

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: ^{6 Mason Ridge} Cali P

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

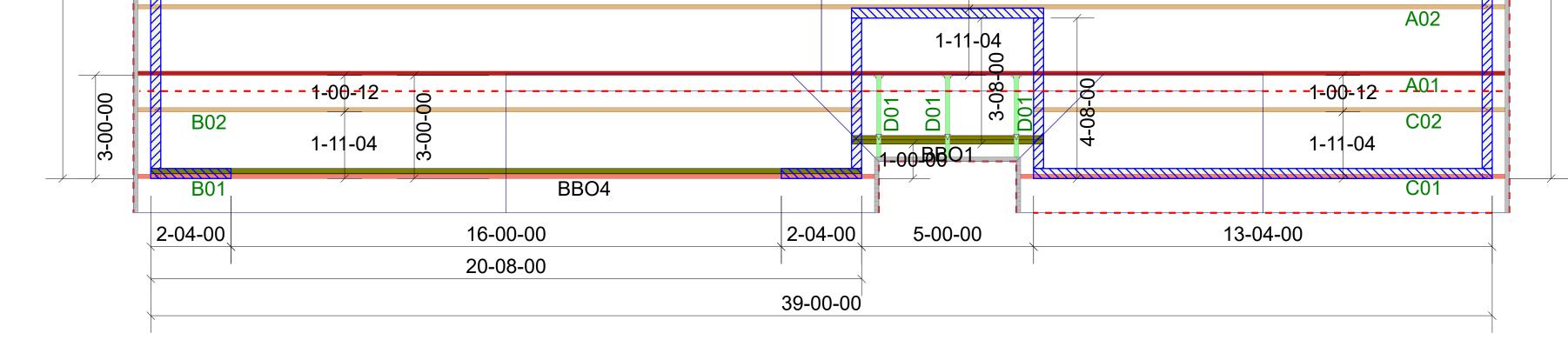
7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

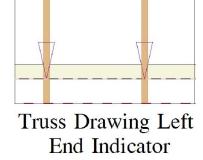
Approved By: _____

Date: _____

			28-00-00		11-00-00				
	Frame Bearing U	p to Bottom of Vault			Cantilever 2x Beam by Bldr to Can BBO3	rry Gable End			
				1-11-04		PBO1 A05			
				2-00-00		A05			
				2-00-00		A05			
				2-00-00		A05			
	>			2-00-00		A04			
	3/12 INT	3/12 INT		2-00-00		A04			
				2-00-00		A04			
			2-00-00		A04 A02				
				2-00-00		A02 A02			
	2-00-00								
	A02								
	2-00-00 A02								
				2-00-00		A02 A02			
0				2-00-00		A02			
00-00-69				2-00-00		A02			
			8	2-00-00		A03			
	(ODD SPACE	2-01-08		2-03-00				
	(ODD SPACE		AHU PLATFORM	1-09-00 4	A03 A03			
					2-00-00	A03			
					2-00-00	A03			
					2-00-00	A03			
				2-00-00		A02			
	2-00-00 A02								
				2-00-00		A02			
				2-00-00		A02			
				2-00-00					


ST	
MO	
R	
ΤÞ	
KE	
S	
Ë	
RES	
SPC	
NS	
SIB	
5	
\prec	
CUSTOMER TAKES FULL RESPONSIBILITY FOR COMPONENTS IF CUT BEFORE ,	
20	
٩Ö	
1PC	
Ň	
TN	
S.	
FC	
Ŭ	
BE.	
EFC	
UT	
UTHORIZATIO	
RIZ	
AT.	
Q	
<u> </u>	

General Notes:


** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST.

	59-00-00
00-0	

Truss Connector Total ListQtyProductManuf75One H2.5ASimpson

** All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor. ** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.

Scale: Date: 2	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss	00/00
NTS 11/4/202 Designer: Project Num 4100226 Sheet Num	6 Mason Ridge Cali P	CARTER	design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available	Revisions 00/00 N 00/00 N
nber:	ROOF PLACEMENT PLAN	Lumber	from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Vame Vame

RE: 24100226

Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels

Site Information:

Customer: DR Horton Inc Project Name: 24100226 Lot/Block: 6 Model: Cali P Address: Subdivision: Mason City: State:

Subdivision: Mason Ridge State:

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 11 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	168917396	A01	10/17/2024
2	168917397	A02	10/17/2024
3	168917398	A03	10/17/2024
4	168917399	A04	10/17/2024
5	168917400	A05	10/17/2024
6	l68917401	A06	10/17/2024
7	l68917402	B01	10/17/2024
8	l68917403	B02	10/17/2024
9	168917404	C01	10/17/2024
10	l68917405	C02	10/17/2024
11	168917406	D01	10/17/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Trenco 818 Soundside Rd Edenton, NC 27932

October 17, 2024

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	A01	Common Girder	1	1	I68917 Job Reference (optional)	7396

