

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: Cali M VMB

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

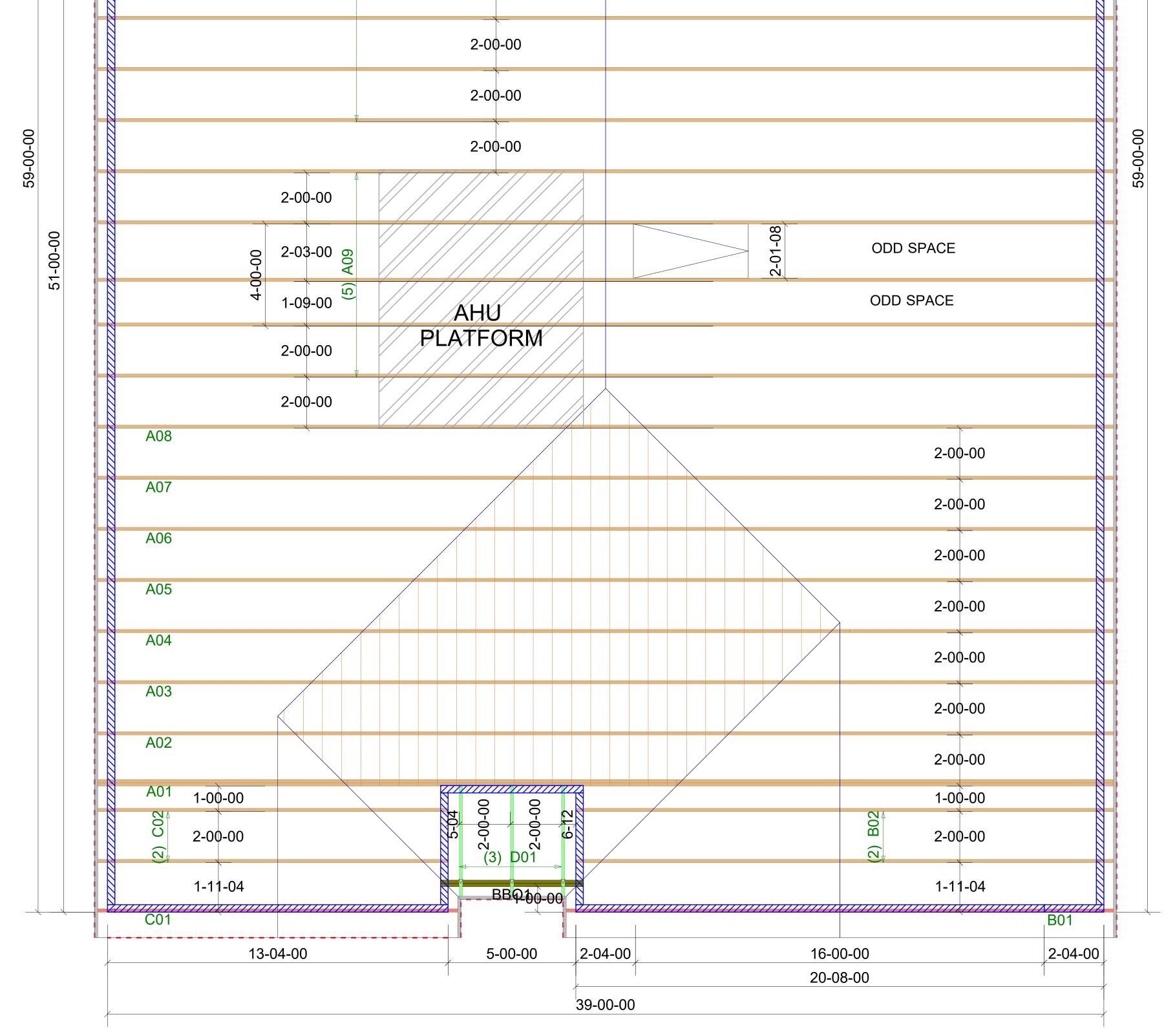
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

		11-00-00		<u>39-00-00</u> 28-00-00	Truss Connecto Manuf Produ	
		Cantilever 2x Beam by Bldr to Carry Gable End		Builder to Frame Wall Up to Bottom of Vault in Truss	Simpson One H	
		A13 BBO3				
		PBO1	1-11-04			
00-	BB02		2-00-00			
8-00-00)2	(4) A12	2-00-00			
			2-00-00			
			2-00-00			
		11A 11	2-00-00	3/12 Slope 3/12 Slope		
		(3)	2-00-00			
		Y Y	2-00-00			
			2-00-00			
			2-00-00			
		A10	2-00-00			
			2-00-00			

IMBING DROPS NOTED ARE IN THE APPROXIMATE LOCATIONS PER PLAN. BUILDER TO VERIFY LOCATIONS BEFORE SETTING TRUSSES

General

Notes:

** CUTTING OR DRILLING OF COMPONENTS SHOULD NOT BE DONE WITHOUT CONTACTING COMPONENT SUPPLIER FIRST.

** GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS. ** DIMENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH. 1, all uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the bldg designer and or contractor.

Date: TI	DR Horton Inc		THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss	00/00,00,00,00,00,00,00,00,00,00,00,00,0
NTS 0/18/202 Designer: e Donalc Project Num M240355 Sheet Numt	Cali-M-SLAB+VMB-Roof-All Levels	CARTER	design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available	Revision: 00/00 N 00/00 N 00/00 N 00/00 N 00/00 N
mber:	ROOF PLACEMENT PLAN	Lumber	from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	Vame Vame Vame

RE: 24050246-01 30 Mason Ridge-Roof-Cali M VMB GRH

Site Information:

Customer: DR Horton Inc Project Name: 24050246-01 Lot/Block: 30 Model: Address: Subdivision: Mason Ridge City: State: NC Trenco 818 Soundside Rd Edenton, NC 27932

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 18 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	165976663	A01	6/4/2024
2	165976664	A02	6/4/2024
3	165976665	A03	6/4/2024
4	165976666	A04	6/4/2024
5	165976667	A05	6/4/2024
6	165976668	A06	6/4/2024
7	165976669	A07	6/4/2024
8	165976670	A08	6/4/2024
9	165976671	A09	6/4/2024
10	165976672	A10	6/4/2024
11	165976673	A11	6/4/2024
12	165976674	A12	6/4/2024
13	165976675	A13	6/4/2024
14	165976676	B01	6/4/2024
15	165976677	B02	6/4/2024
16	165976678	C01	6/4/2024
17	165976679	C02	6/4/2024
18	165976680	D01	6/4/2024

The truss drawing(s) referenced above have been prepared by Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Gilbert, Eric

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH		
24050246-01	A01	Roof Special	1	2	Job Reference (optional)	165976663	

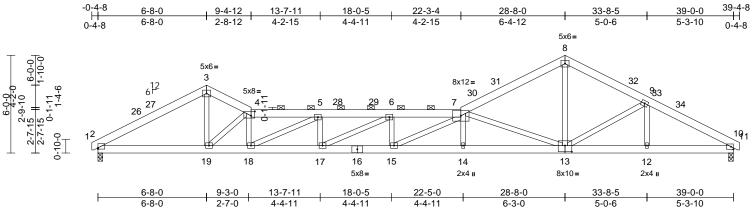
6-8-0

6-8-0

9-4-12

13-7-11

4-2-15


Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:51 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 22-3-4 28-8-0 33-8-5 4-2-15 6-4-12 5-0-6

Page: 1

39-0-0

5-3-10

18-0-5

4-4-11

Scale = 1:70.7

Plate Offsets (X, Y): [2:Edge,0-0-15], [4:0-2-12,0-3-4], [1	13:0-5-0,0	-4-8]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.24 0.69 0.95	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.31 -0.60 0.08	(loc) 14-15 14-15 10	l/defl >999 >780 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 525 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 BOT CHORD 2x6 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except 2-0-0 oc purlins (5-9-9 max.): 4-7. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-8, 10=0-3-8 Max Horiz 2=84 (LC 18) Max Uplift 2=-226 (LC 14), 10=-113 (LC 14) Max Grav 2=1610 (LC 46), 10=1647 (LC 50)			ed or 2 c 14) 3	 (0.131"x3") I Top chords staggered a Bottom chor staggered a Web connec) All loads are except if not CASE(S) se provided to unless other) Unbalanced this design. 							here a rectangle between the bottom onnectors bearing walls due to nection is for uplift only is. ce with the 2018 tions R502.11.1 and d ANSI/TPI 1. es not depict the size		
FORCES	(lb) - Maximum Com		, su) 4	Vasd=103m	7-16; Vult=130mph ph; TCDL=6.0psf; B pclosed: MWERS (e)	CDL=6	0.0psf; h=25ft	,	LOAD	CASE(S) Sta	ndard	
TOP CHORD	1-2=0/16, 2-3=-2768 4-5=-4946/692, 5-6= 6-7=-7014/895, 7-8= 8-9=-2585/370, 9-10	=-6480/858, =-2629/360,	,	and C-C Ext 3-6-14 to 6-8 9-4-12 to 24	II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-3-14 to 3-6-14, Exterior(2R) 3-6-14 to 6-8-0, Exterior(2E) 6-8-0 to 9-4-12, Interior (1) 9-4-12 to 24-9-5, Exterior(2R) 24-9-5 to 32-6-11, Interior (1) 32-6-11 to 35-5-2, Exterior(2E) 35-5-2 to 39-3-13								
BOT CHORD	2-19=-351/2376, 18- 17-18=-869/6480, 19 14-15=-816/6768, 12 10-12=-243/2443	-19=-706/4996, 5-17=-905/7013,	-0,0	zone; cantile and right exp	ever left and right ex posed;C-C for mem reactions shown; Lu	posed bers ar	; end vertical d forces &	left				TH CA	ROUT
WEBS	4-18=-46/872, 7-14= 9-13=-364/142, 7-13 9-12=-79/74, 7-15=- 5-18=-1749/186, 6-1 6-15=-205/154, 3-19 4-19=-3497/460	9,) TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct) Unbalanced	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this							• -		
NOTES	4-19=-0497/40U		7	load of 12.0 overhangs n	as been designed fo psf or 1.00 times fla non-concurrent with	at roof le other li	oad of 20.0 p ve loads.	sf on		1111		0363	

8) Provide adequate drainage to prevent water ponding. 9) All plates are 4x5 MT20 unless otherwise indicated.

