Job	Truss	Truss Type	Qty	Ply	
4337300	A01	Common	4	1	Job Reference (optional)

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Dec 03 14:54:12 Page: 1 ID:mNh9D3X6RLRUXq96iSTu8UyFOhy-Ur5q79Ut8CY42DezVGtX9vDtyDbHNG4Iq?S4oEyCfKP

Scale = 1:39.9

Plate Offsets (X, Y): [2:0-3-8,Edge], [6:0-4-0,Edge]

								-				-
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.64	Vert(LL)	-0.08	8-11	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(CT)	-0.14	8-11	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.12	Horz(CT)	0.03	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.08	8-11	>999	240	Weight: 64 lb	FT = 20%

LUMBER

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -- 1-11-12, Right 2x4 SP No.3 -- 1-11-12

REACTIONS (lb/size) 2=637/0-3-8, (min. 0-1-8), 6=637/0-3-8, (min. 0-1-8)

Max Horiz 2=-108 (LC 10)

Max Uplift 2=-28 (LC 12), 6=-28 (LC 13)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

TOP CHORD 2-3=-354/54, 3-17=-616/31, 17-18=-552/44, 4-18=-542/66, 4-19=-542/66, 19-20=-552/44, 5-20=-616/31, 5-6=-345/0

BOT CHORD 2-8=-184/460, 6-8=0/460 4-8=0/323

WEBS

NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 2) Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 7-2-8, Exterior (2) 7-2-8 to 10-2-8, Interior (1) 10-2-8 to 15-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 28 lb uplift at joint 2 and 28 lb uplift at joint 6. 5)

This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 6)

LOAD CASE(S) Standard BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Job	Truss	Truss Type	Qty	Ply	
4337300	A01G	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Dec 03 14:54:12 ID:gOFntB2aSGezUo24u8CfaLyFOei-Ur5q79Ut8CY42DezVGtX9vD?NDh?NH9Iq?S4oEyCfKP

Page: 1

Scale = 1:37.5

Plate Offsets (X, Y): [10:0-1-9,0-0-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.10	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.07	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.05	Horz(CT)	0.00	10	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MR							Weight: 77 lb	FT = 20%	

LUMBER		BRACING	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3		MiTek recommends that Stabilizers and required cross bracing be
REACTIONS	All bearings 14-5-0.		installed during truss erection, in accordance with Stabilizer
(lb) - I	Max Horiz 16=-121 (I C 10)		Installation guide.

Max Uplift All uplift 100 (lb) or less at joint(s) 10, 11, 12, 14, 15, 16

Max Grav All reactions 250 (lb) or less at joint(s) 10, 11, 12, 13, 14, 15, 16

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FORCES NOTES

Unbalanced roof live loads have been considered for this design. 1)

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 2) Corner (3) -1-0-0 to 2-0-0, Exterior (2) 2-0-0 to 7-2-8, Corner (3) 7-2-8 to 10-2-8, Exterior (2) 10-2-8 to 15-5-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult 3) qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated

5) Gable requires continuous bottom chord bearing.

Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 6)

7) Gable studs spaced at 2-0-0 oc.

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 8)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 9) any other members.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 16, 10, 14, 15, 12, 11. 10)

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 2 and 40 lb uplift at joint 10.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	
4337300	A02G	Common Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Dec 03 14:54:12 Page: 1

ID:1L3gxv6jHoHGbZx2hhnqHOyFOed-Ur5q79Ut8CY42DezVGtX9vD?XDieNHKIq?S4oEyCfKP

Scale = 1:35

Plate Offsets (X, Y): [9:0-1-9,0-0-4]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.09	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL	10.0	Lumber DOL	1.15	BC	0.03	Vert(CT)	n/a	-	n/a	999			
BCLL	0.0 *	Rep Stress Incr	YES	WB	0.04	Horz(CT)	0.00	9	n/a	n/a			
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MR							Weight: 61 lb	FT = 20%	

LUMBER BRACING TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, BOT CHORD 2x4 SP No.2 except end verticals. 2x4 SP No.3 BOT CHORD WFBS Rigid ceiling directly applied or 10-0-0 oc bracing. OTHERS 2x4 SP No.3 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer **REACTIONS** All bearings 12-0-0. Installation guide. (lb) - Max Horiz 15=100 (LC 9)