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:48 Carter Components (Sanford, NC), Sanford, NC - 27332, Page: 1 ID:5fg?3sW?giQBPJ7djNhRIFzwUS3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 39-4-8 6-8-5 12-9-13 19-6-0 26-2-3 32-3-11 39-0-0 6-8-5 6-8-3 6-8-3 6-1-8 6-8-5 6-1-8 0-4-8 5x6= 5 £ 4x5 🞜 4x5**≈** 55 54 4 6 12 6 ¹\∕s Ŕ 10-7-0 8x10 🞜 8x10 X 3 7 89 0-10-0 ΈĽ 51 🕅 ₿ ₿ 15 47 <u>1</u>48 4**9**0 52 12 11 53 10 $8 \times 10 =$ 4x8= 4x8 =8x10= NAILED NAILED 4x5= 4x5= NAILED 19-6-0 9-11-0 13-2-4 18-5-12 29-1-0 39-0-0 9-11-0 3-3-4 1-0-4 9-7-0 9-11-0 5-3-8 Scale = 1:70.8

Plate Offsets (X, Y): [3:0-5-0,0-4-8], [7:0-5-0,0-4-8], [8:Edge,0-0-15], [10:0-5-0,0-4-8], [15:0-5-0,0-4-8]

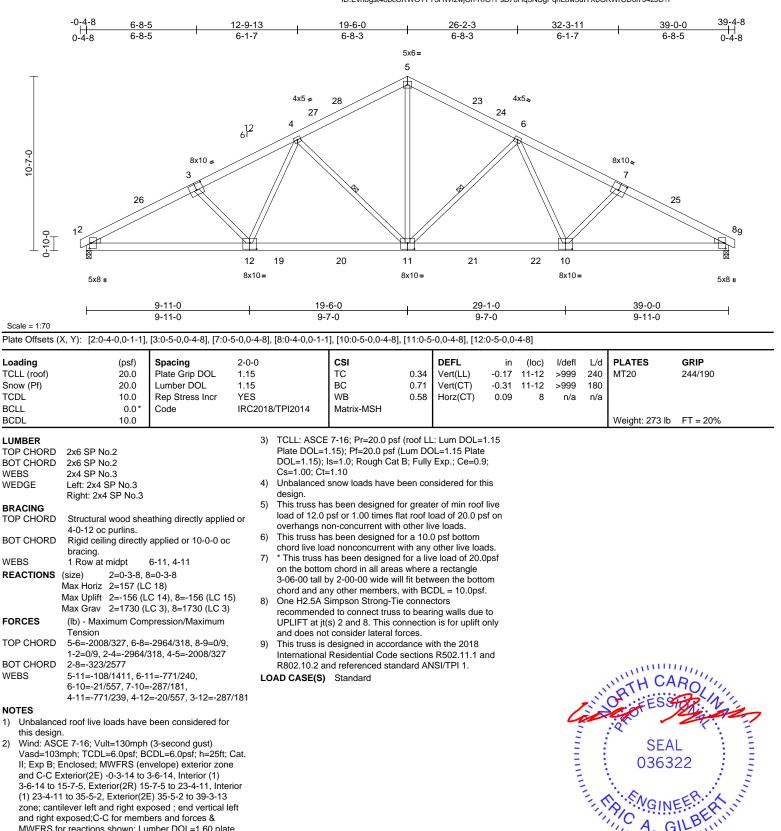
						-							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2018	/TPI2014	CSI TC BC WB Matrix-MSH	0.37 0.69 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.15 -0.27 0.03	(loc) 10-12 10-12 8	l/defl >999 >904 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 356 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	5-9-12 oc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8 14=0-3-8 Max Horiz 2=152 (LC Max Uplift 2=-101 (LC 13=-206 (I Max Grav 2=944 (LC	athing directly applied applied or 10-0-0 oc 4-12, 5-12, 6-12 =0-3-8, 13=0-3-8, 2 16) C 38), 8=-111 (LC 39 LC 12), 14=-88 (LC 3	F 4) or 5) 6) 7) 8) 9) 1) 10)	only. For stt see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; CtL Unbalanced design. This truss ha load of 12.0 overhangs n All plates are Gable studs This truss ha chord live loa * This truss ha chord live loa on the bottor	snow loads have b as been designed for psf or 1.00 times fli- on-concurrent with e 2x4 MT20 unless spaced at 2-0-0 oc is been designed fr ad nonconcurrent v has been designed in chord in all areas	d (norm nd Deta signer as (roof LL Lum DC B; Fully been cor or greate at roof k other lin other lin other lin other wi c c or a 10.0 vith any for a liv s where	al to the face ils as applicat s per ANSI/TF DL=1.15 Plate Exp.; Ce=0.9 hsidered for the er of min roof pad of 20.0 ps ve loads, se indicated. O ps bottom other live loa e load of 20.0 a rectangle), ble, >1 1. 1.15 ; his b; his live sf on ds. Dpsf		Vert: 48	=-65 (I	F), 50=-65 (F), 51	=-65 (F)
FORCES	(lb) - Maximum Com Tension	pression/Maximum		chord and ar	by 2-00-00 wide wil by other members, Simpson Strong-Tie	with BC	DL = 10.0psf						10.
TOP CHORD	5-6=-433/117, 6-8=-7 1-2=0/8, 2-4=-1371/1	, ,	,		ed to connect truss (s) 2, 14, 8, and 13							"TH CA	Ro
BOT CHORD	2-14=-232/1191, 13- 12-13=-88/795, 8-12	,		uplift only an	d does not conside	er latera	l forces.	01			15	OR	The Inite
WEBS	4-15=-39/506, 3-15= 4-12=-723/243, 5-12	-337/186,	, 105	International R802.10.2 a "NAILED" inc	designed in accord Residential Code s nd referenced stan dicates 3-10d (0.14 ") toe-nails per ND	sections dard AN I8"x3") c	8 R502.11.1 a NSI/TPI 1. or 3-12d	Ind		Y	2	SEA	
	ed roof live loads have	been considered for	14)		CASE(S) section,			face		Ξ		0363	22 E

