	Page 1 of
PROPERTY ID #:	SFD 2411-0027
COUNTY:	Hernest

SOIL/SITE EVALUATION for ON-SITE WASTEWATER SYSTEM

CA	TION OF SITE:						PROPI	ERTY SIZ		
	R SUPPLY: (JATION METH		ngle Family Well er Boring Pit		Spring Oth PE OF WASTE	er WATER:	Domest		-	IPWW
P R O				RPHOLOGY	отне	E FACTORS				
L E #	.0502 LANDSCAPE POSITION/ SLOPE %	HORIZON DEPTH (IN.)	.0503 STRUCTURE/ TEXTURE	.0503 CONSISTENCE/ MINERALOGY	.0504 SOIL WETNESS/ COLOR	.0505 SOIL DEPTH	.0506 SAPRO CLASS	.0507 RESTR HORIZ	.0509 PROFILE CLASS & LTAR*	.0503 SLOP CORF
L	1%. IS	11-48	51 5CL		7/1=11 <12'sf	nsabic Se: 48"	7			
	2%.	0-7 7-20 20-48	SL gr SLL, SBK CL, WKSBX	FI,55, Ef, 5E	7.5/K 7/1:20	48"			.3	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2% L9	0.13 13-32 32-48	SL gc SCL SEX CL, WHYOR	Fr, 58, 59, SE	7.5/R 7/1=32*	4811	₹ 2 *		.7	
8	9% 15	0-17 17- 3 8 38-48	SL 9' SCL SBK CL/ 38K	Fc,58,59,56	7.5yR 7/2:384	48"			.7	

DESCRII HOLL	HALL OF THE	The state of the s	
Available Space (.0508)			SITE CLASSIFICATION (.0509):
System Type(s)	25% Rx	25% 40	EVALUATED BY: 2L
Site LTAR	. 3	.3	OTHER(S) PRESENT:
Maximum Trench Depth	18-24	18-24	
Comments:			

LEGEND

LANDSCAPE POSITION	SOIL GROUP	SOIL TEXTURE	CONVENTIONAL LTAR (gpd/ft²)	SAPROLITE LTAR (gpd/ft²)	LPP LTAR (gpd/ft²)	MINERALOGY/ CONSISTENCE		STRUCTURE	
CC (Concave slope)		S (Sand)		0.6 - 0.8		MOIST	WET	SG (Single grain)	
CV (Convex Slope)	1	LS (Loamy sand)	0.8 - 1.2	0.5 -0.7	0.4 -0.6	Lo (Loose)	NS (Non-sticky)	M (Massive)	
D (Drainage way)	п	SL (Sandy loam)	0.6 - 0.8	0.4 -0.6	0.3 - 0.4	VFR (Very friable)	SS (Slightly sticky)	GR (Granular)	
FP (Flood plain)		L (Loam)		0.2 - 0.4		FR (Friable)	S (Sticky)	SBK (Subangular blocky)	
FS (Foot slope)		SiL (Silt loam)	0.3 - 0.6	0.1 - 0.3	0.15 - 0.3	FI (Firm)	VS (Very sticky)	ABK (Angular blocky)	
H (Head slope)		SCL (Sandy clay loam)		0.05 - 0.15**		VFI (Very firm)	NP (Non-plastic)	PR (Prismatic)	
L (Linear Slope)	III	CL (Clay loam)		None		EFI (Extremely firm)	SP (Slightly plastic)	PL (Platy)	
N (Nose slope)		SiCL (Silty clay loam)					P (Plastic)		
R (Ridge/summit)		Si (Silt)				2.0	VP (Very plastic)	1 V 81 B	
S (Shoulder slope)		SC (Sandy clay)				SEXP (Slightly expansive)			
T (Terrace)	IV SiC (Silty clay) C (Clay)	SiC (Silty clay)	0.1 - 0.4			EXP (Expansive)			
TS (Toe Slope)		C (Clay)						-	
		O (Organic)	None	= =					

^{*} Adjust LTAR due to depth, consistence, structure, soil wetness, landscape, position, wastewater flow and quality.

HORIZON DEPTH DEPTH OF FILL In inches below natural soil surface

RESTRICTIVE HORIZON

In inches from land surface
Thickness and depth from land surface

SAPROLITE

S(suitable) or U(unsuitable); Evaluation of saprolite shall be by pits.

SOIL WETNESS CLASSIFICATION Inches from land surface to free water or inches from land surface to soil colors with chroma 2 or less - record Munsell color chip designation S (Suitable) or U (Unsuitable)

Show profile locations and other site features (dimensions, reference or benchmark, and North).

9 9 9 SED 3-3R 9 W:11:ams R

^{**}Sandy clay loam saprolite can only be used with advanced pretreatment in accordance with 15A NCAC 18E .1200.