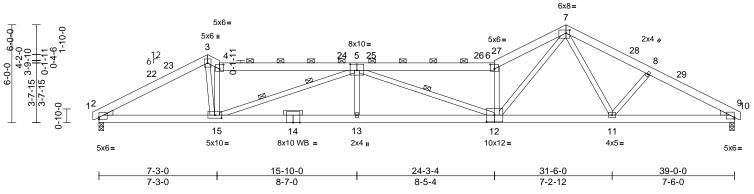
10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. Unuminin . June 4,2024

GILB

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH		
24050246-01	A02	Roof Special	1	1	Job Reference (optional)	165976664	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:52 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


Page: 1

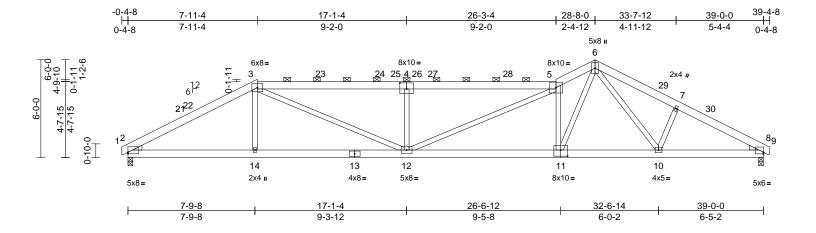
39-4-8 || 0-4-8

39-0-0

5-3-10

6-8-0 7-4-12 15-10-0 24-3-4 28-8-0 33-8-5 6-8-0 0-8-12 8-5-4 8-5-4 4-4-12 5-0-6

Scale = 1:70.7


Plate Offsets (X, Y): [2:Edge,0-1-7], [4:0-3-0,0-3-4], [5:0-5-0,0-4-8], [6:0-3-0,0-3-4], [7:0-2-12,0-2-4], [9:Edge,0-1-3], [12:0-5-12,0-5-0], [15:0-5-0,0-2-4]													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.88 0.71 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-13 12-13 9	l/defl >999 >645 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 263 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES	No.2 2x4 SP No.3 *Excep 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 3-0-6 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. 1 Row at midpt 2 Rows at 1/3 pts (size) 2-0-3-8, 9 Max Horiz 2=84 (LC Max Uplift 2=-226 (LI Max Grav 2=1604 (LI Max Grav 2=1604 (LI Max Grav 2=1604 (LI Max Grav 2=1604, CI 1-2=0/16, 2-3=-2926 4-6=-4630/540, 6-7= 7-8=-2745/373, 8-9= 2-15=-353/2562, 13- 11-13=-650/5354, 9- 3-15=-315/3036, 4-1 5-15=-2372/249, 5-1 6-12=-2766/442, 7-1 7-11=-50/427, 8-11=	-0 max.): 4-6. applied or 10-0-0 oc 5-12 5-15 9=0-3-8 18) C 14), 9=-113 (LC 14) C 21), 9=1670 (LC 50 pression/Maximum 3/397, 3-4=-3533/492, -5247/669, -5247/669, -5247/669, -5247/669, 5=-2101/318, 3=0/362, 5-12=-776/1: 2=-512/4025, -350/169	or 3) 4) 5)) 6) 7) 8) 9) 59, 10 11	Vasd=103m II; Exp B; En and C-C Ext 3-6-14 to 6-8 7-4-12 to 24 (1) 32-6-11 t zone; cantile and right exp MWFRS for grip DOL=1. TCLL: ASCE Plate DOL=' DOL=1.15; Cs=1.00; Ct Unbalanced design. This truss ha chord live loo * This truss ha chord live loo * This truss ha chord live loo * This truss ha chord and an One H2.5A S recommende UPLIFT at jt and does no) This truss is International R802.10.2 a) Graphical pu	7-16; Pr=20.0 psf (1.15); Pf=20.0 psf (1s=1.0; Rough Cat =1.10 snow loads have b as been designed f psf or 1.00 times fl on-concurrent with quate drainage to p as been designed f ad nonconcurrent with quate drainage to p as been designed f ad nonconcurrent with quate drainage to p so been designed f ad nonconcurrent with quate drainage to p so been designed f ad nonconcurrent with quate drainage to p so 2-00-00 wide with y other members. Simpson Strong-Ti ed to connect truss (s) 2 and 9. This co t consider lateral f designed in accord Residential Code nd referenced star irlin representation ation of the purlin a d.	BCDL=6 envelope o 3-6-14 8-0 to 7 24-9-5 tt 22 22) 35-5 xposed nbers ar umber l f (roof LL (Lum DC B; Fully been con for great lat roof lu or ther li porevent for a 10. with any l for a liv s where a to bear onnectio porces. dance w sections ndard AN d does m	.0psf; h=25ft a) exterior zor; Exterior(2R); 4-12, Interior; 32-6-11, Int -2 to 39-3-13; and vertical d forces & DOL=1.60 pla .: Lum DOL= L=1.15 Plate Exp.; Ce=0.9; asidered for the er of min roof pad of 20.0 p reloads. water ponding 0 psf bottom other live load a rectangle veen the botth ctors ing walls due n is for uplift ith the 2018 R 502,11.1 a ISJ/TPI 1. t depict the s	(1) (1) erior left 1.15 (1) erior to posf om to ponly and				1111 A. G	ER RUU

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A03	Roof Special	1	1	Job Reference (optional)	165976665

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:52 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:70.7

Plate Offsets	(X, Y): [2:Edge,0-0-15]], [4:0-5-0,0-4-8], [8:Ed	ge,0-1-3	3], [11:0-5-0,0-	4-8]								
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018	8/TPI2014	CSI TC BC WB Matrix-MSH	0.96 0.82 0.93	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.29 -0.52 0.10	(loc) 12 11-12 8	l/defl >999 >893 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 261 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD REACTIONS	2x6 SP No.2 2x4 SP No.3 *Excep Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood shea 3-8-0 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. (size) 2=0-3-8, 8 Max Horiz 2=84 (LC Max Uplift 2=-226 (L)	athing directly applied o ept -0 max.): 3-5. applied or 10-0-0 oc 3=0-3-8 18)	or 3)	Vasd=103mj II; Exp B; En and C-C Ext 3-6-14 to 4-C 11-9-15 to 2 Interior (1) 3 39-3-13 zom- vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct=	7-16; Vult=130mp ph; TCDL=6.0psf; closed; MWFRS (erior(2E) -0-3-14 to)-9, Exterior(2R) 4- 6-3-4, Exterior(2R) 2-6-11 to 35-5-2, E e; cantilever left an und right exposed; /FRS for reactions late grip DOL=1.60 57-16; Pr=20.0 psf (15); Pf=20.0 psf (15); N=20.0 psf (15) 1.5); Pf=20.0 psf (15) 1.5); N=20.0 ps	BCDL=6 envelope 5 3-6-14 0-9 to 1 26-3-4 Exterior(; d right 6 C-C for r shown; f (roof LI Lum DC B; Fully	6.0psf; h=25ft a) exterior zo , Interior (1) 1-9-15, Interior to 32-6-11, 2E) 35-5-2 to ixposed ; end nembers and Lumber .: Lum DOL= DL=1.15 Plate Exp.; Ce=0.	ne or (1) 1 1.15 9;					
FORCES	(lb) - Maximum Com Tension		5)	This truss ha load of 12.0	as been designed f psf or 1.00 times fl on-concurrent with	at roof I	oad of 20.0 p						
BOT CHORD	5-6=-3694/499, 6-7= 7-8=-2863/366, 8-9=	-2733/405, 0/9	6) 7)	Provide adeo This truss ha	quate drainage to p as been designed f ad nonconcurrent v	orevent or a 10.	water pondin D psf bottom	•					11111
WEBS	10-12=-343/3411, 8- 3-14=0/309, 3-12=-2 5-12=-161/905, 5-11 6-11=-351/2842, 6-1 7-10=-349/167	26/1809, 4-12=-944/26 =-2478/420,	8) 58, 9)	* This truss h on the bottor 3-06-00 tall h chord and ar	has been designed m chord in all area by 2-00-00 wide wi hy other members. Simpson Strong-Ti	l for a liv s where Il fit betv	e load of 20. a rectangle veen the bott	0psf		4	in the second	OR FESS	NOLINI,
NOTES 1) Unbalanc this desig	ed roof live loads have	been considered for	10	recommende UPLIFT at jt(and does no) This truss is International R802.10.2 a) Graphical pu	ed to connect truss (s) 2 and 8. This co t consider lateral for designed in accorr Residential Code nd referenced star Irlin representation ation of the purlin a d.	to bear onnectio orces. dance w sections idard AN does n	ing walls due n is for uplift ith the 2018 s R502.11.1 a ISI/TPI 1. ot depict the s	only			A A A A A A A A A A A A A A A A A A A	100000	ER RUIN