this design.

- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60
- of the truss are noted as front (F) or back (B). LOAD CASE(S) Standard Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15
 - Uniform Loads (lb/ft) Vert: 41-44=-19, 5-9=-58, 1-5=-58 Concentrated Loads (lb)

Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietus Information**, and the from the Structure Building Component Advance interport of the property damage. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	A02	Common	14	1	I68 Job Reference (optional)	8917397

2)

grip DOL=1.60

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:49 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

MWFRS for reactions shown; Lumber DOL=1.60 plate

818 Soundside Road

Edenton, NC 27932

40000

October 17,2024

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	A03	Common	6	1	lé Job Reference (optional)	68917398

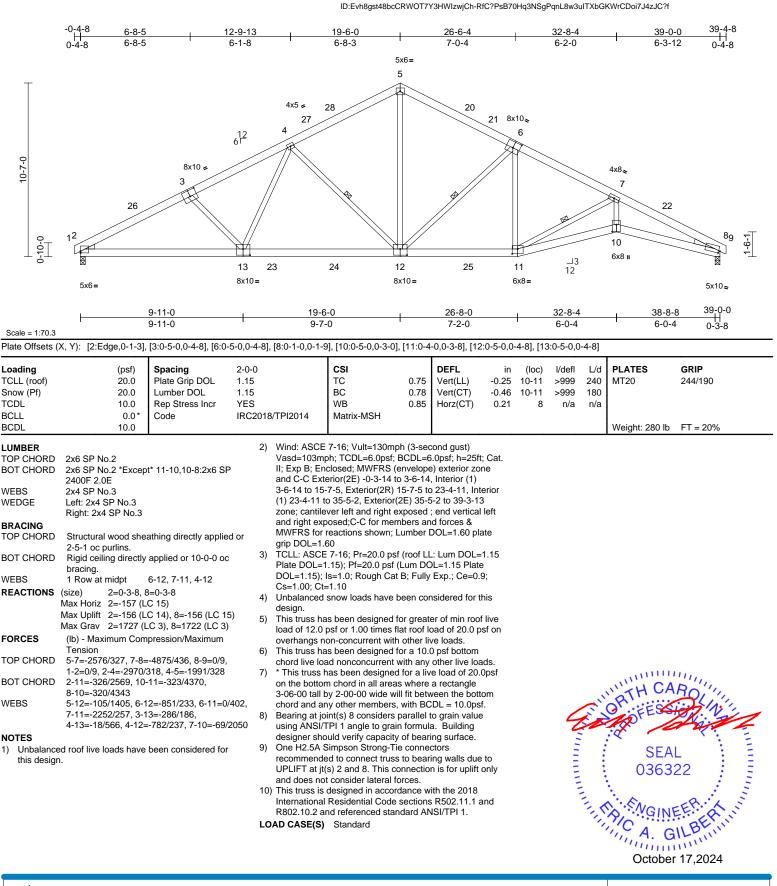
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:49 ID:fvtoJLOdMAmYCtCW0gi3vAzwVFs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

