=7-0-8, 4=7-0-8
	Max Horiz	1=26 (LC 14)
	Max Uplift	1=-10 (LC 14), 3=-16 (LC 14) 4=-35 (LC 14)
	Max Grav	1=109 (LC 20), 3=109 (LC 2 4=454 (LC 20)
FORCES	(lb) - Max Tension	imum Compression/Maximur
TOP CHORD	1-2=-123/	220, 2-3=-123/220
BOT CHORD	1-4=-161/	/131, 3-4=-161/131
WEBS	2-4=-304/	(179

NOTES

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 4-1-0, Exterior(2E) 4-1-0 to 7-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road

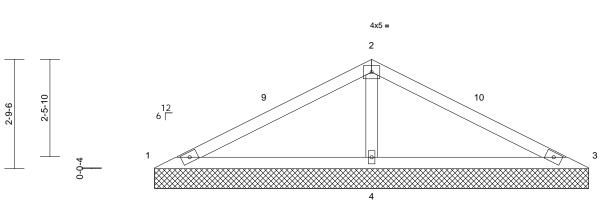
Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels	
24100227	VL11	Valley	1	1	Job Reference (optional)	169015981

5-6-4

5-6-4

Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:48 ID:HO8JJrd6D?XeUXsFxlZ54DzyTkp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

10-5-9

4-11-5

Page: 1

3x5 👟

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

3x5 🍃

11-0-8

2x4 II

Scale = 1:29.3														
ading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
LL (roof)	20.0	Plate Grip DOL	1.15		TC	0.53	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
now (Pf)	20.0	Lumber DOL	1.15		BC	0.50	Vert(TL)	n/a	-	n/a	999			
DL	10.0	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	4	n/a	n/a			
CLL	0.0*	Code	IRC2018/1	FPI2014	Matrix-MSH									
CDL	10.0					_						Weight: 36 lb	FT = 20%	
UMBER OP CHORD OT CHORD THERS RACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		۲ ۱ ۱	Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	7-16; Pr=20.0 ps .15); Pf=20.0 psf ls=1.0; Rough Ca -1.10 snow loads have	t Lum DC at B; Fully	DL=1.15 Plate Exp.; Ce=0.9	9;						
P CHORD	Structural wood she 10-0-0 oc purlins.	eathing directly appli	6) (es continuous bo		d bearing.							
T CHORD	Rigid ceiling directly bracing.	8) -	This truss ha	spaced at 4-0-0 o s been designed	for a 10.0									
	(size) 1=11-0-8 Max Horiz 1=41 (LC Max Uplift 1=-49 (LC 4=-71 (LC	C 21), 3=-49 (LC 20)	9)	* This truss h on the bottor 3-06-00 tall b	ad nonconcurrent has been designe n chord in all area by 2-00-00 wide w hy other members	d for a liv as where vill fit betv	e load of 20.0 a rectangle	Opsf						
	Max Grav 1=126 (L 4=847 (L		^{),} 10) F	Provide mec	hanical connection capable of withs	on (by oth								
RCES	(lb) - Maximum Con Tension	npression/Maximum		1, 49 lb uplift	at joint 3 and 71	lb uplift a	it joint 4.	oint						
OP CHORD	1-2=-162/485, 2-3= 1-4=-344/213, 3-4=		Í I	nternational R802.10.2 aı	Residential Code nd referenced sta	e sections	R502.11.1 a	ind						
EBS	2-4=-654/338		LOA	D CASE(S)	Standard									
OTES Unbalance	d roof live loads have	been considered fo	r											
this design													1111	

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Exterior(2R) 3-0-8 to 8-1-0, Exterior(2E) 8-1-0 to 11-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

11111111 October 21,2024 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone

GI

SEAL

036322

Winninn¹¹

818 Soundside Road Edenton, NC 27932

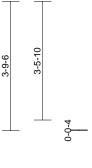
Job	Truss	Truss Type Qty Ply Hayden-F-SLAB-Roof		Hayden-F-SLAB-Roof-All Levels		
24100227	VL15	Valley	1	1	l6 Job Reference (optional)	9015982

