Mark Morris, P.E. #126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 53378 JOB: 24-8565-R01 JOB NAME: LOT 0.0015 HONEYCUTT HILLS Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2018 as well as IRC 2021. *41 Truss Design(s)*

Trusses:

G01, G02, J01, J02, J03, P01, R01, R02, R02A, R03, R04, R05, R06, R08, R09, R10, R11, R12, R13, R14, R15, R16, R18A, R19, R19A, R19B, R22, R23, R24, R25, V01, V02, V03, V04, V05, V06, V07, V08, V09, V10, V11

Warning !--- Verify design parameters and read notes before use.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS	S 371 SHELBY MEADOW LANE ANGIER, NO
24-8565-R01	G01	Common Supported Gable	1	1	Job Reference (optional)	# 53378
		l I	Run: 8.430 s Feb 1 D:oDuWOOMhLx	2 2021 Prin MOj2fwcj	nt: 8.630 s Jul 12 2024 MiTek Indu p2aKqzMG6w-NAcuSz0aYi_Z	istries, Inc. Tue Oct 15 17:30:34 2024 Page 2 ZpzmcUumibYMqSkG?qTE9wq2I7ryT6c3

LOAD CASE(S) Standard

Vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

- 8) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 5.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=14 5=131 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- ANNIHUMARA sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Warning !--- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

SEAL

28147

NOINEE ARK K. MORAL

10/14/2024

vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instance and notes before use. This design is based only upon parameters shown, and is for an individual building component to be instance and notes before use. This design is based only upon parameters shown, and is for an individual building component is be instance and notes before use. This design is based only upon parameters shown, and is for an individual building component is be instance and notes before use. This design is based only upon parameters shown, and is for an individual building designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer.

```
LOAD CASE(S) Standard
```


vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual binding component to be instance and notes before use. This design is based only upon parameters shown, and is for an individual binding component to be instance and notes before use. This design is for second only upon parameters shown, and is for an individual binding component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TP1 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the sector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSL/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 10) This truss design requires that a minimum of 7/16" structural wood sheathing he applied directly to the top shord and 1/0" method and 1/0" method.
- sheetrock be applied directly to the bottom chord.

RINGTH CAROL psum ROFESS MORPHE INTERNET SEAL 28147 ARK K. MORAL VOINEE 10/14/2024

LOAD CASE(S) Standard

- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Bearing at joint(s) 4 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 9) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 4. 10) This truss design requires that a minimum of 7/16" structural wood sheathing he applied directly to the top shord and 1/0" method and 1/0" method.
- sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

RINGTH CARO psum ROFESS MORPHE INTERNET SEAL 28147 ARK K. MORAL VOINEE 10/14/2024

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.

LOAD CASE(S) Standard

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SH	HELBY MEADOW LANE ANGIER, NC
24-8565-R01	R12	Common Girder	1	2	Job Reference (optional)	# 53378
		Run: 8	130 c Eeb	12 2021 Pri	nt: 8,630 s. Jul 12 2024 MiTek Industries Ind	Tue Oct 15 17:30:56 2024 Page 2

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 Mi Lek Industries, Inc. Tue Oct 15 17:30:56 2024 Page 2 ID:oDuWOOMhLxMOj2fwcp2aKqzMG6w-kPxC3UHOMSIRSMSqmV9sUBGWmcdN_FqO_FOTuayT6bj

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-7=-60, 11-15=-20

Concentrated Loads (lb)

Vert: 10=-1268(B) 19=-1268(B) 20=-1268(B) 21=-1268(B) 22=-1268(B) 23=-1268(B)

vertically. Applicability of design parameters and read rule design is based only applications and rule and rule design is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SH	IELBY MEADOW LANE ANGIER, NC
24-8565-R01	R14	Common Girder	1	2	Job Reference (optional)	# 53378
		Bun: 9	120 a Eab 1	2 2021 Dri	pt: 9 620 a Jul 12 2024 MiTak Industrias Inc.	Tuo Oct 15 17:21:01 2024 Dogo 2

ID:oDuWOOMhLxMOj2fwcp2aKqzMG6w-4Mk56CLWB?OKY7KoZ3I1BE_OQcRafWZ77W5EZnyT6be

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-3=-60, 3-5=-60, 9-12=-20 Concentrated Loads (Ib)

Vert: 15=-1459(B) 16=-1459(B) 17=-1459(B) 18=-1459(B) 19=-1459(B) 20=-1459(B) 21=-1569(B) 22=-1569(B)

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/1P11 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support or individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

