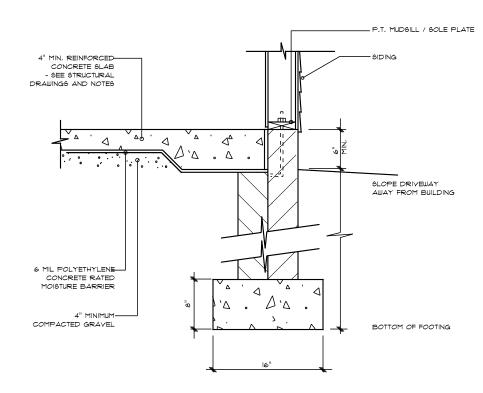
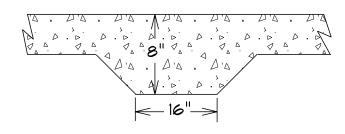
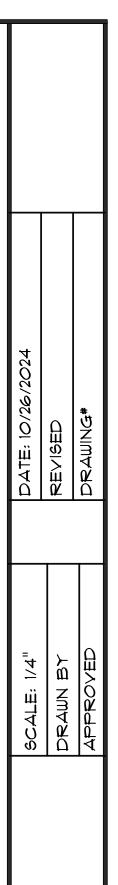

OPENI	NG SCHEDULE			
PRODUCT CODE	SIZE	HINGE	REVERSED	COUNT
1-6 Door Unit	1'-6"	L	NO	1
2-4 Door Unit	2'-4"	R	NO	2
2-4 Door Unit	2'-4"	L	NO	2
2-6 Door Unit	2'-6"	R	NO	2
2-6 Door Unit	2'-6"	L	NO	2
2-8 Door Unit	2'-8"	L	NO	1
3-0 Doublehung Door Unit	3'-0"	LR	NO	2
4-0 Doublehung Door Unit	4'-0"	LR	NO	1
4-0 Doublehung Door Unit	4'-0"	LR	NO	1
20x32 single	2'-0" x 3'-2"	N	NA	1
28X32 single	2'-8" x 3'-2"	N	NA	1
28x52 single	2'-8" x 5'-2"	N	NA	4
28x52 twin	5'-4" x 5'-2"	NN	NA	2
32X80 COLONIAL A 1	2'-8"	R	NO	1
32X80 FRENCH A 1	2'-8"	L	NO	1
36X80 COLONIAL A 1	3'-0"	L	NO	1
192X84 - 8 PANEL - GARAGE DOOR	16'-0"	U	NO	1

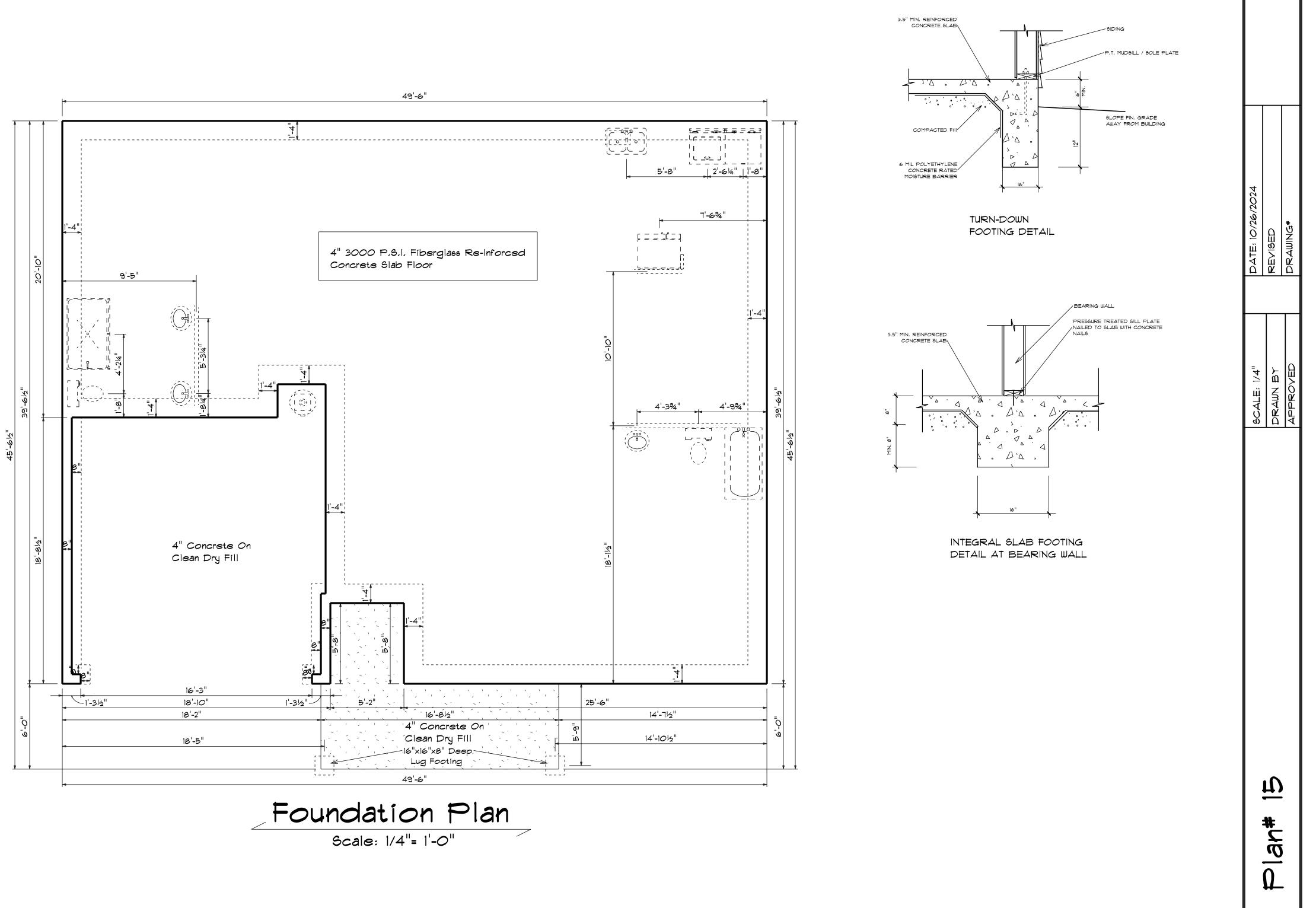

Areas

Heated Sq.Ft.	1597
Garage	356
Front Porch	128


SCALE: 1/4" DRAWN BY APPROVED DRAWING#

Plant U





STEM WALL FOOTING DETAIL

LUG FOOTING DETAIL

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Contractors Model: Plan 15

THE PLACEMENT PLAN NOTES:

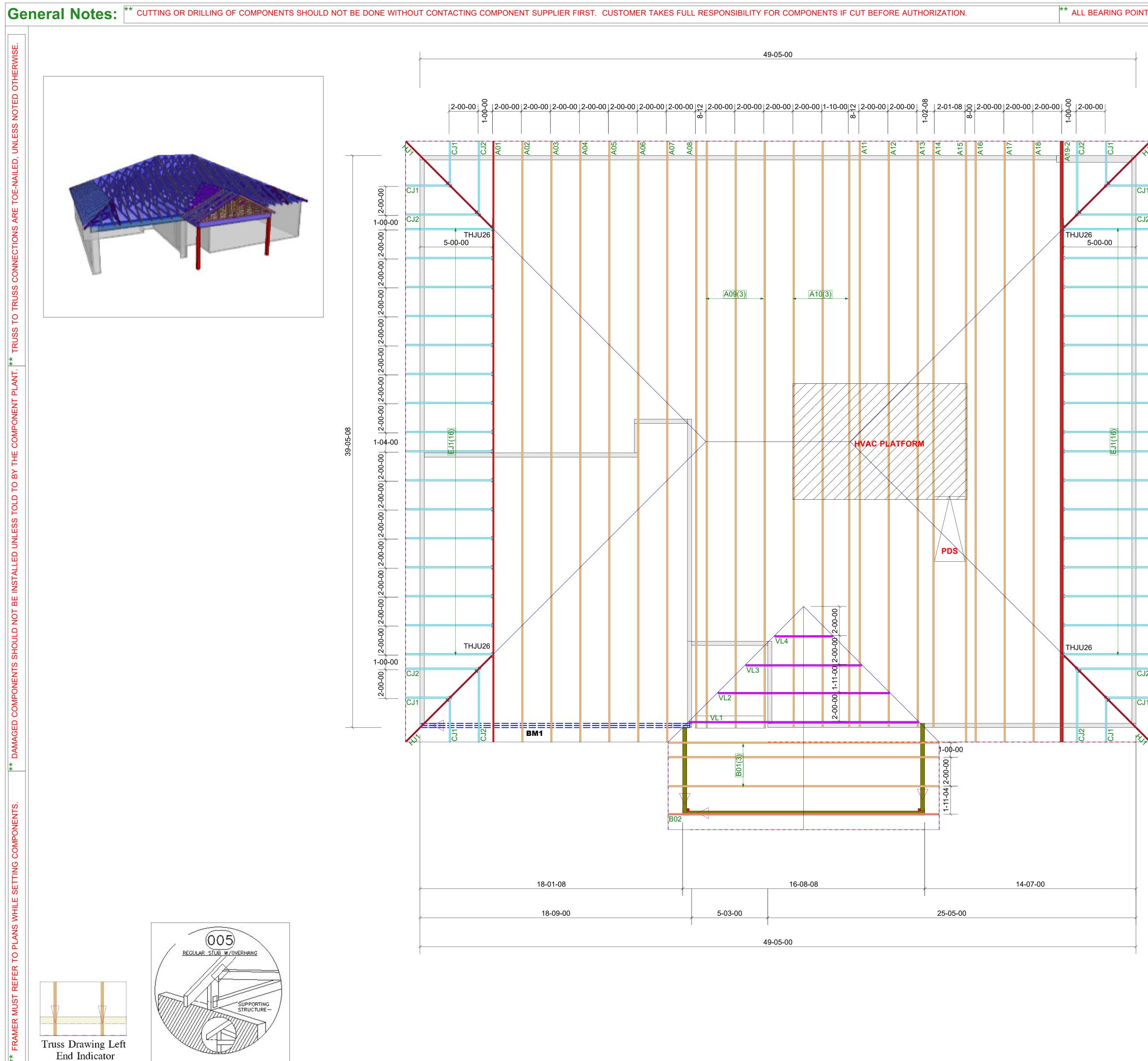
1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

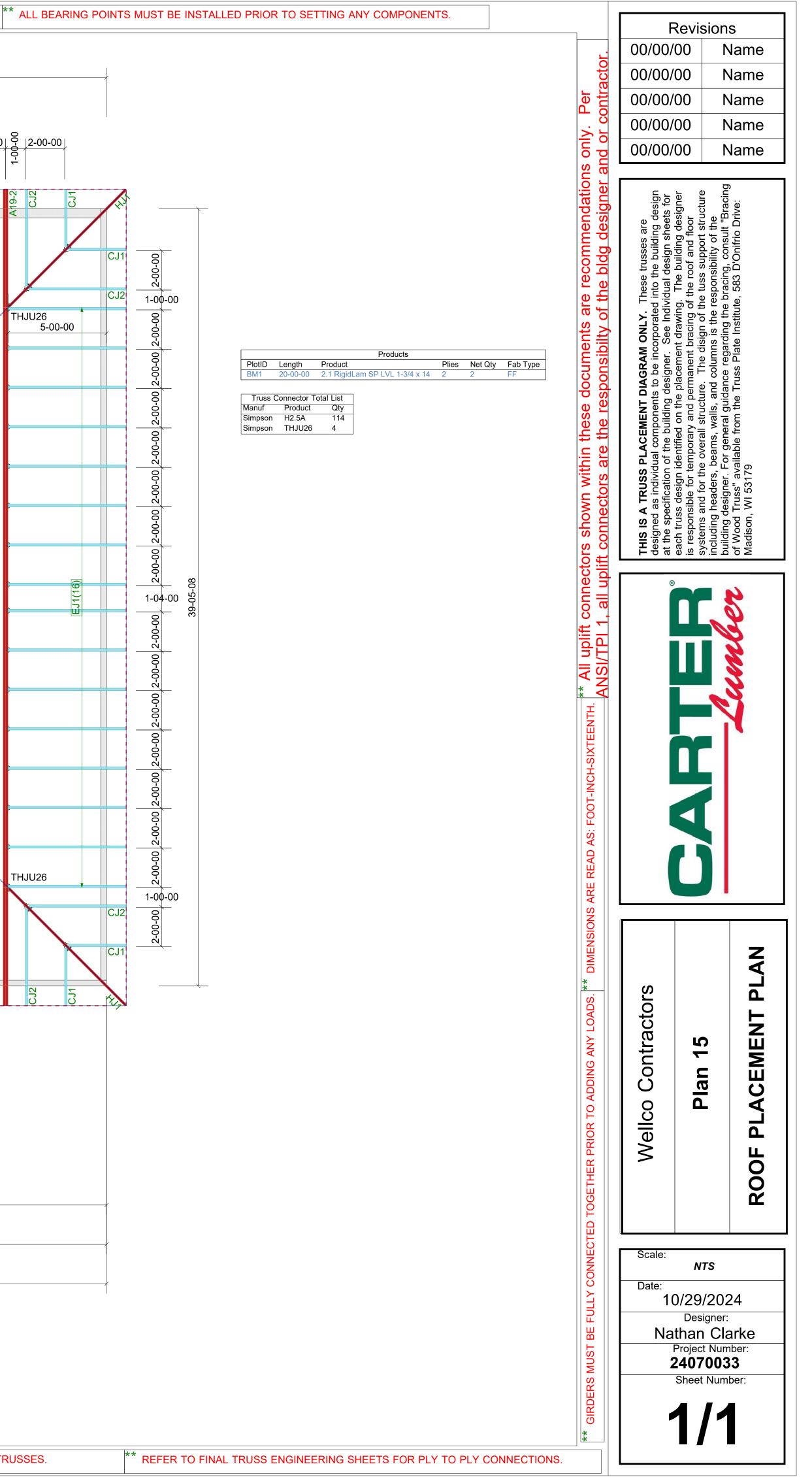
2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

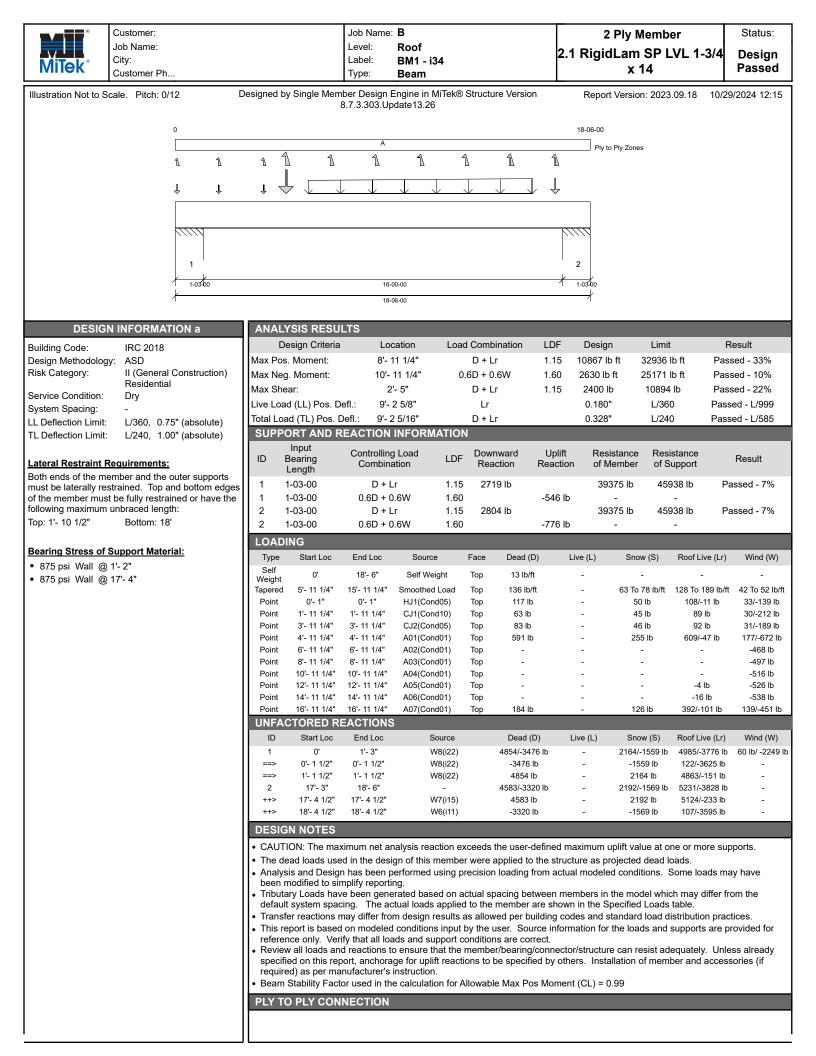

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.


7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

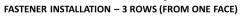
Date: _____

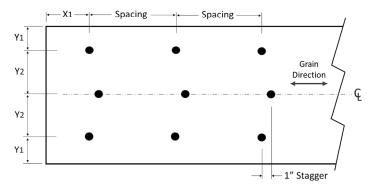


9

--00-00 0-00 5-00-0

-00


ġ



	Customer:	Job Name:	В	2 Ply Member	Status:
	-	Level:	Roof	2.1 RigidLam SP LVL 1-3/4	Design
MiTek [®]	City:	Label:	BM1 - i34	x 14	Passed
MILEK	Customer Ph	Туре:	Beam	X 14	r asseu

PLY TO PLY CONNECTION

 Zone A: Factored load = 0 plf. Use 12d (0.148"x3.25") nails. LDF = 1.00. Qty = 57. Row = 3, Spacing = 12" 12d (0.148"x3.25") nails properties: D = 0.148", L = 3.25". Fastener capacity = 128 lbs. X1 = 2.25", Y1 = 0.75", Y2 = 1.5" Install fasteners from one face. X1 = Minimum end distance, X2 = Minimum edge distance, Y2 = Minimum row spacing.

