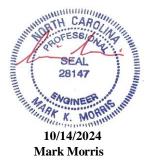
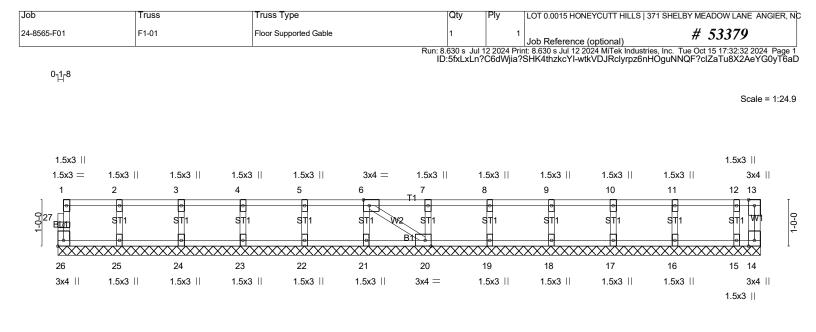
Mark Morris, P.E. #126, 1317-M, Summerville, SC 29483


843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 53379 JOB: 24-8565-F01 JOB NAME: LOT 0.0015 HONEYCUTT HILLS Wind Code: N/A Wind Speed: Vult= N/A Exposure Category: N/A Mean Roof Height (feet): N/A These truss designs comply with IRC 2018 as well as IRC 2021. *30 Truss Design(s)*


Trusses:

F1-01, F1-02, F1-03, F1-04, F1-05, F1-06, F1-08, F1-09, F1-10, F1-11, F1-12, F1-12A, F1-13, F1-14, F1-15, F1-19, F1-20, F1-21, F1-22, F1-23, F1-24, F1-25, F1-26, F1-27, F1-28, F1-29, F1-30, F1-31, F1-32, F1-33

Warning !--- Verify design parameters and read notes before use.

This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

			15-2-2		
Plate Offsets (X,Y)	[6:0-1-8,Edge], [20:0-1-8,Edge], [26:E	dge,0-1-8]	15-2-2		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES GRIP MT20 244/190 Weight: 64 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathir end verticals. Rigid ceiling directly app	g directly applied or 6-0-0 oc purlins, except lied or 10-0-0 oc bracing.

15-2-2

No.3(fla 2x4 SP No.3(flat) OTHERS

REACTIONS. All bearings 15-2-2.

(lb) - Max Uplift All uplift 100 lb or less at joint(s) 14

Max Grav All reactions 250 lb or less at joint(s) 26, 14, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(7-10)

- 1) Gable requires continuous bottom chord bearing.
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 1-4-0 oc.
- 4) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 14.
- 5) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 6) CAUTION, Do not erect truss backwards
- 7) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 8) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 9) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 10) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qt	y Ply	LOT 0.0015 HONEYCUTT	HILLS 371 SHELBY MEAD	DOW LANE ANGIER, NO
24-8565-F01	F1-02	Floor	8		1 Job Reference (optiona	1)	3379
			Run: 8.630 ID:5f>	s Jul 12 2024	Print: 8.630 s Jul 12 2024 MiTel ia?SHK4thzkcYI-wtkVDJRc	k Industries, Inc. Tue Oct 15 lyrpz6nHOguNNQFv8IP	5 17:32:32 2024 Page 1 ATICX2AeYG0yT6aD
0-1-8				,		,	
H ⊢ <u>1-3-0</u>						F	<u>0-9-10</u> Scale = 1:24.9
4x4 =							
1.5x3 =	3x4 =	3x4 =	3x8 =		3x4 =	3x4 =	4x6 =
1	2	3	4 T1		5	6	7
			B1				
	15	14	13 12	11	10	9	
3x4	4x6 =	3x4 =	3x4 = 1.5x3	3x4 =	3x4 =	14	4 = 3x4