- or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

June 4,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A04	Нір	1	1	Job Reference (optional)	165976666

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:52 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

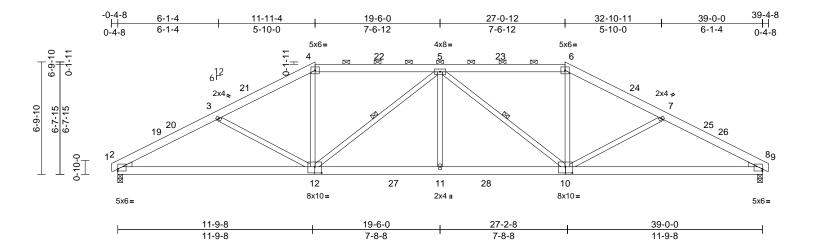
Scale = 1:69.5

Plate Offsets	, (X, Y): [2:Edge,0-1-11], [4:0-5-0,0-4-8], [6:8	Edge,0-1-	11]									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.93 0.87 0.49	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.25 -0.41 0.11	(loc) 10-12 10-12 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 245 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	 2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 *Except Left: 2x4 SP No.3 Right: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 2-2-0 oc purlins, exc 2-0-0 oc purlins (2-2 Rigid ceiling directly bracing. (size) 2=0-3-8, 6 Max Horiz 2=80 (LC Max Uplift 2=-89 (LC Max Grav 2=1769 (I (lb) - Maximum Com Tension 1-2=0/9, 2-3=-3067/ 5-6=-3067/377, 6-7= 2-12=-216/2686, 10- 8-10=-219/2676, 6-5 3-12=0/465, 3-10=-2 5-10=-214/1211, 5-5 exed roof live loads have 	2-0 max.): 3-5. y applied or 10-0-0 oc 6=0-3-8 18) C 11), 6=-89 (LC 10) LC 5), 6=1769 (LC 6) npression/Maximum (377, 3-5=-3714/462, =0/9 -12=-219/2676, 3=-216/2686 214/1211, 4-10=-955/ 3=0/465	d or 3) 4) 5) (278, 8) 9)	Vasd=103mj II; Exp B; En and C-C Ext 3-6-14 to 6-C (1) 13-9-15 t Interior (1) 3 39-3-13 zom vertical left af forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha load of 12.0 overhangs n Provide ader This truss ha load of 12.0 overhangs n Provide ader This truss f on the bottor 3-06-00 tall t chord and ar One H2.5A § recommende UPLIFT at jtt and does no) This truss is International	7-16; Vult=130mp bh; TCDL=6.0psf; E closed; MWFRS (e erior(2E) -0-3-14 tc I-9, Exterior(2R) 6- o 25-2-1, Exterior(2 2-11-7 to 35-5-2, E s; cantilever left an nd right exposed;C (FRS for reactions ate grip DOL=1.60; 7-16; Pr=20.0 psf (15); Pf=20.0	SCDL=6 mvelope o 3-6-14 O-9 to 1 2R) 25-2 xterior(2 d right e >-C for n shown; (roof LL Lum DC B; Fully ween cor or greate at roof le other liv or en 10.0 vith any for a 10.0 vith any for a 10.0 vith any for a 10.0 vith any for a liv s where t betw with BC e connee to bear nections	.0psf; h=25fi e) exterior zo Interior (1) 2-1 to 32-11- 2-2 3-9-15, Interi- 2-1 to 32-11- 2-2 3-9-15, Interi- 2-2 3-9-15, Interi-2-2,	ior 7, 6 d d s1.15 e 9; this f live ssf on g. ads. Opsf tom sf. e to only				INTH CA	ROL
		1'	 9) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 6. This connection is for uplift only and does not consider lateral forces. 10) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. 11) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. 										

- or the orientation of the purlin along the top and/or bottom chord.
- LOAD CASE(S) Standard

818 Soundside Road Edenton, NC 27932

G minin


June 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

ſ	Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH		
	24050246-01	A05	Нір	1	1	Job Reference (optional)	165976667	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:52 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:69.7

	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
oading CLL (roof)	(psi) 20.0	Plate Grip DOL	2-0-0 1.15		TC	0.51	Vert(LL)		(100)		240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15		BC	0.87	Vert(CT)		11-12	>999	180	101120	244/100
CDL	10.0	Rep Stress Incr	YES		WB	0.42	Horz(CT)	0.10	8	n/a	n/a		
CLL	0.0*	Code		8/TPI2014	Matrix-MSH	02		0.10	0	1.0 C		1	
CDL	10.0			o, 11 1201 1								Weight: 266 lb	FT = 20%
UMBER			2)	Wind: ASCE	7-16; Vult=130m	oh (3-seo	ond gust)						
	2x6 SP No.2				ph; TCDL=6.0psf;								
	2x6 SP No.2			, i ,	closed; MWFRS (,	ne					
/EBS	2x4 SP No.3				erior(2E) -0-3-14 t								
/EDGE	Left: 2x4 SP No.3)-9, Exterior(2R) 8								
	Right: 2x4 SP No.3				o 23-2-1, Exterior 0-11-7 to 35-5-2, I								
RACING					e; cantilever left ar								
OP CHORD	Structural wood she		ed or		ind right exposed;								
	4-0-6 oc purlins, exc				/FRS for reactions								
OT CHORD	2-0-0 oc purlins (4-4 Rigid ceiling directly		•		late grip DOL=1.6								
	bracing.	applied of 10-0-0 of	3)	TCLL: ASCE	7-16; Pr=20.0 ps	f (roof LL	.: Lum DOL=	1.15					
/EBS	0	5-12, 5-10			I.15); Pf=20.0 psf								
	(size) 2=0-3-8, 8	,			Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.	9;					
	Max Horiz 2=96 (LC		4)	Cs=1.00; Ct				L. 1					
	Max Uplift 2=-97 (LC		4)	design.	snow loads have	been cor	isidered for t	nis					
	Max Grav 2=1735 (L		45) 5)		as been designed	for areat	er of min root	f live					
ORCES	(lb) - Maximum Com	pression/Maximum	, 0)		psf or 1.00 times f								
	Tension				on-concurrent with								
OP CHORD	1-2=0/9, 2-3=-2959/4	437, 3-4=-2701/384	, 6)		quate drainage to			q.					
	4-5=-2410/389, 5-6=	-2410/389,			as been designed			5					111
	6-7=-2701/384, 7-8=				ad nonconcurrent			ads.				N''LL CA	Dille
OT CHORD	2-11=-307/2974, 8-1	1=-307/2974	8)	* This truss I	has been designed	d for a liv	e load of 20.	0psf				THUA	NOY.
/EBS	3-12=-503/213, 4-12				m chord in all area		0				2	OFFESS	K. Main
	5-11=0/338, 5-10=-7	/31/163, 6-10=0/844	,		oy 2-00-00 wide w							OFLOZ	AN A I
	7-10=-503/214		0)		ny other members			t.		2			n n
OTES			9)		Simpson Strong-Ti			to					
	d roof live loads have	been considered fo	r		ed to connect trus: (s) 2 and 8. This c		0				:	SEA	L :
this design.					t consider lateral f			Only		=		0363	22
			10		designed in accor		ith the 2018			-		0303	
			10		Residential Code			and		-			1 - E
					nd referenced star			-			2	N. E.	Air :
			11) Graphical pu	Irlin representation	n does no	ot depict the	size			25	GINE	EFICAS
				or the orient	ation of the purlin	along the	top and/or				11	10	BEN
				bottom chore DAD CASE(S)								A. G	IL UNIN

June 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A06	Нір	1	1	I6597 Job Reference (optional)	76668

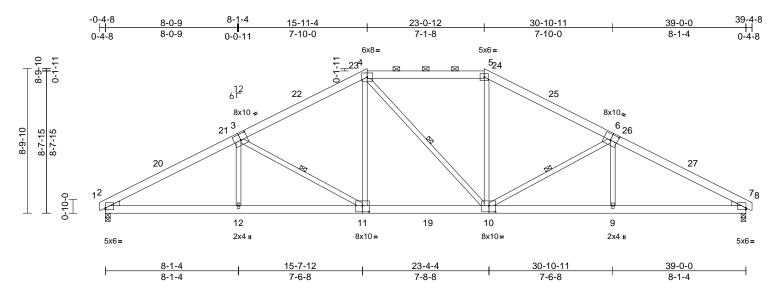
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:53 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

39-4-8 7-1-4 13-11-4 19-6-0 25-0-12 31-10-11 39-0-0 0-4-8 6-10-0 5-6-12 7-1-4 5-6-12 6-10-0 7-1-4 5x6= 4x5= 5x6= 7-9-10 0-1-11 0-1-11 4 2245 2027 6 5 Æ 1 6¹² 23 30 8x10 🞜 8x10 3 7 7-9-10 7-7-15 7-7-15 332 272 20 33 12 89 0-10-0 μ L + × 13 12 28 29 11 10 2x4 🛛 8x10= 8x10= 2x4 II 5x6= 5x6= 7-1-4 13-9-8 25-2-8 31-10-11 39-0-0 7-1-4 11-5-0 6-8-4 6-8-4 7-1-4