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24070033-B 15 Overhills Creek-Roof-Plan 15 gable porch

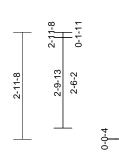
The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

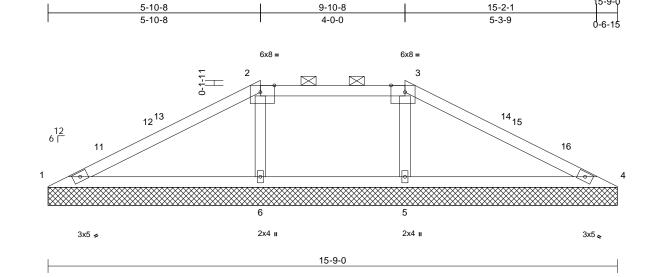
Pages or sheets covered by this seal: I69186933 thru I69186960

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

October 29,2024


Gilbert, Eric


IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	VL1	Valley	1	1	I69186933 Job Reference (optional)

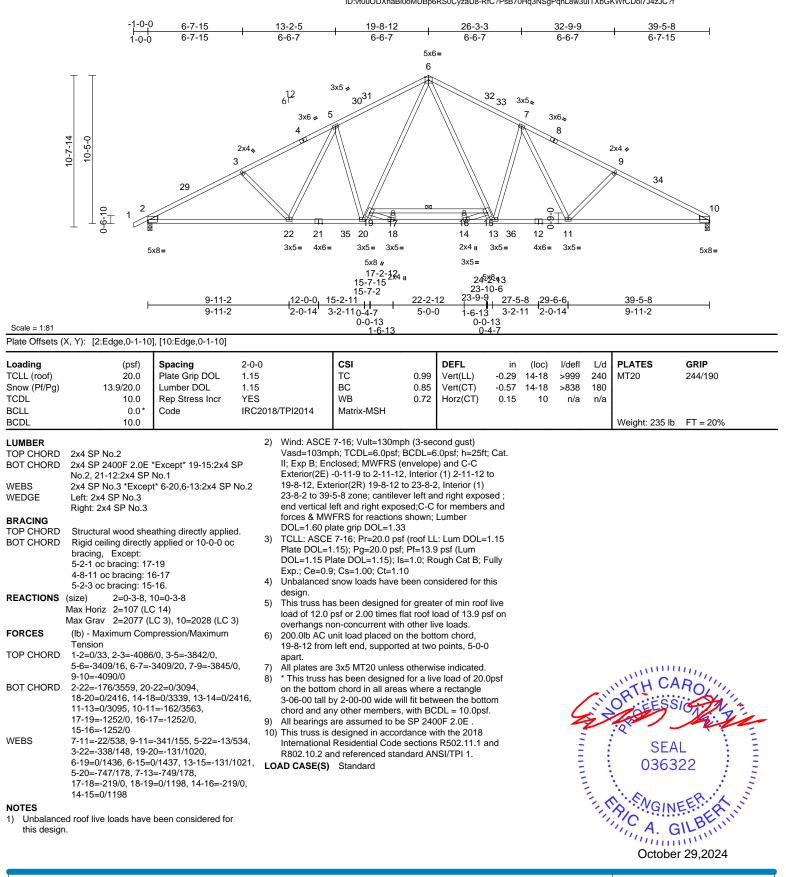
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:26 ID:MMJ?wRUgNGS?103iP6vpfZyzaWn-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

15-9-0

Scale = 1:31.9

Plate Offsets	(X, Y): [2:0-4-10,Edge], [3:0-4-10,Edge]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.59 0.45 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 6	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 54 lb	GRIP 244/190 FT = 20%
this design 2) Wind: AS Vasd=10 II; Exp B Exterior(Exterior(14-1-15, left and r exposed	 2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins, ex 2-0-0 oc purlins (10- 0 Rigid ceiling directly bracing. (size) 1=15-9-0, 6=15-9-0 Max Horiz 1=-28 (LC Max Uplift 1=-17 (LC (LC 15) Max Grav 1=85 (LC (LC 43), 6 (lb) - Maximum Com Tension 1-2=-119/670, 2-3=- 0 1-6=-520/152, 5-6=- 2-6=-520/184, 3-5=- 2-6=-520/184, 3-5=- 2-6=-520/1	0-0 max.): 2-3. applied or 6-0-0 oc 4=15-9-0, 5=15-9-0, : 13) : 47), 4=-17 (LC 45), 1 62), 4=85 (LC 63), 5= =662 (LC 43) pression/Maximum 47/520, 3-4=-114/670 520/152, 4-5=-520/15 520/182 been considered for (3-second gust) CDL=6.0psf; h=25ft; 0 velope) and C-C or (1) 3-0-8 to 5-11-0 terior(2R) 9-11-0 to 5-9-8 zone; cantilevel cal left and right proces & MWFRS for	4) d or 5) 6) 7) 8) 9) 6=-2 9) =662 10 11 52 12 13 52 13 Cat. LC	only. For sti see Standar, or consult qu TCLL: ASCE Plate DOL= ² DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. Provide ader Gable requir Gable studs * This truss I on the bottor 3-06-00 tall I chord and ar) All bearings () Provide mec bearing plate 1, 17 lb uplif () This truss is International R802.10.2 a		nd (norm End Deta ssigner as ssigner as ssigner as ssigner as ssigner as ssigner as ssigner as the from L to prevent of the component to prevent of the component to prevent of the component so where so SP No. n (by oth tanding 1 o uplift at reactions ndard AN n does nd	al to the face ils as applica is per ANSI/TI psf (Lum bugh Cat B; F)-0-0 asidered for ti water ponding d bearing. e load of 20.1 a rectangle veen the both 2. ers) of truss i 7 lb uplift at j joint 6. ith the 2018 a (BSI/TP1 1. bt depict the s), ble, PI 1. 1.15 Fully his g. Opsf om to joint				SEA 0363	22 EER A

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



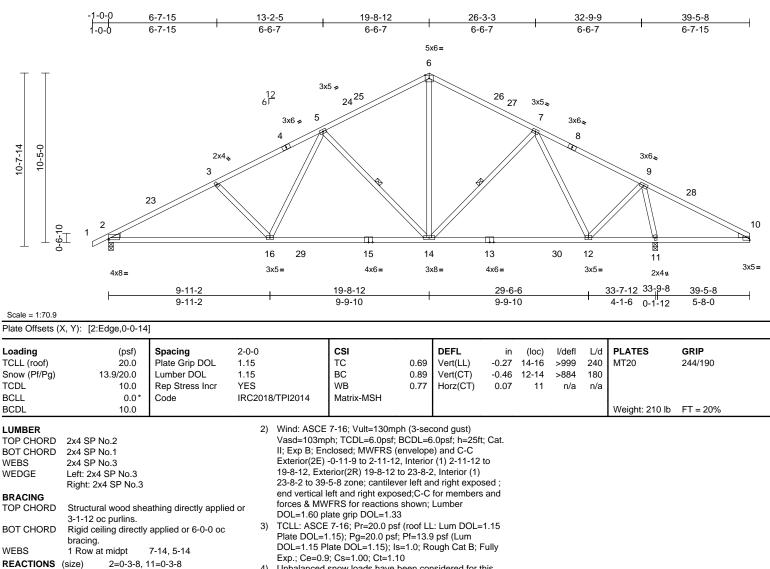
818 Soundside Road Edenton, NC 27932

October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A10	Common	3	1	I69186934 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:21 ID:vt0uODXhaBI0oMUBp6RS0CyzaU8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


A MITek Affilia 818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A09	Common	3	1	I69186935 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:21 ID:YH3RxeEZnJGCTwpd270MAeyzaVp-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15:59:21 Page: 1

- Unbalanced snow loads have been considered for this design.
- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) All bearings are assumed to be SP No.1.
- This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- LOAD CASE(S) Standard

WEBS

FORCES

TOP CHORD

BOT CHORD

 Unbalanced roof live loads have been considered for this design.

Max Horiz 2=107 (LC 14)

Tension

10-11=-383/213

9-11=-2089/262

Max Grav 2=1490 (LC 3), 11=2037 (LC 3)

(lb) - Maximum Compression/Maximum

1-2=0/33, 2-3=-2824/210, 3-5=-2573/203,

5-14=-869/163, 5-16=0/699, 3-16=-363/143,

5-6=-1617/212, 6-7=-1616/203,

12-14=0/1255, 11-12=-36/157,

6-14=-35/1014, 7-14=-57/175,

7-12=-693/168, 9-12=-40/1277,

2-16=-214/2438, 14-16=-29/1886,

7-9=-1205/54. 9-10=-196/516

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A15	Нір	1	1	I69186936 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:22 ID:dMlyITBI6tI0?ILWwdI2D_yzaGN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-1-0-0 |-----1-0-0 40-5-8 5-10-12 33-6-12 39-5-8 11-8-0 15-7-0 23-10-8 27-9-8 5-10-12 5-9-4 3-11-0 8-3-8 3-11-0 5-9-4 5-10-12 1-0-0 4-8-8 4x8= 8x10= 8x10= 2x4 II 2x4 II 0-1-11 33 634 ___35_3<u>6</u> 6-4-10 <u>-</u>= 4 8 5 7 6¹² T 3x5 🞜 3x5 👟 3 4-9-0 9 6-7-8 6-3-0 6-3-0 32 37 0-6-10 T 10 11 F Ì щ 25 24 23 20 15 12 22 18 14 13 2x4 II 3x5= 4x6= 5x8 II 2x4 🛛 3x5= 2x4 II 4x6 =5x8= 5x8= 3x10= 2x4 II 3x5= 3x5= 5x8 II 17-2-12 25-5-8 23-10-8 15-8-12 <u>14-0-0</u> 15-7-0 2-5-12 1-7-0 1-6-0 23-8-12 1-6-0^{||}1-7-0 5-10-12 11-6-4 27-11-4 39-5-8 22-2-12 33-6-12 5-10-12 5-7-8 5-0-0 2-5-12 5-7-8 5-10-12 0-1-12 0-1-12

Scale = 1:72.4

L oading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.96	DEFL Vert(LL)	in -0 32	(loc) 17-19	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.96	Vert(CT)		18-20	>785	180	11120	244/100
TCDL Ű	10.0	Rep Stress Incr	YES		WB	0.95	Horz(CT)	0.17	10	n/a	n/a		
BCLL	0.0*	Code	IRC20	18/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 238 lb	FT = 20%
UMBER			2		7-16; Vult=130m								
FOP CHORD	2x4 SP No.2 *Excep				ph; TCDL=6.0psf;			; Cat.					
BOT CHORD	2x4 SP 2400F 2.0E No.2, 23-14:2x4 SP		SP		nclosed; MWFRS (-0-11-9 to 2-11-1)			to					
VEBS	2x4 SP No.3	INU. I			erior(2R) 11-8-0 to			10					
WEDGE	Left: 2x4 SP No.3				27-9-8, Éxterior(2R								
	Right: 2x4 SP No.3				3-6-12 to 40-5-1 z								
BRACING					ed ; end vertical lef s and forces & MV								
TOP CHORD	Structural wood she	athing directly applie	d,		L=1.60 plate grip I			00011,					
	except 2-0-0 oc purlins (3-1	-4 max): 4-8	3		E 7-16; Pr=20.0 ps			1.15					
BOT CHORD	Rigid ceiling directly				1.15); Pg=20.0 ps								
	bracing.				Plate DOL=1.15); I			Fully					
REACTIONS	· · · ·		4		9; Cs=1.00; Ct=1. snow loads have			his					
	Max Horiz 2=-64 (LC			design.	Show loads have	Deen coi		1113					
	Max Grav 2=2107 (L		50) 5		as been designed	for great	er of min root	f live					
ORCES	(lb) - Maximum Com	pression/Maximum			psf or 2.00 times			sf on					
TOP CHORD	Tension 1-2=0/33, 2-3=-4165	5/0 3-4=-3792/0	6		non-concurrent wit unit load placed or								
	4-5=-4204/0, 5-7=-4		Ċ		n left end, support			h					
	8-9=-3792/0, 9-10=-	4165/0, 10-11=0/33		apart.		ou ut the	pointo, o o t	,					11.
BOT CHORD	2-25=-68/3633, 24-2				quate drainage to							W'UL CA	Dalle
	20-22=0/4025, 18-20 13-15=0/3313, 12-13	0=0/4957, 15-18=0/4	025, g		has been designe			0psf			1	"aTH UN	TO 111
	10-12=-58/3635, 12-1				m chord in all area			~ m			1	O ESS	ani.
	17-19=-999/0, 16-17	,			by 2-00-00 wide w ny other members					4	LO .		all all
VEBS		519/124, 4-24=-4/459), g		are assumed to b							:2	K .
	8-13=-4/459, 9-13=-	,			designed in acco					-	:	SEA	L 🗼 🗌
	21-22=-1130/0, 5-21	,	E10		Residential Code			and		Ξ		JLA 00CO	
	,	6=-702/133, 4-22=0/1 =-234/0, 20-21=0/12	<u>)</u>		and referenced sta					Ξ		0363	22 :
	17-18=-234/0, 16-18		, 1		urlin representation ation of the purlin			size		-	8	N	
NOTES				bottom choi		along an					1	N. En.	Rick
) Unbalance	ed roof live loads have	been considered for	L	OAD CASE(S	Standard						25	GIN	EF. AN
this desigr	า.										1	CA C	II BEIN
												A. G	L
												October	True

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	VL2	Valley	1	1	I69186937 Job Reference (optional)

5-10-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-11-8

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Grav

Tension

2-4=-742/317

Scale = 1:30.1 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES 1)

2)

3)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

Snow (Pf/Pg)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:26 ID:vt0uODXhaBI0oMUBp6RS0CyzaU8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-2-1

Page: 1

11-9-0

5-10-8 5-3-9 0-6-14 4x5 =2 2-7-12 9 10 12 3 4 2x4 🛛 3x5 🧔 3x5 💊 11-9-0 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) 20.0 Plate Grip DOL 1.15 TC 0.50 Vert(LL) n/a 999 MT20 244/190 n/a BC 13 9/20 0 Lumber DOL 1 15 0.42 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.16 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MSH 10.0 Weight: 39 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) desian. Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 10-0-0 oc purlins. 7) Gable studs spaced at 4-0-0 oc. Rigid ceiling directly applied or 6-0-0 oc * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 1=11-10-0, 3=11-10-0, 4=11-10-0 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Horiz 1=29 (LC 14) chord and any other members. Max Uplift 1=-44 (LC 22), 3=-44 (LC 21) All bearings are assumed to be SP No.2. 9) 1=77 (LC 38), 3=77 (LC 39), 4=899 10) Provide mechanical connection (by others) of truss to (LC 2) bearing plate capable of withstanding 44 lb uplift at joint (Ib) - Maximum Compression/Maximum 1 and 44 lb uplift at joint 3. 11) Beveled plate or shim required to provide full bearing 1-2=-174/519, 2-3=-169/519 surface with truss chord at joint(s) 1, 3. 1-4=-432/216, 3-4=-432/216 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Unbalanced roof live loads have been considered for LOAD CASE(S) Standard Wind: ASCE 7-16; Vult=130mph (3-second gust) ORTH Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 5-11-0, Exterior(2R) 5-11-0 to 8-11-0, Interior (1) 8-11-0 to WITTER CONTRACTOR 11-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and SEAL forces & MWFRS for reactions shown; Lumber 036322 DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1. GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

(1111111) October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	VL3	Valley	1	1	I69186938 Job Reference (optional)

3-11-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Loading

TCDL

BCLL

BCDL

LUMBER

OTHERS

WEBS

NOTES 1)

2)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:26 ID:vt0uODXhaBI0oMUBp6RS0CyzaU8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

7-4-1

Page: 1

3-11-8 3-4-9 0-6-15 4x5 = 2 9 10 12 6 Г 1-8-4 2-0-0 3 4 2x4 🥃 2x4 🛛 2x4 💊 7-11-0 Scale = 1:25 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.22 Vert(LL) n/a 999 MT20 244/190 n/a Snow (Pf/Pg) BC 13 9/20 0 Lumber DOL 1 15 0.23 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.08 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 Weight: 25 lb FT = 20%TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 2x4 SP No.3 Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this 5) BRACING desian. TOP CHORD Structural wood sheathing directly applied or Gable requires continuous bottom chord bearing. 6) 7-11-0 oc purlins. 7) Gable studs spaced at 4-0-0 oc. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc * This truss has been designed for a live load of 20.0psf 8) bracing. on the bottom chord in all areas where a rectangle **REACTIONS** (size) 1=8-0-0, 3=8-0-0, 4=8-0-0 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Horiz 1=-19 (LC 13) chord and any other members. Max Uplift 1=-1 (LC 15), 3=-5 (LC 16) All bearings are assumed to be SP No.2. 9) Max Grav 1=91 (LC 21), 3=91 (LC 22), 4=536 10) Provide mechanical connection (by others) of truss to (LC 2) bearing plate capable of withstanding 1 lb uplift at joint 1 (Ib) - Maximum Compression/Maximum and 5 lb uplift at joint 3. Tension 11) Beveled plate or shim required to provide full bearing 1-2=-128/280, 2-3=-120/280 surface with truss chord at joint(s) 1, 3. 1-4=-249/174, 3-4=-249/174 12) This truss is designed in accordance with the 2018 2-4=-409/222 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard SEAL 036322

3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road

FORCES TOP CHORD BOT CHORD Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-0-0 to 3-0-0, Interior (1) 3-0-0 to 4-0-0, Exterior(2R) 4-0-0 to 6-9-3, Interior (1) 6-9-3 to 8-0-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

G mmm October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	VL4	Valley	1	1	I69186939 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:27 ID:vt0uODXhaBl0oMUBp6RS0CyzaU8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

3-4-1

1-4-9

1-11-8

1-11-8

3-11-0

0-6-15

3

2x4 👟

Page: 1

12 6 Г 2 0-8-4 1-0-0 0-0-4 2x4 🍃 3-11-0

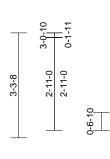
Scale = 1:22

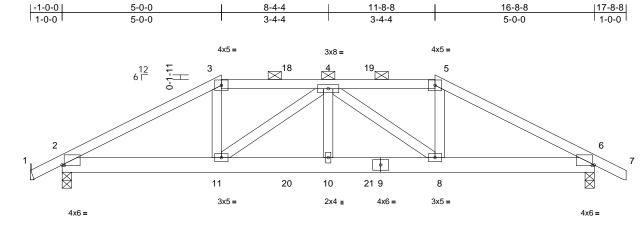
Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.12 0.12 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 Structural wood she 3-11-0 oc purlins. Rigid ceiling directly bracing. (size) 1=4-0-0, 3 Max Horiz 1=-9 (LC Max Grav 1=-160 (LC (lb) - Maximum Com Tension 1-2=-314/170, 2-3=- 1-3=-149/274	applied or 10-0-0 or 3=4-0-0 13) C 2), 3=160 (LC 2) ipression/Maximum	on the botto 3-06-00 tall chord and a d or 9) All bearings 10) Beveled pla surface with 11) This truss is Internationa	has been designed m chord in all areas by 2-00-00 wide wi ny other members. are assumed to be te or shim required truss chord at joint designed in accord I Residential Code and referenced stan) Standard	s where Il fit betv SP No. to provi t(s) 1, 3. dance w sections	a rectangle veen the botto 2 . de full bearing th the 2018 R502.11.1 a	om g					
this design 2) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E vertical left forces & M	td roof live loads have E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) zone; cantilever left and right exposed;C- WFRS for reactions s plate grip DOL=1.33	(3-second gust) CDL=6.0psf; h=25ft; twelope) and C-C and right exposed ; C for members and	Cat.							and the second se	NITH CA	RO, MAR
 Truss designed only. For sister standard or consult of the true o	gned for wind loads in studs exposed to wind ard Industry Gable En qualified building desi CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; p Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be uires continuous botto is spaced at 4-0-0 oc.	I (normal to the face) d Details as applicating gner as per ANSI/TP roof LL: Lum DOL=1 2f=13.9 psf (Lum 1.0; Rough Cat B; Fu even considered for th	, le, l 1. .15 ully						N. T.		SEA 0363 NGIN C A. C	EER. A LIVE

- 6) Gable requires continuous bottom chord bearing.
- 7) Gable studs spaced at 4-0-0 oc.