4-448-501 Image: Im	Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HI	LLS 371 SHELBY MEADOW LANE ANGIER, NC
Line Line <thline< th=""> Line Line <thl< td=""><td>24-8565-R01</td><td>R19A</td><td>PIGGYBACK BASE</td><td>3</td><td>1</td><td>lah Deference (antional)</td><td># 53378</td></thl<></thline<>	24-8565-R01	R19A	PIGGYBACK BASE	3	1	lah Deference (antional)	# 53378
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Run: 8.430 s Feb	12 2021 Prin	t: 8.630 s Jul 12 2024 MiTek li	ndustries, Inc. Tue Oct 15 17:31:22 2024 Page 1
$ \begin{array}{c} \frac{1}{1-3} & \frac{1}{1-3} $	0	1-1-10	12.0.0.10.0.0				
Bit Column Solit	-0- 0-1	10-8 1-1-14 4-10-1	6-4-7 2-6-0	5-0-0	29-0-5	7-	11-11
0.00 TZ 0 </td <td></td> <td>1-1-10</td> <td>6x8 =</td> <td>5x8 =</td> <td></td> <td></td> <td>Scale = 1:77.7</td>		1-1-10	6x8 =	5x8 =			Scale = 1:77.7
$\frac{1}{24} = \frac{1}{24} + \frac{1}{24} $			8.00 12 8	TO 9			
add a	Ţ		3x4				Ţ
June 2			7 T2 P		12		
Junctice Since - Description Junctice Since - Description Since - Description <td></td> <td></td> <td>3x8 //</td> <td></td> <td></td> <td>3x8 <></td> <td></td>			3x8 //			3x8 <>	
99 48 41 11 42 10 <td< td=""><td></td><td>5x8 🖉</td><td>6</td><td>wa</td><td>\</td><td>10 2x4 //</td><td></td></td<>		5x8 🖉	6	wa	\	10 2x4 //	
Image: Second state in the seter in the second state in the second state in the second state in	-3-2	5		\$		11	-3-2
June 11	Ę 4x8	3 / 1	46 4 // Wβ		Wild		32
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 2 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 4 \\ 5 \\ 5$		3x4 31 T1		/		14	
$\frac{1}{24} = \frac{1}{24} $		4 W3 W	4 W5			W12	
13 2 22 1 568 20 19 1933 37 17 34 44 3935 35 56 56 56 11 408 1 555 24 1 342 440 3335 35 56 56 11 444 444 244 444 244	<u>ຈ</u> 1			B5 Wate		BT B7	
$\begin{array}{c} 24 \\ 401 \\ $		W1 5x10 = 2	$2 \qquad 5x8 = \frac{1}{5}$	8 33 37	34 14	<u>3</u> 8/315_3536	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		24 $2x_4$ 5x5 =	4 20 19 3x4 - 4x10 -	2x4	4x8 =	=	5x6
EACTOR 10-0 10-0 10-0 10-0 10-0 10-0 COLL (ron) 20.0 Plate Gine DOL 1.16 CS 10-0 10-0 COLL (ron) 20.0 Plate Gine DOL 1.16 CS 0.00 Plate Gine DOL 1.16 CDL (ron) 20.0 Plate Gine DOL 1.16 CS 0.90 Vert(LL) 0.07 1.06 63.83 240 MT20 244/190 SQLL 0.0 Plate Gine DOL 1.16 CS 0.91 Vert(LL) 0.07 1.06 63.43 240 MT20 244/190 SQLL 0.0 Plate Gine DOL 1.16 CS 0.91 Vert(LL) 0.07 1.08 16 >412 100 7.21 0.04 MT20 244/190 Weight 2.80 No No <td></td> <td>4x6 </td> <td>2x4 =</td> <td>2x4 </td> <td></td> <td>$4x4 \equiv$</td> <td></td>		4x6	2x4 =	2x4		$4x4 \equiv$	
L239 T-10 18-0 12-15 24-7 37-0 Define Offsets (X7)- 30-2-0-2-01, [50-2-10-1-12], [80-5-12.0-2-0], [21-0-2-8, 0-3-0], [23-0-4-0, 0-3-4] UDADING ipsile 10-7 TOLL (rong) 20.0 Plate Grip DOL 1.15 BC 0.91 Vert(L1) 0.00.0 Key Addition PLATES GRIP TOLL (rong) 0.0 Rap Stress incr Yes 0.91 Vert(L1) 0.16 >424/190 TOL (rong) 0.0 Rap Stress incr Yes 0.91 Vert(L1) 0.06 H2/4/190 TOL (rong) Code InC202/17PL2014 Matrix-AS PLATES GRIP Matrix-AS Define TOP CHORD 2x4 SP No.2 Exaction Weight: 260 Ib FT = 20% JUMBER. TOP CHORD 2x4 SP No.1 BOT CHORD Structural wood sheathing directly applied. Exaction SIG CHORD 2x4 SP No.1 BOT CHORD Structural wood sheathing directly applied. Exaction SIG CHORD 2x4 SP No.3 Right 2x4 SP No.2 Structural wood sheathing directly applied. Exactin M2/4 REACTING.<					2	x4 \equiv	
Part of Disets (XY)- 2-33 4-101 6-47 2-360 5-40 5-64 Let of Disets (XY)- 10:0-2-00-121, [8:0-5-12-0-20], [8:0-5-12-0-20], [21:0-2-80.02) [21:0-2-80.02], [23:0-4-0.0-34] Perture 10:73 Lobal (Graft) 20.0 PRet Grp Dot. 1:15 TC 0.03 Perture 10:60 16:83 244/190 Struct (P) 20.0 Pret Grp Dot. 1:15 TC 0.03 Perture 10:62 12:64 0:64 12:64 0:64 MT20 244/190 MT20 244/170 MT20 244/170 MT20 244/170 MT20 244/170 MT20<		2-3-8 7-1-9	13-6-0 16-0-0	21-3-15	26-4-7	37-0-0	
DADRING (ps) TOLL (roof) SPACING- 200 2-0-0 Plate Ginp DL SSL DEFL in (loc) // defL	Plate Offsets (X,Y) [3:0-	<u>2-3-8</u> <u>4-10-1</u> -2-0,0-2-0], [5:0-2-10,0-1-12	<u>6-4-7 2-6-0</u> 2], [8:0-5-12,0-2-0], [9:0-5-12,0-2-0],	5-4-0 [21:0-2-8,0-3-0], [<u>5-0-8</u> 23:0-4-0,0	<u> </u>	
CICLL (roof) 20.0 Plate Gip DOL 11.5 TC 0.0 Vert(L) -0.0 16 6-833 240 MT20 244/190 CIDL 10.0 Rep Stress Incr YES WB 0.96 Horz(CT) 1.08 16 -12 180 Weight: 260 Ib FT = 20% SOL 10.0 Code IRC2021/TPI2014 Matrix-AS BRACING- TC/2 CHORD 24.4 SP No.2 Weight: 260 Ib FT = 20% UMMBER- TC/2 A4 SP No.1 BRACING- TC/2 CHORD Structural wood sheathing directly applied. SOT CHORD 24 SP No.2 Rep Strespt* TC/2 CHORD Structural wood sheathing directly applied. B184:24 SP No.3 TScopt* WEBS TC/2 CHORD Structural wood sheathing directly applied. B12:24 SP No.3 TScopt* WEBS TC/2 CHORD Structural wood sheathing directly applied. B12:24 SP No.3 TScopt* WEBS TC/2 CHORD Structural wood sheathing directly applied. B12:24 SP No.3 TScopt* WEBS WEBS To wait midpt 8-19.918 WEDG Zavid SP No.3 TScopt* Structural wood sheathing directly applied. <td>LOADING (psf)</td> <td>SPACING-</td> <td>2-0-0 CSI</td> <td>DEFI</td> <td>in (lo</td> <td>c) l/defl l/d</td> <td></td>	LOADING (psf)	SPACING-	2-0-0 CSI	DEFI	in (lo	c) l/defl l/d	
CDL 10.0 Lumber UDL 1.15 BC 0.91 Vert(C1) 0.06 5412 180 SQLL 0.0 Code IRC2021/TPI2014 WB 0.66 Hor2(CT) 0.26 12 n/a Weight 260 lb FT = 20% LUMDER- TDO CHORD 2x4 SP No.1 BRACING- T12:24 SP No.2 BSR.257 Structural wood sheathing directly applied. Rigid celling directly applied. Rxcept: 1 Row at midpt 7.21 640 cb tracing: 15-18 SOT CHORD 2x4 SP No.2, B5,B7: 2x4 SP SS MEBS LSExcept' WEBS 1 Row at midpt 8-19, 9-18 WEDS X2: 2x4 SP No.2, B5,B7: 2x4 SP SS WEBS 1 Row at midpt 8-19, 9-18 WEDS WES 1 Row at midpt 8-19, 9-18 Miffek recommends that Stabilizers and required cross bracing be installed during trues erection, in accordance with Stabilizer installation guide. REACTIONS (Ibidscia) 2-1614/0-3-8 (min. 0-2-3) Mix Horz Z-216(IC 11) Mix Horz Z-216(IC 12) 12-40/IC 31 Mi	TCLL (roof) 20.0 Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.93	Vert(LL)	-0.70	16 >633 240	MT20 244/190