October 17,2024

NGINEERING

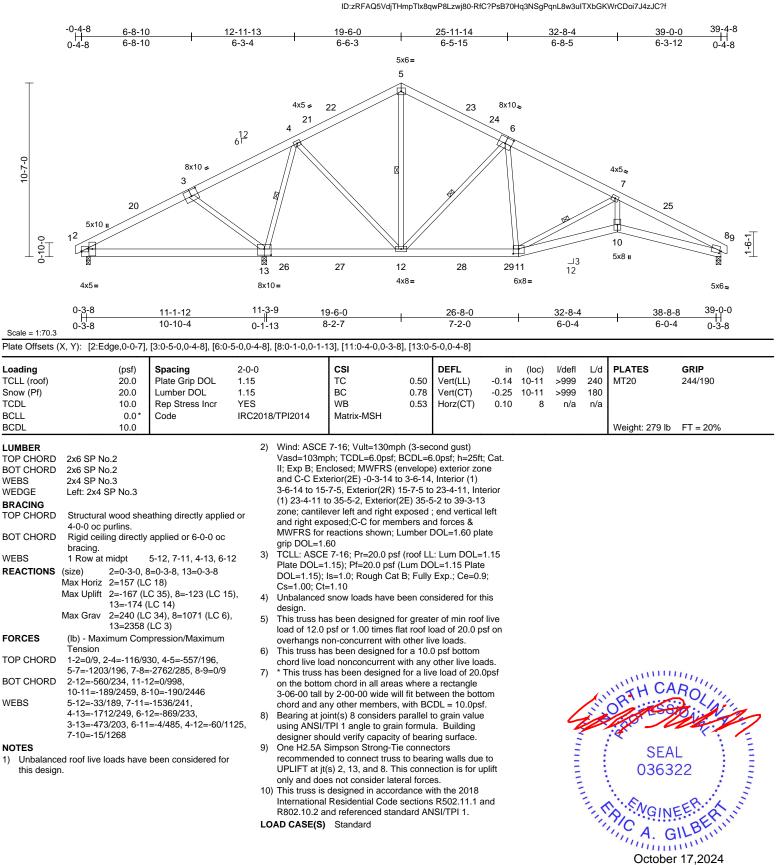
818 Soundside Road Edenton, NC 27932


		<u>6-8-5</u> 6-8-5	4-5-15				24-5-1	27-9-12	<u>32-3-11</u> 4-5-15		<u>39-0-0</u> 6-8-5	39-4-8
	0-4-8	0-0-0	4-0-10	5-4-	4-11-	5x6=	4-11-2	5-4-10	4-0-10		0-0-5	0-4-8
-						6						
					4x5 ≠			4x5 👟				
					25 5		26	7				
			6	2 ^{2x4} "		×		\sim \sim	(4 N 8			
P				A		3x8=		a de la companya de la				
10-7-0		3	8x10 =					/		8x10		
		24	Ħ	//						Æ	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
		24		//							27	
<u>٩_</u>	12			∬								191
1 <u>-</u> 0 			[• • •	30 14	• •		<u> </u>			
			، ع	15 29 16 28 2 ×10=	x6= 4x6= 4x	:6= 6x10=	4x5= 4x5	= 4x5= ¹³ 4x5	31 12 =			
	6x8 II			4x6=				-140	8x10=			6x8=
	1	9-11-0	10-	11-4-8 0-13	19-6-0	I	27-7-8	3 28	29-1-0 -11-3		39-0-0	
4 70 5		9-11-0	0-	1-13 1-3-11	8-1-8		8-1-8	1.	3-11 0-1-13		9-11-0	1
cale = 1:72.5 ate Offsets ()	(, Y): [2:0-4-0,0-1	1-13], [3:0-5-0,0	0-4-8], [9:0-5-0		dge,0-3-8], [12:0-	5-0,0-4-8], [14	:0-5-0,0-2-4]	, [16:0-5-0,0-4				
ading				0-0	CSI		DEFL			L/d	PLATES	GRIP
CLL (roof)	(psi 20.	0 Plate Gri	p DOL 1.	15	тс	0.47	Vert(LL)	-0.50 12-	23 >943	240	MT20	244/190
ow (Pf) DL	20. 10.			15 ES	BC WB	0.53 0.83		-0.72 16- 0.06	20 >649 10 n/a	180 n/a		
CLL CDL	0.		IR	C2018/TPI20	14 Matrix-M	SH					Mainht OOF Ih	FT 200/
	10.	0		0))////in al-	A005 7 40: 1/1/1	100					Weight: 295 lb	FT = 20%
I MBER)P CHORD	2x6 SP No.2 *Ex	cept* 9-6,3-6:2	2x6 SP 2400F	Vasd=	ASCE 7-16; Vult: 103mph; TCDL=	6.0psf; BCDL=	6.0psf; h=25					
OT CHORD	2.0E 2x6 SP 2400F 2	.0E *Except* 14	4-15.13-14:2x		B; Enclosed; MV -C Exterior(2E) -C							
EBS	SP No.2 2x4 SP No.3 *Ex	·		3-6-14	to 15-7-5, Exteri -4-11 to 35-5-2, E							
EDGE	Left: 2x4 SP No.	3	01 110.2	zone;	C-C for members	and forces & M	/WFRS for					
RACING	Right: 2x4 SP No	5.2		DOL=			• •					
P CHORD	Structural wood 3-11-1 oc purlins	•	ctly applied or		ASCE 7-16; Pr=2 DOL=1.15); Pf=2							
OT CHORD	Rigid ceiling dire		10-0-0 oc		1.15); Is=1.0; Rou 00; Ct=1.10	ugh Cat B; Full	y Exp.; Ce=0	0.9;				
DINTS	bracing. 1 Brace at Jt(s):	17		4) Unbal	anced snow loads	s have been co	onsidered for	this				
ACTIONS	(size) 2=0-3 Max Horiz 2=157	-8, 10=0-3-8 7 (LC 18)			uss has been des							
	Max Uplift 2=-34	(LC 14), 10=-7		overha	f 12.0 psf or 1.00 angs non-concurr	ent with other	live loads.					
RCES	Max Grav 2=192 (lb) - Maximum (b AC unit load pla eft end, supported							
P CHORD	Tension 1-2=0/9, 2-4=-33	321/78, 4-5=-26	644/151.	This ti	uss has been dealine load noncond	signed for a 10	.0 psf botton	n				
	5-6=-1305/0, 6-7 8-10=-3247/151	/=-1327/0, 7-8=		8) * This	truss has been d	esigned for a li	ve load of 20	0.0psf			TH CA	ROUL
OT CHORD	2-10=-129/2911			3-06-0	bottom chord in 0 tall by 2-00-00	wide will fit be	tween the bo	ottom		J. C	RESE	D. Inter
EBS	14-17=0/1007, 6 9-12=-534/318,				and any other me l2.5A Simpson St			osf.	4	Ì	Pr-	Kit
TES	5-17=-1473/288	, 7-17=-1458/3	02	recom	mended to conne T at jt(s) 2 and 10	ect truss to bea	ring walls du		111	1	X OF A	
Unbalance	d roof live loads h	ave been cons	idered for	and de	bes not consider l	ateral forces.		-	E		SEA	•
this design				Intern	uss is designed in ational Residentia	al Code sectior	ns R502.11.1		Ξ		0363	~ : :
					10.2 and referend SE(S) Standard		NSI/TPI 1.		THE WEY		·	Rivis
					(-,					11	9 GIN	E.F. ER III
										11	A. G	ILBUTT
												17.2024