Scale = 1:69.9

	, T). [Z.Luge,0-1-0],	[3:0-5-0,0-4-8], [7:0-5-	J,0-4-0j	, [0.Luge,0-1-0	J, [11.0-3-0,0-4-0]	[12.0-5	-0,0-4-0]						
Loading TCLL (roof) Snow (Pf) TCDL BCLL	(psf) 20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 I.15 I.15 YES RC201	8/TPI2014	CSI TC BC WB Matrix-MSH	0.45 0.83 0.69	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 11-12 11-12 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCDL	10.0											Weight: 273 lb	FT = 20%
BEDL LUMBER TOP CHORD BOT CHORD WEBS REACTIONS FORCES	2x6 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood she 3-10-3 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (4-9 Rigid ceiling directly bracing. 1 Row at midpt (size) 2=0-3-8, 8 Max Horiz 2=112 (LC Max Uplift 2=-115 (L	II 4 max.): 4-6. applied or 10-0-0 oc 5-12, 5-11 3=0-3-8 C 14) C 14), 8=-115 (LC 15) LC 45), 8=1775 (LC 45)	3) 4)	Vasd=103m II; Exp B; En and C-C Ext 3-6-14 to 10 (1) 17-9-15 t Interior (1) 2 39-3-13 zon vertical left a forces & MW DOL=1.60 p TCLL: ASCE Plate DOL= ² DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0	7-16; Vult=130mp bh; TCDL=6.0psf; closed; MWFRS (e erior(2E) -0-3-14 tr -0-9, Exterior(2R) -0 o 21-2-1, Exterior(8-11-7 to 35-5-2, E e; cantilever left an ind right exposed; C/FRS for reactions late grip DOL=1.60 57-16; Pr=20.0 psf (15); Pf=20.0	BCDL=6 envelope 3-6-14 10-0-9 to 2R) 21-2 2R) 21-2 2R) 21-2 2R) 21-2 2 C for n shown;) (roof LL Lum DC B; Fully been cor or great at roof lo	.0psf; h=25ft exterior zo Interior (1) 17-9-15, Int 2E) 35-5-2 to xposed ; enc hembers and Lumber .: Lum DOL= DL=1.15 Plate Exp.; Ce=0. histored for t er of min roo bad of 20.0 p	ne erior 7, d 1 4 5 9; his f live				Weight: 273 lb	FT = 20%
OP CHORD	1-2=0/9, 2-4=-3071/3 5-6=-2212/402, 6-8=	-3071/399, 8-9=0/9	6) 7)	Provide ade This truss ha	quate drainage to p as been designed f	orevent or a 10.0	vater pondin) psf bottom	•				mun	111.
BOT CHORD WEBS	8-10=-269/2663 3-13=0/177, 3-12=-6	-13=-270/2662, 618/206, 4-12=-12/788, =-379/148, 6-11=-12/7	8) 88,	* This truss I on the bottor	ad nonconcurrent v nas been designed n chord in all area by 2-00-00 wide wi	for a liv s where	e load of 20. a rectangle	0psf			TU	OP FESS	ROLIN
NOTES 1) Unbalance this desigr	7-11=-618/207, 7-10 ed roof live loads have n.		11	One H2.5A S recommende UPLIFT at jtr and does no) This truss is International R802.10.2 a) Graphical pu		e conne to bear onnectio orces. dance w sections dard AN does no	ctors ing walls due n is for uplift th the 2018 R502.11.1 a ISI/TPI 1. ot depict the	e to only and				SEA 0363	22 EREALITY

June 4,2024


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A07	Нір	1	1	I65976669 Job Reference (optional)	

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:53 ID:Evh8gst48bcCRWOT7Y3HWIzwjCh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:70.1

Loading	(psf)		2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	1 '	1.15		TC	0.62	Vert(LL)		10-11		240	MT20	244/190
Snow (Pf) TCDL	20.0 10.0		1.15 YES		BC WB	0.85 0.31	Vert(CT) Horz(CT)	-0.27 0.11	11-12 7	>999	180 p/o		
BCLL	0.0*	1 '		8/TPI2014	Matrix-MSH	0.51		0.11	1	n/a	n/a		
BCDL	10.0	Code	160201	0/1112014	Wathx-WOT							Weight: 271 lb	FT = 20%
UMBER			2)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)						
FOP CHORD	2x6 SP No.2				ph; TCDL=6.0psf;								
BOT CHORD	2x6 SP No.2				closed; MWFRS (ne					
NEBS		ot* 10-4:2x4 SP No.2			erior(2E) -0-3-14 to								
WEDGE	Left: 2x4 SP No.3				-0-9, Exterior(2R) to 35-5-2, Exterior(
	Right: 2x4 SP No.3				ever left and right e								
BRACING					oosed;C-C for men			ilen					
TOP CHORD	Structural wood she 3-7-0 oc purlins, exc	athing directly applied	or		reactions shown; I			ate					
	2-0-0 oc purlins, exc 2-0-0 oc purlins (4-7			grip DOL=1.									
BOT CHORD		applied or 10-0-0 oc	3)		E 7-16; Pr=20.0 ps								
	bracing.				1.15); Pf=20.0 psf								
NEBS	0	3-11, 4-10, 6-10			Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.	9;					
REACTIONS	(size) 2=0-3-8, 7	7=0-3-8	4	Cs=1.00; Ct				uh i o					
	Max Horiz 2=128 (LO	C 18)	4)	design.	snow loads have I	been cor	isidered for t	inis					
	Max Uplift 2=-132 (L	.C 14), 7=-132 (LC 15)	5)	0	as been designed f	or areat	er of min roo	flive					
	Max Grav 2=1810 (L	LC 45), 7=1804 (LC 45) ()		psf or 1.00 times f								
ORCES	(lb) - Maximum Com	pression/Maximum			on-concurrent with								
	Tension		6)	Provide ade	quate drainage to	orevent	water pondin	ıg.					
FOP CHORD			7)		as been designed f								
	5-7=-3135/404, 7-8=				ad nonconcurrent							mmm	1111.
BOT CHORD		12=-254/2726,	8)		has been designed			.0psf				IN'LY CA	ROUL
NEBS	7-9=-254/2718	736/224, 4-11=-21/698			m chord in all area							A	SUM.
NED3)=0/671, 6-10=-734/22			by 2-00-00 wide wind other members.						1	O`:FESS	ON in
	6-9=0/268	-0/011, 0 10= 104/22	, 9)		Simpson Strong-Ti					/	25		14.11
NOTES			5)		ed to connect truss			e to				S 4	4.0
	ed roof live loads have	been considered for			(s) 2 and 7. This co							CEA	
this desig				and does no	t consider lateral f	orces.	•	,			:	SEA	
			10		designed in accor					=		0363	22 : :
					Residential Code			and			3		
					nd referenced star						-	1. A.	- 1 E
			11		urlin representation ation of the purlin a d.			SIZE			11	SEA 0363	EERER
			14	DAD CASE(S)								A. G	ILBUIN
			L.		Glanuaru							111111	in the second se
												lur	0 1 2021