Disc Code IRC2021/TPI2014 Matrix-AS Weight: 260 lb FT = 20% LUMBER- TOP CHORD 2x4 SP No.1 * Except* TOP CHORD 2x4 SP No.1 * Except* Structural wood sheathing directly applied. Except: D CHORD 2x4 SP No.1 * Except* TOP CHORD BOT CHORD 2x4 SP No.2 * Except* Structural wood sheathing directly applied. Except: D CHORD 2x4 SP No.1 * Except* B1.84; 2x4 SP No.2, B5.87; 2x4 SP SS 6-0-0 cor bracing: 15-18 WEBS 2x4 SP No.3, Right: 2x4 SP No.3 WEBS WEBS 1 Row at midpt 7-21 e.ft: 2x4 SP No.3, Right: 2x4 SP No.3 Min: 0-2-3) Matrix-125 (Single) (20, 12) = 1589/0-3-8 (min: 0-2-3) Matrix-125 (Single) (20, 12) = 1644(IC 21) Max Grav2=169(SIC 20), 12=1644(IC 21) Max Grav2=169(SIC 20), 12=1644(IC 21) Max Grav2=169(SIG 20), 12=1644(IC 21) OPC CHORD 2-3=-221717, 14-34=-740/231, 4-31=4096/372, 5-31=-499(990), 5-6=-2373/111, 6-7=-2270/134, 7-8=-2306/731, 4-31=-4096/372, 5-31=-409(900), 5-6=-2373/111, 6-7=-2270/134, 7-8=-2306/731, 4-31=-4096/372, 5-31=-409/140, 5-23==-293/2051 Mine Vertices and the stabilizer OPC CHORD 2-24=-167/1690, 23-24=-90/978, 22-23=-143/2700, 21-22=-143/2700, 21-22=-143/2700, 12-22=-43/210, 12-32=-90/978, 22-23=-143/2700, 21-22=-43/210, 12-32=-90/978, 22-23=-143/2700, 21-22=-43/210, 12-32=-90/978, 22-23=-143/2700, 21-22=-43/210, 12-32=-90/978, 22-23=-143/2700, 21-22=-43/210, 12-32=-90/978, 22-23=-143/2700, 21-22=-43/210, 12-32=-90/978, 22-23=-143/210, 12-32=-90/978, 22-23=-143/210, 12-32=-90/978, 22-23=-143/210, 12-32=-	TCDL 10.0	Rep Stress Incr	1.15 BC 0.91 YES WB 0.96	Horz(CT)	-1.08 0.26	16 >412 180 12 n/a n/a	
LUMBER: UP CP CHORD 2/4 SP No.2 "Except" TO P CHORD Structural wood sheathing directly applied. Except: 11: 2x4 SP No.1 Except BID Fixed SP No.2 (55.87: 2x4 SP SS BOT CHORD Structural wood sheathing directly applied. Except: 12: 2x4 SP No.2 (55.87: 2x4 SP No.2 (55.87: 2x4 SP SS BOT CHORD STRUCTURAL WOOD Sheathing directly applied. Except: 12: 2x4 SP No.3, Right: 2x4 SP No.3 (WEBS 2x4 SP No.3 (WEBS 10: 0x0 cb cb racing: 15-18 (10: 0x0 cb racing: 15-12 (10: 0x0 cb racing: 15-18 (10: 0x0 cb racing: 15-18 (10: 0x0 cb racing: 15-12 (10: 0x0 cb racing: 15-18	BCDL 10.0	Code IRC2021/TP	2014 Matrix-AS				Weight: 260 lb FT = 20%
IDP CHORD 24 SP N0.2 EXCEPT IDP CHORD 24 SP N0.2 Structure applied. S0T CHORD 24 SP N0.1 Except IRGW at midpt 7-21 S0T CHORD 24 SP N0.3 Except IRGW at midpt 7-21 S0T CHORD 24 SP N0.3 Except IRGW at midpt 7-21 S0T CHORD 22 24 SP N0.3 Except IRGW at midpt 8-19, 9-18 WEDGE E.t. 2x4 SP N0.3 Right calling directly applied. Except: APE 22 24 SP N0.3 Right calling directly applied. Except: IRGW at midpt 7-21 Hit 2x4 SP N0.3 Right calling directly applied. Except: IRGW at midpt 7-21 S0T CHORD 24 24 SP N0.3 Right calling directly applied. Except: IRGW at midpt 7-21 S0T CHORD 24 24 SP N0.3 Right calling directly applied. Except: IRGW at midpt 7-21 S0T CHORD 24 24 SP N0.3 Right calling directly applied. Except: IRGW at midpt 7-21 S0T CHORD 24 SP N0.3 Right calling directly applied. Except: IRGW at midpt IRGW	LUMBER-	0 *Eveent*		BRACING-	Ctructure	wood oboothing direct	ly applied
BOT CHORD 2x4 SP No.1 "Except" BI 48: 2x4 SP No.2, BSP: 2x4 SP SS WEBS 2x4 SP No.3 "Except" WEDS 2x4 SP No.3 "Except" WEDS 1 Row at midpt 7-21 Row at midpt 8-19, 9-18 WESS 1 Row at midpt 8-19, 9-18 MTEK recommends that Stabilizer and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide. SEACTIONS. (Ib/size) 2=1614/0-3-8 (min. 0-2-0), 12=1589/0-3-8 (min. 0-2-3) Max Horz 2=216(LC 11) Max UpitIZ=-68(LC 12), 12=-40(LC 13) Max Grav 2=1695(LC 20), 12=1844(LC 21) SORCES. (Ib) - Max. Comp./Max. Ten - All forces 250 (Ib) or less except when shown. ICIP CHORD 2-3=2217/71, 3-4=-4794/291, 4-31=-4980/372, 5-31=-4959/390, 5-6=-2373/111, 6-7=22701/31, 4-73=-2306/231, 8-9=-1622/166, 9-10=-2506/157, 10-11=-2624/117, 11-32=-2599/81, 12-32=-2783/66 30 C CHORD 2-24=-167/180, 12-32=-2783/66 30 C CHORD 2-24=-167/1803, 17-33=0/1683, 17-33=0/1683, 14-34=0/1683, 13-14=-0/1683, 13-35=-0/223, 12-36=0/02723 WEBS 5-22=0/324, 5-21=-867/184, 19-21=0/1857, 8-21=-2261/229, 8-19=-337/277, 9-15=-89/1201, 13-15=-122/1027, 11-13=-439/253, 3-23=-297/3428, 3-24=-140/4140, 5-23=-293/2051 VOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) Unbalanced roof live loads have been considered for this design. 1) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 1) This truss has been designed for a live load of 30.0 psf or 0.20 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 1) This truss has been designed for a live load of on 2.00 times flat roof load o	TOP CHORD 2x4 SP No T1: 2x4 SF	PNo.1		BOT CHORD	Rigid cei	ling directly applied. Ex	cept:
WEBS 2x4 SP No.3 Except* WEBS 1 Row at midpt 6-19, 9-16 WEDGE MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer and required cross bracing be installed during truss erection, in accordance with Stabilizer material during truss erection, in accordance with Stabilizer installation guide. REACTONS. (Ily/size) 2=1614/0-34 (min. 0-2-0), 12=1589/0-3-8 (min. 0-2-3) (max Grov=1656(LC 20), 12=1644(LC 21) ************************************	BOT CHORD 2x4 SP No B1.B4: 2x4	.1 *Except* SP No.2. B5.B7: 2x4 SP S	S		1 Row at 6-0-0 oc	t midpt 7-21 bracing: 15-18	
 MEDGE MILE & Recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide. Mile & recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer installation guide. REACTIONS. (Ib/size) 2=1614(0-3-8 (min. 0-2-0), 12=1589/0-3-8 (min. 0-2-3) Max Horz 2=216(LC 12), 12=-40(LC 13) Max Grav2=1695(LC 20), 12=1844(LC 21) FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3-2217/71, 3-4-4764/291, 4-31=-4996(372, 5-31=-4959/390, 5-6=-2373/11, 6-7=-2270/134, 7-8=-2305/231, 8-9=-1622/166, 9-102506/157, 10-11=-2624/117, 11-32=-2598/91, 12-32=-2783/66 OT CHORD 2-24167/1690, 23-24=-90/978, 22-23=-143/2700, 21-22=-143/2700, 20-21=-329/0, 7-21=-275/172, 19-330-01683, 17-34=0-11683, 17-34=-011683, 13-14=-001683, 13-35=-0/2233, 35-36=0/2233, 32-36=0/2233 WEES 5-22-0/324, 5-21=-867/148, 19-2-1e-011683, 1-3-44=0/1683, 13-35=-0/2233, 35-36=0/2233, 3-23=-297/3483, 3-24=-1404/140, 5-23=-293/2051 VOTES- (10) I) Unbalanced roof live loads have been considered for this design. I) Winch ASCE 7-16; Vuli=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWERS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1), 3-11-2 to 3-2-2, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) I) Unbalanced roof live loads have been considered for this design. I) Winch ASCE 7-16; Vuli=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWERS (envelope) gable end zone and C-C C tormembers and forces at MWERS for reactions shown; Lumber DOL=1.68 (previce) p2-2-6, Exterior(2E) 3-2-2-6 to 37-0-0 zone; C-C for members and forces & MWERS for neactions shown; Lumber DOL=1.68 (previce) p2-2-6, D, Cc=1.00, Ct=1.10 I) This truss has been designed for	WEBS 2x4 SP No	.3 *Except*		WEBS	1 Row at	t midpt 8-19, 9	9-18