.	Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
1	24100226	A04	Roof Special	3	1	Job Reference (optional)	168917399

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:49

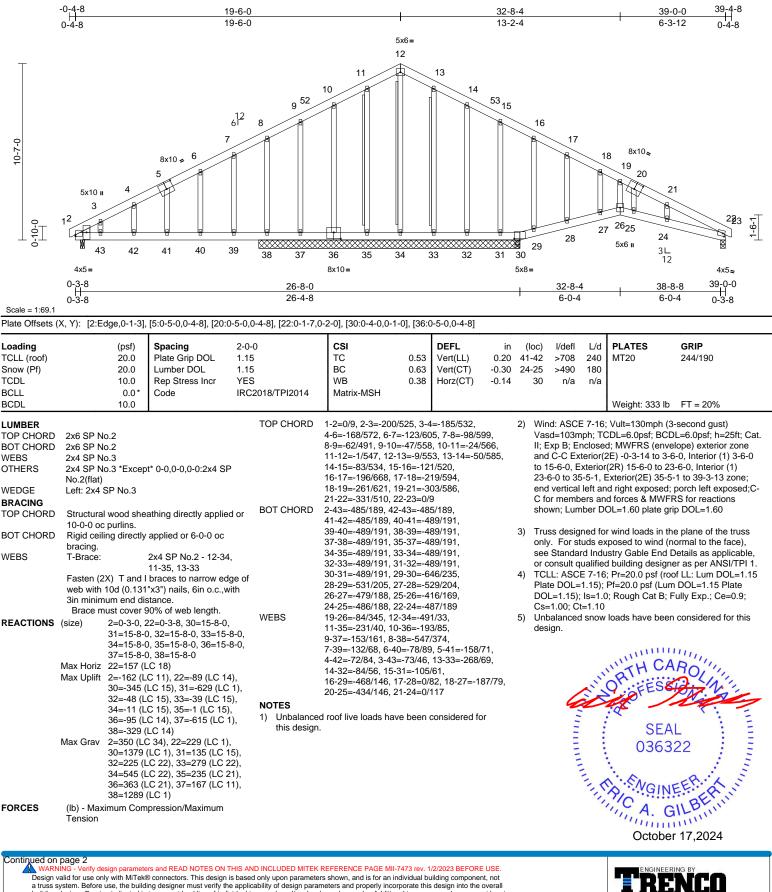
Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	A05	Roof Special	4	1	Job Reference (optional)	168917400

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:49

Page: 1


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	A06	Roof Special	1	1	Job Reference (optional)	168917401

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:50 ID:_7cSAj4o96MMcJVXf9hWJZzwj0p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

a lots system: Broken use, indexed is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

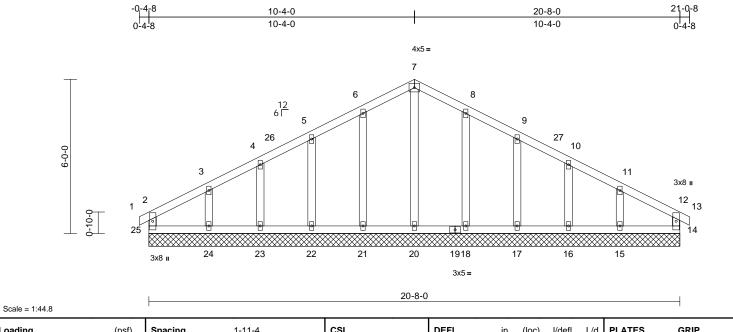
818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	A06	Roof Special	1	1	Job Reference (optional)	168917401