818 Soundside Road Edenton, NC 27932


October 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	B01	Hip Girder	1	1	I69186940 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:25 ID:3RF4eDsx9VrahSyz_j9w4PyzakV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

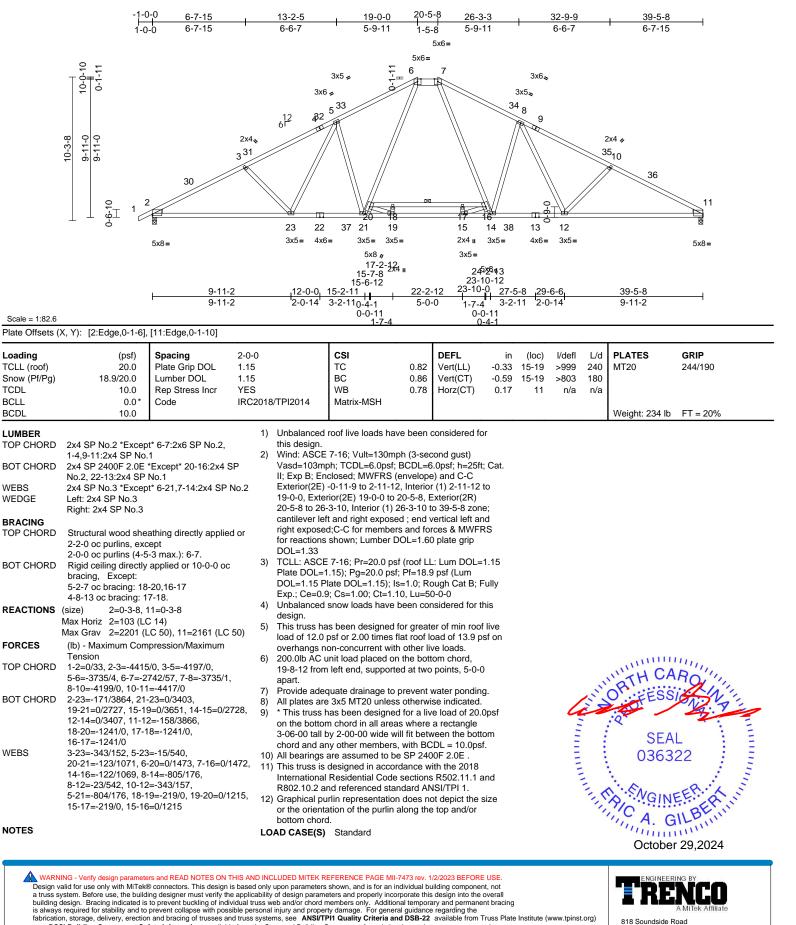
4-10-4	8-4-4	11-10-4	16-8-8
4-10-4	3-6-0	3-6-0	4-10-4

Scale = 1:36.2

Plate Offsets (X, Y): [2:0-0-12,0-0-3], [6:0-0-12,0-0-3]

Plate Olisets (X, Y): [2:0-0-12,0-0-3], [6:0-0-12,0-0-3]									-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018/TPI201	4 CSI TC BC WB Matrix-MSH	0.58 0.72 0.34	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.08 -0.14 0.04	(loc) 10 10-11 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 91 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	3-2-11 oc purlins, ex 2-0-0 oc purlins (3-7 Rigid ceiling directly bracing.	-8 max.): 3-5. applied or 10-0-0 oc anical, 2=0-3-8, 6=0-3 2 9) C 36), 2=-78 (LC 11) 3 (LC 11), 2=1753 (LC 36),	design 5) This tri load of overha dor 6) Provid 7) * This on the 3-06-0 chord : 8) Bearin SP No 9) Refer t 10) Provid bearing 1.	ss has been designed 12.0 psf or 2.00 times ngs non-concurrent wil adequate drainage to truss has been designe bottom chord in all area tall by 2-00-00 wide v and any other members s are assumed to be: 2. b girder(s) for truss to t mechanical connection plate capable of withs	for great flat roof I prevent d for a live as where vill fit bet s. , Joint 2 russ con on (by oth tanding	er of min rood oad of 13.9 p ve loads. water pondin re load of 20.1 a rectangle ween the bott SP No.2, Join nections. wers) of truss (144 lb uplift at	f live sf on g. Opsf om nt 6 to	1) D In U	orease= niform Lo Vert: 1- 12-15=- oncentra Vert: 3= 8=-415	, now (ba 1.15 oads (l 13=-70 -20 -20 ated Lo -114 (l (F), 4=	alanced): Lumbe b/ft) 0, 3-13=-48, 3-5= ads (lb) F), 5=-114 (F), 1	r Increase=1.15, Plate -58, 5-7=-48, 1=-415 (F), 10=-47 (F), 9 (F), 19=-109 (F),
this design 2) Wind: ASC Vasd=103 II; Exp B; I and right e Lumber D 3) TCLL: ASC Plate DOL DOL=1.15	(lb) - Maximum Com Tension 1-2=-38/120, 2-3=-2 4-5=-2283/129, 5-6= 2-11=-77/2288, 10-1 8-10=-98/2780, 6-8= 3-11=0/812, 4-11=-7 4-8=-727/60, 5-8=0/ ed roof live loads have	Apression/Maximum 641/118, 3-4=-2246/1 =-2680/124, 6-7=0/36 1=-98/2780, =-60/2325 '57/56, 4-10=0/270, 820 been considered for (3-second gust) CDL=6.0psf; h=25ft; (velope); cantilever le left and right exposed VL=1.33 roof LL: Lum DOL=1. 'f=18.9 psf (Lum 1.0; Rough Cat B; Fu	23, and do UPLIF 23, and do 12) This tri R802.7 13) Graphi or the bottom 14) Hange provide Ib dow Cat. at 7-0 ft Ib up at 15 and 47 at 11- Ily such c 15) In the	2.5A Simpson Strong-T nended to connect true at jt(s) 2 and 6. This d se not consider lateral ses not consider lateral ses is designed in acco- tional Residential Code 0.2 and referenced sta- cal purlin representation rientation of the purlin chord. (s) or other connection d sufficient to support and 39 lb up at 5-0-0 12, 139 lb down and 3 and 37 lb up at 9-7-1 11-8-8 on top chord, -0-0, 47 lb down at 7-7-12, an 12 on bottom chord. Ib down at 9-7-12, an 12 on bottom chord. OND CASE(S) section russ are noted as front	is to bear connectic forces. rdance w e section: indard Al n does n along the device(s concentr , 139 lb o 7 lb up at 2, and 1 2, and 415 0-12, 47 d 415 lb o The desi he respondent to the to the n loads a	ing walls due n is for uplift ith the 2018 s R502.11.1 a NSI/TPI 1. ot depict the s e top and/or s) shall be ated load(s) 1 down and 37 c 8-4-4, and 1 39 lb down and 33 lb down and 23 gn/selection d psibility of oth pplied to the	and size 39 lb up 39 ad 39 23 lb 4-4, b up of ners.		CV CLITTLE	53	SEA 0363	EER. K I

October 29,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A11	Нір	1	1	I69186941 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:21 ID:tyQwU1ca42QcRoeFuDXn_TyzaRS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A12	Нір	1	1	I69186942 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:21 ID:fxenH5YZ9VimFXRBqYwX?QyzaOx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

