

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: DR Horton Inc

Model: Wilmington C VMB

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

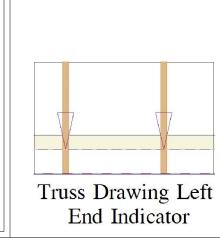
3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.


8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death. 9. All uplift connectors shown within these documents are recommendations only. Per ANSI/TPI 1, all uplift connectors are the responsibility of the building designer and or contractor.

Approved By: _____

Date: _____

,		_
	1-10-08 ODD SPACE	
	2-00-00	
	2-00-00	
	2-00-00	
	2-00-00	
	2-00-00	
	2-00-00	
	2-00-00	
	o 2-01-08 ODD SPACE	
	0 2-01-08 ODD SPACE	
	2-00-00	
44-00-00		
4		
	1-01-12 ODD SPACE	
	2-00-00	
	2-00-00	
	2-00-00	
	2-00-00	
	2-00-00	
	2-00-00	
	1-11-04	
	1-00-08 ODD SPACE	
	2-00-00	
_ <u>/</u>		
	16-00-00	
	0 16-00-00 0 20-00-00	

Truss Connector Total ListQtyProductManuf8HTU26Simpson70One H2.5ASimpson

0 |

NOTED

0

COMP

HH

TO BY

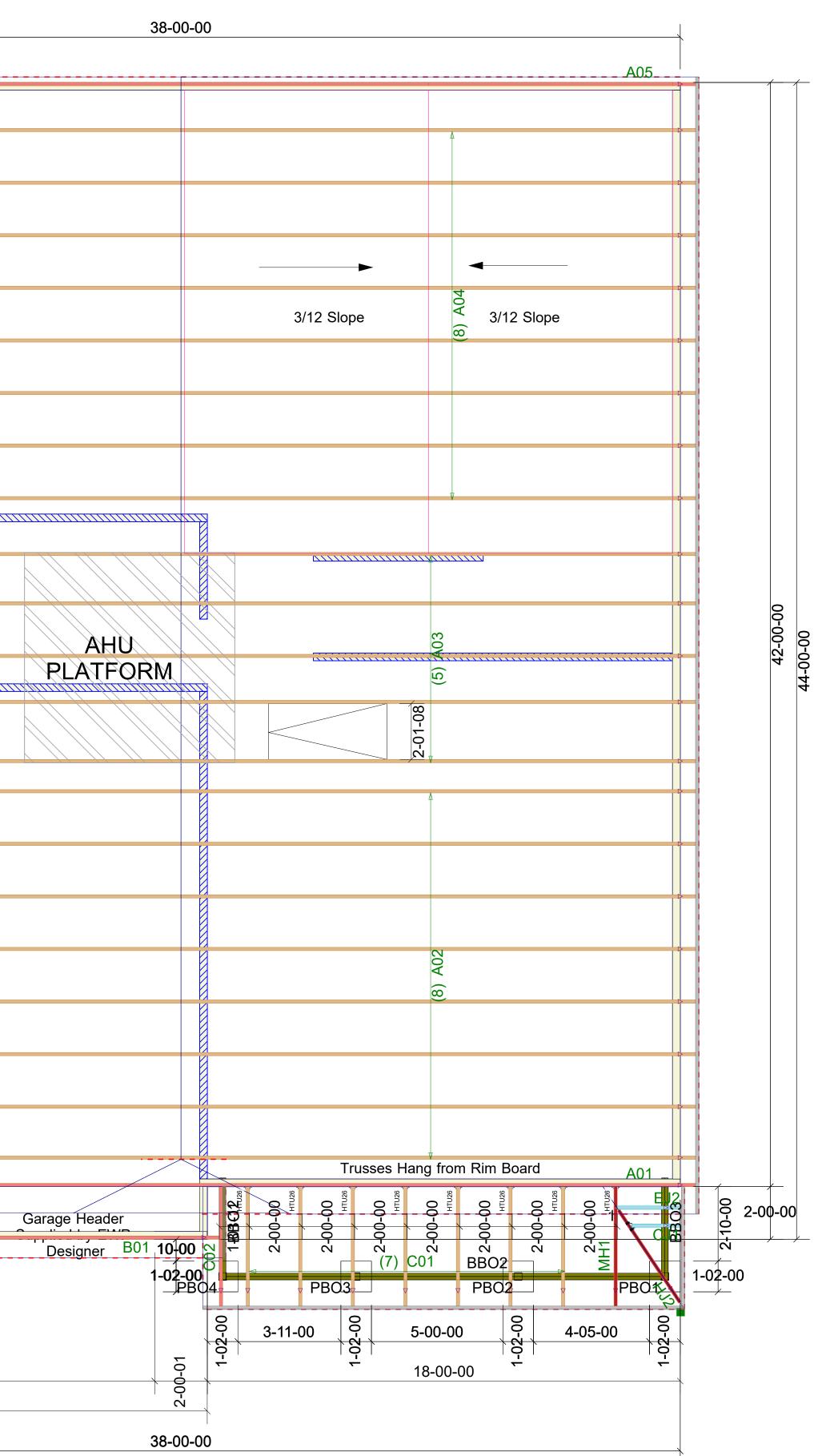
TOLD

UNLESS

** DAMAGED COMPONENTS SHOULD NOT BE INST

COMPONENTS

5NITT


L S

TO PLANS WHILE

REFER

IER MUST

*

	Revis	
tor.	00/00/00	Name Name
itrac	00/00/00	Name
con	00/00/00	Name
d or	00/00/00	Name
and		
ANSI/TPI 1, all uplift connectors are the responsibilty of the bldg designer and or contractor.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The disign of the tuss support structure	0 2 2
ANSI/TPI 1, all		lumber
	Wilmington-C-CRW+9FL+FLEX+	ACEMENT PLAN
	Scale:	PLACEMENT PLAN
	Scale: NT Date:	PLACEMENT PLAN
	Scale: Date: 10/18/	s 2024
	Scale: NT Date: 10/18/ Desi Nate Do	rs 2024 gner: naldson
	Scale: NT Date: 10/18/ Desi Nate Do	BLAGEMENT PLAN
	Scale: NT Date: 10/18/ Desi Nate Do Project 24100	BLAGEMENT PLAN
	Scale: NT Date: 10/18/ Desi Nate Do Project 24100	rs 2024 gner: naldson Number: 106-C
	Scale: NT Date: 10/18/ Desi Nate Do Project 24100	rs 2024 gner: naldson Number: 106-C