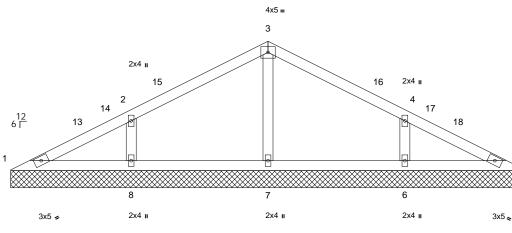
7-6-4

7-6-4

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:48 ID:9MoYRm3dHYcJLJmDhND3gIzyTIY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f




15-0-8

d-6-15

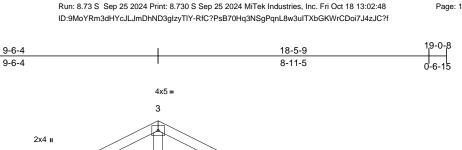
5

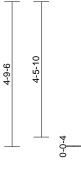
14-5-9 6-11-5 4x5 =

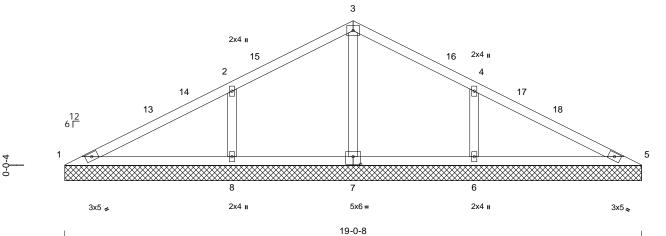
15-0-8

Scale = 1:33.7

Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Plate Grip DOL Lumber DOL	2-0-0 1.15 1.15 ⁄ES	CSI TC BC WB	0.31 0.11 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code I	RC2018/TPI20 ⁻	14 Matrix-MSH							Weight: 54 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-0-8 7=15-0-8 Max Horiz 1=-57 (LC Max Uplift 1=-7 (LC (LC 15), i Max Grav 1=92 (LC	eathing directly applied of applied or 6-0-0 oc 5=15-0-8, 6=15-0-8, 8=15-0-8 2 19) 15), 5=-5 (LC 15), 6=-9 3=-97 (LC 14) 33), 5=92 (LC 34), 6=4 7=335 (LC 21), 8=480 (I	only. see St or con 4) TCLL: Plate I DOL= Cs=1. 5) Unbal: desigr 6) Gable 7) Gable 7) Gable 6 8) This tr chord 80 on the 2- 3-06-00	designed for wind load For studs exposed to v andard Industry Gable sult qualified building of ASCE 7-16; Pr=20.0 ps 0.0L=1.15); Pf=20.0 ps 1.15); Is=1.0; Rough C 00; Ct=1.10 anced snow loads have the spaced at 4-0-0 uss has been designed live load nonconcurrer truss has been design bottom chord in all are 0 tall by 2-00-00 wide and any other member	ind (norm End Deta esigner a sf (roof Ll f (Lum DC at B; Fully e been col- butom choro oc. I for a 10. t with any ed for a liv as where will fit betw	al to the face ils as applica s per ANSI/TI : Lum DOL= : Lum DOL= : Exp.; Ce=0.9 insidered for the rd bearing. 0 psf bottom other live loas of 20.0 a rectangle), ble, PI 1. 1.15 e 9; his dds. Opsf					
FORCES	(lb) - Maximum Con Tension	npression/Maximum	10) Provid	e mechanical connecti g plate capable of with	on (by oth							
TOP CHORD	1-2=-126/106, 2-3=- 4-5=-126/106	68/111, 3-4=-68/103,		olift at joint 5, 97 lb upli								
BOT CHORD	1-8=-48/104, 7-8=-4 5-6=-48/104	8/52, 6-7=-48/52,	11) This tr	uss is designed in acc ational Residential Coc			and				NITH CA	un,
WEBS	3-7=-259/76, 2-8=-3	89/171, 4-6=-389/171		10.2 and referenced st							"TH CA	ROUL
NOTES			LOAD CA	SE(S) Standard						1	at	D Clair


- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 4-6-12, Exterior(2R) 4-6-12 to 10-6-12, Interior (1) 10-6-12 to 12-1-0, Exterior(2E) 12-1-0 to 15-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