<u> </u>	4-0-0	6-6-0	9-1-8 2-7-8	<u>11-7-8</u> 2-6-0	<u>14-1-8</u> <u>15-2-2</u> 2-6-0 <u>1-0-10</u>
Plate Offsets (X,Y)	- [1:Edge,0-1-8], [8:Edge,0-1-8], [16:E	Edge,0-1-8]			
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.41 BC 0.67 WB 0.60 Matrix-SH	DEFL. ir Vert(LL) -0.21 Vert(CT) -0.25 Horz(CT) 0.05	1 12 >859 480 9 12 >625 360	PLATES GRIP MT20 244/190 Weight: 76 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S BOT CHORD 2x4 S			BRACING- TOP CHORD	Structural wood sheathing o	directly applied or 6-0-0 oc purlins, except

2x4 SP No.3(flat) WFBS

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 16=815/0-7-14 (min. 0-1-8), 8=821/0-4-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 16-17=-809/0, 1-17=-807/0, 7-8=-818/0, 1-2=-1112/0, 2-3=-2656/0, 3-4=-3374/0, 4-5=-3302/0, 5-6=-2437/0, 6-7=-775/0

BOT CHORD 14-15=0/2088, 13-14=0/3188, 12-13=0/3536, 11-12=0/3536, 10-11=0/3048, 9-10=0/1791

1-15=0/1267, 2-15=-1191/0, 2-14=0/693, 3-14=-649/0, 4-11=-281/0, 5-11=0/311, 5-10=-745/0, 6-10=0/788, WEBS 6-9=-1240/0.7-9=0/1066

NOTES-(3-6)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

2) CAUTION, Do not erect truss backwards.

3) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

4) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

5) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

ob	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS	371 SHELBY MEADOW LANE ANGIER, N
4-8565-F01	F1-03	Floor Supported Gable	1	1	Job Reference (optional)	# 53379
			Run: 8.630 s Jul ID:5fxLxLn?(12 2024 Pri C6dWjia?S	nt: 8.630 s Jul 12 2024 MiTek Indus SHK4thzkcYI-O3ItQfSEWG_ga0	ries, Inc. Tue Oct 15 17:32:33 2024 Page MUyNPcwenAxivsCLtgHqN5oSyT6a
		<u>0-1-8</u> 1 3x4 =	2 _{3x4}	1		
			0,4	I		Scale = 1:7.
		$\begin{bmatrix} 5\\ 0\\ -1\\ 1.5x3 = \end{bmatrix} \begin{bmatrix} w_1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	T1 W2 W1 W B1			
		4	3			
		3x4	3x6 =			

Plate Offsets (X,Y)	[4:Edge,0-1-8]				1
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.02 BC 0.00 WB 0.00 Matrix-P	DEFL. i Vert(LL) n// Vert(CT) n// Horz(CT) 0.0	a - n/a 999	PLATES GRIP MT20 244/190 Weight: 8 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing except end verticals. Rigid ceiling directly appli	directly applied or 0-11-14 oc purlins, ed or 10-0-0 oc bracing.

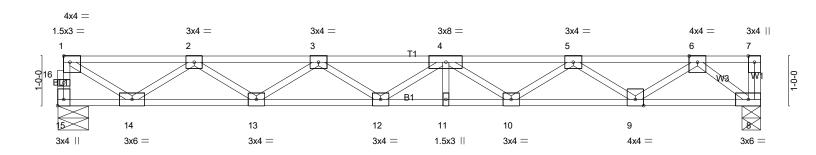
REACTIONS. (Ib/size) 4=35/0-11-14 (min. 0-1-8), 3=40/0-11-14 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (6-9)

- 1) Gable requires continuous bottom chord bearing.
- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 8) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
- 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard



Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHELE	BY MEADOW LANE ANGIER, NC
24-8565-F01	F1-04	Floor	6	1	Job Reference (optional)	# 53379

un: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Oct 15 17:32:34 2024 Page 1 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-sFsFe?TsHZ6XCQxgW5wrSrKGZ665xgSpWU7fLuyT6aB