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearings are assumed to be: , Joint 2 SP No.2 , Joint 31 User Defined .
- Bearing at joint(s) 22 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 345 lb uplift at joint 30, 89 lb uplift at joint 22, 162 lb uplift at joint 2, 11 lb uplift at joint 34, 1 lb uplift at joint 35, 95 lb uplift at joint 36, 615 lb uplift at joint 37, 329 lb uplift at joint 38, 39 lb uplift at joint 33, 48 lb uplift at joint 32 and 629 lb uplift at joint 31.
- 14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 15) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:50 ID:_7cSAj4o96MMcJVXf9hWJZzwj0p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	B01	Common Supported Gable	1	1	Job Reference (optional)	168917402

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:50 ID:Ts5oRqu4mUn5A3y3B3BrkuzwimG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

12:57:50 Page: 1

		i		1		i					i	
Loading	(psf)	Spacing	1-11-4	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.07	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES	WB	0.09	Horz(CT)	0.00	14	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MR								
BCDL	10.0								-		Weight: 111 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 14=20-8-(21=20-8-(24=20-8-(Max Horiz 25=-80 (L 16=-34 (L 16=-34 (L 22=-46 (L 24=-77 (L Max Grav 14=118 (I 16=164 (I 18=237 (I 23=164 (I 25=118 (I	applied or 10-0-0 oc 0, 15=20-8-0, 16=20-8 0, 18=20-8-0, 20=20-8 0, 22=20-8-0, 23=20-8 0, 22=20-8-0 C 12) C 14), 15=-72 (LC 15) C 15), 17=-45 (LC 15) C 15), 21=-42 (LC 15) C 14), 25=-26 (LC 15) LC 1), 15=174 (LC 35) LC 22), 20=144 (LC 27) LC 21), 22=222 (LC 24) LC 21), 24=174 (LC 34) LC 21)	or this design 2) Wind: ASC Vasd=103 II; Exp B; E -0, and C-C C -0, to 7-4-0, C -0, to 18-0-8, (left and rig MWFRS fc grip DOL= 1, 3) Truss desi only. For s -0, see Standa -0, TCLL: ASC Plate DOL= -1, Cs=1.00; C -0, Cs=1.00; C -0, So Unbalance design.	E 7-16; Vult=130mp mph; TCDL=6.0psf; inclosed; MWFRS (orner(3E) -0-4-8 to 2 orner(3E) 7-4-0 to 1 Corner(3E) 18-0-8 to 1 corner(3E) 18-0-	4=-128/ te been th (3-sea BCDL=6 envelope -4-0, E 3-4-0, E -21-0-8 nember umber the pl id (norm nd Deta signer a i (roof Ll 'Lum DC B; Fully been col	115, 8-18=-19 /67, considered for cond gust) 0.0psf; h=25ft a) exterior 200 terior(2N) 2-4 xterior(2N) 12 zone; end ve s and forces a DOL=1.60 pla ane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= DL=1.15 Plate Exp.; Ce=0.5 hsidered for th	98/73, or he 4-0 3-4-0 rtical & ate ss), ble, PI 1. 1.15 9; his	on 3-0 chc 13) Pro bea 25, upli 24, upli 14) Thi Inte R80	the botto 6-00 tall ord and a vide me tring plat 16 lb up ft at join 42 lb up ft at join s truss is ernationa	m cho by 2-0 iny oth chanic e capa lift at jo t 22, 33 lift at jo t 16 an s desig al Resid and ref	rd in all areas wh 0-00 wide will fit er members. al connection (by able of withstandi oint 14, 42 lb upli 3 lb uplift at joint oint 18, 45 lb upli d 72 lb uplift at joint and in accordand dential Code sec erenced standar	between the bottom of others) of truss to ing 26 lb uplift at joint ft at joint 21, 46 lb 23, 77 lb uplift at joint ft at joint 17, 34 lb boint 15. se with the 2018 tions R502.11.1 and
FORCES	(lb) - Maximum Corr Tension	pression/Maximum	load of 12.) psf or 1.00 times fl	at roof I	oad of 20.0 p			4	U	P	13.M
TOP CHORD	2-25=-100/80, 1-2=(3-4=-57/88, 4-5=-50 6-7=-81/218, 7-8=-8 9-10=-50/129, 10-11 12-13=0/14, 12-14= 24-25=-23/54, 23-24 21-22=-23/54, 20-21	/129, 5-6=-63/175, 1/218, 8-9=-63/175, 1=-48/88, 11-12=-68/3	 All plates a Gable requises Gable requises Truss to be braced aga Gable studies Gable studies This truss Charlen and the braced aga 	non-concurrent with re 2x4 MT20 unless ires continuous bott fully sheathed from inst lateral moveme s spaced at 2-0-0 or has been designed f oad nonconcurrent to	otherwi om choi one fac nt (i.e. c c. or a 10.	se indicated. d bearing. ce or securely liagonal web) 0 psf bottom			CHILLING.		SEA 0363	EER. KIN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