RE: 24100106

Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels

Trenco 818 Soundside Rd Edenton, NC 27932

Site Information:

Customer: DR Horton Inc Project Name: 24100106 Lot/Block: 4 Address: City: State:

Model: Wilmington Subdivision: Mason Ridge

General Truss Engineering Criteria & Design Loads (Individual Truss Design Drawings Show Special Loading Conditions):

Design Code: IRC2018/TPI2014 Wind Code: ASCE 7-16 Roof Load: 40.0 psf

Design Program: MiTek 20/20 8.7 Wind Speed: 130 mph Floor Load: N/A psf

This package includes 12 individual, dated Truss Design Drawings and 0 Additional Drawings.

No.	Seal#	Truss Name	Date
1	168889556	A01	10/16/2024
2	168889557	A02	10/16/2024
3	168889558	A03	10/16/2024
4	168889559	A04	10/16/2024
5	168889560	A05	10/16/2024
6	168889561	B01	10/16/2024
7	168889562	C01	10/16/2024
8	168889563	C02	10/16/2024
9	168889564	CJ1	10/16/2024
10	168889565	EJ2	10/16/2024
11	168889566	HJ2	10/16/2024
12	168889567	MH1	10/16/2024

The truss drawing(s) referenced above have been prepared by

Truss Engineering Co. under my direct supervision

based on the parameters provided by Carter Components (Sanford, NC)).

Truss Design Engineer's Name: Gilbert, Eric

My license renewal date for the state of North Carolina is December 31, 2024

North Carolina COA: C-0844

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to TRENCO. Any project specific information included is for TRENCO customers file reference purpose only, and was not taken into account in the preparation of these designs. TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	A01	Hip Structural Gable	1	1	I68889556 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:10 ID:FdJkUXBMoUWEJm5osa_ZPVzwPcd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	-0-7-0	16-11-0		21-1-0	27-10	-3 1 32-	-6-0	38-0-0	38-7-0
	-0-7-0 - - 0-7-0	16-11-0		4-2-0	6-9-3		7-13	5-6-0	0-7-0
				5x6=	5x10=				
0-10-0	3x5 II 1 2 33	6 ¹² 39 ⁶ 4	^{3x6} = 9 ⁴¹ 7 8 ⁴⁰	11 12 10 34 34 35		³ 15 44 5x6 s 16 4546 8 x5 II	5	47	8x10=
	3x6 = 32	31 30 29	28 27 26	25 24 23	42	22 21			8 20
	0.0-		3x6=	4x8= 3x5 II		3x6= 3x5=			
	0-2-12	17-0-12	2	18-1-13	27-10-3		37-9-4		38-0-0
	0-2-12	16-10-0		1-1-1	9-8-7		9-11-1		0-2-12
Scale = 1:66.7 Plate Offsets ((X. Y): [11:0-3-0.0-2-0	0], [13:0-5-0,0-2-6], [16:0-	2-8.0-3-0]. [18:0-4	-8.0-1-7]					
Loading	(psf)	1	-11-4	CSI	DEFL in	(loc) I/defl L/c	PLATES	GRIP	
TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psi) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYI	11-4 15 15 ES RC2018/TPI2014	TC 0.73 BC 0.88 WB 0.28 Matrix-MSH	Vert(LL) -0.20 Vert(CT) -0.39 Horz(CT) 0.01	20-21 >999 240 20-21 >596 180	0 MT20	244/190	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 *Exce SP No.2 2x4 SP No.3 Structural wood she 4-9-10 oc purlins, (10 Rigid ceiling directly	pt* 16-24,33-2,20-18:2x6 eathing directly applied or except end verticals, and I-0-0 max.): 11-13. y applied or 6-0-0 oc		$\begin{array}{c} 1\-2\=0/21,\ 2\-3\=-139/518,\ 3\\ 4\-5\=-41/477,\ 5\-6\=-4/480,\ 1\\ 8\-9\=0/485,\ 9\-10\=0/489,\ 10\\ 11\-12\=0/450,\ 12\-13\=0/45(\ 12\-13\=0\-13\=0/45(\ 12\-13\=0\-13\=0/45(\ 12\-13\=0\-13\=0\-13\=0\-13\=0\-13\-13\-13\-13\-13\-13\-13\-13\-13\-13$	5-8=0/486, -11=0/499, , 13-14=0/368, 321, 21, 2-33=-33/207, 18/210, 18/210, 18/210, 18/210,	 only. For studs e see Standard Inc or consult qualifit TCLL: ASCE 7-1 Plate DOL=1.15) DOL=1.15); IS=1 Cs=1.00; Ct=1.1 Unbalanced snot design. This truss has be 		normal to th Details as a ner as per A oof LL: Lum m DOL=1.1t Fully Exp.; (n considere greater of m	e face), applicable, NSI/TPI 1. DOL=1.15 5 Plate Ce=0.9; d for this in roof live
WEBS JOINTS REACTIONS		11-24	WEBS	11-24=-285/0, 24-34=-625 13-34=-523/105, 24-35=-5 35-36=-996/156, 36-37=-1 37-38=-998/171, 16-38=-5 16-21=0/492, 12-34=-190 13-36=-93/198, 14-37=-14	89/161, 052/197, 55/151, 47, 34-35=-111/37, 6/56,	 overhangs non-c Provide adequat All plates are 2x- Truss to be fully braced against la Gable studs space 	concurrent with oth te drainage to prev 4 MT20 unless oth sheathed from on ateral movement (ced at 2-0-0 oc.	her live load vent water p nerwise india le face or se (i.e. diagona	s. oonding. cated. ecurely Il web).
	29=18-3- 32=18-3- 33=119 (Max Uplift 20=-116 25=-28 (28=-41 (30=-48 (32=-114 Max Grav 20=761 (24=1054 26=201 (29=192 (-9, 30=18-3-9, 31=18-3-9, -9, 33=18-3-9 (LC 13) (LC 15), 24=-247 (LC 15) LC 14), 26=-48 (LC 14), LC 14), 29=-41 (LC 14), LC 14), 31=-17 (LC 14), (LC 14), 33=-228 (LC 43) (LC 45), 23=539 (LC 23), (LC 22), 25=248 (LC 47), (LC 39), 30=184 (LC 45), (LC 54), 32=392 (LC 45), (LC 54), 32=392 (LC 45),	 NOTES Unbalance this design Wind: ASC Vasd=103 II; Exp B; E and C-C E 11-6-10, E 26-5-6 to 3 cantilever 	15-38=-121/45, 10-25=-17 9-26=-169/68, 8-28=-174/ 5-30=-127/70, 4-31=-92/4 17-21=-221/148 d roof live loads have been the contract of live loads have been the load have been the loads have been the load have been the l	 55, 6-29=-156/65, 7, 3-32=-254/120, considered for considered for<	11) This truss has be chord live load n	OP FESS		