1-3-0 н — _ 1-0-4 Scale = 1:23.2

<u>⊢ 1-6-0</u> 1-6-0	4-0-0 2-6-0	<u>6-6-0</u> 2-6-0	9-1-8 2-7-8	11-7-8 2-6-0	<u>13-10-12</u> 14-1-12 2-3-4 0-3-0
Plate Offsets (X,Y)	[1:Edge,0-1-8], [15:Edge,0-1-8]				
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.35 BC 0.58 WB 0.56 Matrix-SH	Vert(LL) -0.16 11-12 >	l/defl L/d >999 480 >766 360 n/a n/a	PLATES MT20 GRIP 244/190 Weight: 71 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF			BRACING- TOP CHORD Structura end vert	Ŭ	rectly applied or 6-0-0 oc purlins, except

2x4 SP No.3(flat) WFBS

BOT CHORD

and verticals

Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 15=758/0-7-8 (min. 0-1-8), 8=764/0-4-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 15-16=-753/0, 1-16=-751/0, 1-2=-1024/0, 2-3=-2406/0, 3-4=-2963/0, 4-5=-2724/0, 5-6=-1691/0

BOT CHORD 13-14=0/1919, 12-13=0/2858, 11-12=0/3040, 10-11=0/3040, 9-10=0/2393, 8-9=0/951

WEBS 1-14=0/1166, 2-14=-1093/0, 2-13=0/595, 3-13=-551/0, 4-10=-379/0, 5-10=0/405, 5-9=-857/0, 6-9=0/903, 6-8=-1197/0

NOTES-(3-6)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

2) CAUTION, Do not erect truss backwards.

3) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

4) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

5) Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.

6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

24-8565-F01 F1-05 Floor Supported Gable 1 1 Job Reference (optional) # 53372	2
Durs 0.620 a. Jul 42.2024 Drink 0.620 a. Jul 42.2024 MiTek Industries. Inc. The Oct 45.47/202	
Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Oct 15 17:32: ID:5fxLxLn?C6dWjia?SHK4thzkcYI-sFsFe?TsHZ6XCQxgW5wrSrKL66F2xoep	4 2024 Page 1 VU7fLuyT6aB
0 ₁₁ 8	
	Scale = 1:23.2
1.5x3	
1.5x3 = 1.5x3	3x4
$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5 \qquad 6^{3x4} = 7 \qquad 8 \qquad 9 \qquad 10 \qquad 11$	12
	1
	W1 -0-
	Ť
24 23 22 21 20 19 18 17 16 15 14	13
3x4 1.5x3 1.5x3 1.5x3 1.5x3 1.5x3 1.5x3 3x4 = 1.5x3 1.5x3 1.5x3 1.5x3 1.5x3	3x4

Otv

Plv

			14.1.10		
Plate Offsets (X,Y)	[6:0-1-8,Edge], [18:0-1-8,Edge], [24:E	dge,0-1-8]	14-1-12		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES GRIP MT20 244/190 Weight: 59 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applied	directly applied or 6-0-0 oc purlins, except

14-1-12

WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)

REACTIONS. All bearings 14-1-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

Truss Type

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (6-9)

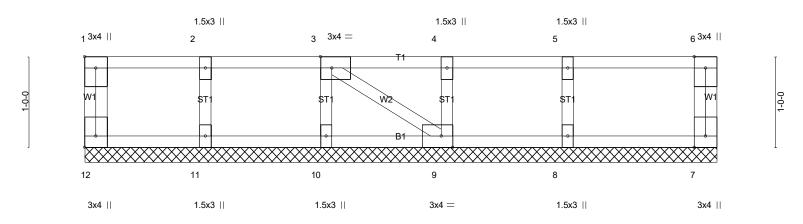
.Job

Truss

1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) CAUTION, Do not erect truss backwards.
- 6) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 7) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- 9) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard



LOT 0.0015 HONEYCUTT HILLS I 371 SHELBY MEADOW LANE ANGIER NO

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHELE	BY MEADOW LANE ANGIER, NC
24-8565-F01	F1-06	GABLE	1	1	Job Reference (optional)	# 53379