June 4,2024

Il acing Plate Institute (www.tpinst.org)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Trus	s	Truss Type		Qty	Ply	30 Mason Ridge-Roof-Cali M VM	//B GRH
24050246-01	A08		Hip		1	1	Job Reference (optional)	165976670
	ts (Sanford, NC), San		1 · ··P		25 2024 Print: 8. YCtCW0gi3vAzw	730 S Apr 25	JOD Reference (optional) 5 2024 MiTek Industries, Inc. Mon Jun 0 870Hq3NSgPqnL8w3uITXbGKWrCDoi	÷
	-0-4-8 	7-5-12 7-5-12	11-2-12 14-7-5 3-9-0 3-4-9	5 <u>17-11-4</u> 19- 3-3-15 1-6		1-4-11 -3-15	27-9-4 31-6-4 3-4-9 3-9-0	<u>39-0-0</u> 7-5-12 0-4-8
9-9-10 1 9-7-15 9-9-10 9-7-15 0-10-0	-	8x10 4 32	2x4 u 35 3334 2x4 u 35 3334 2x4 u 35 3334 2x4 u 35 334 2x4 u 35 32 32 2x4 u 35 32 32 32 2x4 u 35 32	22 2x4 II 4x6 = 42	5x6= 8 9 21 23 2x4 II 3x8= 18 6x10= 4x6		$ \begin{array}{c} $	39 4x5 ≈ 13 1415 ∞ 0 1
	6x8 I		4x6=				8x10=	6x8 и
		9-10-12	11-4-12 10-0-9	19-6-0		27-7-4		39-0-0
Scale = 1:71.9	I	9-10-12	0-1-13 1-4-3	8-1-4	I	8-1-4	1-4-3" 9 0-1-13	-10-12
	(, Y): [2:0-3-12,0-2	-9], [4:0-5-0,0-4-8], [12		2,0-2-9], [16:0-5-0,0-	-5-0], [18:0-5-0),0-2-8], [20		
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0 10.0		·	CSI TC BC WB Matrix-MSH		LL) -0 CT) -0 (CT) 0	LOAD CASE(S) Standard	
	2.0E 2x6 SP 2400F 2.0 SP No.2 2x4 SP No.3 *Exc	ept* 4-7,12-9:2x6 SP 2 E *Except* 19-18,18-1: ept* 18-8:2x4 SP No.2 - 1-6-0, Right 2x4 SP N	II; Exp B; E 7:2x6 and C-C E 3-6-14 to 1 (1) 24-9-7 No.3 zone;C-C f reactions s	nph; TCDL=6.0psf; E inclosed; MWFRS (e xterior(2E) -0-3-14 to 4-0-9, Exterior(2R) 1 to 35-5-2, Exterior(2E or members and forc hown; Lumber DOL=	nvelope) exte 3-6-14, Interi 4-0-9 to 24-9- E) 35-5-2 to 39 ces & MWFRS	rior zone or (1) 7, Interior 9-3-13 for	L	
BRACING TOP CHORD BOT CHORD	3-5-6 oc purlins, e 2-0-0 oc purlins (5		Plate DOL: DOL=1.15)	CE 7-16; Pr=20.0 psf =1.15); Pf=20.0 psf (I ; Is=1.0; Rough Cat Ct=1.10	Lum DOL=1.1	5 Plate		
WEBS JOINTS REACTIONS (bracing. 1 Row at midpt 1 Brace at Jt(s): 2 (size) 2=0-3-8 Max Horiz 2=144 (Max Uplift 2=-26 (1)	6-21, 10-21 1 5, 14=0-3-8	 Unbalance design. This truss I load of 12. overhangs 200.0lb AC from left er 	d snow loads have b nas been designed for 0 psf or 1.00 times fla non-concurrent with c unit load placed on nd, supported at two p	or greater of m at roof load of other live load the bottom ch points, 5-0-0 a	in roof live 20.0 psf or ds. ord, 15-4-4 apart.	1	
FORCES	(lb) - Maximum Co	ompression/Maximum	8) All plates a	equate drainage to p re 4x6 MT20 unless	otherwise indi	cated.		mmm _n ,
TOP CHORD			, chord live l 10) * This truss on the bott	has been designed fo oad nonconcurrent w s has been designed om chord in all areas I by 2-00-00 wide wil	vith any other for a live load where a recta	live loads. of 20.0psf angle	CINIOR.	H CARO
BOT CHORD WEBS NOTES 1) Unbalanced	4-20=-597/259, 5- 6-22=-1591/289, 2 21-23=-1574/310, 7-22=-36/107, 9-2	10-23=-1569/310,	chord and 29, 11) One H2.5A (510, recommen UPLIFT at and does r 12) This truss i Internation	any other members, Simpson Strong-Tie ded to connect truss it(s) 2 and 14. This c ot consider lateral fo s designed in accord al Residential Code s and referenced stan	with BCDL = connectors to bearing wa onnection is for rces. lance with the sections R502	10.0psf. Ils due to or uplift only 2018 .11.1 and	Contraction of the Contraction o	SEAL 036322
this design.			13) Graphical	ourlin representation ntation of the purlin a	does not depi	ct the size	Child C	A. GILBE

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

CN

⁸¹⁸ Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A09	Common	5	1	Job Reference (optional)	165976671

SP No.2

-- 1-6-0

bracing.

Tension

2-12=-68/2803

(size)

1 Brace at Jt(s): 19

Max Horiz 2=157 (LC 18)

2x4 SP No.3 *Except* 16-7:2x4 SP No.2

Structural wood sheathing directly applied.

Rigid ceiling directly applied or 10-0-0 oc

2=0-3-8. 12=0-3-8

Max Uplift 2=-36 (LC 14), 12=-78 (LC 15)

(Ib) - Maximum Compression/Maximum

1-2=0/13, 2-5=-3209/81, 5-6=-2610/148,

9-12=-3144/138, 12-13=0/13

Unbalanced roof live loads have been considered for

Wind: ASCE 7-16; Vult=130mph (3-second gust)

reactions shown; Lumber DOL=1.60 plate grip

6-19=-1422/295. 8-19=-1405/312

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-3-14 to 3-6-14. Interior (1) 3-6-14 to 15-7-5, Exterior(2R) 15-7-5 to 23-4-11, Interior (1) 23-4-11 to 35-5-2, Exterior(2E) 35-5-2 to 39-3-13 zone;C-C for members and forces & MWFRS for

6-7=-1306/0, 7-8=-1329/0, 8-9=-2617/141,

16-19=0/1028, 7-19=0/1049, 9-14=-75/443,

10-14=-503/314, 5-18=0/543, 4-18=-568/247,

Max Grav 2=1919 (LC 3), 12=1876 (LC 3)

WEBS

SLIDER

JOINTS

FORCES

TOP CHORD

BOT CHORD

this design.

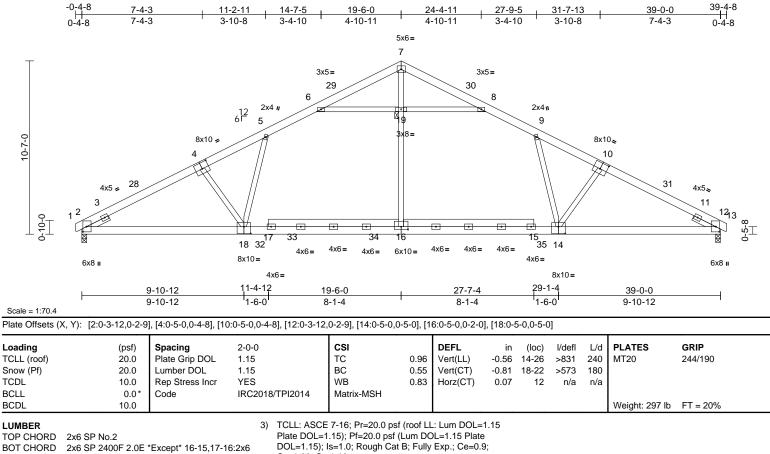
DOL=1.60

WEBS

NOTES

1)

2)


BRACING

TOP CHORD

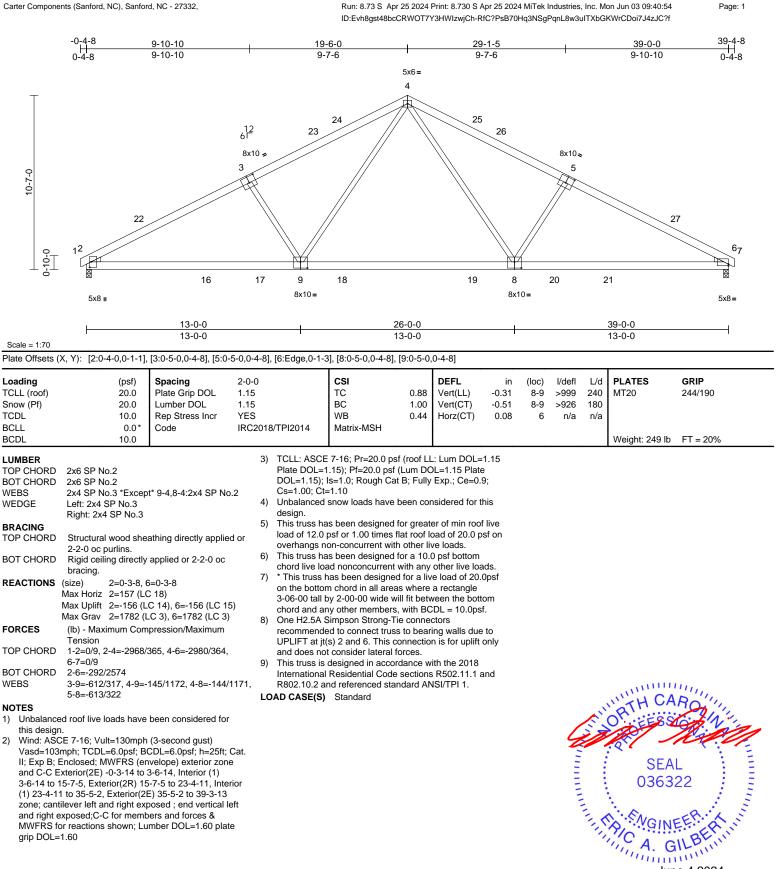
BOT CHORD

REACTIONS

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:53 ID:fvtoJLOdMAmYCtCW0gi3vAzwVFs-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Cs=1.00: Ct=1.10

- 4) Unbalanced snow loads have been considered for this Left 2x4 SP No.3 -- 1-6-0, Right 2x4 SP No.3 design.
 - 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
 - 200.0lb AC unit load placed on the bottom chord, 15-4-4 6) from left end, supported at two points, 5-0-0 apart.
 - 7) All plates are 4x6 MT20 unless otherwise indicated.
 - This truss has been designed for a 10.0 psf bottom 8)
 - chord live load nonconcurrent with any other live loads. 9) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom
 - chord and any other members, with BCDL = 10.0psf. 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 12. This connection is for uplift only and does not consider lateral forces.
 - 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1. LOAD CASE(S) Standard


WITH CASE ORTH 0 Contraction of the VIVILLE IN THE SEAL 036322 G minin June 4,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A10	Common	7	1	Job Reference (optional)	165976672

2)