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

October 16,2024

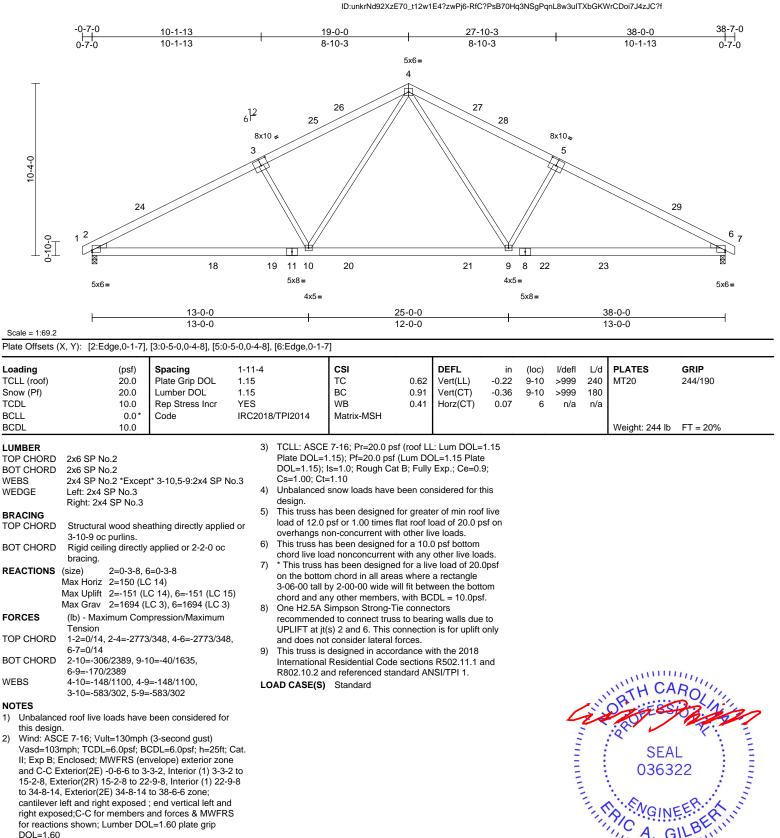
Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	A01	Hip Structural Gable	1	1	I68889556 Job Reference (optional)

- 12) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- Bearing at joint(s) 33, 20 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 14) One RT8A MiTek connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 33. This connection is for uplift only and does not consider lateral forces.
- 15) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 24, 25, 26, 28, 29, 30, 31, 32, and 20. This connection is for uplift only and does not consider lateral forces.
- 16) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:10 ID:FdJkUXBMoUWEJm5osa_ZPVzwPcd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

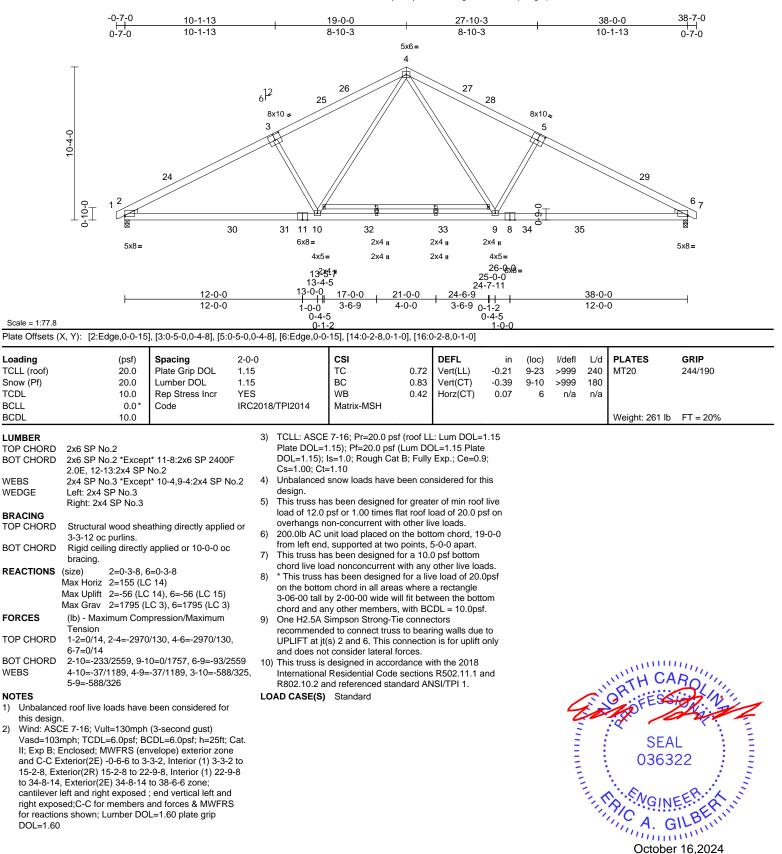
Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	A02	Common	8	1	I68889557 Job Reference (optional)