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Tue Oct 15 17:32:35 2024 Page 1 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-KSQerLTU2tEOqZWs3oR4?3tVTWbFgFozl8sCtLyT6aA

Scale = 1:12.7

	1-4-0 1-4-0	2-8-0 1-4-0	0	4-0-0 1-4-0		5-4-0 1-4-0		6-11-12 1-7-12	
Plate Offsets (X,Y)	[1:Edge,0-1-8], [3:0-1-8,	Eage], [9:0-1-8	s,Eage], [12:Eage,0-1-8	5					
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- Plate Grip DOL Lumber DOL Rep Stress Incr Code IRC2021/Tf	2-0-0 1.00 1.00 YES Pl2014	CSI. TC 0.08 BC 0.01 WB 0.04 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (i n/a n/a -0.00	loc) l/defl - n/a - n/a 9 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%F, 11%E
				BRACING- TOP CHOR BOT CHOR	ex	cept end ver	ticals.	irectly applied or 6- or 10-0-0 oc bracin	• •

REACTIONS. All bearings 6-11-12.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 12, 7, 11, 10, 9, 8

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (5)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty	Ply LOT 0.0015 HOP	NEYCUTT HILLS 371 SHELB	W MEADOW LANE ANGIER, NC
24-8565-F01	F1-08	Floor	3	1	·	# 53379
					2024 MiTek Industries, Inc. Tu	e Oct 15 17:32:36 2024 Page 1 GPc4vtFPcu6zocmPnyT6a9
1-3-0			1-4-8			<u>ρ-10-10</u>
						Scale = 1:37.9
3x6 =	3x4 = 3x4 =	3x8 = 3x8 FP= 3>	<4 = 3x8 =	3x4 =	3x4 = 3x	4 = 3x6 =
1	$\frac{2}{-}$ T1 $\frac{3}{-}$	4 5 6		T2 ⁸	9 1	
			W3 1			Wa W1
				<u>क व</u> ि		13 12
25 24	23	22 21 20	19 18	17 16 15	14	13 12
3x4 3x4 =	3x4 =	3x4 = 1.5x3 3x4 =	4x4 = 3x4 ∶	3x4 = 3x8 FP=	3x4 =	3x4 = 3x4 ∥
				3x4 =	=	
1-6-0	<u>4-0-0 6-6-0</u> 2-6-0 2-6-0		-7-8 <u>13-1-8 14-6-0</u> 5-0 <u>1-6-0</u> 1-4-8	17-0-0	<u>19-6-0</u> <u>22-</u> 2-6-0 <u>2-6</u>	
Plate Offsets (X,Y)	[25:Edge,0-1-8]	2-1-0 2-0	6-0 ' 1-6-0 ' 1-4-8	2-0-0	2-6-0 2-6	5-0 ' 1-1-10 '
LOADING (psf)	SPACING- 1-4		DEFL. in	(loc) I/defl L/d	PLATES	GRIP
TCLL 40.0 TCDL 10.0	Lumber DOL 1.	00 TC 0.35 00 BC 0.28	Vert(LL) -0.06 Vert(CT) -0.08	22 >999 480 22 >999 360	MT20	244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr N Code IRC2021/TPI20	IO WB 0.43 14 Matrix-SH	Horz(CT) 0.01	18 n/a n/a	Weight: 115	lb FT = 20%F, 11%E
LUMBER-	I		BRACING-		1	
TOP CHORD 2x4 SF BOT CHORD 2x4 SF				Structural wood sheat end verticals.	hing directly applied or 6	S-0-0 oc purlins, except
WEBS 2x4 SF	P No.3(flat)		BOT CHORD	Rigid ceiling directly a	pplied or 6-0-0 oc bracir	ng.
	e) 25=384/0-7-8 (min. 0-1- Grav 25=405(LC 3), 12=702(L	3), 12=641/0-4-6 (min. 0-1-8), C 4), 18=1653(LC 1)	18=1653/0-4-8 (min. 0-1-8)		
		s 250 (lb) or less except when	shown			
TOP CHORD 1-25		517/0, 2-3=-1144/0, 3-4=-121		59, 6-7=0/514, 7-8=0/	779,	
BOT CHORD 23-24	4=0/969, 22-23=0/1296, 21-2	2=0/1111, 20-21=0/1111, 19-2		0, 17-18=-1305/0,		
WEBS 7-18	=-1624/0, 1-24=0/613, 2-24=	14-15=-228/724, 13-14=-42/6 -551/0, 5-20=-474/0, 6-20=0/4		7, 7-17=0/704, 8-17=-	653/0,	
	=0/363, 9-15=-331/0, 10-13=	-397/39, 11-13=-14/368				
	ve loads have been conside					
2) Load case(s) 1, 2, use of this truss.	3, 4, 5, 6 has/have been mo	lified. Building designer must	review loads to verify that th	ey are correct for the	intended	
	trongbacks, on edge, spaced s at their outer ends or restra	l at 10-0-0 oc and fastened to ined by other means.	each truss with 3-10d (0.13	31" X 3") nails. Strong	backs to	
4) CAUTION, Do not	erect truss backwards.	,				
LOAD CASE(S) Stan	dard (balanced): Lumber Increase	=1.00 Plate Increase=1.00				
Uniform Loads (plf		-1.00, 1 late morease - 1.00			MUMMINI	11444
Concentrated Load	ls (lb)				UNITED TH CAR	OLIANI
	ease=1.00, Plate Increase=1	.00			I'll BOFESSO	No. P III
	5=-7, 1-11=-67				SEAL	
Concentrated Load Vert: 7=-60					SEAL 28147	
	ive (unbalanced): Lumber Ind	crease=1.00, Plate Increase=1	.00		A NOINEE	
	5=-7, 1-7=-67, 7-11=-13				ARK K MO	ARTS INTERNAL AND IN THE INTERNAL AND INTERNA
	00 11=-400				the provint	2024
Warning ! Varify de	sian narameters and read notes	before use. This design is based on	ly upon parameters shown and is	for an individual building	10/14/2 component to be installed as	2024