June 4,2024

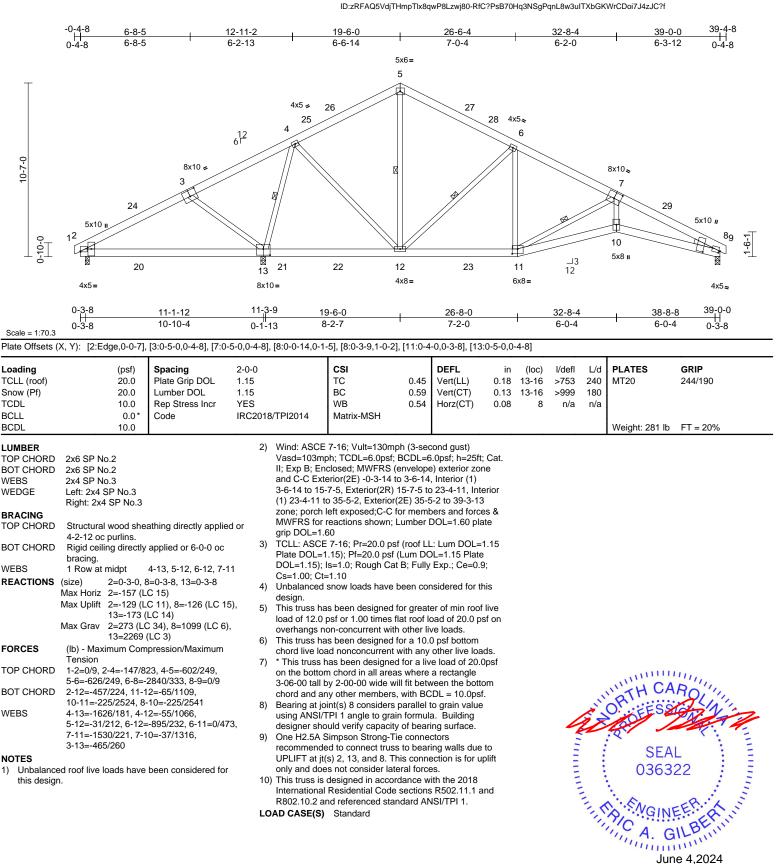
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A11	Roof Special	3	1	Job Reference (optional)	165976673

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:54 ID:rmlr88hAphVvRasIw2ITbwzwjAL-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-0-4-8 	<u>6-8-5</u> 6-8-5		<u>13-1-3</u> 6-4-14		<u>19-6-0</u> 6-4-13		<u>26-6-4</u> 7-0-4		<u>32-8-4</u> 6-2-0	ļ		<u>39-0-0</u> 6-3-12	39-4-8
	0-4-8	0-0-5		0-4-14		0-4-10	5x6=	7-0-4		0-2-0			0-0-12	0-4-8
-							5 ক							
10-7-0			8x10 z	6 ¹²	4x5 = 24 4	25		26	27 4x5× 6			8x10≈		
0-10-0	12	23	3									7	28	5x10 #
⊤ <u>-</u> ⊤					20	21	12	22	11	-		6x10 ॥	3∟ 12	
	6x8=			8x10=			8x10=		6x8=				12	5x8≈
			9-11-0		19-6	i-0		26-8-0		32-8-4	1		38-8-8	39-0-0
Scale = 1:70.3			9-11-0		9-7-		-	7-2-0		6-0-4			6-0-4	0-3-8
	X, Y): [2:Ec	lge,0-3-8],	, [3:0-5-0,0-4-8], [7:0	0-5-0,0-4-8],	[8:0-0-12,0-2	-1], [8:0-3-9,1-0-	-2], [11:0-4	0,0-3-8], [12:0)-5-0,0-4-8],	13:0-5-0,0)-4-8]			
oading		(psf)	Spacing	2-0-0		CSI	-	DEFL	in (loc) l/defl	L/d	PLATES	6 G	RIP
CLL (roof) now (Pf)		20.0 20.0	Plate Grip DOL Lumber DOL	1.15 1.15		TC BC	0.50 0.99	Vert(LL) Vert(CT)	-0.24 10-1 -0.44 10-1	1 >999	240 180	MT20		14/190
CDL		10.0	Rep Stress Incr	YES		WB	0.99	Horz(CT)		3 n/a	n/a			
CLL CDL		0.0* 10.0	Code	IRC2018	/TPI2014	Matrix-MSH						Weight:	280 lb F	Γ = 20%
DRCES DP CHORD OT CHORD YEBS OTES	2.0E 2x4 SP No Left: 2x4 S Right: 2x4 Structural 2-10-15 or Rigid ceilin bracing, 2-2-0 oc b 1 Row at 1 (size) Max Horiz Max Uplift Max Grav (lb) Maxi Tension 1-2=0/9, 2 5-6=-2002 2-11=-320 8-10=-320 4-13=-25/4 5-12=-109 7-11=-227 3-13=-300	2.3 SP No.3 SP No.3 SP No.3 wood she c purlins. ng directly Except: 2=-157 (L 2=-156 (L 2=-156 (L 2=-156 (L 2=-157 (C 2=-157 (L 2=-156 (L 2=-156 (L 2=-156 (L 2=-156 (L 2=-156 (L 2=-156 (L 2=-156 (L))))) (327, 6-8=-156 (L))) (327, 6-8=-156 (L)))) (327, 6-8=-156 (L)))) (327, 6-8=-156 (L))))))))))))))))))))))))))))))))))))	4-12, 6-12, 7-11 8=0-3-8 .C 15) .C 14), 8=-156 (LC .C 3), 8=1723 (LC 3 pression/Maximum 319, 4-5=-1990/330 4915/439, 8-9=0/9 -11=-320/4384,	ied or 3) oc 4) 5) 15) 3) 6) 7) 9 8) 0/403, 9) or	and C-C Ext 3-6-14 to 15- (1) 23-4-11 t zone;C-C for reactions shu DOL=1.60 TCLL: ASCE Plate DOL=1.15); Cs=1.00; Ct= Unbalanced design. This truss ha chord live loa * This truss ha chord live loa * This truss ha chord live loa * This truss ha chord and ar Bearing at jo using ANSI/7 designer sho One H2.5A S recommende UPLIFT at jt(and does no This truss is International	closed; MWFRS erior(2E) -0-3-14 -7-5, Exterior(2E) -0-3-14 -7-5, Exterior(2E) -0-3-14 -7-5, Exterior(2E) -0-3 -14 -7-5, Exterior -7-16; Pr=20.0 p -1.10;	4 to 3-6-14 (1) 15-7-5 to forces & Mi DL=1.60 plis psf (roof LL sf (Lum DC Cat B; Fully e been cor d for greatur s flat roof la vith other lin d for a 10.0 th with any the d for a 10.0 th with any the d for a 10.0 th with any the d for a 10.0 th with BC rs parallel th city of beari- Tie connection al forces. sordance w the sections	Interior (1) 23-4-11, Inter -2 to 39-3-13 WFRS for ate grip : Lum DOL=1. L=1.15 Plate Exp.; Ce=0.9; sidered for this er of min roof li ad of 20.0 psf te loads. 0 psf bottom other live loado a rectangle reen the bottor DL = 10.0psf. o grain value a. Building ng surface. tors ng walls due to h is for uplift or th the 2018 R502.11.1 an	ior 15 s ive on s. s f m	4		ORTH ORTH ORTOF	SEAL 36322	OL IN THE
				LO	AD CASE(S)	Standard					and and a second	RIC L	GINES June	BFR 1111


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A12	Roof Special	4	1	Job Reference (optional)	65976674

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:54

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	A13	Roof Special	1	1	l6 Job Reference (optional)	65976675

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:54 Page: 1 ID:_7cSAj4o96MMcJVXf9hWJZzwj0p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 39-4-8 32-8-4 9-6-0 19-6-0 39-0-0 9-6-0 10-0-0 13-2-4 6-3-12 0-4-8 5x6= 12 11 13 10 14 9 ⁵⁰ 12 61 ⁵¹15 4x5 ≠ 8 16 7 17 10-7-0 8x10 8x10≠ 6 18 19 5 20 21 5x10 u ٦ 2<u>2</u>3 1-6-1 0-10-0 26₂₅ 27 24 28 ₿ 5x6 II Ħ 29 43 42 41 40 39 3∟ 38 37 36 35 34 33 32 31 30 12 4x5= 4x5= 8x10= 4x8= 4x5~ 0-3-8 39-0-0 11-6-0 11-1-12 26-8-0 32-8-4 38-8-8 10-10-4 15-2-0 6-0-4 6-0-4 0-3-8 0-3-8 0-4-4 Scale = 1:70.3 Plate Offsets (X, Y): [2:Edge,0-1-3], [5:0-5-0,0-4-8], [20:0-5-0,0-4-8], [22:0-1-7,0-2-0], [30:0-4-0,0-1-0], [36:0-5-0,0-4-8] 2-0-0 CSI DEFL l/defl L/d PLATES GRIP Loading (psf) Spacing in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.32 Vert(LL) 0.08 41-42 >999 240 MT20 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.30 Vert(CT) -0.12 41-42 >999 180 TCDL Rep Stress Incr WB 10.0 YES 0.43 Horz(CT) -0.02 30 n/a n/a BCLL 0.0 IRC2018/TPI2014 Matrix-MSH Code Weight: 340 lb BCDL 10.0 FT = 20% LUMBER TOP CHORD 1-2=0/9, 2-3=-705/22, 3-4=-711/41, 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) 4-6=-656/86, 6-7=-589/108, 7-8=-443/125, Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. TOP CHORD 2x6 SP No.2 8-9=-347/144, 9-10=-360/169, II; Exp B; Enclosed; MWFRS (envelope) exterior zone 2x6 SP No.2 BOT CHORD 10-11=-367/199, 11-12=-345/233, and C-C Exterior(2E) -0-3-14 to 3-6-0, Interior (1) 3-6-0 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 *Except* 0-0,0-0:2x4 SP No.2 12-13=-345/233, 13-14=-366/199. to 15-6-0. Exterior(2R) 15-6-0 to 23-6-0. Interior (1) 14-15=-376/160, 15-16=-371/131, 23-6-0 to 35-5-2, Exterior(2E) 35-5-2 to 39-3-13 zone; (flat) 16-17=-319/107, 17-18=-365/85, WEDGE Left: 2x4 SP No.3 cantilever left and right exposed ; end vertical left and 18-19=-366/64, 19-21=-347/50, right exposed C-C for members and forces & MWERS BRACING for reactions shown; Lumber DOL=1.60 plate grip 21-22=-417/13, 22-23=0/9 TOP CHORD Structural wood sheathing directly applied or BOT CHORD 2-43=-762/272, 42-43=-762/272, DOL=1.60 6-0-0 oc purlins. 41-42=-762/272, 40-41=-764/274, 3) Truss designed for wind loads in the plane of the truss BOT CHORD Rigid ceiling directly applied or 6-0-0 oc only. For studs exposed to wind (normal to the face),

2x4 SP No.2 - 11-35, T-Brace: 13-33 Fasten (2X) T and I braces to narrow edge of web with 10d (0.131"x3") nails, 6in o.c., with 3in minimum end distance. Brace must cover 90% of web length.