2)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:11

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Page: 1


Edenton, NC 27932

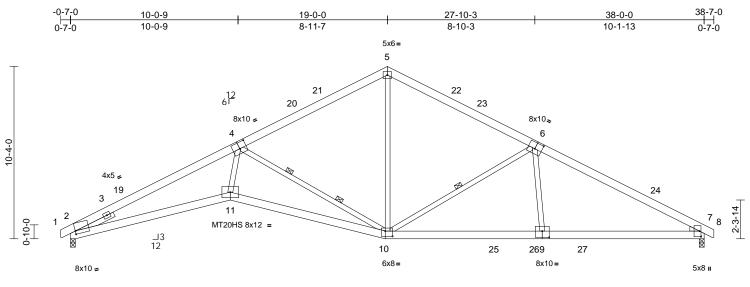
(1111111) October 16,2024

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	A03	Common	5	1	l68889558 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:11 ID:_sJSfbW6i9jePBhjvT73dHzwPDg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Oct 14 13:06:11 Page: 1 Doi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	A04	Roof Special	8	1	I68889559 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:11 ID:t9aHzlw3YeNbnJ4R4VCJyUzwPki-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	0-3-8	9-7-0	18-10-8	28-3-8	38-0-0	
.	0-3-8	9-3-8	9-3-8	9-5-0	9-8-8	
Scale = 1:69.1						

Plate Offsets (X, Y): [2:0-0-6,0-2-8], [4:0-5-0,0-4-8], [6:0-5-0,0-4-8], [7:0-4-0,0-1-1], [9:0-5-0,0-4-8], [6:0-5-0,0-4-8], [7:0-4-0,0-1-1], [9:0-5-0,0-4-8], [9:0-5-0,0-4-8], [9:0-5-0,0-1-1], [-4-8], [10:0-5-4,0-3-12]
--	--------------------------

Loading	(psf)	Spacing	2-0-0	csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.83	Vert(LL)	-0.33	10-11	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	1.00	Vert(CT)	-0.64	10-11	>714	180	MT20HS	187/143
TCDL	10.0	Rep Stress Incr	YES	WB	0.95	Horz(CT)	0.27	7	n/a	n/a		
BCLL	0.0*	Code	IRC2018/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 254 lb	FT = 20%
LUMBER	UMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust)											

TOP CHORD 2x6 SP No 2 2x6 SP No.2 *Except* 2-11:2x6 SP 2400F BOT CHORD 2.0E WEBS 2x4 SP No.3 *Except* 4-10:2x4 SP No.2 WEDGE Right: 2x4 SP No.3 SLIDER Left 2x4 SP No.3 -- 2-6-0 BRACING TOP CHORD Structural wood sheathing directly applied or 2-2-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 1-4-12 oc bracing: 10-11 WEBS 1 Row at midpt 6-10 WEBS 2 Rows at 1/3 pts 4-10 **REACTIONS** (size) 2=0-3-8, 7=0-3-8 Max Horiz 2=155 (LC 18) Max Uplift 2=-157 (LC 14), 7=-156 (LC 15) Max Grav 2=1662 (LC 3), 7=1689 (LC 3) FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/18, 2-5=-4706/473, 5-7=-2808/312, 7-8=0/14 BOT CHORD 2-11=-476/4319, 10-11=-456/3918, 7-10=-149/2421 WEBS 5-10=-52/1171. 4-11=-126/2218.