Job	Truss	Truss Type	Qty P	lot 0.0015 HONEYCUTT H	ILLS 371 SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-08	Floor	3	1 Job Reference (optional)	# 53379
		·	Run: 8 630 s. Jul 12 2	2024 Print: 8 630 s Jul 12 2024 MiTek	Industries Inc. Tue Oct 15 17:32:36 2024 Page 2

ID:5fxLxLn?C6dWjia?SHK4thzkcYI-oe_03hU6pBMFSj53dVyJYGPc4vtFPcu6zocmPnyT6a9

LOAD CASE(S) Standard

4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 12-25=-7, 1-7=-13, 7-11=-67

Concentrated Loads (lb)

- Vert: 7=-600 11=-400
- 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 12-25=-7, 1-7=-67, 7-11=-13
- Concentrated Loads (lb)
- Vert: 7=-600 11=-400
- 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 12-25=-7, 1-7=-13, 7-11=-67
- Concentrated Loads (lb) Vert: 7=-600 11=-400

Job	Truss	Truss Type	Qty Ply L	OT 0.0015 HONEYCUTT HILLS 37	1 SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-09	Floor Supported Gable	1 1 J	lob Reference (optional)	# 53379
		Run: 8 ID:51	3.630 s Jul 12 2024 Print: xLxLn?C6dWjia?SHK4	8.630 s Jul 12 2024 MiTek Industries 4thzkcYI-GqXOG1VkaUU63tgFE	s, Inc. Tue Oct 15 17:32:37 2024 Page 1 BDTY4UyrDJGk89MGCSLJxDyT6a8
			-		
					Scale = 1:37.3
					- 1.07.0
		1.5x3			
3x4 1.5x3 1.	5x3 1.5x3 1.5x3	3x8 FP=1.5x3 1.5x3 $3x4 = 1.5x3$	1.5x3 1.5x3	1.5x3 1.5x3 1.5x3	1.5x3 1.5x3 3x4
	3 4 5 T1 ⁴ 5	<u>67</u> 8 9 10 11	12 1 <u>3</u> T2	14 15 16	17 18 19
	a a a a a a a a a a a a a a a a a a a	 S∏1 S∏1 S∏1 S∏1 W2 S∏1	ST1 ST1	ST1 ST1 ST1	
	36 35 34	33 32 31 30 29	28 27 26	25 24 23	22 21 20
		1.5x3 1.5x3 1.5x3 1.5x3 3x4 =	3x8 FP=	1.5x3 1.5x3 1.5x3	1.5x3 1.5x3 3x4
			1.5x3 1.5x3		