Max Uplift All uplift 100 (lb) or less at joint(s) 9, 10, 11, 13, 14, 15

Max Grav All reactions 250 (lb) or less at joint(s) 9, 10, 11, 12, 13, 14, 15

(lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

FORCES NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-0-0 to 2-0-0, Exterior (2) 2-0-0 to 6-0-0, Corner (3) 6-0-0 to 9-0-0, Exterior (2) 9-0-0 to 11-10-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) All plates are 2x4 MT20 unless otherwise indicated

5) Gable requires continuous bottom chord bearing.

6) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

7) Gable studs spaced at 2-0-0 oc.

8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 15, 9, 13, 14, 11, 10.

11) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	
4337300	A03	Common	2	1	Job Reference (optional)

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Dec 03 14:54:12 Page: 1 ID:dnNYIt3q_tuhk5CT0ZE7fmyFOeg-Ur5q79Ut8CY42DezVGtX9vDwYDdTNGNIq?S4oEyCfKP

	6-0-0	/ 12-0-0
/	6-0-0	6-0-0

Scale = 1:37.4

Plate Offsets (X, Y): [2:0-4-0,Edge], [6:0-3-8,Edge]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.41	Vert(LL)	-0.04	7-10	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	-0.07	7-10	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.10	Horz(CT)	0.02	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.04	7-10	>999	240	Weight: 54 lb	FT = 20%

		8.4	D	-	n
- L	u	IVI	р	-	R
	-		_	_	•••

LUWIDER		
TOP CHORD	2x4 SP	No.2
BOT CHORD	2x4 SP	No.2
WEBS	2x4 SP	No.3
SLIDER	Left 2x4	SP No.3 1-11-12, Right 2x4 SP No.3 1-11-12
REACTIONS	(lb/size)	2=543/0-3-8, (min. 0-1-8), 6=477/0-3-8, (min. 0-1-8)
	Max Horiz	2=88 (LC 9)
	Max Uplift	2=-25 (LC 12), 6=-10 (LC 13)

FORCES (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 2-3=-285/0, 3-16=-498/37, 16-17=-464/44, 4-17=-454/64, 4-18=-454/67, 5-18=-463/47, 5-6=-293/0

BOT CHORD 2-7=-134/378, 6-7=0/378

WEBS 4-7=0/265

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 6-0-0, Exterior (2) 6-0-0 to 9-0-0, Interior (1) 9-0-0 to 12-0-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

5) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 10 lb uplift at joint 6 and 25 lb uplift at joint 2.

6) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard

BRACING TOP CHORD BOT CHORD

Structural wood sheathing directly applied or 6-0-0 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

Scale = 1:69.1

Plate Offsets (X, Y): [2:Edge,0-0-12], [8:Edge,0-0-12]												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.55	Vert(LL)	-0.15	13	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.67	Vert(CT)	-0.27	13	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.40	Horz(CT)	0.03	8	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MS		Wind(LL)	0.03	15	>999	240	Weight: 171 lb	FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS WEDGE REACTIONS (I	2x4 SP No.2 2x6 SP No.2 *Except* B2:2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 b/size) 2=1205/0-3-8, (min. 0-1-8), 8=1205/0-3-8, (min. 0-1-8) lax Horiz 2=-188 (LC 10) lax Grav 2=1233 (LC 19), 8=1233 (LC 20)	BRACING TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 4-0-14 oc purlins. Rigid ceiling directly applied or 10-0-0 oc bracing. Except: 6-0-0 oc bracing: 12-15 MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when show 2-23=-1721/0, 3-23=-1558/0, 3-4=-1593/10, 4-24=-1494/29, 5-24=-1493/4 6-7=-1593/10, 7-26=-1598/0, 8-26=-1721/0 2-16=-180/1475, 14-16=0/1077, 14-27=0/1077, 11-27=0/1077, 11-28=0/1 5-12=-33/809, 10-12=-59/707, 7-10=-359/199, 15-16=-60/707, 5-15=-33/8	vn. !9, 5-25=-1493/49, 6-2 077, 10-28=0/1077, 8- 309, 3-16=-358/199	25=-1494/29, -10=0/1352