Left: 2X4 SP No.3, Kight: 2X4 SP No.3 Installation guide. REACTIONS. (Ib/size) 2=1614/0-3-8 (min. 0-2-0), 12=1589/0-3-8 (min. 0-2-3) Max Horz 2=216(LC 12), 12=-40(LC 13) Max Grav2=1695(LC 20), 12=-844(LC 21) FORCES. (Ib) - Max. Comp./Max. Ten - All forces 250 (Ib) or less except when shown. FOP CHORD 2-3=-2217/71, 3-4=-4784/291, 4-31=-4996/372, 5-31=-4959/390, 5-6=-2373/111, 6-7=-2270/134, 7-8=-230/5/231, 8-9=-1625/166, 9-10=-2506/157, 10-11=-2624/117, 11-32=-259809(1, 12-32)=-2783/66 OT CHORD 2-3=-2217/71, 3-4=-4784/291, 8-23-1623/166, 9-10=-2506/157, 10-11=-2624/117, 11-32=-259809(1, 12-32)=-2783/66 OT CHORD 2-3=-2217/72, 19-33=-01683, 17-33-40/1683, 14-34=0/1683, 14-34=0/1683, 13-35=-0/2233, 35-36=-0/2233, 13-35=-0/2233, 35-36=-0/2233, 13-35=-0/2233, 35-36=-0/2233, 13-35=-0/2233, 35-36=-0/2233, 13-55=-122/1027, 11-13=-439/253, 3-23=-297/3483, 3-24=-1404/140, 5-23=-293/2051 VOTES (10) 1) Uhalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vuli=120mph (3-second gust) Vasd=95mph: TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9. Exterior(2R) 9-2-9 to 27-9-7. Interior(1) 17-7-7 to 37-20-22-6; Exterior(2E) 32-2-6 to 37-0-0 zone. C-C for members and forces & MWFRS for reactions shown; Lumber DOI=1.60 17-27-9-7. Ja-22-6; Exterior(2E) 32-2-6 to 37-0-0 zone. C-C for members and forces & MWFRS for reactions shown; Lumber DOI=1.61, 50, plate DOI=1.62, 22-6; Exterior(2E) 32-2-6 to 37-0-0; Doise C-C for members and forces & MWFRS for reactions shown; Lumber DOI=1.61, 50, plate DOI=	WEDGE				be insta	alled during truss erection	on, in accordance with Stabilizer
REACTIONS. (Ib/size) 2=1614/0-3-8 (min. 0-2-0), 12=1589/0-3-8 (min. 0-2-3) Max Horz 2=216(LC 11) Max Upiff2=-68(LC 12), 12=40(LC 13) Max Grav 2=1695(LC 20), 12=1844(LC 21) FORCES. (Ib) - Max. Comp./Max. Ten All forces 250 (Ib) or less except when shown. TOP CHORD 2-3=-2217/17.1 - 34=-4784/291, 4-31=-4996/372, 5-31=-4959/390, 5-6=-2373/111, 6-7=-2270/134, 7-8=-2305/231, 8-9=-1625/166, 9-10=-2506/157, 10-11=-2624/117, 11-32=-2599(91, 12-32=-2783/66 3OT CHORD 2-24=-167/1690, 23-24=-90/978, 22-23=-143/2700, 21-22=-143/2700, 20-21=-329/0, 7-21=-275/172, 19-33=0/1683, 17-33=0/1683, 17-34=0/1683, 13-14=0/1683, 13-35=0/2233, 35-36=0/2233 WEBS 5-22=0/324, 5-21=-867/184, 19-21=0/1857, 8-21=-226/1229, 8-19=-337/277, 9-15=-89/1201, 13-5=-122/1027, 11-13=-439/253, 3-23==297/3483, 3-24==1404/140, 5-23=-293/2051 VOTES- (10) I) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -01-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15) PI=20.0 psf (Lum DOL=1.15) PIste DOL=1.16); IS=1.0; South CAR (and provide adgined for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); PF=20.0 psf (Lum DOL=1.15) PIste DOL=1.15); Is=1.0; South SEAL 28147 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 3) This truss has been designed for a 10.0 psf bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide wilfor the table of the loads 10.0 psf on the bott	Left: 2x4 SP No.3 , Right:	2x4 SP No.3			Installa	tion guide.	
Max Uplif2=-68(LC 12), 12=40(LC 13) Max Grav2=1695(LC 20), 12=1844(LC 21) FORCES. (lb) - Max Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2217/71, 3-4=4784/291, 4-31=-4996/372, 5-31=-4959/390, 5-6=-2373/111, 6-7=-2270/134, 7-8=-2305/231, 8-9=-1625/166, 9-10=-2508/157, 10-11=-2624/117, 11-32=-2598/91, 12-32=-2783/66 3OT CHORD 2-24=-167/1690, 23-24=-90/978, 22-23=-143/2700, 21-22=-143/2700, 20-21=-329/0, 7-21=-275/172, 19-33=-01/883, 17-33=0/1683, 14-34=0/1683, 13-14=0/1683, 13-35=0/2233, 35-36=0/2233, 12-36=0/2233 VEBS 5-22=-01324, 5-21=-867/184, 19-21=0/1857, 8-21=-226/1229, 8-19=-337/277, 9-15=-89/1201, 13-15=-122/1027, 11-13=-439/253, 3-23=-297/3483, 3-24=-1404/140, 5-23=-293/2051 VOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wincl: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DDL=1.60 3) TCLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.15 Plate DDL=1.15); Pf=20.0 psf (Lum DDL=1.15 Plate DDL=1.15); Is=1.0; Four Cat. B; Partially Exp; C=-0.0; C=-1.0; C=-1.0; C=-1.0; C=-1.0; Pf=20.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 3) Trois trus has been designed for greater of min roof live load nonconcurrent with any other live loads. 4) This trus has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) This trus has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 6) This trus has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other members. 6) This trus has been designed for a 10.0 psf bottom chord lin all areas where a rectangle 3-6-0 t	REACTIONS. (Ib/size) 2 Max Horz	2=1614/0-3-8 (min. 0-2-0), 2=216(I C 11)	12=1589/0-3-8 (min. 0-2-3)				
Max Crav 2=1095(LC 20), 12=1844(LC 21) FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2217(17), 34784/291, 4-31-4996/372, 5-31=-4959/390, 5-6=-2373/111, 6-7=-2270/134, 7-8=-2305/231, 8-9=-1625/166, 9-10=-2506/157, 10-11=-2624/117, 11-32=-2598/91, 12-32=-2783/66 OT CHORD 2-24-e-167/1690, 23-24-90/978, 22-23=-143/2700, 21-22=-143/2700, 20-21=-329/0, 7-21=-275/172, 19-33=0/1683, 17-34=0/1683, 14-34=0/1683, 13-14=0/1683, 13-35=0/2233, 35-36=0/2233 OT CHORD 2-24-e-167/184, 19-21=0/1857, 8-21=-226/1229, 8-19=-337/277, 9-15=-89/1201, 13-15=-122/1027, 11-13=-439/253, 3-23=-297/3483, 3-24=-1404/140, 5-23=-293/2051 VEES (10) 1) Unbalanced roof live loads have been considered for this design. 2) Winct. ASCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; PT=20.0 psf (roof LL: Lum DOL=1.15); PF=20.0 psf (Lum DOL=1.15); Is=1.0; Routh (24 B; Partially Exp.; C=1.0; Cs=1.0; Cs=1.0; Cs=1.0; 10, Tbit struss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 1) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.	Max Uplift	2=-68(LC 12), 12=-40(LC 1	3)				
<pre>FORCES. (lb) - Max. Comp./Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2-3=-2217/11, 3-4=-4784/291, 4-31=-4996/372, 5-31=-4959/390, 5-6=-2373/111,</pre>	Max Grav.	2=1695(LC 20), 12=1844(L	C 21)				
 6-7=-2270/134, 7-8=-2305/231, 8-9=-1625/166, 9-10=-2508/157, 10-11=-2624/117, 11-32=-2598/91, 12-32=-2783/66 BOT CHORD 2-24=-167/1690, 23-24=-90/78, 22-23=-143/2700, 21-22=-143/2700, 20-21=-329/0, 7-21=-275/172, 19-33=0/1683, 17-34=0/1683, 14-34=0/1683, 13-14=0/1683, 13-35=0/2233, 35-36=0/2233 WEBS 5-22=0/324, 5-21=-867/144, 19-21=0/1867, 8-21=-226/1229, 8-19=-337/277, 9-15=-89/1201, 13-15=-122/1027, 11-13=-439/253, 3-23=-297/3483, 3-24=-1404/140, 5-23=-293/2051 VOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) -02-0-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) -02-0-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) -02-0-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) -02-0-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9-7, Interior(1) 27-9-7, Interior(1) 27-9-7, Interior(1) 27-9-7, Interior(2E) -02-0-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9-7, Interior(1) 27-9-7, Interior(2E) -02-0-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9-7, Interior(1) 27-9-7, Interior(2E) -02-0, Exterior(2E) -02-0,	FORCES. (lb) - Max. Cor TOP CHORD 2-3=-221	mp./Max. Ten All forces 2 7/71_3-4=-4784/291_4-31=	50 (lb) or less except when shown. -4996/372 5-31=-4959/390 5-6=-2	373/111			