4-10=-2555/467, 6-9=0/469, 6-10=-966/269

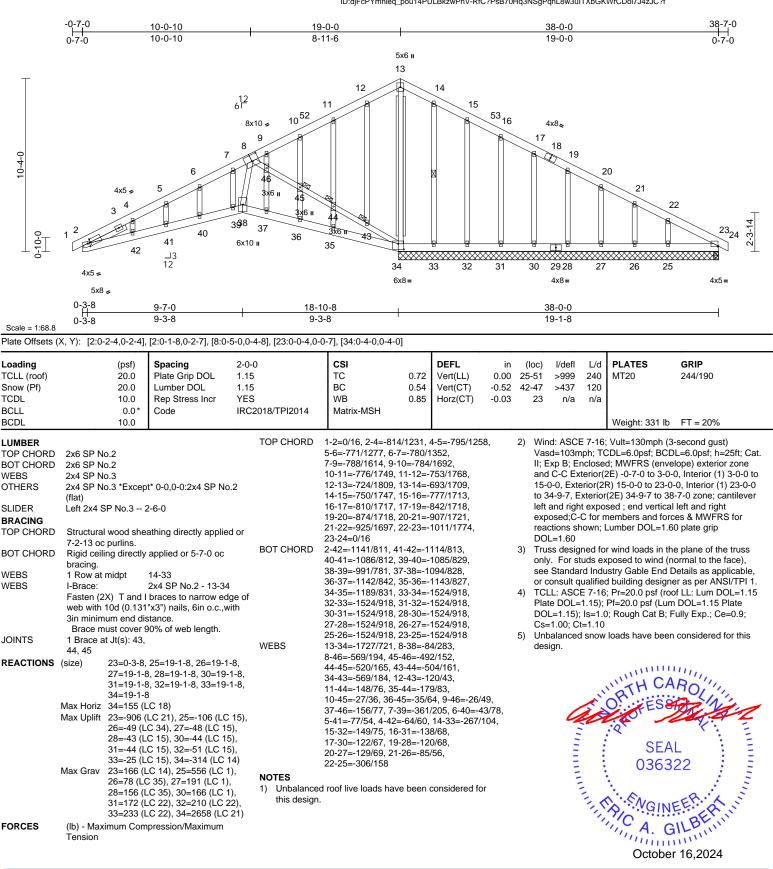
NOTES

Unbalanced roof live loads have been considered for 1) this design.

Vult=130mph Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-6-6 to 3-3-2, Interior (1) 3-3-2 to 15-2-8. Exterior(2R) 15-2-8 to 22-9-8. Interior (1) 22-9-8 to 34-8-14, Exterior(2E) 34-8-14 to 38-6-6 zone; cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this desian.
- This truss has been designed for greater of min roof live 5) load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are MT20 plates unless otherwise indicated. 6) This truss has been designed for a 10.0 psf bottom 7)
- chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 9) Bearing at joint(s) 2 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2 and 7. This connection is for uplift only and does not consider lateral forces.
- 11) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.

LOAD CASE(S) Standard



Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	A05	Roof Special Structural Gable	1	1	I68889560 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:djFcPYmnieg_pou14PULBkzwPnV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Continued on page 2

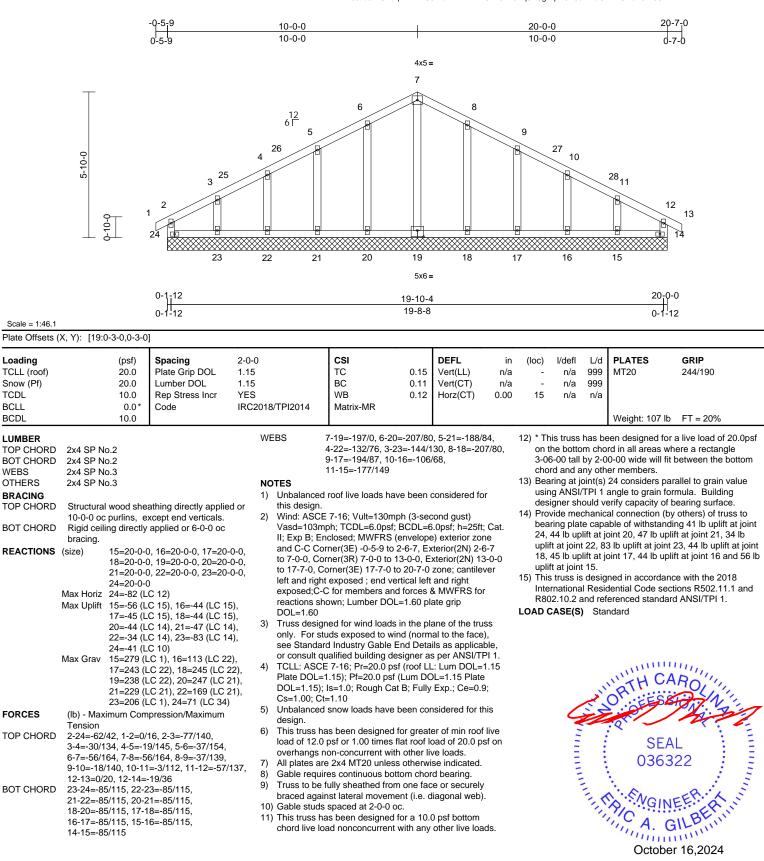
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality** Criteria **and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-A	
24100106	A05	Roof Special Structural Gable	1	1	Job Reference (optional)	168889560
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S Sep 25 2	2024 Print: 8.	730 S Sep 2	5 2024 MiTek Industries. Inc. Mon Oct 14 13:06:12	Page: 2

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- Gable studs spaced at 2-0-0 oc. 8)
- 9) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 314 lb uplift at joint 34, 25 lb uplift at joint 33, 51 lb uplift at joint 32, 44 lb uplift at joint 31, 44 lb uplift at joint 30, 43 lb uplift at joint 28, 48 lb uplift at joint 27, 49 lb uplift at joint 26, 106 lb uplift at joint 25 and 906 lb uplift at joint 23.
- 12) This truss is designed in accordance with the 2018 International Residential Code sections R502.11.1 and R802.10.2 and referenced standard ANSI/TPI 1.
- 13) Warning: Additional permanent and stability bracing for truss system (not part of this component design) is always required.