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 13-3-8, Exterior (2) 13-3-8 to 16-3-8, Interior (1) 16-3-8 to 27-7-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
 * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

5) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

Job	Truss	Truss Type	Qty	Ply	
4337300	H01G	Half Hip Supported Gable	1	1	Job Reference (optional)

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Dec 03 14:54:12 Page: 1

ID:y60txiu_q4gSbBHqqh?OEJyFOgB-Ur5q79Ut8CY42DezVGtX9vDyyDdTNHxIq?S4oEyCfKP

4 ¹²

3x4 =

5-0-0

2x4 =

Scale = 1:29.9

Plate Offsets (X, Y): [3:0-2-0,0-2-13]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.36	Vert(CT)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.02	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP							Weight: 17 lb	FT = 20%

LUMBERTOP CHORD2x4 SP No.2BOT CHORD2x4 SP No.2REACTIONSAll bearings 5-0-0.	BRACING TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 5-0-0 oc purlins, except 2-0-0 oc purlins: 3-4. <u>Rigid ceiling directly applied or 10-0-0 oc bracing.</u>				
(lb) - Max Horiz 2=24 (LC 8), 6=24 (LC 8) Max Uplift All uplift 100 (lb) or less at joint(s) 2, 4, 6 Max Grav All reactions 250 (lb) or less at joint(s) 4, 5 except 2=267 (LC 1), 6=267 (LC 1)		MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.				
FORCES (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown	۱.					

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner (3) -1-0-0 to 1-0-0, Exterior (2) 1-0-0 to 5-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

4) Provide adequate drainage to prevent water ponding.

5) Gable requires continuous bottom chord bearing.

6) Gable studs spaced at 2-0-0 oc.

7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4, 2.

10) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

Job	Truss	Truss Type		Qty	Ply			
4337300	T01SG	Roof Special Structu	ıral Gable	1	1	Job Reference (option	al)	
			Run: 8.63	S Jul 12 20	24 Print: 8.630	S Jul 12 2024 MiTek Industri	es, Inc. Tue Dec 03 14:	54:12 Page: 1
					ID:ujrYm9li6L	JUvC8cAsgKthyFcvu-Ur5q79	Ut8CY42DezVGtX9vD	whDdJNAllq?S4oEyCfKP
	-1-0-0 , , 6-8-0	L	13-3-8	L	20	5-4	26-7-0	27-7-0 L
	1-0-0	1	6-7-8	1	7-1	-12 1	6-1-12	1-0-0
				4x6= 10				
					1 1			
9-10-9 9-6-8	3x4 = 4 3x4 = 4 38	8 ¹² 8 67 5T3 5 5T2 27 5 5T1 27	9 12 \$14w2 26	0-104	12 13 5T6 \$17	3x6s 13 3x4s 14 15 5T8 44 5T8 44	3x4 39	
		23 22 5x6=	B2	-0	28		16 1902	. 17 2-4-9
0-8-3	1	24	2	21	20		1142	
+ $ -$					20	19		
	3x6 II	12			5x6=			3x4 II
	0-3-8	- 4 I	11 7 0		1		00.7.0	1
	7-5	-12	7-1-12		1	20-5-4 5-10-4	6-1-12	\neg
Scale = 1:57.3	0-3-0							
Plate Offsets (X, Y): [2:0-2-	12,0-0-14], [20:0-4-0,0-3-0]							
Loading TCLL (roof) TCDL BCLL BCDL	(psf)Spacing20.0Plate Grip DOL10.0Lumber DOL0.0*Rep Stress Incr10.0Code	2-0-0 1.15 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-MS	0.40 0.37 0.46	DEFL Vert(LL) Vert(CT) Horz(CT) Wind(LL)	in (loc) l/defl l -0.03 19-20 >999 3 -0.07 19-20 >999 2 0.01 17 n/a r 0.03 19-36 >999 2	_/d PLATES 60 MT20 40 - 1/a - 40 Weight: 179 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP N. BOT CHORD 2x4 SP N. WEBS 2x4 SP N. OTHERS 2x4 SP N. SLIDER Left 2x4 SP REACTIONS All bearings (lb) - Max Horiz 2 Max Uplift A 2 Max Grav A 2	o.2 o.3 o.3 SP No.3 1-11-12, Right 2x4 14-10-8. except 17=0-3-8 I=188 (LC 11), 30=188 (LC 1 III uplift 100 (lb) or less at join 09=-226 (LC 13), 22=-130 (LC UII reactions 250 (lb) or less a 0), 17=541 (LC 1), 20=653 (l	SP No.3 1-11-12 1) t(s) 2, 17, 21, 24, 30 exc 212), 23=-295 (LC 19) t joint(s) 23 except 2=25 C 20), 21=284 (LC 19),	cept 9 (LC 22=622	BRACING TOP CHO BOT CHO WEBS JOINTS	G DRD DRD	Structural wood sheathing Rigid ceiling directly appli 6-0-0 oc bracing: 21-22,2' 1 Row at midpt <u>1 Brace at Jt(s): 26, 28, 2</u> MiTek recommends that installed during truss ere- Installation guide.	g directly applied or r ed or 10-0-0 oc brac 0-21. 11-20 9 Stabilizers and requ ction, in accordance	6-0-0 oc purlins. ing, Except: ired cross bracing be with Stabilizer
 (LC 19), 24=342 (LC 19), 30=259 (LC 20) FORCES (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 15-39=-457/1, 16-39=-492/0, 16-17=-295/0 BOT CHORD 19-20=0/380, 17-19=0/380 WEBS 7-22=-385/224, 20-28=-508/149, 28-29=-487/132, 15-29=-484/134, 15-19=0/275, 11-20=-271/91, 6-23=-160/269 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior (2) -1-0-0 to 2-0-0, Interior (1) 2-0-0 to 13-3-8, Exterior (2) 13-3-8 to 16-3-8, Interior (1) 16-3-8 to 27-7-0 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) All plates are 2x4 MT20 unless otherwise indicated. 5) Gable studs spaced at 2-0-0 oc. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 17, 21, 24, 2 except (jt=lb) 22=129, 20=226, 23=295. 9) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. 								
LOAD CASE(S) Standa	ard							