818 Soundside Road Edenton, NC 27932

ate Offsets (X, Y): [2:Edge,0-1-6]. 11:Edge,0-1-6]. 14:E14 bading (pst) Spacing 2-0-0 CSI TC 0.48 Utr(L) -0.44 L/// 1-14:4 999 24// 100 DLL (rool) 2.00 Oxe (P/P) Barcon CSI DEFL in (i.cc) I/def L/d PLATES GRIP Void (P/P) 18:9/200 Distribution Code IRC2018/TPI2014 DEFL in (i.cc) I/def L/d PLATES GRIP JMBER Code IRC2018/TPI2014 Mark:MSH DEFL in (i.cc) Udel L/d PLATES GRIP JMBER PCHORD Zx4 SP 2400F 2.0E "Except" 6-7:2x6 SP No.2 Wind: ASCE 7-16; Vult=130mpt (3-second gust) Wad= (30mpt)(R)/RS (envelope) and C-C Use (and is the design. Wind: ASCE 7-16; Vult=130mpt (3-second gust) Vad= (30mpt)(R)/RS (envelope) and C-C Extentor(2E) (7-04 to 22-56; Extenor(2E) (7-04 to 22-56; Extenor(-1-0-0 1-0-0	<u>5-9-0</u> 5-9-0	 	<u>11-4-8</u> 5-7-8		17-0-0 5-7-8	22- 5-5		<u>28-</u> 5-7		-1	<u>33-8-8</u> 5-7-8	3	39-5-8 5-9-0
Bit Bit <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>6=</td> <td>5x6</td> <td>) =</td> <td></td> <td></td> <td></td> <td></td> <td></td>								6=	5x6) =					
Bit Bit <td>_ 2 +</td> <td></td> <td></td> <td></td> <td></td> <td>3×5 4</td> <td>₩ ₩=32 ₩</td> <td><u>, ⊠4-8</u></td> <td>-8×</td> <td>33</td> <td></td> <td>3</td> <td>v6.</td> <td></td> <td></td>	_ 2 +					3×5 4	₩ ₩=32 ₩	<u>, ⊠4-8</u>	-8×	33		3	v6.		
Image: Proceedings Control of the control	0-0	o			2		6 1	ļi					×02		
Image: Proceeding Image: Proceeding Image: Proceeding Proceding Proceeding Proceding Proceding Proceeding											\sim				
9 9					6 4		//			//			934		
Image of the second s	<u>φ</u> 9	9		2x4,	1				0-10	//		\mathbb{A}		2x4	<i>b</i>
Image: Picture in the second	9-3-	8-11	,			// \\			7-1	//					
Pict 1 Pict 1<						/ `	$\langle $			//		/	<u>\</u>		
Image: Set of the set			30	í //			$\langle \rangle $				//		//		
Sofe Sofe <th< td=""><td></td><td>e_{-1}^2</td><td></td><td>\</td><td>\searrow</td><td></td><td></td><td>8</td><td>ı ₽</td><td></td><td>_</td><td>_</td><td>1/5</td><td>2</td><td>1</td></th<>		e_{-1}^2		\	\searrow			8	ı ₽		_	_	1/5	2	1
Sofe Sofe <th< td=""><td>\perp \perp</td><td>. Ģ⊥ ' ∏</td><td></td><td></td><td></td><td></td><td>20 10 1</td><td>0</td><td>19</td><td>44 16</td><td>'[</td><td>1</td><td><u> </u></td><td>⊃ ?</td><td></td></th<>	\perp \perp	. Ģ⊥ ' ∏					20 10 1	0	19	44 16	' [1	<u> </u>	⊃ ?	
Join State Junce 120 56 ft 1 3.54 24/32/3 125-14 125-14 24-20 24-20 125-21 125-14 24-20 24-20 125-21 24-11-10 22-21 24-11-10 22-21 125-21 24-11-10 22-21 24-11-10 22-21 125-21 24-11-10 22-21 24-11-10 22-21 126-11 125-21 24-14 35-4 35-11 126-12 12-21 12-14 15-21 24-14 35-4 35-11 126-12 12-21 12-14 15-21 24-14 35-4 35-11 35-5 126-12 12-201 11-15 12-14															
1 1		5x8	=		3x3=	3X0 VVI		=			570	0 VVD =	323=		5x8=
Home Home <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>24</td><td>373</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								24	373						
8-6-12 12-0-0 15-2-11 22-2-12 23-5-14 30-10-12 39-5-8 istal = 1.73.3 3-6-12 3-5-4 3-2-11							15-5-14	** 11							
Date 0.2-13 (-0-15) 0.2-13 (-0-15) atel Offents (X, Y): [2:Edge.0-1-6], [11:Edge.0-1-6] T-8-14 Date (m) (m) Spacing (m) 2-0-0 (m) DEFL (m) in (loc) Ident (m) PLATES GRIP Dut (m) 0.01 200 CSI 0.2-13 MI20 PLATES GRIP Dut (m) 0.00 CSI 0.05 Veri(T) 0.06 12:14 >998 2:40 DL 0.00 Code IRC2018/TPI2014 TO 0.48 Veri(C) 0.06 12:14 >998 2:44/190 MBER No.2 Code IRC2018/TPI2014 Marrix-MSH Mickelsp. Weight: 230 lb FT = 20% MMER No.2 State St		L					5-2-11 _{II}		12	11-10 2					
Data = 1.73.9 0-0-5 6.2-13 act Offsets (X, Y): [2:Edge.0-1-6]. [11:Edge.0-1-6] 1+8-14 1 1-8-14 act of Offsets (X, Y): [2:Edge.0-1-6]. [11:Edge.0-1-6] 1 1 1-8-14 1 back (M, Y): [2:Edge.0-1-6]. [11:Edge.0-1-6] 1 1 1-8-14 244/190 DCL 0.00 1 1.15 BC 0.48 Ver(C1) 0.60 1/42-14 >399 240 MT20 244/190 DDL 0.00 1 1.15 BC 0.68 0.68 Ver(C1) 0.60 1/42-14 >399 240 MT20 244/190 MBER 0.00 1 1.15 BC 0.68 0.68 Ver(C1) 0.61 1 n/a n/a MT20 244/190 MBER 0.00 1 Weight: 230 b FT = 20% MT20 1 Ver(C1) 0.61 1/4 N/a N/a<		1	8-6-1	12	3-	5-4 3		5-0	-0 '1-8		2-11	3-5-	4	8	3-6-12
And Unsels (A, T): [2:E3000-F6], [T1:E300-F6], [T1:E300-F6] Deading tow (PHP) (psf) 18200 Spacing Plate Gip DD 2-0-0 1.15 CSI TC 0.48 DEFL in (loc) (idefl) U/d PLATES GRIP Dut 0.00 Plate Gip DD 1.15 EC 0.48 Var(L1) -0.44 Var(L1) -0.44 [2:14 - 755 - 180] MT2D 244 PLATES GRIP DIL 0.01 Code Rep Strass for Code Rep Strass for Rep Strass for No.2 Code TC 0.48 PLATES GRIP MMBER No.2 DP CHORD No.2 244 SP PAOF 2.0E "Except" 6-7126 SP No.2 10 Unbalanced row link share been considered for this design. 10 Unbalanced row link share been considered for this design. 10 Unbalanced row link share been considered for this design. 10 Unbalanced row link share been considered for this design. 10 Unbalanced row link share been considered for this design. 10 Unbalanced row link share been considered for this design. 10 Unbalanced row link share been considered for this design. 10 Unbalanced row link share been considered for this design. 10	Scale = 1:73.9						0-0-5								
CLL (root) 20.0 (PFF) Piete Grip DOL 1.15 (Po Stress Incr TC VES TC C 0.44 (PS C) Piete Grip DOL 1.15 (Po Stress Incr MT20 244/190 DL 0.00 10.0 </td <td>late Offsets (2</td> <td>X, Y): [2:Edge,0-1-</td> <td>·6], [11:Edge,0-</td> <td>·1-6]</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	late Offsets (2	X, Y): [2:Edge,0-1-	·6], [11:Edge,0-	·1-6]				-							
Conv (PFrg) 18.8/20.0 (100) Lumber DOL Rep Stress Incr 1.15 (Rep Stress Incr C C 0.6 VECT 0.60 12.14 >785 180 CLL 0.00* Code IRC2018/TPI2014 Will 0.68 Ver(CT) 0.60 12.14 >785 180 DP CHORD 2x4 SP 2400F 2.0E *Except* 6-72.26 SP No.2 No.2 1 Unbalanced roof live loads have been considered for this design. 100 Unbalanced roof live loads have been considered for this design. 100 Vasd=103mph; TCDL=6.0pt; h=25f; Cat. 12.45 (Pa TL) 12.0	.oading	(psf)	Spacing	2	:-0-0		CSI		DEFL	in	(loc)	l/defl	L/d F	LATES	GRIP
DL 0.0 Rep Stress Incr YES WB 0.68 Hor2(CT) 0.16 11 n/a N/a DL 10.0 Code IRC2018/TPI2014 WB 0.68 Hor2(CT) 0.16 11 n/a N/a DP CHORD 2x4 SP 2400F 2.0E "Except" 6-7:2x6 SP N/0 10 Unblaanced roof live loads have been considered for this design. 10 Unblaanced roof live loads have been considered for this design. 10 Unblaanced roof live loads have been considered for this design. 10 Unblaanced roof live loads have been considered for this design. 10 Wind: ASCE 7-16; Vul=130mph (3-second gus) 10 10 The Stress Incr 10 The Stress Incr 11 Wind: ASCE 7-16; Vul=130mph (3-second gus) 11 10 11 Vind: ASCE 7-16; Vul=130mph (3-second gus) 11 11 10 11 10 11 10 11 10 11	CLL (roof)								. ,					IT20	244/190
CLL 0.0 Code IRC2018/TP12014 Matrix-MSH DDL 10.0 Code IRC2018/TP12014 Matrix-MSH DDL 10.0 Code IRC2018/TP12014 Matrix-MSH DPC HORD 2x4 SP 2400F 2.0E * Except* 6-7:2x6 SP No.2 Weight: 230 Ib FT = 20% DT CHORD 2x4 SP 2400F 2.0E * Except* 20-16:2x4 SP No.2 Wind: ASCE 7-16: Vull=130mph (3-second gust) Vasid=103mph; TCDL=6.0pcf; BcDL=6.6pcf; BcDL	CDL						-		. ,						
 MBER PC HORD 2x4 SP 2400F 2.0E "Except" 6-7:2x6 SP No.2 DT CHORD 2x4 SP 2400F 2.0E "Except" 6-7:2x6 SP No.2 DT CHORD 2x4 SP 2400F 2.0E "Except" 6-7:2x6 SP No.2 Mink ASCE 7-16; Vult=130mph (3-second gust) Vada=103mph; TCDL=6.0psf; BcDL=6.0psf; BcDL=6.0psf	BCLL					PI2014			- (-)						
PC HORD 2x4 SP 2400F 2.0E *Except* 6-7:2x6 SP No.2 this design. DT CHORD 2x4 SP 2400F 2.0E *Except* 20-16:2x4 SP No.2 Wind: ASCE 7-16; Vult=130mph (3-second gust) Visad: ASCE 7-16; Vult=130mph: TCDL=6.0psf: h=2610, 0psf: h=18, 0psf (Lum DOL=1.15, P=20.0, 0psf; h=18, 0psf (Lum DOL=1.15, P=20.0, 0psf; h=130, 0psf; h=18, 0psf (Lum DOL=1.15, P=20.0, 0psf; h=218, 0psf; h=18, 0psf (Lum DOL=1.15, P=20.0, 0psf; h=18, 0psf (Lum DOL=1.15, P=2010, 0psf; h=18, 0psf (Lum DOL=1.15, P=2010, 0p	BCDL	10.0											V	Veight: 230	lb FT = 20%
 No.2 No.2 Wind: ASCE 7-16; Vult=130mph (3-second gust) TCLL: ASCE	UMBER				,		roof live loads h	ave been o	considered for	or					
DT CHORD 2x4 SP 2400F 2.0E *Except* 20-16:2x4 SP No.2 Vascl=103mph: TCDL=6.0psf. h=25ft; Cat. II: Exp Is: Enclosed: MWFRS (envelope) and C-C EBS 2x4 SP No.3 Except* 6-21,7-14:2x4 SP No.2 EBS 2x4 SP No.3 Except* 6-21,7-14:2x4 SP No.2 FIERS 2x4 SP No.3 Except* 6-21,7-14:2x4 SP No.3 RCING Structural wood sheathing directly applied or -60-10 curlins, except 22-5-8 to 28-1-0, Interior (1) 22-10-12 to 170-0, Except* ST CHORD Structural wood sheathing directly applied or -20-0 oc purlins (4-3-8 max); 6-7. 37 DT CHORD Structural wood sheathing directly applied or -20-0 oc purlins, 14-20, 14-217 37 A+10-10 oc bracing; 17-18. 37 EACTIONS (size) 2=0-3, 8, 11=0-3-8 Max Grav 2=2210 (LC 50), 11=2170 (LC 50) 10-21-20/33, 2-3-44550, 3-5-4257/0, -56=-36720, 6-7=-2966/37, 78=-3672/0, -19-21-20201, 12-1130280, 11-22-10/3324, 12-20-03224, 12-30-03224, 12-20-03224, 12-20-0322, 12-20-03224, 12-20-0322, 12-20-03224, 12-20-0322, 12-20-03224, 12-20-0323, 2-12-20-032, 2-12-20-032, 2-12-20-032, 2-12-20-032, 2-12-20-032, 2-12-20-032, 2-12-20-032, 2-12-20-032, 2-12-20-032, 2-12-20-04-15-15 DP CHORD 12-2-86(13-10, 0-14-49300, -10-14-49300, 10-11=-449300, -10-14-2-366(13, 20-20-14-22, 10-14-15-118) DP CHORD 12-2-30/33, 2-12-3-07328, -12-2-1200/330, 2-12-45/920, -12-2-1200/330, 2-12-45/920, -12-2-26(13), 30, 2-12-45/920, -12-2-26(13), 30, 2-12-45/920,	TOP CHORD)E *Except* 6-7	':2x6 SP		0	7-16: Vult=130r	nph (3-sec	ond aust)						
EBS 2x4 SP No.3 *Except* 6-21,7-14:2x4 SP No.2 FIERS 2x4 SP No.3 EDGE Left: 2x4 SP No.3 FIGHE 2x4 SP No.3 RACING Structural wood sheathing directly applied or 36-10 co purins, except 2-00 co purins (4:3-8 max): 6-7. 70 CHORD Structural wood sheathing directly applied or 36-10 co purins, except 2-00 co purins (1:2-10:17) 7-10:17:9-20.0 psf (roof LL: tum DOL=1.15) Pidig ceiling directly applied or 10-0-0 co DoL=1.15; Pg=20.0 psf (roof LL: tum DOL=1.15) Pidig ceiling directly applied or 10-0-0 co DoL=1.15; Pg=20.0 psf (roof LL: tum DOL=1.15) Pitabe DOL=1.15; Pg=20.0 psf (roof LL: tum DOL=1.15) Pitabe DOL=1.15; Pg=20.0 psf (roof LL: tum DOL=1.15) Pitabe DOL=1.15; Pg=20.0 psf (roof LL: tum DOL=1.15) Pitabe DOL=1.15; Pg=20.0 psf (roof LL: tum DOL=1.15) Pitabe DOL=1.15; Pg=20.0 psf (roof tube science) Pitabe DOL=1.15; Pg=20.0 psf (roof tube science) SRCES (b) - Maximum Compression/Maximum Tension/U2.0 psf (roof U2.0 psf (roof U2.2 psf (roof U2.0 psf (roof U2.2 psf (BOT CHORD	2x4 SP 2400F 2.0)E *Except* 20-	-16:2x4 SP	ÍV	/asd=103m	ph; TCDL=6.0ps	; BCDL=6	.0psf; h=25ft	t; Cat.					
THERS 2x4 SP No.3 EDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 Right: 2x4 SP No.3 PC CHORD Structural wood sheathing directly applied or 13-6-10 or purins, except 22-6-8 to 22+-0, Limber DOL=-16 (Pate grip DOL=-1.3) PC CHORD Right example (4-3-9 max): 6-7. POT CHORD Right example (1-5, Steinford2E) (Pate 30, Pate 30, Steine) DT CHORD Right example (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 17-18. (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 17-18. (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 17-18. (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 17-18. (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 17-18. (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 17-18. (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 12-20, 11-17. (1-5, Steinford2E) (Pate 30, Steine) Structural wood sheathing directly applied or 10-0-0 or bracing: 12-20, 12-30, 32-34-455, 00, 3-5=-4257/0, 5-6=-372	MEBS		Cent* 6-21 7-14	·2v4 SP No	-					to					
Right: 2x4 SP No.3 cantilever left and right zyzosed; -C4 for members and forces & MWFRS RACING 3-6-1 or purtins, except 2-0-0 oc purtins, except 2-0-0 oc purtins, except 3-6-1 or purtins; except 2-0-0 oc purtins; except 5-4-1 oc bracing; 18-20,16-17 cantilever left and right zyzosed; -C6 for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 DT CHORD 5-4-1 oc bracing; 18-20,16-17 4-10-10 oc bracing; 18-20,16-17 3 TOLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOL=1.16) Structural wood sheathing directly applied or 10-0-0 oc bracing. Except: 5-41 co bracing; 18-20,16-17 4 Max Horiz 2-92 (LD 14) Max Grav 2-22210 (LC 50), 11=2170 (LC 50) 5 DRCES (b) - Maximum Compression/Maximum Tension 5 DP CHORD 2-23-120/3803, 21-23-00/3528, 19-21=0/2931, 15-19=0/3840, 14-15=0/2902, 12-14-0/3529, 11-12=-113/3898, 18-129-2576(13), 5:23=-7/441, 8-12=-11/44, 10-12=-266/139, 20-21=-45/920, 18-18=-227/131, 5:23=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=-45/920, 18-18=-227/131, 5:23=-7/441, 8-	THERS		ept 0-21,7-14.	.274 01 110.	1	7-0-0, Exte	rior(2E) 17-0-0 to	22-5-8, E	xterior(2R)						
 right exposed: C-C for members and forces & MWFRS for excloses & MWFRS for excloses shown; Lumber DOL=1.60 plate grip DOL=1.33 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Pictor and grietly applied or 10-0-0 cc bracing; Except: 5-4-1 oc bracing: 18-20,16-17 4-10-10 oc bracing: 17-18. EACTIONS (size) 2=0-38, 11=0-3-8 Max Horiz 2=92 (LC 14) Max Grav 2=2210 (LC 50), 11=2170 (LC 50) PRCES (b) - Maximum Compression/Maximum Tension DP CHORD 1-2-0/33, 2-3=-44550, 3-5=-42570, 5-6=-36720, 6-78-2966(77, 7-8=-36720, 5-6=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-2966(77, 7-8=-36720, 0, 16-17=-1400, 0, 16-17=-1400, 0, 16-17=-1400, 0, 16-17=-1400, 0, 16-17=-1400, 0, 17-18=-1080, 0, 16-17=-11800, 16-10=-10.005f. Mat parage as a samed to be SP 24	VEDGE						, , , , , , , , , , , , , , , , , , , ,		,	nd					
DP CHORD Structural wood sheathing directly applied or 3-6-1 oc purlins, except Structural wood sheathing directly applied or 3-6-1 oc purlins, (4-3-8 max); 6-7. DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Except: TCLL: ASCE 7-16; PF=20.0 psf (foof LL: Lum DOL=1.15) 5-4-1 oc bracing: 18-20,16-17 4-10-10 oc bracing: 17-18. Structural wood sheathing directly applied or 10-0-0 oc bracing. Except: Structural wood sheathing directly applied or 10-0-0 oc bracing. Except: EACTIONS Size) 2-0-3-8, 11=0-3-8 Max Horiz Structural wood sheathing directly applied or 10-0-0 oc bracing. Except: Max Horiz 2-92 (LC 14) Unbalanced now loads have been considered for this design. Max Horiz 2-92 (LC 105), 11=2170 (LC 50) PC HORD 1-2-0/33, 2-3-4455(0, 3-5-4257/0, 8-10-2245; 20/38, 21-23-0/3528, 18-20-114000, 17-18-1180/0, 16-17-21180/0, 17-18-1180/0, 16-17-21180/0, 17-18-1180/0, 16-17-2266/139, 20-21-45/920, 6-20-0/1303, 7-16-0/1304, 14+15-45/920, 8-14=-723/159 Old Los Prived adequate drainage to prevent water ponding. All plates are 3x5 MT20 unless otherwise indicated. * This truss is designed in accordance with the 2018 10-12-266/139, 20-21-45/920, 6-20-0/1303, 7-16-0/1304, 14+15-45/920, 8-14=-723/159 * This truss is designed in accordance with the 2018 10 All bearings are assumed to bes P 2400F 2.0E. OTES LOAD CASE(5) Standard	BRACING	Right. 284 SP NO	.5												
 3-b-1 to by Dullins, (4-3-8 max.): 6-7. 3) TCLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pl=18.9 psf (Lum DOL=1.15) last DOL=1.15; Is=-1.0; Rough Cat B; Fully Exp; Ce=0.9; Cs=1.00; Cs=1.10, Ct=1.10, Lu=50-0-0 3) TCLL: ASCE 7-16; PT=20.0 psf; (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=-0.9 Rough Cat B; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 6) Maximum Compression/Maximum Tension 5) FO-42600, 10.11=-445910 6) - Waximum Compression/Maximum Tension 1) 2-20/33, 2-3=-4455/0, 3-5=-4257/0, 8-10=-42600, 10.11=-445920 7) TCHORD 2-23=-120/340, 14-15=-02902, 12-14=0/3529, 11-12=-113/3898, 18-20=-11800, 17-18=-11800, 16-17=-11800, 17-11800, 17-12=-45920. EBS 3-23=-262/131, 5-23=-7/441, 8-12=-10/444, 10-12=-266(139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 8-14=-723/159 OTES LOAD CASE(S) Standard 	OP CHORD			ly applied o			shown; Lumber	DOL=1.60	plate grip						
 DT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing: 18-20,16-17 4-10-10 oc bracing: 17-18. EACTIONS (size) 2=0-3-8, 11=0-3-8 (Max Horiz 2=92 (LC 14) (Max Grav 2=2210 (LC 50), 11=2170 (LC 50) DRCES (b) - Maximum Compression/Maximum Tension DP CHORD 1-2=0/33, 2-3=-4455/0, 3-5=-4257/0, 8-10=-2366/37, 7-8=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 19-20=20/3528, 19-21=20/2013, 15-13=-0/3528, 19-21=0/2901, 15-19=0/3840, 14-15=0/2902, 19-21=113/3898, 18-20=-1180/0, 16-17=-				7			E 7-16; Pr=20.0 p	sf (roof LL	: Lum DOL=	1.15					
 S-4-1 oc bracing: 18-20,16-17 4-10-10 oc bracing: 17-18. EACTIONS (size) 2-0-3-8, 11=0-3-8 Max Horiz 2=92 (LC 14) Max Grav 2=2210 (LC 50), 11=2170 (LC 50) DRCES (b) - Maximum Compression/Maximum Tension DP CHORD 1-2-0/33, 2-3=-4455/0, 3-5=-4257/0, 5-6=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 8-10=-4260/0, 10-11=-4459/0 DT CHORD 2-23=-120/3889, 21-23=0/3528, 19-21=0/20201, 15-19=0/3840, 14-15=0/2020, 12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=1180/0 EBS 3-23=-262/131, 5-23=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 8-16=-7/5-1180/0, 15-17=-257/7, 15-16=0/1226, 5-21=-721/158, 8-14=-723/159 DT CHORD 2-33=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 8-14=-723/159 DT CHORD 2-33=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 8-14=-723/159 DT CHORD 2-33=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=45/920, 6-20=0/1303, 7-16=0/1226, 5-21=-721/158, 8-14=-723/159 DT CHORD 2-33=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=45/920, 6-20=0/1303, 7-16=0/1226, 5-21=-721/158, 8-14=-723/159 DT CHORD 2-33=-2627/10, 5-21=-721/158, 8-14=-723/159 DT CHORD 2-35=-721/158, 8-14=-723/159 DT CHORD 2-35=-721/158, 8-14=-723/159 DT CHORD 2-35=-721/158, 8-14=-723/159 DT CHORD 2-35=-721/158, 8-14=-723/159 DT CHORD 2-30 DT CHORD 2-31 DT CHORD 2-32 DT CHORD 2-31<td>BOT CHORD</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td>	BOT CHORD														
 4-10-10 oc bracing: 17-18. EACTIONS (size) 2=0-3.8, 11=0-3.8 Max Horiz 2=92 (LC 14) Max Grav 2=2210 (LC 50), 11=2170 (LC 50) DRCES (lb) - Maximum Compression/Maximum Tension DP CHORD 1-2=0/33, 2-3=-4455/0, 3-5=-4257/0, 5-6=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 8-10=-4260/0, 10-11=-4459/0 DT CHORD 2-23=-120/3893, 21-23=-0/3528, 19-21=0/2901, 15-19=0/3840, 14-15=0/2902, 12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=-1180/0 EBS 3-23=-262/131, 5-23=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=-45/920, 8-10=-257/6, 19-20=0/1227, 15-17=-257/7, 15-16=0/1226, 5-21=-721/158, 8-14=-723/159 OT EVS 4) Unbalanced snow loads have been considered for this design. 5) This truss has been designed for greater of min roof live load of 12.0 ps for 2.00 times flat roof load of 13.9 ps for overhangs non-concurrent with other live loads. 6) 200.01b AC unit load placed on the bottom chord, 19-8-12 from left end, supported at two points, 5-0-0 apart. 7) Provide adequate drainage to prevent water ponding. 8) All plates are 3x5 MT20 unless otherwise indicated. 9) * This truss has been designed for a live load of 20.0psf. 16-17=-1180/0 EBS 3-23=-262/131, 5-23=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21-45/920, 8-14=-723/159 OT ES LOAD CASE(S) Standard 					E	xp.; Ce=0.	9; Cs=1.00; Ct=1	.10, Lu=50	lugn Cat в; г)-0-0	-ully					
 EACTIONS (size) 2=0-38, 11=U-38 Max Horiz 2=92 (LC 14) Max Grav 2=2210 (LC 50), 11=2170 (LC 50) DRCES (b) - Maximum Compression/Maximum Tension DP CHORD 1-2=0/33, 2-3=-4455/0, 3-5=-4257/0, 5-6=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 8-10=-4260/0, 10-11=-4459/0 DT Is fruss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs on-concurrent with other live loads. DO.OIb AC unit load placed on the bottom chord, 19-8-12 from left end, supported at two points, 5-0-0 apart. Provide adequate drainage to prevent water ponding. All plates are 3x5 MT20 unless otherwise indicated. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-0-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be SP 2400F 2.0E. M All blaearings are assumed to be sections R502.11.1 and R802.10.2 and referenced standard ANSI/TP1 1. Graphical purini representation does not depict the size or the orientation of the purini along the top and/or bottom chord. 							snow loads have	e been cor	sidered for t	his					
 Max Horiz 2=92 (LC 14) Max Grav 2=2210 (LC 50), 11=2170 (LC 50) DRCES (b) - Maximum Compression/Maximum Tension DP CHORD 1-2=0/33, 2-3=-4455/0, 3-5=-4257/0, 5-6=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 8-10=-4260/0, 10-11=-4459/0 DT CHORD 2-23=-120/3893, 21-23=0/3528, 19-21=0/2901, 15-19=0/3840, 14-15=0/2902, 12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=-1180/0, 16-17=-7180/0, 16-17=-266/139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 18-112=-266/139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 18-119=-257/6, 19-20=0/1227, 15-17=-257/7, 15-17=-257/7, 15-16=0/1226, 5-21=-721/158, 8-14=-723/159 DOTES 		. ,				0	as been designed	for greate	er of min roo	f live					
 DRCES (lb) - Maximum Compression/Maximum Tension DP CHORD 1-2=0/33, 2-3=-4455/0, 3-5=-4257/0, 5-6=-3672/0, 5-6=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 8-10=-4260/0, 10-11=-4459/0 DT CHORD 2-23=-120/3893, 21-23=0/3528, 19-21=0/2901, 15-19=0/3840, 14-15=0/2902, 12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=-1180/0, 16-17=-1180/0, 16-17=-1180/0, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 10-12=-266/139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 18-19=-257/6, 19-20=0/1227, 15-17=-257/7, 15-16=0/1226, 5-21=-721/158, 8-14=-723/159 DT CHORD ST COMPARENT OF THE Comparison of the pure of the pure of the size of the origination of the pure of the siz				2170 (LC 50) Í lo	oad of 12.0	psf or 2.00 times	flat roof lo	ad of 13.9 p						
Tension19-8-12 from left end, supported at two points, 5-0-0 apart.DP CHORD1-2=0/33, 2-3=-4455/0, 3-5=-4257/0, 5-6=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 8-10=-4260/0, 10-11=-4459/019-8-12 from left end, supported at two points, 5-0-0 apart.OT CHORD2-23=-120/3893, 21-23=0/3528, 19-21=0/2901, 15-19=0/3840, 14-15=0/2902, 12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=-1180/07) Provide adequate drainage to prevent water ponding. 8) All plates are 3x5 MT20 unless otherwise indicated.EBS3-23=-262/131, 5-23=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1226, 5-21=-721/158, 8-14=-723/15919-8-12 from left end, supported at two points, 5-0-0 apart.OTESLOAD CASE(S) Standard	ORCES				. 0										11075
 5-6=-3672/0, 6-7=-2966/37, 7-8=-3672/0, 8-10=-4260/0, 10-11=-4459/0 DT CHORD 2-23=-120/3893, 21-23=0/3528, 19-21=0/2901, 15-19=0/3840, 14-15=0/2902, 12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=-1180/0 EBS 3-23=-262/131, 5-23=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1304, 14-16=-45/920, 18-19=-257/6, 19-20=0/1227, 15-17=-257/7, 15-16=0/1226, 5-21=-721/158, 8-14=-723/159 OTES This truss has been designed to ra live load of 20.0psf. This truss has been designed for a live load of 20.0psf. This truss has been designed for a live load of 20.0psf. This truss has been designed for a live load of 20.0psf. This truss has been designed for a live load of 20.0psf. This truss has been designed for a live load of 20.0psf. This truss has been designed for a live load of 20.0psf. All plates are 3x5 MT20 unless otherwise indicated. This truss has been designed for a live load of 20.0psf. This truss has been designed for a live load of 20.0psf. All bearings are assumed to be SP 2400F 2.0E. All bearings are assumed to be SP 2400F 2.0E. All bearings are assumed to be SP 2400F 2.0E. All bearings are assumed to be SP 2400F 2.0E. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. DAD CASE(S) Standard 			AFE/0 0 F 405	-7/0	໌ 1	9-8-12 fron				C				""'H C	AD
 8-10=-4260/0, 10-11=-4459/0 All plates are 3x5 MT20 unless otherwise indicated. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All plates are assumed to be SP 2400F 2.0E. * This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. * Or the orientation of the purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. * DAD CASE(S) Standard 							quate drainage t	nrevent v	vater nondin	a			an'	RIFIC	
19-21=0/2901, 15-19=0/3840, 14-15=0/2902, 12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=-1180/0 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10-12=-266/139, 20-21=-45/920, 18-19=-257/6, 19-20=0/1227, 15-17=-257/7, 15-16=0/1226, 5-21=-721/158, 8-14=-723/159 10) All bearings are assumed to be SP 2400F 2.0E . 036322 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 036322 12) Optical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 040 CASE(S) Standard	TOP CHORD		-11=-4459/0		8) A	All plates are	e 3x5 MT20 unle	ss otherwi	se indicated.				2×	FES	STON V
12-14=0/3529, 11-12=-113/3898, 18-20=-1180/0, 17-18=-1180/0, 16-17=-1180/0 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. EBS 3-23=-262/131, 5-23=-7/441, 8-12=-10/444, 10-12=-266/139, 20-21=-45/920, 6-20=0/1303, 7-16=0/1226, 5-21=-721/158, 8-14=-723/159 10 All bearings are assumed to be SP 2400F 2.0E. 036322 ID All bearings are assumed to be setting are assumed to be and/or be are are assumed to be and/or bottom chord. 036322 DTES LOAD CASE(S) Standard		0.00 100/000-		4-15=0/2901	/					0psf		1		2	N.
										tom		11	1	C	
		19-21=0/2901, 15 12-14=0/3529, 11			С					if.		Ξ	1	020	•
		19-21=0/2901, 15 12-14=0/3529, 11 18-20=-1180/0, 1			401 4		are assumed to	be SP 240				1	1	036	522 :
	SOT CHORD	19-21=0/2901, 15 12-14=0/3529, 11 18-20=-1180/0, 1 16-17=-1180/0	7-18=-1180/0,	2=-10/444,	,		designed in acco	ordance w	th the 2018			-	•		· •
	3OT CHORD	19-21=0/2901, 15 12-14=0/3529, 11 18-20=-1180/0, 1 16-17=-1180/0 3-23=-262/131, 5 10-12=-266/139,	7-18=-1180/0, -23=-7/441, 8-1 20-21=-45/920,	,	11) T Ir	his truss is	Residential Coc	e sections	R502.11.1 a	and		11			- 1 - S
	SOT CHORD	19-21=0/2901, 15 12-14=0/3529, 11 18-20=-1180/0, 1 16-17=-1180/0 3-23=-262/131, 5 10-12=-266/139, 6-20=0/1303, 7-1	7-18=-1180/0, -23=-7/441, 8-1 20-21=-45/920, 6=0/1304, 14-1	, 16=-45/920,	11) T lı F	This truss is International R802.10.2 a	Residential Coc and referenced st	e sections andard AN	R502.11.1 a SI/TPI 1.			1117		.ENG	NEEP. A
	TOP CHORD BOT CHORD WEBS	19-21=0/2901, 15 12-14=0/3529, 11 18-20=-1180/0, 1 16-17=-1180/0 3-23=-262/131, 5 10-12=-266/139, 6-20=0/1303, 7-1 18-19=-257/6, 19 15-16=0/1226, 5-	7-18=-1180/0, -23=-7/441, 8-1 20-21=-45/920, 6=0/1304, 14-1 -20=0/1227, 15	, 16=-45/920,	11) T lı F , 12) G	This truss is International R802.10.2 a Graphical pu	Residential Coo nd referenced st urlin representation	e sections andard AN on does no	R502.11.1 a SI/TPI 1.			111		ENG!	NEER
	OT CHORD /EBS	19-21=0/2901, 15 12-14=0/3529, 11 18-20=-1180/0, 1 16-17=-1180/0 3-23=-262/131, 5 10-12=-266/139, 6-20=0/1303, 7-1 18-19=-257/6, 19 15-16=0/1226, 5-	7-18=-1180/0, -23=-7/441, 8-1 20-21=-45/920, 6=0/1304, 14-1 -20=0/1227, 15	, 16=-45/920,	11) T lı F , 12) G o b	This truss is International R802.10.2 a Graphical pu or the orient pottom chore	I Residential Coo nd referenced st urlin representati ation of the purlin d.	e sections andard AN on does no	R502.11.1 a SI/TPI 1.			111.			NEER