=(S)



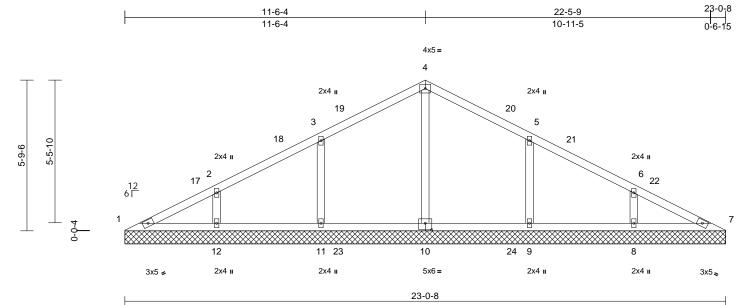
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels		
24100227	VL19	Valley	1	1	Job Reference (optional)	169015983	

Scale = 1:38

Plate Offsets (X, Y): [7:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI	0.45	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	n/a	-	n/a	999 999	MT20	244/190
Snow (Pf) TCDL	20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.25 0.16	Vert(TL) Horiz(TL)	n/a 0.00	- 8	n/a n/a	999 n/a		
BCLL	0.0*	Code		8/TPI2014	Matrix-MSH	0.16		0.00	0	n/a	n/a		
BCLL BCDL	10.0	Code	IRC201	8/1912014	Matrix-INISH							Weight: 71 lb	FT = 20%
	10.0				L		L					Wolght. 7110	11-2070
			3)		ned for wind loads uds exposed to wir								
TOP CHORD BOT CHORD					d Industry Gable E								
OTHERS	2x4 SP No.2 2x4 SP No.3				alified building de								
BRACING	244 01 110.0		4)		7-16; Pr=20.0 ps								
TOP CHORD	Structural wood she	eathing directly applie	, ad or	Plate DOL=	1.15); Pf=20.0 psf	(Lum DC	DL=1.15 Plate	e					
	10-0-0 oc purlins.	eating unectly applied	50 01	DOL=1.15);	Is=1.0; Rough Cat	t B; Fully	Exp.; Ce=0.9	9;					
BOT CHORD		y applied or 6-0-0 oc		Cs=1.00; Ct									
	bracing.		5)		snow loads have	been co	nsidered for t	his					
REACTIONS	s (size) 1=19-0-8	8, 5=19-0-8, 6=19-0-8	3, 6)	design.		tom oho	d booring						
	7=19-0-8	8, 8=19-0-8	7)		es continuous bot spaced at 4-0-0 o		to bearing.						
	Max Horiz 1=73 (LC		8)		as been designed		0 nsf hattam						
	Max Uplift 5=-8 (LC		, 0,		ad nonconcurrent			ads.					
	8=-126 (I		, 9)		has been designed								
	Max Grav 1=110 (L			on the botto	m chord in all area	s where	a rectangle	•					
	6=589 (L 8=589 (L	C 21), 7=431 (LC 1),			by 2-00-00 wide w		ween the bott	om					
FORCES	•	npression/Maximum			ny other members								
FURGES	Tension	npression/waximum	10		hanical connection								
TOP CHORD		0/273. 3-4=0/273.			e capable of withst at joint 8 and 126			oint 5,					
	4-5=-147/306		1.		designed in accor								1.1.1
BOT CHORD	0 1-8=-207/127, 6-8=	-207/104, 5-6=-207/2	127 '		Residential Code			and					in the
WEBS	3-7=-391/68, 2-8=-4	448/170, 4-6=-448/17	70		nd referenced star							N'TH UA	ROUL
NOTES			L	OAD CASE(S)							5	OH SECO	ii Andrea
1) Unbaland	ced roof live loads have	e been considered fo		(-,						L	12	100	NA
this desig										Z	2		num
	SCE 7-16; Vult=130mpl								() j	. *			
)3mph; TCDL=6.0psf; E									=		SEA	\L : =
	; Enclosed; MWFRS (e Exterior(2E) 0-0-8 to 3									=	:	0363	• -
	Exterior(2R) 6-6-12 to 1		8 10							1		0505	22 : :
	to 16-1-0, Exterior(2E)		e:							-		1	1 E
	er left and right exposed									S	1	N.E.	Richi
	osed;C-C for members										25	S. GIN	EFICAN
	ions shown; Lumber DO	DL=1.60 plate grip									11	C .	BEIN
	20											1, 4 0	