AMITEK Affilial AMITEK Affilial 818 Soundside Road Edenton, NC 27932

October 17,2024

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	B02	Common	1	1	Job Reference (optional)	168917403

Loading

TCDL

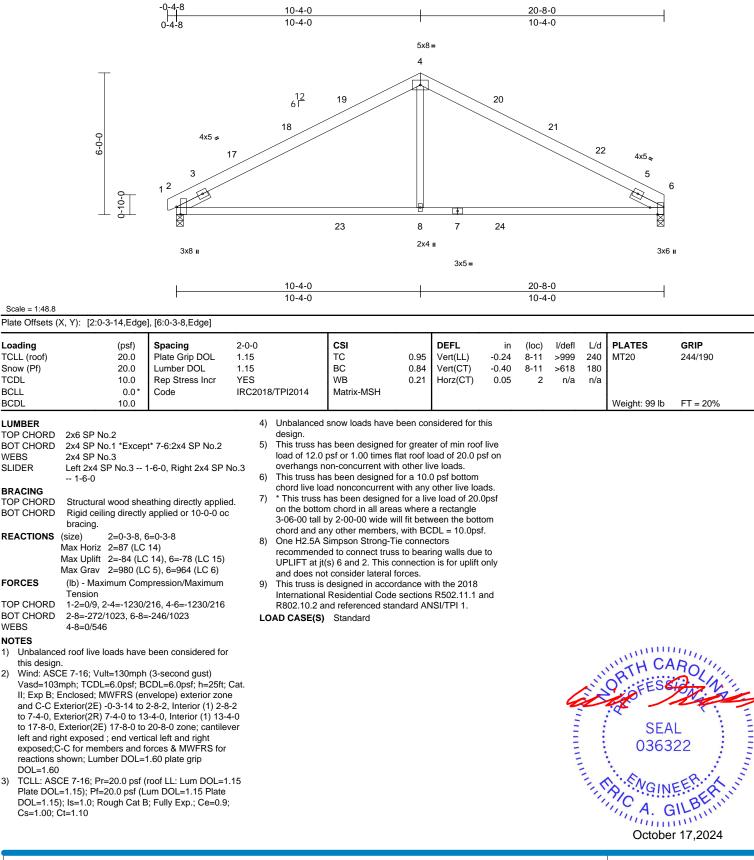
BCLL

BCDL

WEBS

SLIDER

WEBS


NOTES

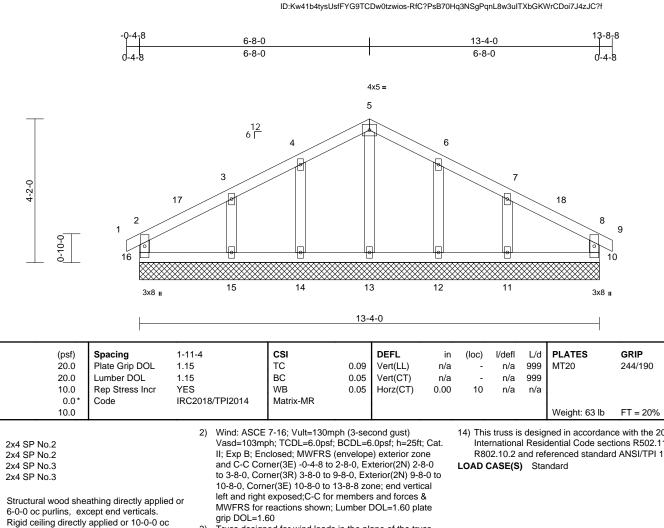
1)

2)

3)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 12:57:50 ID:0HizdM6Q_WVmnaATcnVXKBzwikh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	C01	Common Supported Gable	1	1	Job Reference (optional)	168917404

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 12:57:50

Page: 1

- bracing. **REACTIONS** (size) 10=13-4-0, 11=13-4-0, 12=13-4-0, 13=13-4-0, 14=13-4-0, 15=13-4-0, 16=13-4-0 Max Horiz 16=59 (LC 13) Max Uplift 10=-20 (LC 14), 11=-64 (LC 15), 12=-38 (LC 15), 14=-38 (LC 14),
 - 15=-66 (LC 14), 16=-24 (LC 15) Max Grav 10=143 (LC 22), 11=262 (LC 22), 12=225 (LC 22), 13=127 (LC 22), 14=225 (LC 21), 15=262 (LC 21), 16=143 (LC 21)
- FORCES (lb) - Maximum Compression/Maximum Tension 2-16=-123/106, 1-2=0/14, 2-3=-70/62, TOP CHORD 3-4=-75/135, 4-5=-78/190, 5-6=-78/189, 6-7=-75/135, 7-8=-67/61, 8-9=0/14, 8-10=-123/103 BOT CHORD 15-16=-15/44, 14-15=-15/44, 13-14=-15/44, 12-13=-15/44, 11-12=-15/44, 10-11=-15/44
- WEBS 5-13=-86/1, 4-14=-190/100, 3-15=-211/138, 6-12=-190/98, 7-11=-211/143 NOTES

Scale = 1:33.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WFBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

1) Unbalanced roof live loads have been considered for this design.