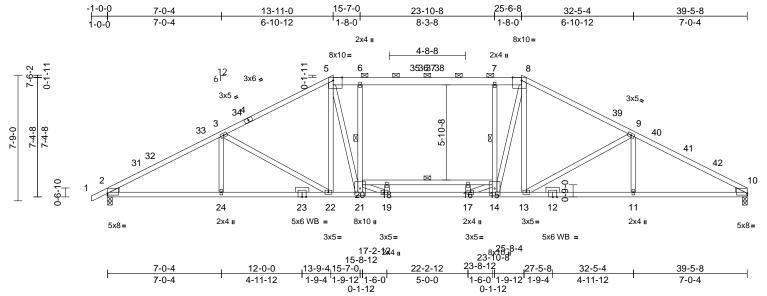
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A13	Нір	1	1	I69186943 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:22

Page: 1

818 Soundside Road Edenton, NC 27932


	ents (Sanford, NC					ID:twldpUOPVvec	onFA6uc6tMH	lyzaKRfC?PsB7	0Hq3NSgPq	nL8w3ul	TXbGk	WrCDoi7J4zJC	?f	
		-1-0-0 	7-6-12 7-6-12		<u>15-0-0</u> 7-5-4	16-7-11	<u>22-9-13</u> 6-2-3	24-5-8		<u>0-12</u> 5-4			9-5-8 ·6-12	
		1-0-0	7-0-12		7-5-4	1-7-11 ⊢	4-8-8		7-	5-4		1.	0-12	
						2x4 n		5x6=	-					
c	11 10				5	5x6= 5 6 3	2 22 34	2x4 n 35 7 8						
	8-0-10 -1-1 -1-1			6 ¹²			2 33 34	35 7 8						
				3x5 ≉	3x6 ≠					3x6	`			
~	00			3	11		Ģ			H	50 3	×5≈ 197		
8-3-8	7-11-0 7-11-0						6-5-0	4			\geq		20	
			30						5	•			3839	
	₽ <u></u>						⊠			o_⊤				11
\perp				23	22	20 42 48 21 40 19		17' 43 16''' 15 41 14	13	<u>5</u>		12		
		5x8=	:	2x4 I	5x6 WB			2x4 II 3x8	= 5x6 W	/B =	:	2x4 II		5x8=
						5x8 // 17-2-1224		3x5= 2 ⁵ 4-74						
			7.0.40		12.0.0 14	15-5-1 15-4-11		24-0-13		24.40	10	0		
		H	7-6-12 7-6-12			10-4 10-40-6-7	<u>22-2-12</u> 5-0-0	1-9-11	27-5-8 2-10-4	<u>31-10</u> 4-5-			9-5-8 ·6-12	
Scale = 1:77.6						0-0-6 1-9-11		0-0-6 0-6-7						
ate Offsets ()	X, Y): [2:Edge	ə,0-1-2], [11:Edge,0-1-6]				- 1					1		
oading CLL (roof)		(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC		EFL ir ert(LL) -0.29	. ,	l/defl >999	L/d 240	PLATES MT20	GRI 244/	
now (Pf/Pg) CDL	18.9	/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.92 Ve	ert(CT) -0.56 orz(CT) 0.18	6 15-19	>841 n/a	180 n/a			
CLL		0.0*	Code		8/TPI2014	Matrix-MSH	0.01	0.10	, ,,	n/a	n/a			
CDL		10.0										Weight: 235	5 lb FT =	20%
UMBER OP CHORD	2x4 SP 2400)F 2.0E *E	Except* 5-8:2x6 SP	2)	Vasd=103mpl	7-16; Vult=130mpl n; TCDL=6.0psf; E	BCDL=6.0p	sf; h=25ft; Cat.						
OT CHORD	No.2, 9-11:2 2x4 SP 2400		o.1 Except* 20-16:2x4 \$	SP		losed; MWFRS (e)-11-9 to 2-11-12,								
/EBS	No.2, 22-13: 2x4 SP No.3	2x4 SP N				or(2R) 15-0-0 to 2 -5-8, Exterior(2R)								
THERS /EDGE	2x4 SP No.3	5			(1) 30-0-7 to 3	89-5-8 zone; cantil I vertical left and r	lever left ar	id right						
	Left: 2x4 SP Right: 2x4 S				members and	forces & MWFRS 1.60 plate grip D0	S for reactio							
RACING OP CHORD	Structural w	ood shea	thing directly applie	d, 3)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL: Lu							
	except 2-0-0 oc pur	lins (3-10)-14 max.): 5-8.		DOL=1.15 Pla	15); Pg=20.0 psf; ate DOL=1.15); Is=	=1.0; Rougi	n Cat B; Fully						
OT CHORD	Rigid ceiling bracing.	directly a	applied or 2-2-0 oc	4)		Cs=1.00; Ct=1.10 now loads have b								
'EBS EACTIONS	1 Row at mi	•	3-21, 6-21, 7-14, 10-	-14 5)	design. This truss has	been designed fo	or greater o	f min roof live						
	Max Horiz 2=		4)			sf or 2.00 times fla n-concurrent with								
ORCES			C 50), 11=2112 (LC pression/Maximum	⁵⁰⁾ 6)		nit load placed on left end, supported		,						
OP CHORD	Tension 1-2=0/33. 2-	3=-4308/	0, 3-5=-3581/0,	7)	apart.	uate drainage to p	·	,				mm	inin,	
		, 6-7=-31	63/5, 7-8=-3103/0,	8)	* This truss ha	as been designed	for a live lo	ad of 20.0psf				"ATH (JARO	Sille.
OT CHORD	2-23=-121/3	746, 21-2	23=0/3746,	220	3-06-00 tall by	chord in all areas	I fit betweer	n the bottom		1	S	O	SIG	Tan
	12-14=0/374	2, 11-12	,	9)	All bearings a	other members, re assumed to be	SP 2400F	2.0E .			U	.2.	10	
	18-20=-1437 16-17=-1437	7/0				esigned in accord Residential Code s						SI	EAL	1 E
EBS	3-23=0/243, 20-21=-1060		95/149, 5-21=0/1416 =-716/161,			d referenced stan						036	5322	- <u> </u> - <u> </u>
			5=-1058/0, 8-14=0/1	416,		ion of the purlin a						· · · ·	.0	
			=-231/0, 15-16=0/12	200	DAD CASE(S)	Standard					11	SI 030	NEEN	A IN
OTES											1	111	2	V.N
		ds have b	peen considered for									11, A.	GILD	1111
		ds have b	been considered for										GILP ber 29,2	2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A14	Нір	1	1	I69186944 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:22 ID:naE7dYtZYi8L294lbypjrDyzal3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.1

Plate Offsets (X, Y): [2:Edge,0-1-6], [5:0-6-10,Edge], [8:0-6-10,Edge], [10:Edge,0-1-6]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.91 0.85 0.82	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.27 -0.51 0.17	(loc) 19-21 17-19 10	l/defl >999 >927 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 249 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE	2x4 SP 2400F 2.0E No.2, 1-4:2x4 SP No 2x4 SP 2400F 2.0E No.2, 23-12:2x4 SP 2x4 SP No.3 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3	o.1 *Except* 20-15:2x4 \$	1)	this design. Wind: ASCE Vasd=103mp II; Exp B; En Exterior(2E) 13-11-0, Exte	roof live loads have 7-16; Vult=130mp h; TCDL=6.0psf; E closed; MWFRS (e -0-11-9 to 2-11-12, rior(2R) 13-11-0 to 5-6-8, Exterior(2R)	h (3-seo BCDL=6 nvelope Interio 2 19-5-1	cond gust) 6.0psf; h=25ft 9) and C-C r (1) 2-11-12 15, Interior (1)	; Cat. to)					
BRACING TOP CHORD BOT CHORD	Structural wood she except 2-0-0 oc purlins (3-6	athing directly applie i-9 max.): 5-8. applied or 10-0-0 oc	, O	(1) 31-1-7 to exposed ; en members and Lumber DOL TCLL: ASCE	39-5-8 zone; canti d vertical left and r d forces & MWFRS =1.60 plate grip D0 7-16; Pr=20.0 psf	lever lei ight exp for rea DL=1.3 (roof Ll	it and right bosed;C-C for loctions shown 3 .: Lum DOL=	r 1;					
WEBS REACTIONS	5-2-0 oc bracing: 16 1 Row at midpt	-1 oc bracing: 18-20,15-16 DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully -0 oc bracing: 16-18. Exp.; Cc=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 tow at midpt 6-21, 7-14 Unbalanced snow loads have been considered for this design											
	Max Horiz 2=77 (LC Max Grav 2=2144 (L (lb) - Maximum Com Tension 1-2=0/33, 2-3=-4272	14) _C 50), 10=2103 (LC ppression/Maximum	50)	 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 6) 200.0lb AC unit load placed on the bottom chord, 19-8-12 from left end, supported at two points, 5-0-0 									
BOT CHORD	5-6=-3460/0, 6-7=-3 8-9=-3610/0, 9-10=- 2-24=-109/3713, 22- 21-22=0/3103, 19-2	451/0, 7-8=-3459/0, 4285/0 -24=0/3713, 1=0/3284, 17-19=0/4 4=0/3105, 11-13=0/3 8-20=-1047/0,	726, 9)	* This truss h on the botton 3-06-00 tall b chord and an All bearings a	uate drainage to p las been designed n chord in all areas by 2-00-00 wide wil by other members, are assumed to be designed in accorc	for a liv where I fit betw with BC SP 240	e load of 20.0 a rectangle veen the botto DL = 10.0pst 00F 2.0E .	Öpsf om		A. The second se	AND	SEA 0363	• -
WEBS	3-24=0/217, 3-22=-7 8-13=-12/546, 9-13= 20-21=-1245/0, 6-20 14-15=-1236/0, 7-15 18-19=-236/0, 19-20	714/134, 5-22=-10/54 =-727/138, 9-11=0/22)=-819/155,	4, 3, 11 6/0,	International R802.10.2 ar) Graphical pu	Residential Code s and referenced stan rlin representation ation of the purlin a l.	sections dard AN does no	R502.11.1 a SI/TPI 1. ot depict the s				In the second se	(IIIIIII)	11.BER 1111

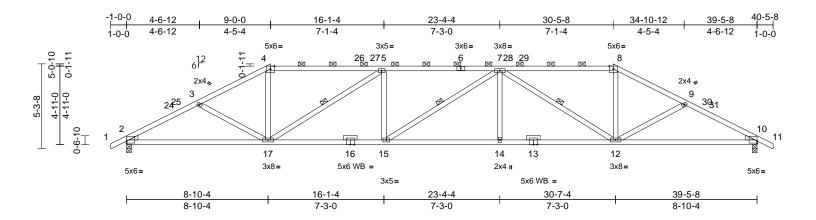
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A16	Нір	1	1	I69186945 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:23 ID:74DlukyiW325NnHSOaekQVyzaXS-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-1-0-0 |---| 1-0-0 40-5-8 5-6-12 11-0-0 16-9-13 22-7-11 28-5-8 33-10-12 39-5-8 5-6-12 5-5-4 5-9-13 5-9-13 5-6-12 5-9-13 5-5-4 1-0-0 5x6= 3x5= 3x6= 3x5= 5x6= 6-0-10 0-1-11 -4 5 27 6 28 8 12 6 = 3x5 👟 3x5 🦼 3 9 5-11-0 5-11-0 6-3-8 29₃₀ 25²⁶ 10 0-6-10 11 Π Þ $\langle \rangle$ FT 18 17 31 16 32 15 33 14 34 13 12 2x4 🛛 3x8= 5x8 WB = 3x5= 5x8 WB = 3x8= 2x4 🛛 5x6= 5x6= 10-10-4 33-10-12 5-6-12 19-8-12 28-7-4 39-5-8 5-6-12 5-3-8 8-10-8 5-3-8 5-6-12 8-10-8

Scale = 1:72.3


	(X, Y): [2:Edge,0-1-10], [10.20g0,0 1 10]			1							1	
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.73	Vert(LL)		15-17		240	MT20	244/190
iow (Pf/Pg) DL	18.9/20.0 10.0	Lumber DOL Rep Stress Incr	1.15 YES		BC WB	0.59 0.41	Vert(CT)		15-17	>871	180		
,DL ;LL	0.0*	Code		9/TDI2014		0.41	Horz(CT)	0.13	10	n/a	n/a		
	10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 213 lb	FT – 20%
	10.0				1							Wolght. 210 lb	11-20/0
MBER			2)		7-16; Vult=130m		0 /	_					
P CHORD					oh; TCDL=6.0psf;			t; Cat.					
DT CHORD	2x4 SP 2400F 2.0E				closed; MWFRS (to					
EBS	2x4 SP No.3				-0-11-9 to 2-11-12 rior(2R) 11-0-0 to			10					
HERS	2x4 SP No.3				3-5-8, Exterior(2R								
EDGE	Left: 2x4 SP No.3				3-10-12 to 40-5-1	,		and					
	Right: 2x4 SP No.3				d ; end vertical lef								
ACING	• · · · · ·				and forces & MW								
OP CHORD	Structural wood she		d or		=1.60 plate grip E			own,					
	2-4-4 oc purlins, exc		3		7-16; Pr=20.0 ps			1 15					
	2-0-0 oc purlins (2-1		-,		.15); Pg=20.0 pst								
DT CHORD	bracing.	applied or 10-0-0 oc			late DOL=1.15); I			Fully					
EBS	0	5-17, 7-13		Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0									
		,	4)	4) Unbalanced snow loads have been considered for this									
ACTIONS	(size) 2=0-3-8, 2 Max Horiz 2=-60 (LC			design.									
	Max Grav 2=1776 (LC		5		is been designed								
	•		50)		psf or 2.00 times			osf on					
RCES	(Ib) - Maximum Com	pression/Maximum		overhangs non-concurrent with other live loads.									
	Tension		6)		quate drainage to								
OP CHORD	4-5=-2830/274, 5-7=	6/272, 3-4=-3179/274	l, 7)		has been designe			.0pst					
	4-5=-2830/274, 5-7= 7-8=-2830/274, 8-9=				n chord in all area							minin	11111
	9-10=-3486/272, 10-				y 2-00-00 wide w						-	W'TH CA	ROUL
DT CHORD	2-18=-169/3032, 17-		8		ny other members are assumed to b			il.			1	OR FESE	City.
	15-17=-150/3511, 13	,	o, 9		designed in accor						N's	O'.FESS	10 Vil
	12-13=-179/3034, 10	,	9		Residential Code			and			25	11 1	1 in
EBS	,	477/101, 4-17=-14/10	088.		nd referenced sta			anu			a la		T: -
		5=0/270, 7-15=0/270,	,		rlin representation			sizo		-		054	
	7-13=-1014/89, 8-13				ation of the purlin			5120		=	-	SEA	L
	9-13=-477/101, 9-12	2=-5/107		bottom chore		along all				= =		0363	22
DTES	,		1	OAD CASE(S)						-			
	ed roof live loads have	been considered for			Glandara						-	N.	1 1
this design											2	N. E.	Rich
											1.5	GIN	EFRAN
											11	10	BEN
												11, A. G	LUN

G A. GIL October 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A17	Hip	1	1	I69186946 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:23 ID:qCEFIjT_9StwyUeZVTP7FryzaY5-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