Plate Offsets (X,Y)	[1:Edge,0-1-8], [10:0-1-8,Edge], [29:0)-1-8,Edge], [38:Edge,0-1	22-9-2 22-9-2 -8]				I
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.07 BC 0.01 WB 0.03 Matrix-SH	DEFL. in Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a	L/d 999 999 n/a	PLATES MT20 Weight: 92 lb	GRIP 244/190 FT = 20%F, 11%E
			BRACING- TOP CHORD BOT CHORD	end verticals.	0	lirectly applied or 10 I or 10-0-0 oc bracir)-0-0 oc purlins, except ng.

REACTIONS. All bearings 22-9-2.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 38, 20, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 26, 25, 24, 23, 22, 21

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(5)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty Ply	LOT 0.0015 HONEYCUTT HILL	S 371 SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-10	Floor	6	1 Job Reference (optional)	# 53379
	·	·	Run: 8.630 s Jul 12 202 ID:5fxLxLn?C60	24 Print: 8.630 s Jul 12 2024 MiTek Ind	ustries, Inc. Tue Oct 15 17:32:39 2024 Page 1 qJBqdIeW09v1zJ7uYcyDYfmqQ06yT6a6
0-1-8 ⊢⊢ 			1-4-8		0-10-12
H			F1		Scale = 1:38.2
3x4 =		3x8 =			
1.5x3 = 1	3x4 = 3x4 = 2 3	3x8 FP= 3 4 5	3x4 = 3x8 = 6 7	3x4 = 3x4 = x = 3x4 =	3x4 = 3x6 = 27 10 11
			W3 II		
	8	B 1 B 1			
25 24	23	22 21 20	19 18 17		14 13 12
3x4 3x4 =	= 3x4 =	3x4 = 1.5x3 3x4 =	$4x4 = 3x4 \parallel 4x4$	= 3x8 FP= 3x4 =	$3x4 = 3x4 = 3x4 \parallel$
1-6-0	4-0-0 6-6-0	9-1-8 1	1-7-8 13-1-8 14-6-0	17-0-0 19-6-0	22-0-0 23-1-12
1-6-0	2-6-0 2-6-0 25:Edge,0-1-8]		2-6-0 1-6-0 1-4-8	2-6-0 2-6-0	2-6-0 1-1-12
LOADING (psf)		-4-0 CSI .	DEFL. in (lo	c) l/defl L/d	PLATES GRIP
TCLL 40.0 TCDL 10.0		.00 TC 0.99 .00 BC 0.31		22 >999 480 22 >999 360	MT20 244/190
BCLL 0.0 BCDL 5.0	Rep Stress Incr Code IRC2021/TPI2	NO WB 0.46 014 Matrix-SH	Horz(CT) 0.01 1	l2 n/a n/a	Weight: 115 lb FT = 20%F, 11%E
LUMBER-			BRACING-		
TOP CHORD 2x4 SP BOT CHORD 2x4 SP	No.1(flat)		end	l verticals.	applied or 4-8-11 oc purlins, except
	No.3(flat)	0) 40 407/0 4 0 4 5 0 4 0	0	id ceiling directly applied or 6-0	0-0 oc bracing.
REACTIONS. (Ib/size Max Gi	e) 25=363/0-7-8 (min. 0-1 rav25=384(LC 3), 12=489(-8), 12=427/0-4-8 (min. 0-1-8) LC 4), 18=1820(LC 1)), 18=1820/0-4-8 (min. 0-1-8)		
		es 250 (lb) or less except when			
6-7=0	/732, 7-8=0/803, 8-9=-981	0, 9-27=-1297/0, 10-27=-1297			
16-17	=-392/513, 15-16=-392/51	3, 14-15=0/1424, 13-14=0/114			
	=0/683, 9-15=-651/0, 10-13		522, 6-19=-819/0, 7-19=0/932, 7	-17-0/901, 0-17090/0,	
NOTES- (5)	ve loads have been conside	ared for this design			
			review loads to verify that they	are correct for the intended	
3) Recommend 2x6 st	rongbacks, on edge, space at their outer ends or rest		o each truss with 3-10d (0.131".	X 3") nails. Strongbacks to	
4) CAUTION, Do not e		and by other means.			
LOAD CASE(S) 1) Dead + Floor Live (I	halanced): Lumber Increas	e=1.00, Plate Increase=1.00			
Uniform Loads (plf)	=-7, 1-11=-67			. N	MUMINIUM MAL
Concentrated Loads Vert: 7=-600	s (lb)			Internal Contraction of the second	TH CARO
	ease=1.00, Plate Increase=	1.00		Innin	At Marine
	=-7, 1-11=-67 s (lb)				SEAL 28147
Vert: 7=-600	0 27=-335	ncrease=1.00, Plate Increase=	1.00	(H1111)	SEAL 28147
Uniform Loads (plf)	=-7, 1-7=-67, 7-11=-13	,		ann Ara	WOINEER BROWN
Concentrated Loads				1111	A WOUNT
vert: 7=-600	0 27=-335				ALL DE LOS AND ALL DE