 NERS NUTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second guet) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh State of the loads. 3) TCLL: ASCE 7-10; Cs=1.00; Cs=1.00; Ct=1.10 4) This truss has been designed for grater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will for the load any other members, with BCDL = 10.0psf. 	6-7=-227	0/134, 7-8=-2305/231, 8-9=	-1625/166, 9-10=-2506/157, 10-11=	-2624/117,			
 7-21=-275/172, 19-33=0/1683, 17-34=0/1683, 14-34=0/1683, 13-14=0/1683, 13-14=0/1683, 13-35=0/2233, 35-36=0/2233, 12-36=0/2233 WEBS 5-22=0/324, 5-21=-867/184, 19-21=0/1857, 8-21=-226/1229, 8-19=-337/277, 9-15=-89/1201, 13-15=-122/1027, 11-13=-439/253, 3-23=-297/3483, 3-24=-1404/140, 5-23=-293/2051 NOTES- (10) Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord in ell areas where a rectangle 3-6-0 tall by 1-0-0 wide will full provide adeguate drainage to prevent water ponding. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will full provide adequate drainage to prevent water ponding. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will full provide adequate drainage to prevent water ponding. This truss has been designed for a live load of 30.0psf. 	BOT CHORD 2-24=-16	7/1690, 23-24=-90/978, 22-	23=-143/2700, 21-22=-143/2700, 2	0-21=-329/0,	_		
 WEBS 5-22=0/324, 5-21=-867/184, 19-21=0/1857, 8-21=-226/1229, 8-19=-337/277, 9-15=-89/1201, 13-15=-122/1027, 11-13=-439/253, 3-23=-297/3483, 3-24=-1404/140, 5-23=-293/2051 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough and the set of the s	7-21=-27 13-35=0/:	5/172, 19-33=0/1683, 17-3; 2233, 35-36=0/2233, 12-36	3=0/1683, 17-34=0/1683, 14-34=0/1 =0/2233	683, 13-14=0/168	3,		
 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (nevelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh SEAL 3) TCLL: ASCE 7-16; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit to the will fit of the bottom chord and any other members, with BCDL = 10.0psf. 	WEBS 5-22=0/3	24, 5-21=-867/184, 19-21=(122/1027_11_13=-439/253	0/1857, 8-21=-226/1229, 8-19=-337, 3-23=-297/3483, 3-24=-1404/140, F	/277, 9-15=-89/12 5-23=-293/2051	01,		
 NDIES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (nervelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh SEAL (28) (28) (28) (28) (28) (28) (28) (28)		122/1027, 11-10-403/200,	0 20 - 20110 - 00, 0 2 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 , 0	20-200/2001			
 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (nervelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 9-2-9, Exterior(2R) 9-2-9 to 27-9-7, Interior(1) 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.00 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fully the will fully the will be the bottom chord and any other members, with BCDL = 10.0psf. 	1) Unbalanced roof live lo	ads have been considered	for this design.				
 27-9-7 to 32-2-6, Exterior(2E) 32-2-6 to 37-0-0 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough SEAL 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit to the will be the bottom chord and any other members, with BCDL = 10.0psf. 	 Wind: ASCE 7-16; Vult (envelope) gable end z 	=120mph (3-second gust) \ one and C-C Exterior(2E) -	/asd=95mph; TCDL=5.0psf; BCDL= 0-10-8 to 3-11-2. Interior(1) 3-11-2 to	=5.0psf; h=23ft; Ca o 9-2-9. Exterior(2	at. II; Exp R) 9-2-9 t	B; Enclosed; MWFRS	BTH CARO
 a) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh SEAL a) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh SEAL b) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs c) Provide adequate drainage to prevent water ponding. c) Provide adequate drainage to prevent water ponding. c) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. r) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit the function of the pottom chord and any other members, with BCDL = 10.0psf. 	27-9-7 to 32-2-6, Exteri	ior(2E) 32-2-6 to 37-0-0 zor	he;C-C for members and forces & M	WFRS for reaction	ns shown;	Lumber DOL=1.60	OFESSION
Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs 5) Provide adequate drainage to prevent water ponding. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit the will be the bottom chord and any other members, with BCDL = 10.0psf.	3) TCLL: ASCE 7-16; Pr=	20.0 psf (roof LL: Lum DOL	.=1.15 Plate DOL=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DO	L=1.15); ls=1.0; Rough	C. C
 non-concurrent with other live loads. Frovide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will find the true with the bottom chord and any other members, with BCDL = 10.0psf. 	Cat B; Partially Exp.; C 4) This truss has been de	e=1.0; Cs=1.00; Ct=1.10 signed for greater of min ro	of live load of 12.0 psf or 2.00 times	s flat roof load of 2	0.0 psf on	overhangs	28147
 a) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. c) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit the will be true will	non-concurrent with oth	ner live loads.	na			31111	
between the bottom chord and any other members, with BCDL = 10.0psf.	6) This truss has been de	signed for a 10.0 psf botton	n chord live load nonconcurrent with	any other live loa	ds.	in the second second	NOINEER S SI
	() I his truss has been d between the bottom ch	esigned for a live load of 3 ord and any other members	u.upst on the bottom chord in all are s, with BCDL = 10.0psf.	eas where a rectan	gle 3-6-0	tall by 1-0-0 wide will hit	K. MORMUN
3) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 12.	8) Provide mechanical co 9) This truss design requi	nnection (by others) of trust res that a minimum of 7/16	s to bearing plate capable of withsta structural wood sheathing be appli	nding 100 lb uplift	at joint(s)) 2, 12. and 1/2" gypsum	10/14/2024
sheetrock be applied directly to the bottom chord. Warning :Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded	sheetrock be applied d Warning !—Verify design	irectly to the bottom chord.	fore use. This design is based only upon pa	arameters shown, and	is for an ind	lividual building component	I U/I 4/2U24 to be installed and loaded
Control of Second Seco	LOAD CASE(S) Standard	esign parameters and proper inco	propriation of component is responsibility of	f building designer – 1	not truss des	signer or truss engineer. Brad	cing shown is for lateral support of

individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILL	S 371 SHELBY MEADOW LANE ANGIER, NC
24-8565-R01	R19B	PIGGYBACK BASE	1	1		# 53378
			Run: 8.430 s Feb	 12 2021 Pri I xMQi2fw	Job Reference (optional) nt: 8.630 s Jul 12 2024 MiTek Ind cp2aKgzMG6w-JMJwa5fg3	ustries, Inc. Tue Oct 15 17:31:27 2024 Page 1 f2g7.lo5WD7Fi2gi59FIHay6ZOcUHyT6bF
	1-1-10 -0-10-8 2-3-8 7-1-9	13-6-0 16-0-0	21-0-0	29-0-	5 37-0	-0 37-10-8
	0-10-8 1-1-14 4-10-1	6-4-7 2-6-0	5-0-0	8-0-5	7-11-	
		6x8 =	5x8 =			Scale = 1:78.5
		8.00 12 8	тз 9			
[3x4				
2	5x8 ∕	7 3x8 T2 8 6	WS	12	3x8 [∞] 10 2x4 // 11	57
Ę	1x8 ∽ 3x4 32 T1			who	TI	33
7.2	2 3 B 1 B1 224		路6 B5 V儲17		W12	13,001,02
Ó	<u>∞</u> 0	$5x8 = \frac{19}{21}$	934-38 18	35 15	39416 36 37	
	5x10 = 4x6 5x5 =	3x4 = 4x10 = 2x4 =	2x4 2x4 2x4	4x8	= 4x4 = 2x4 =	5x6
	2.3.8 7.1.0	13.6.0 16.0.0	21_3_15	26-4-7	37.0-0	
Plate Offsets (X V) [3	$\frac{2.3.6}{2.3.8} + \frac{7.1.9}{4.10.1}$	<u>6-4-7</u> <u>2-6-0</u> <u>1 [8:0-5-12 0-2-0]</u> [9:0-5-12 0-2-0]	5-4-0 [22:0-2-8 0-3-0]	5-0-8 524-0-4-0	<u> </u>	
LOADING (psf)			<u>[22.0 2 0,0 0 0],</u>	. "		
TCLL (roof) 20.0	Plate Grip DOL	1.15 TC 0.91	Vert(LL)	-0.70	17 >636 240	MT20 244/190
TCDL 10.0	Lumber DOL Rep Stress Incr	1.15 BC 0.91 YES WB 0.96	Vert(CT) Horz(CT)	-1.07	17 >414 180 12 n/a n/a	
BCLL 0.0 * BCDL 10.0	Code IRC2021/TP	Matrix-AS	11012(01)	0.20	12 11/4 11/4	Weight: 261 lb FT = 20%
LUMBER- TOP CHORD 2x4 SP N T1: 2x4 SP BOT CHORD 2x4 SP N B1,B4: 22	lo.2 *Except* SP No.1 Io.1 *Except* k4 SP No.2, B5,B7: 2x4 SP \$	SS	BRACING- TOP CHORD BOT CHORD	Structur Rigid ce 1 Row a 6-0-0 oc	al wood sheathing directly iling directly applied. Exco t midpt 7-22 bracing: 16-19	applied. ept:
WEBS 2x4 SP N	0.3 *Except*		WEBS	1 Row a	t midpt 8-20, 9-	19
WEDGE Left: 2x4 SP No.3 , Righ	t: 2x4 SP No.3			MiTek be inst Installa	recommends that Stabilize alled during truss erection ation guide.	ers and required cross bracing , in accordance with Stabilizer
REACTIONS. (Ib/size) Max Hor Max Upli Max Gra	2=1614/0-3-8 (min. 0-2-0), z 2=-220(LC 10) ft2=-68(LC 12), 12=-54(LC 1 v 2=1694(LC 20), 12=1893(L	, 12=1643/0-3-8 (min. 0-2-4) 3) .C 21)				
FORCES. (lb) - Max. C TOP CHORD 2-3=-22 6-7=-22	omp./Max. Ten All forces 2 16/71, 3-4=-4790/282, 4-32 69/129, 7-8=-2305/226, 8-9	250 (lb) or less except when shown. =-5002/362, 5-32=-4965/380, 5-6=-2 =-1625/164, 9-10=-2503/151, 10-11=	372/106, 2622/110,			
BOT CHORD 2-25=-1 7-22=-2 14-36=(2596/85, 12-33=-2781/59 60/1695, 24-25=-86/981, 23 74/172, 20-34=0/1686, 18-3)/2231_36-37=0/2231_12-37	-24=-133/2706, 22-23=-133/2707, 2 [.] i4=0/1686, 18-35=0/1686, 15-35=0/1 7=0/2231	1-22=-329/0, 686, 14-15=0/168	36,		
WEBS 5-23=0/ 14-16=	324, 5-22=-868/183, 20-22= -121/1025, 11-14=-439/254,	0/1862, 8-22=-223/1231, 8-20=-337/ , 3-24=-284/3492, 3-25=-1409/133, 5	/277, 9-16=-89/11 -24=-285/2057	99,		
NOTES- (10) 1) Unbalanced roof live 2) Wind: ASCE 7-16; VL	loads have been considered lt=120mph (3-second gust)	l for this design. Vasd=95mph; TCDL=5.0psf; BCDL=	:5.0psf; h=23ft; C	at. II; Exp	B; Enclosed; MWFRS	A CARA
(envelope) gable end 27-9-7 to 33-0-14, Ex plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pt	zone and C-C Exterior(2E) - terior(2E) 33-0-14 to 37-10-8 =20.0 psf (roof LL: Lum DOI	-0-10-8 to 3-11-2, Interior(1) 3-11-2 to 3 zone;C-C for members and forces 8 L=1.15 Plate DOL=1.15); Pf=20.0 ps	o 9-2-9, Exterior(2 & MWFRS for rea f (Lum DOL=1.15	R) 9-2-9 ctions sh Plate DC	to 27-9-7, Interior(1) own; Lumber DOL=4:60 DL=1.15); Is=1.0; Rough	ROFESSION RATE
Cat B; Partially Exp.; 4) This truss has been on non-concurrent with on the second sec	Ce=1.0; Cs=1.00; Ct=1.10 lesigned for greater of min ro ther live loads.	oof live load of 12.0 psf or 2.00 times	flat roof load of 2	20.0 psf oi	n overhangs	28147
 6) Provide adequate dra 6) This truss has been of 7) * This truss has been between the bottom of 	lesigned for a 10.0 psf botton designed for a 10.0 psf botton designed for a live load of 3 hord and any other member	ույց. m chord live load nonconcurrent with i0.0psf on the bottom chord in all are s. with BCDL = 10 Օրջք	any other live loa as where a rectar	ads. ngle 3-6-0	tall by 1-0-0 wide will find	K MORRELA
8) Provide mechanical of9) This truss design required	onnection (by others) of trus uires that a minimum of 7/16	s to bearing plate capable of withsta "structural wood sheathing be applied	nding 100 lb uplif ed directly to the f	t at joint(s op chord) 2, 12. and 1/2" gypsum	10/14/2024
sheetrock be applied Warning !—Verify desig	directly to the bottom chord. n parameters and read notes be	fore use. This design is based only upon pa	rameters shown, and	is for an in	dividual building component to	be installed and loaded
LOAD CASE(S) status	design parameters and proper inc	orporation of component is responsibility of	building designer –	not truss de	signer or truss engineer. Bracin	ng shown is for lateral support of

individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

loh		Truss	Truss Type		Otv	Plv 10			
24-8565-R01		R22	Piggyback Base		1			# 5	2279
24-0303-1101					Pup: 8 430 s. Eob	Jol	Reference (optional)	# J	JJ/0
					ID:oDuWOOMhLxN	/Oj2fwcp2aKq	zMG6w-kx_3C6hjMv2	cXa2NmemqsMgFcJEV	Vyf3OoXdG5cyT6bB
	-0-10-8	8-1-15	16-0-0	18-10-4	21-0-0 22-10-4 2	24-10-4 26-10-4	28-10-4 30-10-4 32-10	<u>-4 34-10-4 37-0-0</u>	
	0-10-8	61-1-0	7-10-1	5x10 -	2-1-12 1-10-4	2-0-0 2-0-0	2-0-0 2-0-0 2-0-0	J 2-0-0 2-1-120-10-6	Scale = 1:73.2
				5410 -	5x6 =				
			8.00 12	5	6 7				
						8]
			то		Was we have				
		3x8	11 /		26 W4 96 W7	, 14 9 , B	3×8 \		
		4x6 🖉	4		2	в "П	10 11		
ç		3	TSI .			33	12		2
11-3				W.B	5x8	29 V	3 ¹ 2 ¹⁸ 13		11-3
			W2		W2	4x4		14	
		40 17	N.		A		WE WE		
		W				W1		W9 15	
	N ¹²	HW1 B1			22		B1	W10 1	4W6g?
l	7-0	0,	42 24	<u>tot</u>	43	- 1 21	44		<u>]</u> _0
		2	5 12 21 3x8 =	23	10	22-1		19 18 20	
	4x6			4x10 =		3x8 =		4x8 = 3x8	
		0.4.45	10.0.0		24.4.4		22.6.0	24 40 4 27 0 0	
	<u> </u>	8-1-15	8-1-1		8-1-1		8-1-15	2-4-4 2-1-12	
Plate Offsets (X,Y) [5:0	<u>)-7-8,0-2-8], [7:0-4-4,0-2-4],</u>	[16:0-3-8,Edge]						
TCLL (roof)) 20.0	SPACING-	2-0-0 C	SI.	DEFL.	in (loc)	l/defl L/d	PLATES	GRIP
Snow (Pf)	20.0 10.0	Lumber DOL	1.15 B	C 0.00	Vert(CT)	-0.25 22-23	>999 180	WIT20	244/190
BCLL	0.0 *	Rep Stress Incr Code IRC2021/TP	YES V 12014 N	VB 0.85 Matrix-AS	Horz(CT)	0.09 37	n/a n/a	Weight [,] 257 I	p FT = 20%
BCDL	10.0				DRAGING				
TOP CHORD	2x4 SP No	0.2			TOP CHORD	Structural w	ood sheathing direct	tly applied.	
BOT CHORD	2x4 SP No 2x4 SP No).2) 3 *Excent*			BOT CHORD	Rigid ceiling	directly applied.	23-33	
WEDO	W3: 2x6 S	P No.2			JOINTS	1 Brace at J	It(s): 26, 27, 28, 29, 3	30, 31, 32	
WEDGE Left: 2x4 SP N	o.3 , Right:	: 2x4 SP No.3				MiTek rec	ommends that Stabil	izers and required cr	oss bracing h Stabilizer
	., 3					Installation	n guide.		
REACTIONS. (lb) -	All bearin Max Horz	ngs 4-9-8 except (jt=length) 2=-220(LC 10)	2=0-3-8, 20=0-3-8.						
	Max Uplift	All uplift 100 lb or less at j	oint(s) 2, 16, 18 exce	ept 19=-445(LC	13)	40-4407/1 0	24		
	Max Grav	20=621(LC 5), 16=333(LC	1)	01 Z=1478(LC 20), 10=302(LC 31),	, 19=1127(LC	, ZT),		
FORCES (Ib)	- Max Co	mn /Max Ten - All forces (250 (lb) or less excer	ot when shown					
TOP CHORD	2-40=-20	82/103, 3-40=-1891/130, 3	-4=-1405/140, 4-5=-	1284/179, 5-6=-	256/101,				
	6-7=-256	5/101, 7-8=-348/119, 8-9=-3 342/84, 13-14=-441/68, 14-1	47/89, 9-10=-279/93 15=-331/163, 15-16=	3, 10-11=-288/84 =-431/110	4, 11-12=-324/78,				
BOT CHORD	2-41=-13	6/1792, 25-41=-136/1792,	25-42=-136/1792, 24	4-42=-136/1792	23-24=-136/1792	2,			
	19-20=-2	2/1588, 18-19=-106/345, 16	-18=-106/345	2/1500, 20-44	2/1500,				
WEBS	5-27=-11 29-32=-1	02/174, 26-27=-1134/172, 667/227, 31-32=-1682/234	26-28=-1134/178, 28 . 30-31=-1734/248.	8-33=-1170/193, 19-30=-1702/23	, 29-33=-1574/161 9. 14-19=-523/252	1, 2.			
	3-25=0/4	50, 22-33=0/451, 5-23=-49	/974, 3-23=-816/210), 23-33=-685/14	8	,			
NOTES- (11)								
1) Unbalanced	roof live lo	bads have been considered t=120mph (3-second qust)	for this design.	=5 Onsf: BCDL =	5 0psf: h=23ft: C:	at II. Evn B. I	Enclosed: MWERS	MULLINITITITITITI	
(envelope) g	gable end z	zone and C-C Exterior(2E)	0-10-8 to 3-11-2, Int	erior(1) 3-11-2 to	o 9-3-1, Exterior(2	R) 9-3-1 to 2	7-9-7, Interior(1)	SPICESPIL N	11,
27-9-7 to 32 plate grip D(2-10-4, Ext∉ OL=1.60	erior(2E) 32-10-4 to 37-10-8	szone;C-C for memb	pers and forces a	& MWFRS for rea	ctions shown	; Lumber DOL=1.60	2ROFLO PNA	14AU
3) TCLL: ASCE	E 7-16; Pr=	20.0 psf (roof LL: Lum DO	_=1.15 Plate DOL=1	.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DOL=1	1.15); ls=1.0; Rough	SEAL	
4) This truss ha	ally Exp.; C as been de	esigned for greater of min ro	oof live load of 12.0 p	osf or 2.00 times	flat roof load of 2	0.0 psf on ov	erhangs	28147	11412
non-concurr 5) Provide ade	ent with ot	her live loads.	ina				11111	sa al	Inn
6) All plates an	e 2x4 MT2	0 unless otherwise indicate	d.				in the	AD WOINEER OF	and the second s
 1) This truss has 8) * This truss 	as been de has been o	esigned for a 10.0 psf botto designed for a live load of 3	n chord live load noi 0.0psf on the bottom	nconcurrent with i chord in all are	any other live loa as where a rectar	aas. 1gle 3-6-0 tall	by 1-0-0 wide will fit	MARK. MORTHUN	
between the	bottom ch	ord and any other member	s, with BCDL = 10.0	psf.		t at inist(-) 0	16 19 16	10/11/2021	
9) Provide med	enamical co	parameters and read notes be	s to bearing plate ca	based only upon pa	nuing TOU ID uplif	is for an individ	10, 10, 10 except	to be installed and loaded	1
Continues of p	lighting the sign	lesign parameters and proper inc	orporation of component	t is responsibility of	f building designer –	not truss design	er or truss engineer. Bra	cing shown is for lateral s	support of
individual web	members on	ly. Additional temporary bracing	to ensure stability durin	ng construction is th	e responsibility of the	e erector. Addit	ional permanent bracing	of the overall structure is	the Matal
Plate Connecte	ed Wood Tru	ss Construction and BCSI 1-03	Guide to Good Practice	e for Handling, Ins	stalling & Bracing of	f Metal Plate C	onnected Wood Trusses	from Truss Plate Institu	te, 583
D'Onofrio Driv	e, Madison,	WI 53719.		0.	_ 0.0				