REACTIONS (size) 2=0-3-8, 22=0-3-8, 30=15-8-0, WEBS 31=15-8-0, 32=15-8-0, 33=15-8-0, 34=15-8-0, 35=15-8-0, 36=15-8-0, 37=15-8-0, 38=15-8-0 Max Horiz 2=1200 (LC 1), 22=-1200 (LC 1) Max Uplift 2=-43 (LC 14), 22=-50 (LC 15), 30=-226 (LC 15), 31=-121 (LC 35), 32=-53 (LC 15), 33=-17 (LC 15), 34=-88 (LC 1), 35=-21 (LC 14), 36=-49 (LC 14), 37=-66 (LC 14), 38=-131 (LC 14) Max Grav 2=643 (LC 1), 22=652 (LC 1)

bracing.

WEBS

30=801 (LC 35), 31=32 (LC 15) 32=244 (LC 22), 33=195 (LC 22), 34=139 (LC 15), 35=206 (LC 21), 36=235 (LC 21), 37=223 (LC 21), 38=489 (LC 34) (lb) - Maximum Compression/Maximum

39-40=-764/274, 38-39=-764/274, 37-38=-905/284, 35-37=-905/284, 34-35=-905/284, 33-34=-905/284, 32-33=-905/284, 31-32=-905/284, 30-31=-905/284, 29-30=-1011/317, 28-29=-946/298, 27-28=-934/295, 26-27=-907/285, 25-26=-885/275, 24-25=-918/285, 22-24=-1019/290 19-26=-100/29, 12-34=-116/160, 11-35=-164/49, 10-36=-202/77, 9-37=-154/75, 8-38=-2/111, 7-39=-81/362, 6-40=0/70, 5-41=-115/72, 4-42=0/54,

3-43=-62/45, 13-33=-166/49, 14-32=-163/67, 15-31=-149/71, 16-29=-238/99, 17-28=-6/47. 18-27=-83/56, 20-25=-163/85, 21-24=-18/58, 7-38=-772/243

NOTES

Unbalanced roof live loads have been considered for 1) this design.

see Standard Industry Gable End Details as applicable,

or consult qualified building designer as per ANSI/TPI 1.

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Cs=1.00; Ct=1.10

5)

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE

Tension

FORCES

Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

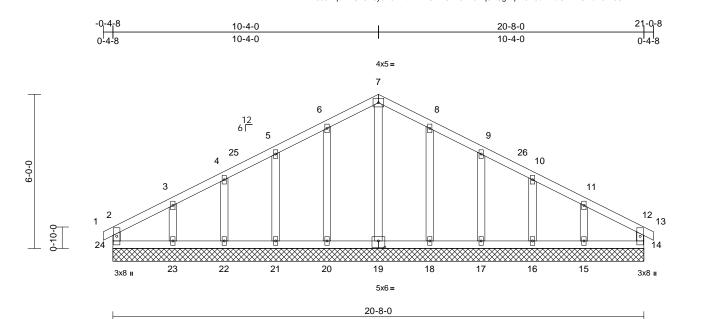
Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH		
24050246-01	A13	Roof Special	1	1	Job Reference (optional)	165976675	

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:54

ID:_7cSAj4o96MMcJVXf9hWJZzwj0p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,


- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Bearings are assumed to be: , Joint 2 User Defined , Joint 31 User Defined .
- 12) Bearing at joint(s) 22 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 13) N/A
- 14) Non Standard bearing condition. Review required.
- 15) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and
- R802.10.2 and referenced standard ANSI/TPI 1. 16) Warning: Additional permanent and stability bracing for
- truss system (not part of this component design) is always required.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH				
24050246-01	B01	Common Supported Gable	1	1	Job Reference (optional)	165976676			

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:54 ID:Ts5oRqu4mUn5A3y3B3BrkuzwimG-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:44.8

Plate Offsets (X, Y): [19:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	1-11-4 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MR	0.07 0.04 0.09	· · ·	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 111 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 OTHERS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals.			 WEBS 7-19=-134/21, 6-20=-198/73, 5-21=-183/81, 4-22=-128/68, 3-23=-128/119, 8-18=-198/73, 9-17=-183/81, 10-16=-128/68, 11-15=-128/119 NOTES NOTES I Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) -0-4-8 to 2-0-0. Exterior(2N) 2-4-0 to 7-4-0, Corner(3R) 7-4-0 to 13-4-0, Exterior(2N) 13-4-0 to 18-0-8, Corner(3E) 13-0-48 to 21-0-8 zone; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (cord LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Unbalanced snow loads have been considered for this design. 								between the bottom y others) of truss to ling 26 lb uplift at joint lift at joint 20, 46 lb 22, 77 lb uplift at joint lift at joint 17, 34 lb oint 15. ce with the 2018 ctions R502.11.1 and
FORCES	(lb) - Maximum Com Tension 2-24=-100/79, 1-2=(3-4=-57/90, 4-5=-58 6-7=-89/221, 7-8=-8 9-10=-58/131, 10-11 12-13=0/14, 12-14=:	/14, 2-3=-78/53, /131, 5-6=-74/178, 9/221, 8-9=-74/178, =-48/90, 11-12=-68/35	load of 12 overhangs 7) All plates 8) Gable req 9) Truss to b braced ag	has been designed 0 psf or 1.00 times to non-concurrent with the 2x4 MT20 unless the fully sheathed from ainst lateral movement	flat roof len n other li s otherwittom choin n one facter tom (i.e. c	bad of 20.0 p ve loads. se indicated. d bearing. ce or securely	sf on		CONTRACTOR OF		SEA 0363	• –
BOT CHORD	23-24=-23/49, 22-23 20-21=-23/49, 18-20	i=-23/49, 21-22=-23/49 =-23/49, 17-18=-23/49 =-23/49, 14-15=-23/49	, 11) This truss	is spaced at 2-0-0 o has been designed oad nonconcurrent	for a 10.		ıds.				in the second se	EER KININ

June 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	B02	Common	2	1	Job Reference (optional)	165976677

Loading

TCLL (roof)

Snow (Pf)