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded Constinued of provide the provided of th

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHELBY	MEADOW LANE ANGIER, NC
24-8565-F01	F1-10	Floor	6	1	Job Reference (optional)	# 53379
		P	up:8.630 s lul *	12 2024 Pri	nt: 8,630 s Jul 12 2024 MiTek Industries Inc. Tue	Oct 15 17:32:30 2024 Page 2

n: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 Mi Tek Industries, Inc. Tue Oct 15 17:32:39 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-DDf8hiX?66kqJBqdleW09v1zJ7uYcyDYfmqQ06yT6a6

LOAD CASE(S)

4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 12-25=-7, 1-7=-13, 7-11=-67

Concentrated Loads (lb)

- Vert: 7=-600 27=-335
- 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf) Vert: 12-25=-7, 1-7=-67, 7-11=-13
- Concentrated Loads (lb)
- Vert: 7=-600 27=-335
- 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 12-25=-7, 1-7=-13, 7-11=-67
- Concentrated Loads (lb) Vert: 7=-600 27=-335

Job	Truss	Truss Type	Qty	Ply LOT 0.0015 HONEY	CUTT HILLS 371 SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-11	Floor	3	1 Job Reference (or	otional) # 53379
0-1-8 H├─ <u>1-3-0</u>			Run: 8.630 s Jul ID:5fxLxLr ⊢ 1-4-8	12 2024 Print: 8.630 s Jul 12 2024	MiTek Industries, Inc. Tue Oct 15 17:32:40 2024 Page 1 Xu2XdsPshwLOqsL1Fi6aJiXFaLQsiuQazYYyT6a5 <u>ρ-10-12</u> Scale = 1:38.2
3x4 = 1.5x3 = 1 26 25 24 $3x4 \parallel$ $3x4 =$	3x4 = 3x4 = $2 T1$ $3x4 =$ $3x4 =$ 23 $3x4 =$	3x8 = 3x4	= 3x8 = 7 7 19 18 4x4 = 3x4	3x4 = T2 8 T2 0 17 16 15 3x4 = 3x8 FP= 3x4 =	3x4 = 3x4 = 3x6 = 9 10 11 10 11 14 13 12 3x4 = 3x4 = 3x4
Loading 1-6-0 Plate Offsets (X,Y) Iono LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0 10.0 10.0	4-0-0 6-6-0 2-6-0 2-6-0 25:Edge,0-1-8]	TC 0.31 BC 0.25 WB 0.43		8 2-6-0 (loc) I/defl L/d 6 22 >999 480 3 22 >999 360	19-6-0 22-0-0 23-1-12 2-6-0 2-6-0 1-1-12 PLATES GRIP MT20 Weight: 115 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP WEBS 2x4 SP	No.1(flat) No.1(flat) No.3(flat)		BRACING- TOP CHORD BOT CHORD	end verticals. Rigid ceiling directly appli	g directly applied or 6-0-0 oc purlins, except