LOAD CASE(S) Standard


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:djFcPYmnieq_pou14PULBkzwPnV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	B01	Common Supported Gable	1	1	I68889561 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:3svb5hhSXbq1LmTDC3xnuAzwPrT-RfC?PsB70Hq3NSqPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MiTek Affiliate

818 Soundside Road

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	C01	Monopitch	7	1	I68889562 Job Reference (optional)

3-6-8

3-6-8

12 4 Г

-1-0-0

1-0-0

2

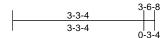
P

 \bigotimes

2x4 =

Carter Components (Sanford, NC), Sanford, NC - 27332,

1-9-14


0-6-1

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:m4jm85hMIZcJHoWkltroegzw9ei-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 2x4 || 3 4

Page: 1

2x4 II

Scale = 1:28.7

TCLL (roof) 20.0 F Snow (Pf) 20.0 L TCDL 10.0 F	Plate Grip DOL 1.' Lumber DOL 1.' Rep Stress Incr YE	15	CSI TC BC WB Matrix-MP	0.19 0.18 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.02 0.02 0.00	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 WEBS 2x4 SP No.3 BRACING TOP CHORD Structural wood sheatt 3-6-8 oc purlins, excep BOT CHORD Rigid ceiling directly ap bracing.	spt end verticals. pplied or 10-0-0 oc Mechanical 0) 10), 6=-56 (LC 10) 21), 6=193 (LC 21) ression/Maximum 3-4=-8/0, 3-6=-144/121 3-second gust) DL=6.0psf; h=25ft; Cat. elope) exterior zone ver left and right d; porch left and right ces & MWFRS for 60 plate grip of LL: Lum DOL=1.15 m DOL=1.15 Plate Fully Exp.; Ce=0.9; n considered for this greater of min roof live oof load of 20.0 psf on ner live loads. a 10.0 psf bottom	on the botton 3-06-00 tall b chord and an 7) Refer to girdd 8) Provide mecl bearing plate 6. 9) One H2:5A S recommende UPLIFT at jt(does not con 10) This truss is a International R802.10.2 ar LOAD CASE(S)	as been designed a chord in all areas y 2-00-00 wide wil y other members. er(s) for truss to tru- nanical connection capable of withsta simpson Strong-Tie d to connect truss s) 2. This connecti- sider lateral forces designed in accord Residential Code s and referenced stand Standard	where I fit betw ss conr (by oth anding 5 conne to bear on is for lance w sections	a rectangle veen the botto ections. ers) of truss to 6 lb uplift at jo ctors ng walls due t uplift only an th the 2018 R502.11.1 ar	m D Dint to d				SEA 0363	ROUNT L 22 EER. AUTOM

October 16,2024

ERGINEERING BY A MITEK Attiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	C02	Monopitch Supported Gable	1	1	I68889563 Job Reference (optional)

1-3-12

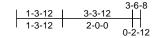
1-0-0 1-3-12

-1-0-0

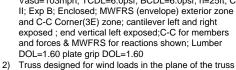
Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:U5QFVIeIxXRFdnTjJFF5o7zw9dU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-6-8


3-3-12

2-0-0


0-2-12

Scale = 1:32.9

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2018/TPI2014	CSI TC BC WB Matrix-MP	0.10 0.03 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood shea 3-6-8 oc purlins. Rigid ceiling directly bracing. (size) 2=3-6-8, 5 8=3-6-8, 9 Max Horiz 2=60 (LC Max Uplift 2=-37 (LC 6=-54 (LC (LC 14), 9 Max Grav 2=172 (LC 6=-14 (LC	5=3-6-8, 6=3-6-8, 7=3-6 =3-6-8 10), 9=60 (LC 10) 10), 5=-70 (LC 21), 7), 7=-28 (LC 10), 8=- =-37 (LC 10)	Plate DOL= DOL=1.15); Cs=1.00; C 4) Unbalanced design. 5) This truss h load of 12.0 overhangs i 6-8, 7) Gable requi 6-8, 7) Gable stude 8) This truss h chord live lo 3-06-00 tall chord and a 10) Provide me	 design. 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 2-0-0 oc. 8) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 								
Vasd=103 II; Exp B; and C-C C exposed ; and force: DOL=1.60 2) Truss des only. For see Stanc	4-5=-28/22	74, 3-4=-43/27, 6-7=0/0 148/160 (3-second gust) CDL=6.0psf; h=25ft; Ca velope) exterior zone ever left and right ed;C-C for members ns shown; Lumber the plane of the truss (normal to the face), d Details as applicable,	joint 7, 34 lb 11) This truss is Internationa R802.10.2 a LOAD CASE(S	t at joint 6, 70 lb up uplift at joint 8 and designed in accord I Residential Code ind referenced stan Standard	l 37 lb u dance w sections	plift at joint 2. ith the 2018 s R502.11.1 ar			4	D.	SEA 0363	L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G mmm October 16,2024

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	CJ1	Jack-Open	1	1	I68889564 Job Reference (optional)

0-6-0

1-4-9 1 - 4 - 9

Carter Components (Sanford, NC), Sanford, NC - 27332,

Scale = 1:24.8 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

NOTES

1)

2)

3)

design.

TOP CHORD

BOT CHORD

REACTIONS (size)

BRACING

TCDL

BCLL

BCDL

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:8Ck3kIOp5tNJhToqV_tssPzw9cV-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

I-1-10

l/defl

>999

n/a n/a

(loc)