LUMBER

TCDL

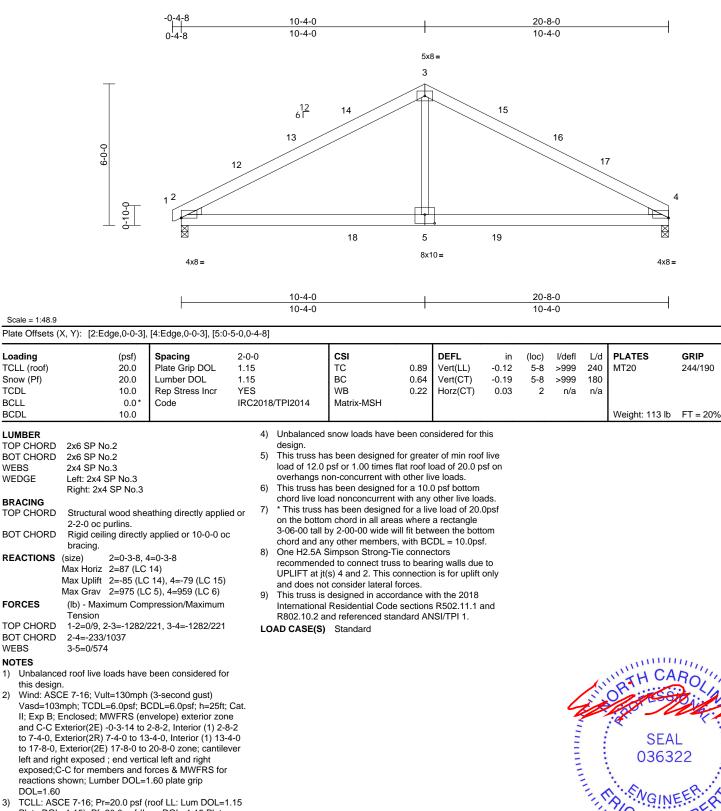
BCLL

BCDL

WEBS

WEDGE

BRACING


FORCES

WEBS

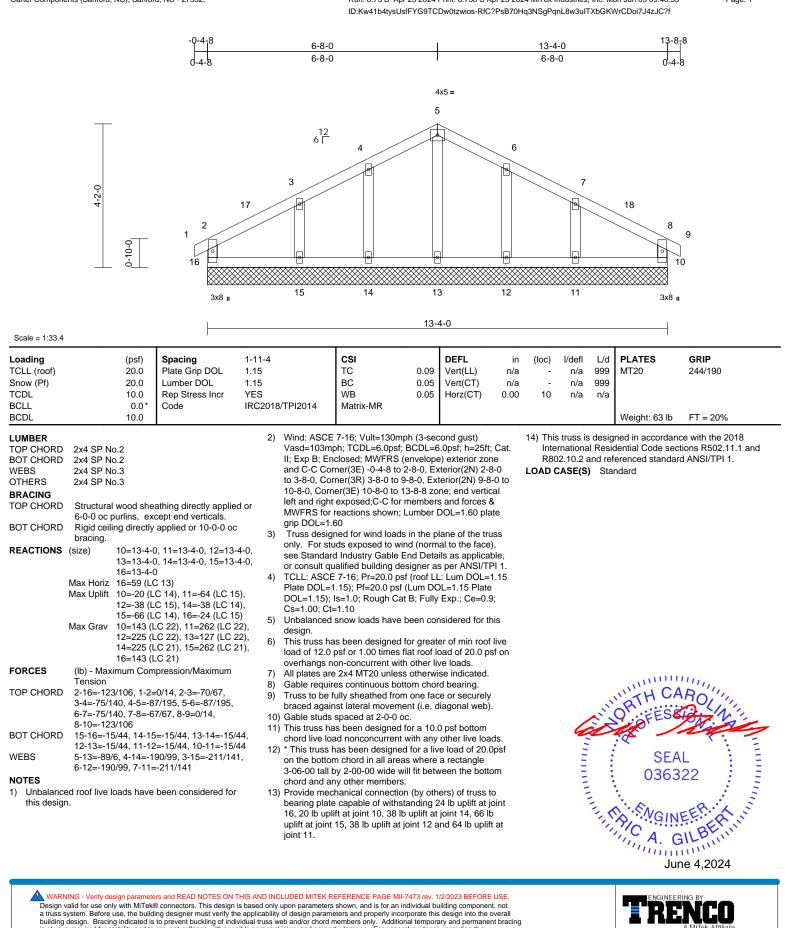
NOTES

2)

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:54 ID:0HizdM6Q_WVmnaATcnVXKBzwikh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-3-14 to 2-8-2, Interior (1) 2-8-2 to 7-4-0, Exterior (2R) 7-4-0 to 13-4-0, Interior (1) 13-4-0 to 17-8-0, Exterior(2E) 17-8-0 to 20-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

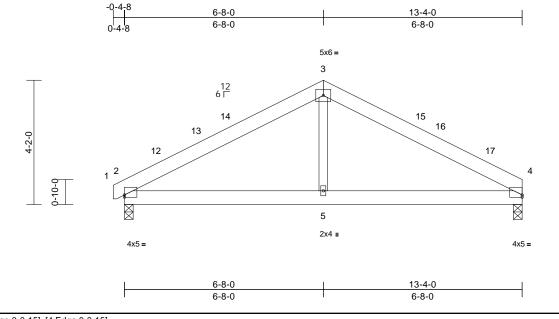

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 30		30 Mason Ridge-Roof-Cali M VMB GRH				
24050246-01	C01	Common Supported Gable	1	1	Job Reference (optional)	165976678		

Run: 8,73 S Apr 25 2024 Print: 8,730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:55

Page: 1


bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	C02	Common	2	1	Job Reference (optional)	165976679

Scale = 1:38.6

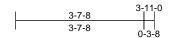
Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:55 ID:d4azmvaKCIAQCTiJsNFXM6zwiny-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X	(, Y): [2:Edge,0-0-15], [4:Edge,0-0-15]			.							-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC20	18/TPI2014	CSI TC BC WB Matrix-MSH	0.35 0.25 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 5-8 5-8 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 73 lb	GRIP 244/190 FT = 20%
BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS (FORCES TOP CHORD	2x6 SP No.2 2x6 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-8, 4 Max Horiz 2=58 (LC Max Uplift 2=-56 (LC Max Grav 2=639 (LC (lb) - Maximum Com Tension 1-2=0/9, 2-3=-761/2 2-5=-132/567, 4-5=-	applied or 10-0-0 o 4=0-3-8 14) C 14), 4=-50 (LC 15) C 21), 4=619 (LC 22 npression/Maximum 44, 3-4=-761/244	ed or 7 c 8	 load of 12.0 overhangs n This truss ha chord live load * This truss I on the bottor 3-06-00 tall I chord and ai One H2.5A S recommended UPLIFT at it and does not do so international 	as been designed f psf or 1.00 times fl on-concurrent with thas been designed f ad nonconcurrent v has been designed m chord in all area: by 2-00-00 wide wi hy other members. Simpson Strong-Ti ed to connect truss (s) 4 and 2. This co t consider lateral f designed in accord Residential Code nd referenced star Standard	at roof lo other lin or a 10.1 with any l for a liv s where ll fit betw e conne t to bear onnectio orces. dance w sections	bad of 20.0 p ve loads. D psf bottom other live loa e load of 20. a rectangle veen the bott ctors ing walls due n is for uplift ith the 2018 s R502.11.1 a	sf on ads. Opsf om to only					
 this design. Wind: ASCF Vasd=103m II; Exp B; Er and C-C Ex to 3-8-0, Ex 10-4-0, Exte and right ex C for memb 	3-5=0/285 d roof live loads have E 7-16; Vult=130mph nph; TCDL=6.0psf; B nclosed; MWFRS (er terior(2E) -0-3-14 to terior(2E) 10-4-0 to 15 cposed; end vertical pers and forces & MW nber DOL=1.60 plate	(3-second gust) CDL=6.0psf; h=25ft; tvelope) exterior zor 2-8-2, Interior (1) 2 8-0, Interior (1) 9-8- 3-4-0 zone; cantileve left and right expose /FRS for reactions	; Cat. ne 8-2 0 to er left							4		OR TH CA OR TEESS SEA 0363	• •
Plate DOL=	E 7-16; Pr=20.0 psf (=1.15); Pf=20.0 psf (L ; Is=1.0; Rough Cat E	um DOL=1.15 Plate	•									S. S.NGIN	EERRAL

- Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.




WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component development properties and properties and the properties of the properti and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	30 Mason Ridge-Roof-Cali M VMB GRH	
24050246-01	D01	Jack-Closed	3	1	Job Reference (optional)	165976680

Run: 8.73 S Apr 25 2024 Print: 8.730 S Apr 25 2024 MiTek Industries, Inc. Mon Jun 03 09:40:55 ID:gmewhzvG7_9mXKUwHs9FKOzwiiN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:32.6

						i						
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.27	Vert(LL)	0.02	6-7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.20	Vert(CT)	0.02	6-7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.04	Horz(CT)	n/a	-	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 17 lb	FT = 20%
LUMBER				has been designed			osf					
TOP CHORD				om chord in all area		0						
BOT CHORD				by 2-00-00 wide w		ween the bottor	m					
WEBS	2x6 SP No.2 *Excep	ot* 3-6:2x4 SP No.3		any other members re assumed to be: .		ser Defined	oint					
BRACING	0 (must mal	- this and in a star and the			000000	Ser Denneu , St	onn					
TOP CHORD	3-11-0 oc purlins, e	athing directly applie		Simpson Strong-T	ie conne	ctors						
BOT CHORD				ded to connect trus								
	bracing.		UPLIFT at	jt(s) 7 and 6. This c		n is for uplift or	nly					
REACTIONS	(size) 6=0-3-0,	7=0-3-0		ot consider lateral f s designed in accor		ith the 2019						
	Max Horiz 7=68 (LC		Internation	al Residential Code			h					
	Max Uplift 6=-54 (LC		R802.10.2	and referenced star			iu iu					
	Max Grav 6=222 (L) LOAD CASE(S	 Standard 								
FORCES	(lb) - Maximum Con Tension	npression/Maximum	·									
TOP CHORD		25, 2-3=-77/51, 3-4=	-12/0									
BOT CHORD	,											
WEBS	3-6=-172/123											
NOTES		(a										
	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B		Cat									
	Enclosed; MWFRS (er											1.1.1
	Exterior(2E) zone; cant											in the second se
	; end vertical left expos		ght								TH UF	ROY
	C-C for members and f									5	ONIZESS	in the
	shown; Lumber DOL=	1.60 plate grip									OFLOY	A TIM
DOL=1.6	0 SCE 7-16; Pr=20.0 psf (1 1 5						2			1 N/ 1
	L=1.15); Pf=20.0 psf (L								-		054	
	5); Is=1.0; Rough Cat E								= =	1	SEA	
Cs=1.00;									1	:	0363	22 ; =
,	ced snow loads have be	een considered for th	nis						-		0363	1 3
design.	s has been designed fo	r groater of min roof	livo							1	·	A 1. 3
	2.0 psf or 1.00 times fla									3.5	NGINI	FERRICAS
	is non-concurrent with									14	710	SET IN
5) This truss	s has been designed fo	r a 10.0 psf bottom									11. A. C	ILDIN
chord live	e load nonconcurrent w	ith any other live load	ds.								A. C	IIIII.
											hu	0 4 2024

June 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