Job	Truss	Truss Type	Qty	Ply	
4337300	T02	Roof Special	7	1	Job Reference (optional)

Run: 8.63 S Jul 12 2024 Print: 8.630 S Jul 12 2024 MiTek Industries, Inc. Tue Dec 03 14:54:12 Page: 1

ID:utz3yWhGNL4ebqeczhCxADyFOhl-Ur5q79Ut8CY42DezVGtX9vDyFDfBNHxIq?S4oEyCfKP

Scale = 1:31.7

Plate Offsets (X, Y): [4:0-2-0,0-1-0]

Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.30	Vert(LL)	-0.02	4-7	>999	360	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.25	Vert(CT)	-0.05	4-7	>999	240		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	2	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-MP		Wind(LL)	0.02	4-7	>999	240	Weight: 21 lb	FT = 20%

LUMBER		BRACING	
TOP CHORD	2x4 SP No.2	TOP CHORD	Structural wood sheathing directly applied or 5-0-0 oc purlins,
BOT CHORD	2x4 SP No.2		except end verticals.
WEBS	2x4 SP No.3	BOT CHORD	Rigid ceiling directly applied or 10-0-0 oc bracing.
OTHERS	2x4 SP No.3		MiTek recommends that Stabilizers and required cross bracing be
REACTIONS (lb/size) 2=255/0-3-0, (min. 0-1-8), 4=182/0-1-8, (min. 0-1-8)		installed during truss erection, in accordance with Stabilizer
Ň	Max Horiz 4=-59 (LC 10)		Installation guide.

Max Uplift 2=-44 (LC 9), 4=-19 (LC 13)

FORCES (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES

Wind: ASCE 7-10; Vult=115mph (3-second gust) Vasd=91mph; TCDL=6.0psf; BCDL=6.0psf; h=32ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C 1) Exterior (2) 0-3-8 to 4-3-0, Interior (1) 4-3-0 to 6-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 2)

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and 3) any other members.

Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface. 4)

5) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4.

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 44 lb uplift at joint 2 and 19 lb uplift at joint 4. 6)

7) This truss is designed in accordance with the 2015 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.