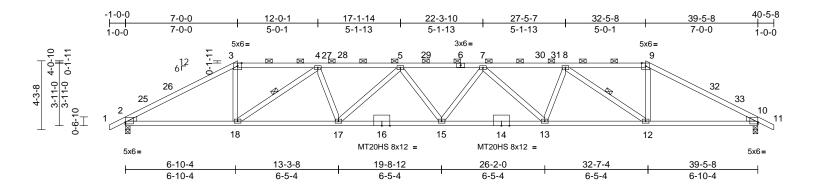
Scale = 1:72.1

rate Offsets ((X, Y): [2:Edge,0-1-10	ij, [10.⊏uge,0-1-10] T					r						-
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.79	Vert(LL)		14-15	>999	240	MT20	244/190
now (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.83	Vert(CT)	-0.59	14-15	>803	180		
CDL	10.0	Rep Stress Incr	YES		WB	0.61	Horz(CT)	0.19	10	n/a	n/a		
BCLL	0.0*	Code	IRC201	8/TPI2014	Matrix-MSH								
CDL	10.0											Weight: 205 lb	FT = 20%
JMBER			2)	Wind: ASCE	7-16; Vult=130m	oh (3-seo	cond gust)						
OP CHORD	2x4 SP No.2 *Excep 2.0E	ot* 4-6,6-8:2x4 SP 240	00F		ph; TCDL=6.0psf; closed; MWFRS (t; Cat.					
OT CHORD					-0-11-9 to 2-11-12			to					
/EBS	2x4 SP No.3												
THERS	2x4 SP No.3		9-0-0, Exterior(2R) 9-0-0 to 14-6-15, Interior (1) 14-6-15 to 30-5-8, Exterior(2R) 30-5-8 to 36-0-7, Interior (1)										
EDGE	Left: 2x4 SP No.3			36-0-7 to 40-5-1 zone; cantilever left and right exposed ;									
2202	Right: 2x4 SP No.3			end vertical left and right exposed;C-C for members and									
RACING	3			forces & MV	/FRS for reactions	shown;	Lumber						
OP CHORD	Structural wood she	athing directly applied	lor	DOL=1.60 plate grip DOL=1.33									
0. 0010	2-2-14 oc purlins, ex	0 7 11	3)		E 7-16; Pr=20.0 ps			1.15					
	2-0-0 oc purlins (3-1				1.15); Pg=20.0 psf								
OT CHORD		applied or 10-0-0 oc			late DOL=1.15); Is			Fully					
	bracing.				9; Cs=1.00; Ct=1.1	,							
EBS	1 Row at midpt	5-17, 7-15, 7-12	4)		snow loads have	been cor	nsidered for t	his					
EACTIONS	(size) 2=0-3-8,	10=0-3-8	-	design.				6 P					
	Max Horiz 2=-50 (LC	2 13)	5)		as been designed psf or 2.00 times f								
	Max Grav 2=1636 (I	LC 2), 10=1636 (LC 2))		on-concurrent with			51 011					
ORCES	(lb) - Maximum Com		6)		quate drainage to			a					
	Tension		7)		has been designed								
OP CHORD		3/299, 3-4=-2903/260,	')		m chord in all area			opor					
	4-5=-2585/258, 5-7=				by 2-00-00 wide w			om					in the
	7-8=-2585/258, 8-9=	=-2903/260,			ny other members							N'TH UA	Roite
	9-10=-2933/299, 10		8)		are assumed to be		1.				N	A	n line
OT CHORD			9)		designed in accor					/	22	FESS	Dr. La
	14-15=-180/3850, 1	2-14=-180/3850,	-,		Residential Code			and		4	C	.2	and a
	10-12=-207/2555			R802.10.2 a	nd referenced sta	ndard AN	ISI/TPI 1.			-		·Q.	S = 1
/EBS	,	7=0/909, 5-17=-1506/1	103, 10)) Graphical pu	Irlin representation	does no	ot depict the	size		-		SEA	1
	5-15=0/198, 7-15=-9	, , ,		or the orient	ation of the purlin	along the	top and/or			=	:		•
	7-12=-1504/104, 8-1	12=0/908, 9-12=-312/	117	bottom chore	d.					=		0363	22 :
OTES			L	OAD CASE(S)	Standard						6		
Unbalance	ed roof live loads have	been considered for									-	N	

 Unbalanced roof live loads have been considered for this design.

October 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


818 Soundside Road Edenton, NC 27932

C

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A18	Hip	1	1	I69186947 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:23 ID:DzK6DIttTiqjB6zLhOYsJkyzaYr-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

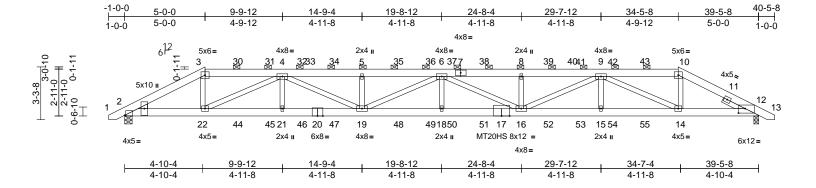
Page: 1

Scale = 1:71.9

Plate Offsets (X, Y): [2	2:Edge,0-1-6], [10:Edge,0-1-6]
--------------------------	--------------------------------

·	, ., ., <u>[</u> _g_,],												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.44 0.55 0.52	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.39 -0.68 0.18	(loc) 15 15-17 10	l/defl >999 >698 n/a	L/d 240 180 n/a	PLATES MT20 MT20HS Weight: 192 lb	GRIP 244/190 187/143 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	4-1-3 oc purlins, exc 2-0-0 oc purlins (3-6 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=40 (LC Max Grav 2=1655 (L (lb) - Maximum Com Tension 1-2=0/36, 2-3=-3153 4-5=-4494/344, 5-7= 7-8=-4492/344, 8-9= 9-10=-3152/254, 10- 2-18=-184/2776, 17- 15-17=-265/4965, 13 12-13=-223/4283, 10 3-18=0/1159, 9-12=(8-12=-1900/123, 4-1 5-15=0/117, 7-15=0/ 8-13=0/625 ed roof live loads have	-6 max.): 3-9. applied or 10-0-0 oc 4-18, 8-12 10=0-3-8 14) .C 43), 10=1655 (LC - pression/Maximum 3/254, 3-4=-2732/257, 5007/360, 2731/257, -11=0/36 -18=-232/4284, 3-15=-260/4963, 0-12=-192/2775 0/1159, 4-18=-1901/1 7=0/626, 5-17=-647/7 (117, 7-13=-646/79,	3) 4) 43) 5) - 6) 7) 8) 9) 23, 10 79, 11 12	Vasd=103m/ II; Exp B; En Exterior(2E) 7-0-0, Exteri to 32-5-8, Es 38-0-7 to 40 end vertical forces & MW DOL=1.60 p TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.3 Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader All plates are * This truss is on the botton 3-06-00 tall I chord and ar) All bearings) This truss is International R802.10.2 a		BCDL=6 envelope, , Interiol 6-15, In 0 38-0-7 er left ar sed;C-C shown; , (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 been cor or greate at roof k other kin for a liv s other other wi for a liv s where Il fit betw S SP 240 dance w sections dard AL	.0psf; h=25ft e) and C-C (1) 2-11-12: terior (1) 12-6 , Interior (1) d right exposi- for members Lumber : Lum DOL= 0 psf (Lum pugh Cat B; F 0-0-0 isidered for the er of min roof pad of 13.9 p; ve loads. water ponding wise indicate se indicated. e load of 20.0 a rectangle veen the botto 0F 2.0E. th the 2018 R502.11.1 a ISI/TPI 1.	to S-15 sed ; and 1.15 fully his flive sf on g. d. Opsf om				SEA 0363	• –

G A. GIL October 29,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A19	Hip Girder	1	2	I69186948 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:25 ID:fTqWVaaZJKzEUOmwqd9NufyzaeP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:71.7

Loading	(psf)	Spacing	2-0-0		CSI								
Snow (Pf/Pg)	20.0 18.9/20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.22 0.44	DEFL Vert(LL) Vert(CT)	in -0.43 -0.75	(loc) 18 18	l/defl >999 >633	L/d 240 180	PLATES MT20 MT20HS	GRIP 244/190 187/143
FCDL BCLL	10.0 0.0*	Rep Stress Incr Code	NO IRC201	8/TPI2014	WB Matrix-MSH	0.33	Horz(CT)	0.14	12	n/a	n/a		
BCDL	10.0	Code		0/11/2014	Wath World							Weight: 525 lb	FT = 20%
BOT CHORD WEBS WEDGE SLIDER BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS	2x6 SP 2400F 2.0E 2x6 SP 2400F 2.0E 2x4 SP 2400F 2.0E Left: 2x4 SP No.3 Right 2x4 SP No.3 	athing directly applie sept -0 max.): 3-10. applied or 10-0-0 or 12=0-3-8 2 9) C 8), 12=-107 (LC 7 -C 35), 12=3204 (LC apression/Maximum 0/269, 3-4=-5913/24 5=-12627/481, =-12577/479, -12=-6566/263, -22=-375/10182, 18-19=-481/13410, 15-16=-351/1098, 12-14=-195/5874 2=-4767/195, 4-21=0 9=-612/129, =0/223, 6-16=-936/44	ed or 2) c 3) () 4) () 35) 9, 5) 9, 5) 9, 5) ()/225, 8) 9) 8, 10	(0.131"x3") n Top chords of staggered at Bottom chord staggered at Web connec All loads are except if note CASE(S) sed provided to of unless othen Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; En and right exp Lumber DOL=1 DOL=1.15 Pl Exp.; Ce=0.5 Unbalanced design. This truss ha load of 12.0 overhangs n Provide aded All plates are	is connected as fo	ws: 2x6 - lows: 2: - 1 row y applied ack (B) the nection s noted a e been of the been of	2 rows (6 - 2 rows at 0-9-0 oc. t to all plies, face in the LC s have been as (F) or (B), considered for ond gust) .0psf; h=25ft .0psf; h=25ft .0	DAD or ; Cat. left ed; 1.15 fully his f live sf on g. ed.	recc UPL and 13) This Inte R8C 14) Gra or th bott	ommenco IFT at j does no a truss is rnationa 2.10.2 a phical p he orien om choi	led to o ((s) 2 a desig d desig l Resic and ref urlin re tation o d.	Ind 12. This conn ider lateral forces ned in accordance dential Code sect erenced standard presentation doe of the purlin along H CA SEA	earing walls due to ection is for uplift or s. e with the 2018 ions R502.11.1 and I ANSI/TPI 1. s not depict the size the top and/or
NOTES	9-14=-4880/198, 10-	-14=-29/2553	1 4	chord and ar	y 2-00-00 wide wi y other members. are assumed to be			om					ERIX

Continued on page 2 WARNING - Verify

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouckling of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable por	
24070033-B	A19	Hip Girder	1	2	Job Reference (optional)	l69186948
Carter Components (Sanford, NC	Run: 8.73 S	Sep 25 2024 Print: 8	730 S Sep 2	5 2024 MiTek Industries. Inc. Fri Oct 25 15:59:25	Page: 2	

ID:fTqWVaaZJKzEUOmwqd9NufyzaeP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Carter Components (Sanford, NC), Sanford, NC - 27332,

15) Hanger(s) or other connection device(s) shall be

provided sufficient to support concentrated load(s) 139 Ib down and 39 lb up at 5-0-0, 139 lb down and 37 lb up at 7-0-12, 139 lb down and 37 lb up at 9-0-12, 139 lb down and 37 lb up at 11-0-12, 139 lb down and 37 lb up at 13-0-12, 139 lb down and 37 lb up at 15-0-12, 139 lb down and 37 lb up at 17-0-12, 139 lb down and 37 lb up at 19-0-12, 139 lb down and 37 lb up at 20-4-12, 139 lb down and 37 lb up at 22-4-12, 139 lb down and 37 lb up at 24-4-12, 139 lb down and 37 lb up at 26-4-12, 139 lb down and 37 lb up at 28-4-12, 139 lb down and 37 lb up at 30-4-12, and 139 lb down and 37 lb up at 32-4-12, and 139 lb down and 39 lb up at 34-5-8 on top chord, and 415 lb down and 23 lb up at 5-0-0, 47 lb down at 7-0-12, 47 lb down at 9-0-12, 47 lb down at 11-0-12, 47 Ib down at 13-0-12, 47 lb down at 15-0-12, 47 lb down at 17-0-12, 47 lb down at 19-0-12, 47 lb down at 20-4-12, 47 lb down at 22-4-12, 47 lb down at 24-4-12, 47 lb down at 26-4-12, 47 lb down at 28-4-12, 47 lb down at 30-4-12, and 47 lb down at 32-4-12, and 415 Ib down and 23 lb up at 34-4-12 on bottom chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

Dead + Snow (balanced): Lumber Increase=1.15, Plate 1) Increase=1.15

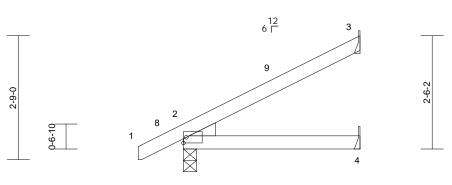
Uniform Loads (lb/ft)

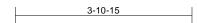
Vert: 1-3=-48, 3-10=-58, 10-13=-48, 23-26=-20

Concentrated Loads (lb)

Vert: 3=-114 (B), 22=-415 (B), 19=-47 (B), 5=-109 (B), 8=-109 (B), 16=-47 (B), 14=-415 (B), 10=-114 (B), 30=-109 (B), 31=-109 (B), 32=-109 (B), 34=-109 (B), 35=-109 (B), 36=-109 (B), 37=-109 (B), 38=-109 (B), 39=-109 (B), 41=-109 (B), 42=-109 (B), 43=-109 (B), 44=-47 (B), 45=-47 (B), 46=-47 (B), 47=-47 (B), 48=-47 (B), 49=-47 (B), 50=-47 (B), 51=-47 (B),

52=-47 (B), 53=-47 (B), 54=-47 (B), 55=-47 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch			
24070033-B	CJ2	Jack-Open	12	1	I69186949 Job Reference (optional)			

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:26 ID:?xhs5DRYiY5A9UVUdeZUqkyzamK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

Scale =	1:25.5
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/T	PI2014	CSI TC BC WB Matrix-MP	0.26 0.16 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
BOT CHORD WEDGE BRACING TOP CHORD BOT CHORD REACTIONS (3-10-15 oc purlins. Rigid ceiling directly bracing. size) 2=0-3-8, 3 Mechanic Max Horiz 2=59 (LC Max Uplift 3=-31 (LC	: 15) C 15) C 22), 3=126 (LC 22),	o 3 6) B 1 or 7) R 8) P b 3 9) T Ir R LOAL	on the bottom B-06-00 tall b shord and an Bearings are Refer to girde Provide mecl pearing plate B. This truss is international	as been designed in chord in all areas y 2-00-00 wide wi y other members. assumed to be: , er(s) for truss to tru- nanical connection capable of withst designed in accorr Residential Code id referenced star Standard	s where Il fit betw Joint 2 S uss conr n (by oth anding 3 dance w sections	a rectangle veen the botto GP No.2 . nections. ers) of truss to 1 lb uplift at jo ith the 2018 R502.11.1 a	o o oint					
BOT CHORD NOTES 1) Wind: ASCI Vasd=103m II; Exp B; E Exterior(2E, zone; cantil and right ex	nclosed; MWFRS (er) -0-11-9 to 2-0-7, Int ever left and right exp (posed;C-C for member r reactions shown; Lu	, (3-second gust) CDL=6.0psf; h=25ft; C nvelope) and C-C terior (1) 2-0-7 to 3-10 posed ; end vertical le	-3 ft							4	The second s	OR FEESS	ROIN

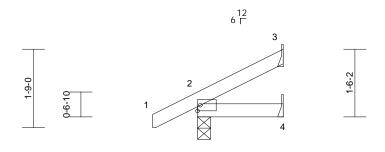
grip DOL=1.33 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

3) Unbalanced snow loads have been considered for this design.

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. SEAL 036322 October 29,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Affi 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	CJ1	Jack-Open	12	1	I69186950 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:26 ID:tiwMxaU3mncce5pFsUdQ?ayzamG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

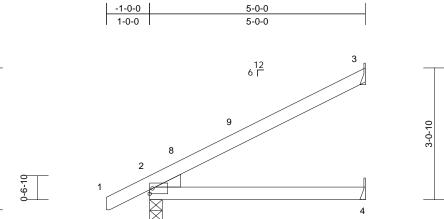
3x5 =

1-10-15

Scale = 1:25.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.03 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 8 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-10-15 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, : Mechanic Max Horiz 2=34 (LC Max Uplift 2=-2 (LC Max Grav 2=169 (LC (LC 33)	applied or 10-0-0 o 3= Mechanical, 4= al 15) 15), 3=-15 (LC 15)	ed or 6	 on the botton 3-06-00 tall li chord and an Bearings are Refer to gird Provide mec bearing plate Brovide mec bearing plate H10A Simps connect trus This connec lateral forces This truss is 	designed in acco	as where will fit betw s. , Joint 2 S truss conr on (by oth standing 1 nnectors s due to U nly and do ordance w	a rectangle veen the bott SP No.2 . nections. ers) of truss i 5 lb uplift at j recommende PLIFT at jt(s) ses not consid ith the 2018	om oint d to 2. der					
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/33, 2-3=-81/6 2-4=-62/28				Residential Code nd referenced sta Standard			ina					
NOTES	2 4= 02/20												
 Wind: ASC Vasd=103/ II; Exp B; E Exterior(2E vertical left forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=(CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er E) zone; cantilever left t and right exposed;C- WFRS for reactions s plate grip DOL=1.33 CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; f is Plate DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 ed snow loads have be	CDL=6.0psf; h=25ft tvelope) and C-C and right exposed ; C for members and hown; Lumber froof LL: Lum DOL= Pf=13.9 psf (Lum 1.0; Rough Cat B; F	end 1.15 Fully							American	A. I.	ORTH CA ORTEESS SEA 0363	AL

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	EJ1	Jack-Open	37	1	I69186951 Job Reference (optional)

3-3-8

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:26 ID:6ASLFrO1eKblgsCiOoUYguyzamO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3x5 =

5	i-0-0

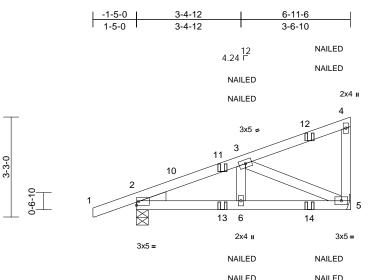
Scale = 1:26.7				l					1				
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018	TPI2014	CSI TC BC WB Matrix-MP	0.48 0.30 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.07 0.01	(loc) 4-7 4-7 2	l/defl >999 >889 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
	2x4 SP No.2 2x4 SP No.2 Left: 2x4 SP No.3 Structural wood she 5-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 5 Mechanic Max Horiz 2=73 (LC Max Uplift 3=-40 (LC Max Grav 2=286 (LC 4=67 (LC (lb) - Maximum Corr	applied or 10-0-0 or 3= Mechanical, 4= 21 15) 215) 22), 3=167 (LC 22 22)	8) 9) LO	on the bottor 3-06-00 tall to chord and an Bearings are Refer to gird Provide mec bearing plate 3. This truss is International	has been design in chord in all ard by 2-00-00 wide in other membe assumed to be er(s) for truss to hanical connect is capable of with designed in acc Residential Coo nd referenced st Standard	eas where will fit betw rs. : , Joint 2 S truss conr ion (by oth astanding 4 ordance w de sections	a rectangle veen the bott SP No.2 . nections. ers) of truss i 0 lb uplift at j ith the 2018 i R502.11.1 a	om to joint					
TOP CHORD BOT CHORD NOTES 1) Wind: ASC Vasd=103r II; Exp B; E Exterior(2E zone; canti and right e	Tension 1-2=0/33, 2-3=-207/ 2-4=-301/163 E 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er 5) -0-11-9 to 2-0-7, Int ilever left and right exp xposed; C-C for memb	, (3-second gust) CDL=6.0psf; h=25ft; tvelope) and C-C retior (1) 2-0-7 to 4-1 posed ; end vertical l posed ; end vertical l	1-4 left								- AL	NITH CA	NROUNIN NROUNIN