7 >999

3

4-7

L/d

240

180

PLATES

Weight: 5 lb

MT20

GRIP

244/190

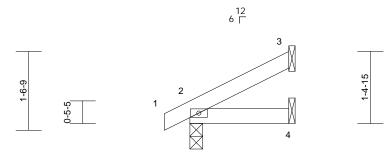
FT = 20%

Page: 1

12 6 Г 3 1-3-3 2 -5-5 ø 4 2x4 =1-4-9 2-0-0 CSI DEFL (psf) Spacing in 20.0 Plate Grip DOL 1.15 TC 0.03 Vert(LL) 0.00 20.0 BC Lumber DOL 1 15 0.02 Vert(CT) 0.00 10.0 Rep Stress Incr YES WB 0.00 Horz(CT) 0.00 0.0 Code IRC2018/TPI2014 Matrix-MP 10.0 * This truss has been designed for a live load of 20.0psf 6) on the bottom chord in all areas where a rectangle 2x4 SP No.2 2x4 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. Bearings are assumed to be: , Joint 2 User Defined . 7) Structural wood sheathing directly applied or Refer to girder(s) for truss to truss connections. 8) 1-4-9 oc purlins. Provide mechanical connection (by others) of truss to 9) Rigid ceiling directly applied or 10-0-0 oc bearing plate capable of withstanding 11 lb uplift at joint bracing. 2 and 17 lb uplift at joint 3. 2=0-3-0, 3= Mechanical, 4= 10) This truss is designed in accordance with the 2018 Mechanical International Residential Code sections R502.11.1 and Max Horiz 2=33 (LC 14) R802.10.2 and referenced standard ANSI/TPI 1. Max Uplift 2=-11 (LC 14), 3=-17 (LC 14) LOAD CASE(S) Standard 2=118 (LC 21), 3=43 (LC 21), 4=24 Max Grav (LC 7) (lb) - Maximum Compression/Maximum Tension 1-2=0/18, 2-3=-20/15 2-4=-16/17 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00: Ct=1.10 Unbalanced snow loads have been considered for this

- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom
- chord live load nonconcurrent with any other live loads.

Edenton, NC 27932


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	EJ2	Jack-Open	1	1	I68889565 Job Reference (optional)

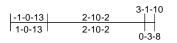
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:VR3NLqfcve8BKrT3ocH1l2zw9c9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

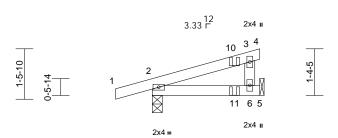
Page: 1

2x4 =

Scale - 1:22.6

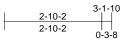
Loading (psf) Spacing 2-0-0 CSI 0.0 DEFL in (loc) I/deft I/d TCLL (roof) 20.0 Lumber DoL 1.15 TC 0.06 Vert(L1) 0.00 4.77 >999 108 TCDL 10.0 Rep Stress Incr YES WB 0.00 4.77 >999 108 BCLL 0.0 ¹ 0.0 ¹ Code IRC2018/TPI2014 WB 0.00 4.77 >999 108 LUMBER Code 10.0 Final Stress Incr YES WB 0.00 4.7 >999 108 Weight: 7 Ib FT = 20% LUMBER Code 10.0 Yes This truss has been designed tor a live load of 20.0psf weight: 7 Ib FT = 20% BOT CHORD 2x4 SP No.2 Structural wood sheathing directly applied or 10-0-0 oc bracing. FS Bearings are assumed to be: , torizes to truss t	Scale = 1:22.6												
 TOP CHORD 2x4 SP No.2 On the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. TOP CHORD Structural wood sheathing directly applied or 10-0-0 oc bracing. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 2=0-3-0, 3= Mechanical, 4= Mechanical Max Horiz 2=43 (LC 14) Max Grav 2=149 (LC 21), 3=67 (LC 21), 4=35 (LC 7) FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1:2=0/19, 2:3=-31/24 BOT CHORD 2:4=-29/27 NOTES 1) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasde-10/20mpt (second gust) vasde-10/30mph; TCDL=6.0pt (second gust) vasde-10/30mph; TCDL=6.0pt (second gust) vasde-10/30mph; TCDL=6.0pt (second gust) vasde-10/20mpt (contex) (second gust) vasde-10/20mpt (c	TCLL (roof) Snow (Pf) TCDL BCLL	20.0 20.0 10.0 0.0*	Plate Grip DOL Lumber DOL Rep Stress Incr	1.15 1.15 YES	TC BC WB	0.05	Vert(LL) Vert(CT)	0.00 0.00	4-7 4-7	>999 >999	240 180	MT20	244/190
 Plate DOL=1.15): Pl=20.0 psr (Lum DOL=1.15 Plate DOL=1.15): Pl=20.0 psr (Lum DOL=1.15): Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this design. 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 	LUMBER TOP CHORD BOT CHORD BRACING TOP CHORD BOT CHORD REACTIONS (REACTIONS (REACTIONS (REACTIONS (NOTES 1) Wind: ASCI Vasd=103n II; Exp B; El and C-C Ex exposed ; e members an Lumber DO 2) TCLL: ASC Plate DOL= DOL=1.15); Cs=1.00; C 3) Unbalanced design. 4) This truss h	2x4 SP No.2 2x4 SP No.2 Structural wood she 1-11-4 oc purlins. Rigid ceiling directly bracing. (size) 2=0-3-0, Mechanii Max Horiz 2=43 (LC Max Uplift 2=-12 (LI Max Grav 2=149 (L (LC 7) (lb) - Maximum Cor Tension 1-2=0/19, 2-3=-31/2 2-4=-29/27 E 7-16; Vult=130mpl mph; TCDL=6.0psf; (e xterior(2E) zone; can and vertical left and r und forces & MWFRS (2=7-16; Pr=20.0 psf =1.15); Pf=20.0 psf =1.15); Pf=20.0 psf (I ; Is=1.0; Rough Cat Z=1.10 d snow loads have b nas been designed fo	y applied or 10-0-0 o 3= Mechanical, 4= cal C 14), 3=-25 (LC 14) C 21), 3=67 (LC 21) npression/Maximum 24 h (3-second gust) 3CDL=6.0psf; h=25ft nvelope) exterior zor tilever left and right ight exposed; C-C for 5 for reactions shown DL=1.60 (roof LL: Lum DOL= _um DOL=1.15 Plate B; Fully Exp.; Ce=0.5 een considered for th or greater of min roof at roof load of 20.0 pr other live loads. or a 10.0 psf bottom	on 3-0 cho (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)	the bottom chord in all a 06-00 tall by 2-00-00 wide ord and any other membe- parings are assumed to be offer to girder(s) for truss is ovide mechanical connec- aring plate capable of with and 25 lb uplift at joint 3. lis truss is designed in ac- cernational Residential Cc 302.10.2 and referenced s	reas where e will fit betw ers. e: , Joint 2 L to truss con tion (by oth thstanding 1 cordance w ode sections	a rectangle veen the botto Jser Defined nections. ers) of truss t 2 lb uplift at j ith the 2018 5 R502.11.1 a	om oint		4		ORTH CA ORTHESS SEA 0363	AROLINIA AL B22