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT H	ILLS 371 SHELBY MEADOW LANE ANGIER, NO
24-8565-R01	R22	Piggyback Base	1	1	Job Reference (optional)	# 53378
		Run: i ID:oDu	3.430 s Feb NOOMhLxI	12 2021 Pri MOj2fwcp2	nt: 8.630 s Jul 12 2024 MiTek 2aKqzMG6w-C8YRPSiL60	Industries, Inc. Tue Oct 15 17:31:31 2024 Page 2 CAT8kdZKMI3PZDQMiaIh6JY1BMpd2yT6bA

NOTES- (11)
 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 6-1-8, Exterior(2E) 6-1-8 to 10-11-2 zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3, 4.

LOAD CASE(S) Standard

¹⁾ Unbalanced roof live loads have been considered for this design.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 1=210/5-11-5 (min. 0-1-8), 3=210/5-11-5 (min. 0-1-8) Max Horz 1=51(LC 9) Max Uplift1=-10(LC 12), 3=-10(LC 12)

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

REACTIONS. (lb/size) 1=103/3-3-5 (min. 0-1-8), 3=103/3-3-5 (min. 0-1-8) Max Horz 1=-25(LC 8) Max Uplift1=-5(LC 12), 3=-5(LC 12)

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph, TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

- 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 11-1-11, Exterior(2E) 11-1-11 to 15-11-4
- zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1 except (it=lb) 9=194, 6=194.

```
LOAD CASE(S) Standard
```


NOTES-(8)

- a) Unbalanced roof live loads have been considered for this design.
 b) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 8-5-11, Exterior(2E) 8-5-11 to 13-3-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough
- Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 5 except (it=lb) 8=166. 6=166.

```
LOAD CASE(S) Standard
```


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 0-4-4 to 5-1-13, Exterior(2R) 5-1-13 to 5-9-11, Exterior(2E) 5-9-11 to 10-7-4 zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

NOTES-(8)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed: MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard


```
REACTIONS. (lb/size) 1=197/5-7-8 (min. 0-1-8), 3=197/5-7-8 (min. 0-1-8)
Max Horz 1=48(LC 9)
Max Uplift1=-10(LC 13), 3=-10(LC 12)
```

NOTES- (8)

- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

¹⁾ Unbalanced roof live loads have been considered for this design.

MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

- REACTIONS. (lb/size) 1=90/2-11-8 (min. 0-1-8), 3=90/2-11-8 (min. 0-1-8) Max Horz 1=-22(LC 8) Max Uplift1=-4(LC 13), 3=-4(LC 12)
- FORCES. (Ib) Max. Comp./Max. Ten. All forces 250 (Ib) or less except when shown.

NOTES- (8)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) Gable requires continuous bottom chord bearing.

5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

2x4 ||

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.33 BC 0.27 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00	l/defl n/a S n/a S n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 WEBS 2x4 SP No.3			BRACING- TOP CHORD BOT CHORD	Structural wo end verticals Rigid ceiling	ood sheath a. directly ap	ing direct	ly applied or 5-0-0 oc 0-0-0 oc bracing.	c purlins, except
				MiTek reco be installed Installation	mmends tl during tru guide.	hat Stabili ss erectio	izers and required cr on, in accordance wit	oss bracing h Stabilizer

REACTIONS. (lb/size) 1=147/5-0-0 (min. 0-1-8), 3=147/5-0-0 (min. 0-1-8) Max Horz 1=28(LC 10) Max Uplift1=-16(LC 10), 3=-23(LC 10) Max Grav 1=184(LC 20), 3=184(LC 20)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

4) Gable requires continuous bottom chord bearing.

- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.

LOAD CASE(S) Standard