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

GILB

October 29,2024

SEAL 036322 WILLIAM DATE


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	HJ1	Diagonal Hip Girder	6	1	I69186952 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:26 ID:6RzmqfbieYKKDT?_utlXsUyzam7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-2

NAILED NAILED <u>3-4-12</u> 3-4-12 3-6-10

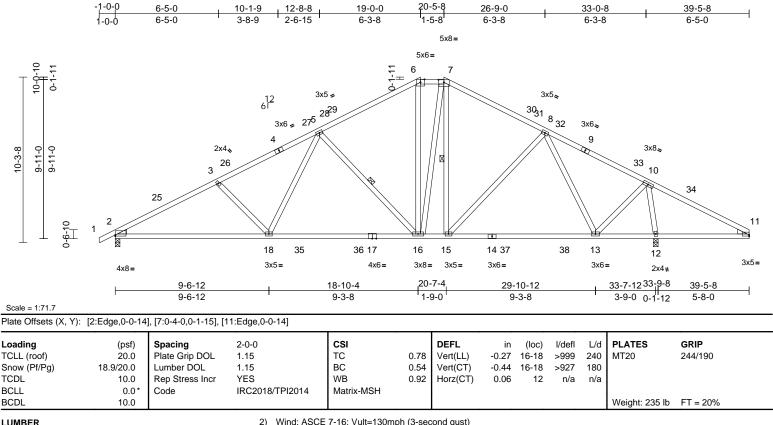
Scale :	= 1:37.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	20.0 P 13.9/20.0 Li 10.0 R	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC20	8/TPI2014	CSI TC BC WB Matrix-MP	0.44 0.28 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.02 0.00	(loc) 5-6 5-6 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 35 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood sheathi 6-0-0 oc purlins, excep Rigid ceiling directly app bracing.	ot end verticals. oplied or 10-0-0 oc		on the bottor 3-06-00 tall the chord and ar Bearings are Refer to gird Provide mec bearing plate 5. One RT8A M	has been design n chord in all ar by 2-00-00 wide y other membe er(s) for truss to hanical connect capable of with tiTek connector: ing walls due to	eas where will fit betw rs. : Joint 2 SF truss conr ion (by oth istanding 2 s recomme	a rectangle veen the both P No.2 . nections. ers) of truss 3 lb uplift at nded to cont	om to joint					
REACTIONS	Max Horiz 2=85 (LC 10) Max Uplift 2=-42 (LC 7) Max Grav 2=380 (LC 2)) , 5=-23 (LC 8)), 5=397 (LC 18)	1	connection is forces. 0) This truss is International	s for uplift only a designed in acc Residential Coo	nd does no ordance w le sections	ot consider la ith the 2018 R502.11.1 a						
FORCES	(lb) - Maximum Compre Tension	ession/Maximum	1		nd referenced si dicates 3-10d (0								
TOP CHORD	1-2=0/35, 2-3=-507/94, 4-5=-145/43	3-4=-68/45,		(0.148"x3.25	") toe-nails per	NDS guidli	nes.	faaa					
BOT CHORD WEBS	2-6=-65/448, 5-6=-27/4 3-6=0/88, 3-5=-487/33	48			CASE(S) section are noted as from Standard			lace					
,	CE 7-16; Vult=130mph (3- 3mph; TCDL=6.0psf; BCDI	0,	1	• • • •	ow (balanced): L .15	umber Inc.	rease=1.15,	Plate					

- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)
- Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.

Vert: 1-4=-48, 5-7=-20 Concentrated Loads (lb)

Vert: 12=-128 (F=-64, B=-64), 13=-2 (F=-1, B=-1), 14=-47 (F=-23, B=-23)



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch				
24070033-B	A08	Hip	1	1	I69186953 Job Reference (optional)				

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:20 ID:lkRmL7VwvtjjGhD5XXxHI_yzaWI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

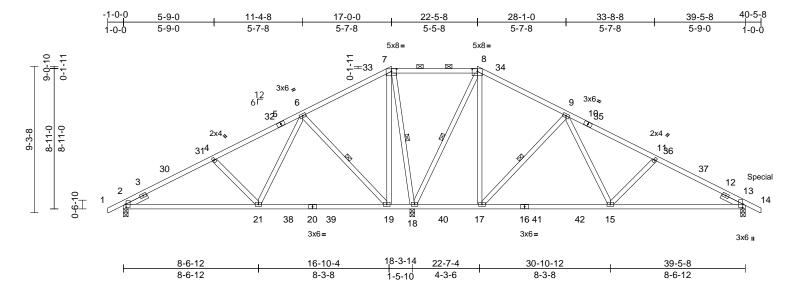
TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP 2400F 2.0E WEBS 2x4 SP No.3 WEDGE Left: 2x4 SP No.3 Right: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 2-9-9 oc purlins, except 2-0-0 oc purlins (4-4-13 max.): 6-7. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. WEBS 5-16, 7-15 1 Row at midpt REACTIONS (size) 2=0-3-8, 12=0-3-8 Max Horiz 2=103 (LC 14) Max Grav 2=1583 (LC 50), 12=2184 (LC 50) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/33, 2-3=-3100/196, 3-5=-2889/190, 5-6=-1923/202, 6-7=-1637/207, 7-8=-1851/189, 8-10=-1327/40, 10-11=-194/499 BOT CHORD 2-18=-199/2697, 16-18=-28/2186, 15-16=0/1480, 13-15=0/1440, 12-13=-119/171, 11-12=-373/207 WEBS 3-18=-342/137, 5-18=0/672, 5-16=-941/154, 6-16=-30/556, 7-16=-62/384, 7-15=-16/187, 8-15=-4/217, 8-13=-885/174 10-13=-43/1502, 10-12=-2229/243 NOTES

 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-11-9 to 2-11-12, Interior (1) 2-11-12 to 19-0-0, Exterior(2E) 19-0-0 to 20-5-8, Exterior(2R) 20-5-8 to 26-0-7, Interior (1) 26-0-7 to 39-5-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15)

3)	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15
	Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum
	DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully
	Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0
4)	I inhologood apour loods have been considered for this

- Unbalanced snow loads have been considered for this design.
 This truss has been designed for greater of min roof live
- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
 Provide adequate drainage to prevent water ponding.
- 6) Provide adequate drainage to prevent water ponding.
 7) * This truss has been designed for a live load of 20.0psf
- (1) This truss has been designed for a live load of 20.0ps on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 8) All bearings are assumed to be SP 2400F 2.0E .9) This truss is designed in accordance with the 2018
- International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 10) Graphical purlin representation does not depict the size
- or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

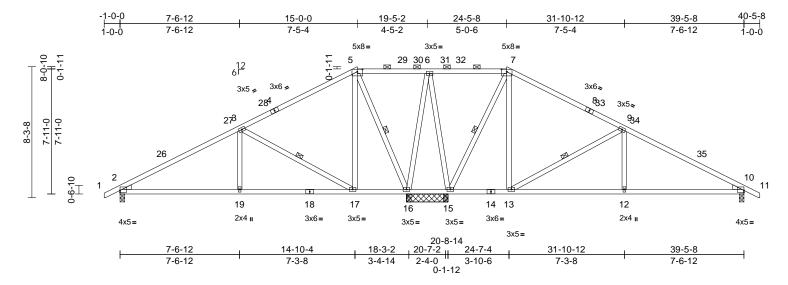
Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A07	Нір	1	1	I69186954 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:20 ID:962klkweZEjgYLnbILCFqmyzagY-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale =	1:73.1
---------	--------

Plate Offsets (X, Y): [2:0-2-4,0-0-8], [7:0-4-0,0-1-15], [8:0-4-0,0-1-15], [13:0-2-8,0-0-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.67 0.76 0.66	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 15-17 15-17 13	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 237 lb	GRIP 244/190 FT = 20%
		athing directly applie ccept 0-0 max.): 7-8. applied or 6-0-0 oc 6-19, 9-17, 7-18, 8-1 13=0-3-8, 18=0-3-8 2 13)	d or 3) 8 4)	Vasd=103m/ II; Exp B; En Exterior(2E) 17-0-0, Exte 22-5-8 to 28 cantilever lef right expose for reactions DOL=1.33 TCLL: ASCE Plate DOL=' DOL=1.15 P Exp.; Ce=0.9 Unbalanced design.	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e -0-11-9 to 2-11-12 rior(2E) 17-0-0 to 2 -1-0, Interior (1) 28 t and right exposed d;C-C for members shown; Lumber Df -7-16; Pr=20.0 psf; .15); Pg=20.0 psf; late DOL=1.15); Is 0; Cs=1.00; Ct=1.11 snow loads have b as been designed for	BCDL=6 envelope , Interio (2-5-8, F -1-0 to 4 ; end 5 and fo DL=1.6 (roof LI Pf=18.9 =1.0; Re 0, Lu=5 been col	6.0psf; h=25ft; a) and C-C (1) 2-11-12 tt Exterior(2R) 40-5-1 zone; vertical left an rces & MWFR 0) plate grip L: Lum DOL= ² 0 psf (Lum sugh Cat B; F 0-0-0 nsidered for th	d S 1.15 ully nis	prov dow des resj 14) In ti of ti LOAD (1) De Inc Ur	vided su vn and 1 ign/sele consibili ne LOAE ne truss CASE(S crease= niform Lo	fficient 67 lb u ction o ty of ot D CASI are no D Stanow (ba 1.15 bads (ll 7=-48, ited Lo	up at 40-5-1 on to f such connection hers. E(S) section, loac ted as front (F) o ndard alanced): Lumber b/ft) 7-8=-58, 8-14=-4 ads (lb)	entrated load(s) 51 lb op chord. The a device(s) is the ls applied to the face r back (B). Increase=1.15, Plat
FORCES	Max Grav 2=647 (LC 18=2458 ((lb) - Maximum Com Tension 1-2=0/37, 2-4=-731/ 6-7=0/629, 7-8=0/70	(LC 50) pression/Maximum 87, 4-6=-586/85,	4), 6) 7) 8)	load of 12.0 overhangs n Provide ade All plates are * This truss l	psf or 2.00 times fla on-concurrent with quate drainage to p 3x5 MT20 unless nas been designed	at roof l other li orevent otherwi for a liv	bad of 13.9 ps ve loads. water ponding se indicated. re load of 20.0	sf on g.				NITH CA	11111
BOT CHORD	9-11=-933/117, 11-1 13-14=-72/28 2-21=-60/654, 19-21 18-19=-571/196, 17- 15-17=0/505, 13-15- 4-21=-377/120, 6-21 7-19=-2/907, 8-17=- 9-15=0/655, 11-15=- 7-18=-1452/103, 8-1	=-72/238, 18=-190/178, =-36/966 =0/678, 6-19=-911/1 18/935, 9-17=-897/1 369/126,	10 46, 46,	9) All bearings are assumed to be SP No.2.							23	A FEOD	L 22
NOTES 1) Unbalanced roof live loads have been considered for this design. 12)					 One PL2:SA Simpson Strong the connect trust to bearing walls due to UPLIFT at jt(s) 2 and 13. This connection is for uplift only and does not consider lateral forces. This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 								


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A06	Нір	1	1	I69186955 Job Reference (optional)

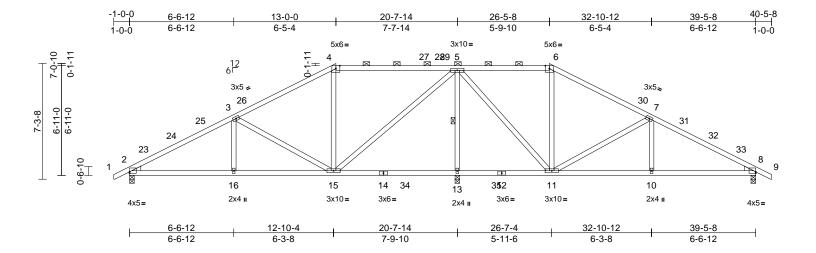
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:20 ID:5haCTzKv6BYdApYAxZpmLRyzahJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:72.9

Plate Offsets ((X, Y): [2:Edge,0-1-6],	[5:0-4-0,0-1-15], [7:0	-4-0,0-1-	15], [10:Edge,0)-1-6]							-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	1.00 0.44 0.42	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 19-22 19-22 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 231 lb	GRIP 244/190 FT = 20%
UMBER OP CHORD OT CHORD VEBS VEDGE RACING OP CHORD OT CHORD VEBS EACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood sheat except 2-0-0 oc purlins (10- Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 1 16=2-7-8 Max Horiz 2=-81 (LC Max Uplift 2=-22 (LC Max Uplift 2=-22 (LC Max Uplift 2=-22 (LC Max Grav 2=677 (LC (15=1048), 6-7=0/49) 9-10=-969/122, 10-1 2-19=-169/747, 17-1 16-17=-96/104, 15-1 13-15=-56/104, 12-1 10-12=-119/790 3-19=0/177, 3-17=-9 7-13=0/562, 9-13=-9	applied or 6-0-0 oc 3-17, 9-13, 5-16, 7-19 10=0-3-8, 15=2-7-8, 2 13) 2 15), 10=-34 (LC 16) C 44), 10=701 (LC 44 (LC 44), 16=1035 (LC upression/Maximum 122, 3-5=-165/198, 13, 7-9=-207/160, 1=0/33 9=-487/747, 6=-484/118,	i, 3) 5 4) 5 4) 5 44) 6) 7) 8) 9) 1(/53,	Vasd=103m II; Exp B; En Exterior(2E) 15-0-0, Exte 20-6-15 to 2 (1) 30-0-7 to exposed ; er members an Lumber DOL TCLL: ASCE Plate DOL=- DOL=1.15 P Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 overhangs n Provide ade * This truss I on the botton 3-06-00 tall I chord and ar All bearings H10A Simps connect trus and 10. This consider latte D) This truss is International R802.10.2 a	designed in acco Residential Code nd referenced sta	BCDL=6 (envelopp 2, Interior 20-6-15,) 24-5-8 tilever lef right exp (S for real DOL=1.3 of (roof LL (; Pf=18.5 s=1.0; Re 10, Lu=5 been cor for great flat roof l h other lin prevent t d for a liv as where ill fit betw e SP No. nuectors due to U uplift only redance w e sections ndard AN	:.0psf; h=25fi and C-C (1) 2-11-12 Interior (1) to 30-0-7, Int t and right ossed;C-C fo ctions shown :. Lum DOL= p sf (Lum Dugh Cat B; f) -0-0 asidered for t er of min roo bad of 13.9 p re loads. water pondin e load of 20. a rectangle veen the bott 2. PLIFT at jt(s y and does n ith the 2018 is R502.11.1 a ISI/TPI 1.	to terior rr, f.1.15 Fully this f live osf on rg. Opsf tom ed to) 2 not and		V	1	NITH CA	ROUNT
NOTES 1) Unbalance this desigr	ed roof live loads have	been considered for						size		1111 WE	in the second seco	1111 G	ER. HALLING

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO


818 Soundside Road Edenton, NC 27932

October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A05	Нір	1	1	I69186956 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:19 ID:RroppFm2x2l9ek1KEu_zUkyzai1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.6

Plate Offeete	(X)	A) 1		0-1-21	[8:Edge,0-1-2]	
Fiale Olisels	(<u>,</u>)	1).	IZ.Euge,	0 - 1 - 2	10.Euge,0-1-21	

Loading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	1 1	1.15		TC	0.79	Vert(LL)		13-15	>999	240	MT20	244/190
Snow (Pf/Pg) TCDL	18.9/20.0		1.15 YES		BC WB	0.57 0.88	Vert(CT) Horz(CT)	-0.17	13-15 8	>999	180		
	10.0					0.88	HOIZ(CT)	0.02	8	n/a	n/a		
BCLL BCDL	0.0* 10.0	Code	IRC201	8/TPI2014	Matrix-MSH							Weight: 213 lb	FT = 20%
LUMBER	; , ,	•	2)		7-16; Vult=130m							_	
OP CHORD	2x4 SP No.2 *Excep	ot* 4-6:2x4 SP No.1			ph; TCDL=6.0psf;			t; Cat.					
BOT CHORD	2x4 SP No.2				closed; MWFRS (4.0					
WEBS	2x4 SP No.3				-0-11-9 to 2-11-12 rior(2R) 13-0-0 to			10					
NEDGE	Left: 2x4 SP No.3 Right: 2x4 SP No.3				6-5-8, Exterior(2R)			erior					
	Right. 284 SP NU.3				40-5-1 zone; can			onor					
BRACING	Structural wood cho	athing directly applied	or		nd vertical left and			r					
	4-8-15 oc purlins, ex		01	members an	nd forces & MWFR	S for rea	actions shown	ר;					
	2-0-0 oc purlins (6-0				L=1.60 plate grip D								
BOT CHORD	Rigid ceiling directly		3)		E 7-16; Pr=20.0 ps			1.15					
	bracing.				1.15); Pg=20.0 psf								
VEBS	1 Row at midpt	5-13			Plate DOL=1.15); Is 9; Cs=1.00; Ct=1.1			-ully					
REACTIONS		8=0-3-8, 13=0-3-8	4)		snow loads have			his					
	Max Horiz 2=-71 (LC		.,	design.									
	Max Uplift 2=-16 (LC		5)	This truss ha	as been designed	for great	er of min root	f live					
	Max Grav 2=847 (L0				psf or 2.00 times f			sf on					
00050	13=2069	()			ion-concurrent with								
ORCES	(lb) - Maximum Corr Tension	pression/iviaximum	6)		quate drainage to								
TOP CHORD	1-2=0/33, 2-3=-1378	8/146 3-4613/142	7)		has been designed m chord in all area			Upst					
	,	270/149, 6-7=-375/131			by 2-00-00 wide w			om					in the second se
	7-8=-1172/128, 8-9=		,		ny other members							WTH CA	Roill
BOT CHORD	2-16=-135/1146, 15	-16=-49/1146,	8)		are assumed to be						15	A	in the last
	13-15=-552/105, 11		9)́	H10A Simps	on Strong-Tie con	nectors	recommende	ed to			22	CEESS S	ION NOT
	10-11=-43/968, 8-10				s to bearing walls					Z	2		Mill
WEBS	. ,	356/124, 4-15=-203/73,			connection is for u	plift only	and does no	t		-	6 8	:4	
	5-15=-63/1249, 5-13	1=-227/52, 7-11=-897/1	22 40	consider late						-		SEA	L : 3
	7-10=0/271	1=-221/32, 1-11=-091/1	23, 10		designed in accor Residential Code			and		=	:	0262	• •
NOTES					ind referenced star			anu		1		0363	~~ ; ;
	ed roof live loads have	been considered for	11		urlin representation			size			8		1 - E
this design					ation of the purlin						1 .	·	Airs
and acoign				bottom chore						11110	25	S GIN	EFICAN
			LC	DAD CASE(S)	Standard						11	10	BEIN
				. ,								11, A. G	ILLIN
												11111	mm.
												Octobe	r 20 2021

October 29,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A04	Нір	1	1	I69186957 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:19 ID:ZXWSqFJCuNyY5v710wJ3xjyzaid-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