II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-8 to 3-0-8, Interior (1) 3-0-8 to 6-6-12, Exterior(2R) 6-6-12 to 12-6-12, Interior (1) 12-6-12 to 16-1-0, Exterior(2E) 16-1-0 to 19-1-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Hayden-F-SLAB-Roof-All Levels		
24100227	VL23	Valley	1	1	Job Reference (optional)	169015984	

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 18 13:02:48 ID:dYMwf63F2skAzTKPF4kIDWzyTIX-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:44.2

Plate Offsets (X, Y): [10:0-3-0,0-3-0]

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.17	Vert(TL)	n/a	_	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.15	Horiz(TL)	0.00	7	n/a	n/a			
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 92 lb	FT = 20%	
					 E 7-16; Vult=130m	mh (2 aa						11019111 02 10	20,0	
LUMBER	2x4 SP No.2		Ζ)		ph; TCDL=6.0psf			Cat						
BOT CHORD					nclosed; MWFRS									
THERS	2x4 SP No.3				terior(2E) 0-0-8 to									
RACING	2.0.01 11010			8-6-12, Exte	erior(2R) 8-6-12 to	14-6-12,	Interior (1)							
FOP CHORD	Structural wood she	athing directly applie	d or		0-1-0, Exterior(2E									
01 0110112	6-0-0 oc purlins.	annig anoon) appno			ft and right expos									
BOT CHORD		applied or 6-0-0 oc		for reactions	ed;C-C for membe s shown; Lumber			S						
REACTIONS	0	7=23-0-8, 8=23-0-8,		DOL=1.60										
		10=23-0-8, 11=23-0		 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, 										
	12=23-0-													
Max Horiz 1=89 (LC 14)				or consult qualified building designer as per ANS/ITPI 1.										
	Max Uplift 1=-10 (LC		4)	4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15										
	9=-99 (LC 12=-80 (L	C 15), 11=-99 (LC 14)	, ,	Plate DOL=	1.15); Pf=20.0 ps	f (Lum DC	L=1.15 Plate							
	Max Grav 1=105 (L			DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;										
		C 3), 9=470 (LC 6),		Cs=1.00; Ct										
		LC 5), 11=470 (LC 5)	5)		snow loads have	been cor	nsidered for th	nis						
	12=342 (I			design.			aa indiaata -							
ORCES	(lb) - Maximum Com	,	6) 7)		e 2x4 MT20 unles res continuous bo									
	Tension		8)		spaced at 4-0-0		u bearing.						in the	
OP CHORD	1-2=-153/100, 2-3=-	42/117, 3-4=-79/129	, o) , 9)		as been designed) psf bottom					WTH CA	Bolly	
	4-5=-79/120, 5-6=-3		-,		ad nonconcurrent			ds.			S	ALIN	C. S. Inter	
SOT CHORD		2=-45/79, 9-11=-45/7	9, 1(has been designe						5.	U. FESC	10 mili	
	8-9=-45/79, 7-8=-45				m chord in all are			•		4		la 1	Sin 1	
NEBS		390/150, 2-12=-228/	117,		by 2-00-00 wide v									
	5-9=-390/149, 6-8=-	228/116			ny other members					=		SEA	AL : E	
IOTES					chanical connection					=		0000	• •	
) Unbalanc this desig	ed roof live loads have n.	been considered for		1, 99 lb uplif	e capable of withs ft at joint 11, 80 lb	uplift at j				1		0363	322 <u>;</u>	
			11		d 79 lb uplift at joi designed in acco		ith the 2018				5	·	air S	
					Residential Code	e sections	R502.11.1 a	nd			The second	SEA 0363	EERA	
			1.	DAD CASE(S)								Octobe	HLD	
			L.		Glanuaru							111111	11111	
												Octobe	r 21 2024	

October 21,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