October 16,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	HJ2	Jack-Closed Girder	1	1	I68889566 Job Reference (optional)


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:k_h3xLOFn4igX43bJCL5Aizw9bD-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

NAILED

NAILED

Scale = 1:33.6

Scale = 1:33.6												
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		uss has been designe			in 0.00 -0.01 0.00 0psf	(loc) 6-9 6-9 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 12 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Wind: ASC Vasd=103 II; Exp B; E cantilever right expose 2) TCLL: ASC Plate DOL	3-3-11 oc purlins. Rigid ceiling directly bracing.	6= Mechanical 8) C 8), 6=-23 (LC 12) C 19), 6=169 (LC 19) hpression/Maximum 6, 3-4=-7/0 (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon ; end vertical left and 0 plate grip DOL=1.6 roof LL: Lum DOL=1 um DOL=1.15 Plate	on the t 3-06-00 chord a 7) Refer to 8) One HZ recomm UPLIFT dos no 9) One RT truss to connec forces. 10) This tru Internat R802.1 11) "NAILE (0.148". 12) In the L of the tr LOAD CAS Cat. 1) Dead e; Incread d. Unifor 00 Ver Conce .15 Ver	solution chord in all are tall by 2-00-00 wide w and any other members or girder(s) for truss to 5.6 Simpson Strong-T leended to connect trus at jt(s) 2. This connect trus at jt(s) 2. This connect to consider lateral force 8A MiTek connectors bearing walls due to L ion is for uplift only ar sis is designed in accor- tional Residential Code 0.2 and referenced sta D" indicates 3-10d (0.1 3.25") toe-nails per N OAD CASE(S) section CAD CASE(S) section the Snow (balanced): Lu sea noted as front E(S) Standard H Snow (balanced): Lu sea noted (lb)/ft) : 1-4=-60, 5-7=-20 ntrated Loads (lb) : 11=-6 (B)	as where will fit betw s. truss conners to bear ction is fo es. recomme UPLIFT a ad does n ordance w e sections andard AN 148"x3") (IDS guidli n, loads a t (F) or ba	a rectangle veen the bott nections. ctors ing walls due r uplift only a ended to conn ; jt(s) 6. This ot consider la ith the 2018 & R502.11.1 a JSI/TPI 1. or 2-12d nes. pplied to the ck (B).	to to nd nect ateral and face				ORTH CA	ROLIN
 Cs=1.00; C 3) Unbalance design. 4) This truss load of 12. overhangs 5) This truss 		een considered for th r greater of min roof l t roof load of 20.0 ps other live loads. r a 10.0 psf bottom	is live f on								SEA 0363 NGIN A. O Octobe	EEP. H

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITEK Affiliate


Job	Truss	Truss Type	Qty Ply		Wilmington-C-CRW+9FL+FLEX+VMB-Roof-All Levels
24100106	MH1	Half Hip Girder	1	1	I68889567 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 14 13:06:12 ID:aUhT1SUKM1Amx3W48pURMuzw9Zo-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

> 3-6-8 3-3-0

Page: 1

Scale = 1:30

Scale = 1:30										
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing2-0Plate Grip DOL1.1Lumber DOL1.1Rep Stress IncrNCCodeIRC	5 5	CSI TC 0.1 BC 0.0 WB 0.0 Matrix-MP 0.0	9 Vert(CT)	in 0.00 0.00 0.00	(loc) 7-10 7-10 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
3-6-8 oc purlins, exo 2-0-0 oc purlins: 3-5 BOT CHORD Rigid ceiling directly bracing.	 Applied or 10-0-0 oc Applied or 10-0-0 oc T= Mechanical B) C 8), 7=-57 (LC 8) C 34), 7=299 (LC 34) Appression/Maximum 6, 3-4=-2/7, 4-5=0/0 J/34 been considered for A (3-second gust) CDL=6.0psf; h=25ft; Cat. Avelope) exterior zone; A end vertical left and D plate grip DOL=1.60 (roof LL: Lum DOL=1.15 Lum DOL=1.15 Plate Fully Exp.; Ce=0.9; een considered for this Ar greater of min roof live tr oof load of 20.0 psf on other live loads. 	 chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar 9) Refer to girld 10) Provide mec bearing plate 2 and 57 lb u 11) This truss is International R802.10.2 ar 12) Graphical pu or the orienta bottom chord 13) Hanger(s) or provided suff down and 32 down and 39 design/selec responsibility 14) In the LOAD of the truss a LOAD CASE(S) 1) Dead + Snc Increase=1 Uniform Loa Vert: 1-3 Concentrate 	other connection device ficient to support concer ! Ib up at 2-8-11 on top Ib up at 2-8-11 on bott tion of such connection of others. CASE(S) section, loads are noted as front (F) or Standard wy (balanced): Lumber I .15	ny other live load live load of 20. re a rectangle stween the bott nnections. thers) of truss i g 62 lb uplift at j with the 2018 ns R502.11.1 a ANSI/TPI 1. not depict the si- he top and/or e(s) shall be trated load(s) 3 bhord, and 153 born chord. The device(s) is the applied to the back (B).	Opsf to joint and size 32 lb lb				SEA 0363	EER AL

- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut beformation, available from the Structure Review Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minimum)

October 16,2024

818 Soundside Road Edenton, NC 27932