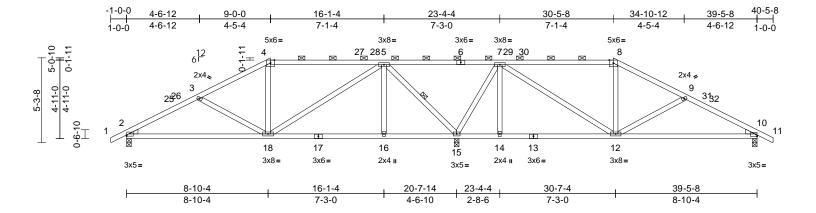
Page: 1

40-5-8 5-6-12 11-0-0 16-9-13 22-7-11 28-5-8 33-10-12 39-5-8 1-0-0 5-6-12 5-5-4 5-9-13 5-9-13 5-9-13 5-5-4 5-6-12 3x6= 3x5= 5x6= 3x5= 5x6= 6-0-10 0-1-11 ÷± 4 5 27 6 ⊠ 28 7 8 6¹² 1 3x5 🞜 3x5 👟 3 9 5-11-0 5-11-0 6-3-8 29₃₀ 25²⁶ 10 0-6-10 11 Ð ₿ 14 34 18 17 31 16 32 33 13 12 15 2x4 🛛 3x8= 3x10= 2x4 🛛 4x6= 3x6= 4x5= 3x5= 4x5= 5-6-12 10-10-4 20-7-14 28-7-4 33-10-12 39-5-8 5-6-12 5-3-8 9-9-10 7-11-6 5-3-8 5-6-12

Scale - 1.72 3

Boald = Th Eld	-
Plate Offsets (X, Y):	[2:Edge,0-1-6], [10:Edge,0-1-6]

	· · · · · · · · · · · · · · · · · · ·	1											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2018/TPI:	CSI TC BC WB 2014 Mat		0.73 0.84 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.26 -0.43 0.02	(loc) 15-17 15-17 10	l/defl >960 >571 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 210 lb	FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Pept -0 max.): 4-8. applied or 6-0-0 oc 5-15 10=0-3-8, 15=0-3-8 : 13) : 15), 10=-26 (LC 16) : 24), 10=756 (LC 44) (LC 49) :pression/Maximum 2/128, 3-4=-679/112, :/782, 7-8=-324/121, :=-1068/107, 10-11=0, :18=-42/1053, 5=-506/106, :=-508/76 :57/120, 4-17=-98/77 :-1233/157, :3=-60/1049, :=-713/111, 9-12=0/20	Vas II; E Ext 11-1 16-1 Inte d or righ 3) TCI Plai DO Exp 4) Unt des 5) This 5) This 6) Pro 7) * Th orte 6) Pro 7) * Th orte 8) All I 9) H10 con 10) This 2 R86 11) Gra	d=103mph; T(xp B; Enclose errior(2E) -0-11)-0, Exterior(2))-0, Exterior(2))-13 to 28-5-8, rior (1) 33-10- t exposed ; en nembers and 1 ber DOL=1.6(L: ASCE 7-16 e DOL=1.5); _=1.15 Plate D is Ce=0.9; Cs= alanced snow ign. it russ has bee to f12.0 psf or rhangs non-co vide adequate is truss has be he bottom cho >00 tall by 2-0 rd and any oth bearings are a: A Simpson St enect truss to b 10. This conn sider lateral fo it russ is desig rmational Resii (2,10.2 and ref phical purlin re	; Vult=130mph CDL=6.0psf; B/ d; MWFRS (er -9 to 2-11-12, 1 R) 11-0-0 to 16 , Exterior(2R) 2 12 to 40-5-1 zc d vertical left af forces & MWFI 0 plate grip DO 5; Pr=20.0 psf (Pg=20.0 psf; F DOL=1.15); Is= =1.00; Ct=1.10, v loads have be en designed for r 2.00 times flat v loads have be en designed for r 2.00 times flat en designed for r 2.00 times flat support of the analysis on our with of eranage to pr een designed for or drainage to pr een designed for r can all areas 00-00 wide will her members, w ssumed to be \$ trong-Tie conne- earing walls du ences. gned in accordat dential Code sa ferenced stand epresentation c of the purlin all	CDL=6 EVEloppeInterior is-9-13, is-9-13, is-9-13, is-9-13, is-9-13, is-9-13, is-9-13, is-9-13, is-9-13, is-9-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-13, is-14, i	.0psf; h=25ft)) and C-C (1) 2-11-12 Interior (1) to 33-10-12, ntilever left a tt exposed;C reactions sho 3 .: Lum DOL= psf (Lum Dugh Cat B; F)-0-0 usidered for tl er of min roof Dad of 13.9 p / e loads. water ponding e load of 20.0 a rectangle DL = 10.0psi 2. recommende PLIFT at jt(s) / and does no th the 2018 R502.11.1 a ISI/TPI 1. to depict the s	to -C own; 1.15 Fully his f live sf on g. Opsf om f. d to) 2 ot and				Weight: 210 lb	ROUNT
this desigr			bott	om chord. CASE(S) Sta		ing the						111111	29,2024



WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A03	Нір	1	1	I69186958 Job Reference (optional)

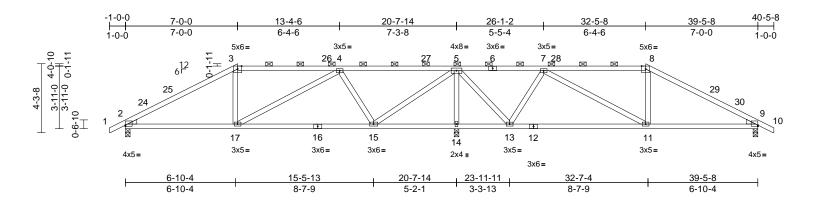
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:19 ID:JFPBpYnE09YfRIKm_O1_ifyzajI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:72.1

Plate Offsets (X, Y): [2:Edge,0-0-14]

		-			· · · · · ·		· · · ·					i	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.77	Vert(LL)		16-18	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.49	Vert(CT)		18-21	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.71	Horz(CT)	0.02	10	n/a	n/a		
BCLL	0.0*	Code	IRC2018/	TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 207 lb	FT = 20%
LUMBER			2)	Wind: ASCE	7-16; Vult=130mp	oh (3-seo	cond gust)						
TOP CHORD	2x4 SP No.2 *Excep	ot* 4-6,6-8:2x4 SP No	.1	Vasd=103mp	oh; TCDL=6.0psf;	BCDL=6	0.0psf; h=25ft	t; Cat.					
BOT CHORD	2x4 SP No.2			II; Exp B; En	closed; MWFRS (envelope	e) and C-C						
WEBS	2x4 SP No.3			Exterior(2E)	-0-11-9 to 2-11-12	2, Interio	r (1) 2-11-12	to					
WEDGE	Left: 2x4 SP No.3				or(2R) 9-0-0 to 14-			6-15					
	Right: 2x4 SP No.3												
BRACING	-				5-1 zone; cantilev								
TOP CHORD Structural wood sheathing directly applied or end vertical left and right exposed;C-C for members and													
	5-4-6 oc purlins, exc				FRS for reactions		Lumber						
	2-0-0 oc purlins (6-0)-0 max.): 4-8.			ate grip DOL=1.33								
BOT CHORD	Rigid ceiling directly	applied or 6-0-0 oc			7-16; Pr=20.0 ps			:1.15					
	bracing.				.15); Pg=20.0 psf								
WEBS	1 Row at midpt	5-15			late DOL=1.15); Is			ully					
REACTIONS	(size) 2=0-3-8, 2	10=0-3-8, 15=0-3-8		Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Unbalanced snow loads have been considered for this									
	Max Horiz 2=-50 (LC	(13)	4)	design.	snow loads have I	been cor	isidered for t	nis					
	Max Uplift 10=-5 (LC	C 16)	5)		is been designed f	for groat	or of min root	flivo					
	Max Grav 2=826 (LC	C 44), 10=756 (LC 44			psf or 2.00 times f								
	15=2164	(LC 43)			on-concurrent with								
FORCES	(lb) - Maximum Com	pression/Maximum			quate drainage to			a.					
	Tension	-			has been designed								
TOP CHORD	1-2=0/36, 2-3=-1129	9/136, 3-4=-803/87,			n chord in all area			-1					116
	4-5=-673/107, 5-7=-	34/743, 7-8=-507/90			y 2-00-00 wide wi			tom				1111 00	1111
	8-9=-619/73, 9-10=-	987/117, 10-11=0/36			y other members.							"TH UA	ROUL
BOT CHORD	2-18=-128/941, 16-1	8=-10/259,			are assumed to be		2.				N	A	in the
	15-16=-10/259, 14-1	5=-242/128,			on Strong-Tie con			ed to		/	55	FEE	Dinain
	12-14=-242/128, 10-	-12=-108/817	,	connect truss	s to bearing walls	due to U	PLIFT at jt(s) 10.			ÐÞ		Lan/l
WEBS	,	3=-30/84, 8-12=-122/	,	This connect	ion is for uplift only	y and do	es not consid	der		1		·Q.	
	9-12=-437/131, 5-16			lateral forces	i.	-				-		SEA	1 1 2
	7-14=0/104, 7-12=-7	74/799, 5-15=-1414/1	37, 10)	This truss is	designed in accor	dance w	ith the 2018			=	:	SLA	• –
	7-15=-1267/130			International	Residential Code	sections	s R502.11.1 a	and		1	. :	0363	22 : =
NOTES					nd referenced star					THE WAY			1 2
1) Unbalance	ed roof live loads have	been considered for			rlin representation			size			2		1 - S
this desigr	٦.				ation of the purlin a	along the	e top and/or				21	N. ENO	-ERIX S
				bottom chord							1	S, GIN	ET AN
			LO	AD CASE(S)	Standard						1	CA -	II BEIN
												11, A. G	IL III
												11111	Um.
												Octobe	r 29,2024

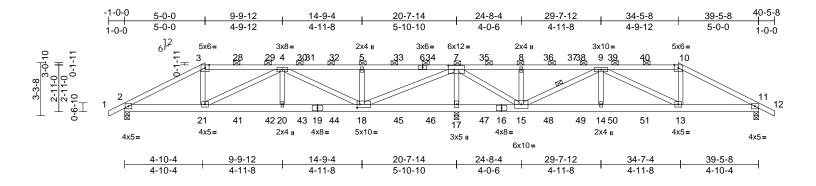

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A02	Нір	1	1	I69186959 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:19 ID:Qy6qqYKPzUI2tSQTmPM39eyzaju-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1


Scale = 1:71.9

,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,], [9:Edge,0-0-14]			· · · · ·								
oading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.93	Vert(LL)		11-23	>999	240	MT20	244/190
now (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.55	Vert(CT)		15-17	>999	180		
CDL	10.0	Rep Stress Incr	YES		WB	0.66	Horz(CT)	0.02	2	n/a	n/a		
CLL	0.0*	Code	IRC2018	3/TPI2014	Matrix-MSH								
CDL	10.0											Weight: 189 lb	FT = 20%
JMBER			2)		7-16; Vult=130mp								
OP CHORD	2x4 SP No.2				oh; TCDL=6.0psf;			; Cat.					
OT CHORD	2x4 SP No.2				closed; MWFRS (
EBS	2x4 SP No.3			()	-0-11-9 to 2-11-12	,	()						
EDGE	Left: 2x4 SP No.3				or(2R) 7-0-0 to 12			6-15					
	Right: 2x4 SP No.3				terior(2R) 32-5-8								
RACING					5-1 zone; cantilev								
OP CHORD	Structural wood shea	athing directly applie	d,		eft and right expo			and					
	except			forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33									
	2-0-0 oc purlins (5-3		. 3)		7-16; Pr=20.0 ps			1 15					
OT CHORD	Rigid ceiling directly	applied or 5-11-12 o	с 0)		.15); Pg=20.0 psf			1.10					
	bracing.				late DOL=1.15); Is			Fully					
EACTIONS	()	9=0-3-8, 14=0-3-8); Cs=1.00; Ct=1.1			uny					
	Max Horiz 2=-40 (LC	,	4)		snow loads have			his					
	Max Uplift 9=-14 (LC		,	design.									
	Max Grav 2=835 (LC 14=2213 (, 5)		is been designed t psf or 2.00 times f								
ORCES	(lb) - Maximum Com	pression/Maximum			, on-concurrent with								
	Tension		6)	Provide ade	quate drainage to	orevent v	vater ponding	g.					
OP CHORD	1-2=0/36, 2-3=-1061		7)	* This truss I	has been designed	l for a liv	e load of 20.	0psf					
	4-5=-371/125, 5-7=-9	,	1,		n chord in all area							IIIIII	1111
	8-9=-920/131, 9-10=				oy 2-00-00 wide w	ll fit betv	een the bott	om				White CA	Dalle
OT CHORD					ny other members							"aTH ON	TO 11
	14-15=-897/31, 13-1		8)		are assumed to be						- 5	O .EFSS	D. Mile
	11-13=-39/317, 9-11		9)		on Strong-Tie con					/	Se	COTLOU	an al
EBS	3-17=0/109, 8-11=-3 4-17=0/321, 5-15=-3				s to bearing walls					4			1
	5-13=-13/1155, 7-13	,	,		ion is for uplift onl	y and do	es not consid	der		-	< 3		
0TF 0	5-15=-15/1155, 7-15	=-033/120, 7-11=0/4		lateral forces			uh uh a 0040			=	:	SEA	Liti
OTES					designed in accor Residential Code			امصد			:	0363	• •
	ed roof live loads have	been considered for			nd referenced star			anu		1		0303	~~ : :
this desigr	1.		11		rlin representation			ozizo		-			
					ation of the purlin a			3126			-	1. A.	all S
				bottom chore		aony ine					2.5	NGINE	ENAS
			10	AD CASE(S)						THUNKS	11	710	. Frist
			10	AD CASE(3)	Stanuaru							11. A. G	ILD
												A. G	in the
												Octobor	29,2024
												UCIODEI	2J.2U24

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A01	Hip Girder	1	1	I69186960 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:18 ID:MRYbHYv0WX0eKT_zPKmdwzyzalj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:71.7

Plate Offsets (X, Y): [7:0-4-8,0-3-0]	, [18:0-2-0,0-2-8]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2018	3/TPI2014	CSI TC BC WB Matrix-MSH	0.78 0.62 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.11 -0.20 0.04	(loc) 18-20 18-20 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 225 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x6 SP No.2 *Except* 19-16:2x6 SP 2400F 2.0E WEBS 2x4 SP No.3 *Except* 18-7,7-15:2x4 SP No.2 BRACING TOP CHORD Structural wood sheathing directly applied or 3-6-4 oc purlins, except 2-0-0 oc purlins (3-1-9 max.): 3-10. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 17-18 4-6-0 oc bracing: 15-17. WEBS 1 Row at midpt 9-15 REACTIONS (size) 2=0-3-8, 11=0-3-8, 17=0-3-8 Max Horiz 2=30 (LC 10) Max Uplift 2=-50 (LC 11), 11=-49 (LC 12),			No.2 ed or 3) c 4) 5)	Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.33) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0) Unbalanced snow loads have been considered for this design.) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.									
FORCES	17=-150 Max Grav 2=1393 (l 17=4133 (lb) - Maximum Con	LC 36), 11=1223 (LC (LC 35)	; 36), 8)	on the bottor 3-06-00 tall I chord and ar	nas been designed m chord in all area by 2-00-00 wide w ny other members e assumed to be: J	s where ill fit betv	a rectangle veen the bott	om					1
TOP CHORD	4-5=-918/54, 5-7=-918/54, 7-8=-1/234, 8-9=-1/234, 9-10=-1688/100, 10-11=-1985/95, 11-12=0/36			SP 2400F 2. One H2.5A S recommende UPLIFT at jt only and doe	0E, Joint 11 SP N Simpson Strong-Ti ed to connect truss (s) 2, 17, and 11. 7 es not consider late	lo.2 . e conne s to bear This conr eral force	ctors ing walls due nection is for es.	e to		4	111	ORTH CA	ROLIN
WEBS	18-20=-90/2410, 17 15-17=-2624/115, 1 13-14=-48/1678, 11 3-21=0/636, 4-21=-4	-18=-2624/115, 4-15=-48/1678, -13=-44/1710		International R802.10.2 a) Graphical ρι	designed in accor Residential Code nd referenced star Irlin representation ation of the purlin a	sections ndard AN n does no	R502.11.1 a ISI/TPI 1. ot depict the s			11111		SEA 0363	• •
NOTES	4-18=-1676/73, 5-18 7-18=-143/3858, 7- 8-15=-503/108, 9-18	8=-665/148,		bottom chore									ER.K.

Continued on page 2 WARNING - Ver Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

October 29,2024

Job	Truss	Truss Type	Qty	Ply	15 Overhills Creek-Roof-Plan 15 gable porch
24070033-B	A01	Hip Girder	1	1	I69186960 Job Reference (optional)

12) Hanger(s) or other connection device(s) shall be

<u></u>	
	provided sufficient to support concentrated load(s) 139
	Ib down and 39 lb up at 5-0-0, 139 lb down and 37 lb up
	at 7-0-12, 139 lb down and 37 lb up at 9-0-12, 139 lb
	down and 37 lb up at 11-0-12, 139 lb down and 37 lb up
	at 13-0-12, 139 lb down and 37 lb up at 15-0-12, 139 lb
	down and 37 lb up at 17-0-12, 139 lb down and 37 lb up
	at 19-0-12, 139 lb down and 37 lb up at 20-4-12, 139 lb
	down and 37 lb up at 22-4-12, 139 lb down and 37 lb up
	at 24-4-12, 139 lb down and 37 lb up at 26-4-12, 139 lb
	down and 37 lb up at 28-4-12, 139 lb down and 37 lb up
	at 30-4-12, and 139 lb down and 37 lb up at 32-4-12,
	and 139 lb down and 39 lb up at 34-5-8 on top chord,
	and 415 lb down and 23 lb up at 5-0-0, 47 lb down at
	7-0-12, 47 lb down at 9-0-12, 47 lb down at 11-0-12, 47
	lb down at 13-0-12, 47 lb down at 15-0-12, 47 lb down
	at 17-0-12, 47 lb down at 19-0-12, 47 lb down at
	20-4-12, 47 lb down at 22-4-12, 47 lb down at 24-4-12,
	47 lb down at 26-4-12, 47 lb down at 28-4-12, 47 lb
	down at 30-4-12, and 47 lb down at 32-4-12, and 415
	Ib down and 23 lb up at 34-4-12 on bottom chord. The
	design/selection of such connection device(s) is the
	responsibility of others.

13) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-3=-48, 3-10=-58, 10-12=-48, 22-25=-20 Concentrated Loads (lb)

 $\begin{array}{l} \mbox{Vert: } 3=-114 \ (F), 21=-415 \ (F), 18=-47 \ (F), 5=-109 \ (F), \\ 17=-47 \ (F), 8=-109 \ (F), 15=-47 \ (F), 13=-415 \ (F), \\ 7=-109 \ (F), 10=-114 \ (F), 28=-109 \ (F), 29=-109 \ (F), \\ 30=-109 \ (F), 32=-109 \ (F), 33=-109 \ (F), 34=-109 \ (F), \\ 35=-109 \ (F), 36=-109 \ (F), 38=-109 \ (F), 39=-109 \ (F), \\ 40=-109 \ (F), 41=-47 \ (F), 42=-47 \ (F), 43=-47 \ (F), \\ 44=-47 \ (F), 45=-47 \ (F), 46=-47 \ (F), 51=-47 \ (F) \end{array}$

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 25 15:59:18 ID:MRYbHYv0WX0eKT_zPKmdwzyzalj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