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable requires continuous bottom chord bearing. 8)
- Truss to be fully sheathed from one face or securely 9) braced against lateral movement (i.e. diagonal web). 10) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom 11) chord live load nonconcurrent with any other live loads.
- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 16, 20 lb uplift at joint 10, 38 lb uplift at joint 14, 66 lb uplift at joint 15, 38 lb uplift at joint 12 and 64 lb uplift at ioint 11.

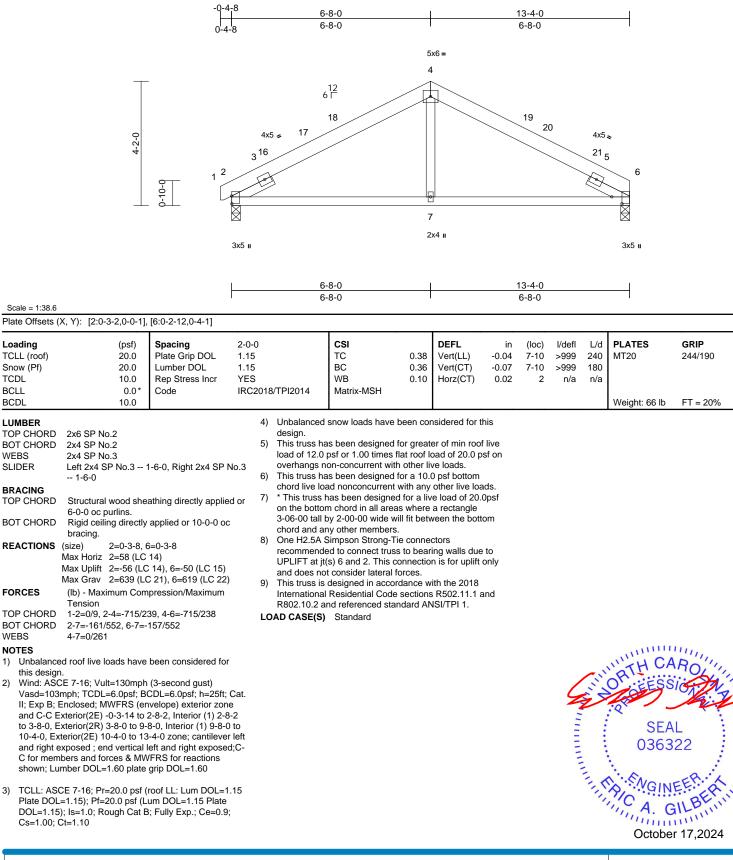
14) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters when Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	C02	Common	1	1	Job Reference (optional)	168917405

TCDL

BCLL


BCDL

2)

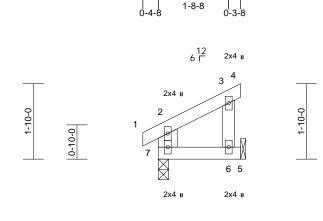
3)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 12:57:50 ID:d4azmvaKCIAQCTiJsNFXM6zwiny-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a futs system: Denote use, the building designer inder very the applications of design had needed an intervent with a policitation of the system of the state of the system of the syste and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	Cali-P-SLAB+ 9'FL+ VMB-Roof-All Levels	
24100226	D01	Jack-Closed	3	1	Job Reference (optional)	168917406

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 12:57:50 ID:gmewhzvG7_9mXKUwHs9FKOzwiiN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

1-8-8

Page: 1

Scale = 1:28

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.04	Vert(LL)	0.00	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.06	Vert(CT)	0.00	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.02	Horz(CT)	n/a	-	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 10 lb	FT = 20%

LL TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WFBS 2x6 SP No.2 *Except* 3-6:2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 2-0-0 oc purlins, except end verticals. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. **REACTIONS** (size) 5= Mechanical, 7=0-3-0 Max Horiz 7=37 (LC 11) Max Uplift 5=-29 (LC 14), 7=-6 (LC 10) Max Grav 5=84 (LC 21), 7=152 (LC 21) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 2-7=-120/53, 1-2=0/23, 2-3=-34/20, 3-4=-11/0 BOT CHORD 6-7=0/0, 5-6=0/0 WEBS 3-6=-81/57 NOTES 1)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left exposed; porch left and right

exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

- 2) Plate DOL=1.15): Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom 5) chord live load nonconcurrent with any other live loads.

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

- Bearings are assumed to be: Joint 7 User Defined . 7)
- Refer to girder(s) for truss to truss connections. 8)
- Provide mechanical connection (by others) of truss to 9) bearing plate capable of withstanding 6 lb uplift at joint 7 and 29 lb uplift at joint 5.
- 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