Max G FORCES. (lb) - Max. TOP CHORD 25-26 6-7=0 BOT CHORD 23-24 16-17 WEBS 7-18= 8-15: NOTES- (4) 1) Unbalanced floor lin 2) Recommend 2x6 st	rav 25=400(LC 3), 12=303(LC Comp./Max. Ten All forces =-397/0, 1-26=-396/0, 11-12= /516, 7-8=0/778, 8-9=-545/38 =0/967, 22-23=0/1295, 21-22 =-566/339, 15-16=-566/339, ' -1027/0, 1-24=0/589, 2-24=-5 =0/363, 9-15=-332/0, 10-13=-3 ///////////////////////////////////	250 (lb) or less except when shi -301/0, 1-2=-519/0, 2-3=-1143// 4, 9-10=-678/123, 10-11=-281// =0/1109, 20-21=0/1109, 19-20= 4-15=-228/726, 13-14=-42/607 47/0, 5-20=-475/0, 6-20=0/491, 397/39, 11-13=-13/371 d for this design. at 10-0-0 oc and fastened to ea	own. D, 3-4=-1216/0, 4-5=-12 10 213/379, 18-19=-130(6-19=-793/0, 7-19=0/9	216/0, 5-6=-748/62, 0/0, 17-18=-1306/0, 909, 7-17=0/706, 8-17=-653	

Job	Truss	Truss Type	Qty Ply	LOT 0.0015 HONEYCUTT HILLS 371 S	SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-12	Floor	2	1 Job Reference (optional)	# 53379
			Run: 8.630 s Jul 12 2024 ID:5fxLxLn?C6dW	Print: 8.630 s Jul 12 2024 MiTek Industries, I jia?SHK4thzkcYI-doLHJkZtO16PAeYC	nc. Tue Oct 15 17:32:42 2024 Page 1 _m3jnXfeEKwlpJ3?Mk34dRyT6a3
1-3-0			1-5-4		<u>1-5-12</u> 0 <u>-3</u> -8
					Scale = 1:38.0
		3x8 =			4x6 =
3x6 =	3x4 = 3x4 =	3x8 FP= 3x4 =		3x4 = 1.5x3 3x4 =	3x4 = 3x4
	2 T1 3			8 9 10 T2 8 9 10	11 12₩₫3
		3 B 1 3	W3 D		
	25	24 23 22	21 20 19	18 17 16	15 14
3x4 3x4 =	3x4 = 3	x4 = 1.5x3 3x4 =	3x6 = 3x4 3x4 =	= 3x8 FP=3x8 = 3x4 =	
					4x6 =
		3-2-4 3-2-4		<u>22-6-8</u> 9-4-4	<u>23-2-8</u> 0-8-0
Plate Offsets (X,Y) [14:Edge,0-1-8], [27:Edge,0-1			J-+-+	
LOADING (psf) TCLL 40.0	SPACING- 1-4-0 Plate Grip DOL 1.00		DEFL. in (loc) Vert(LL) -0.06 24		S GRIP 244/190
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00 Rep Stress Incr NC	D BC 0.27	Vert(CT) -0.08 24 Horz(CT) 0.01 14	>999 360	244/100
BCDL 5.0	Code IRC2021/TPI2014				t: 119 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP	No 1(flat)		BRACING- TOP CHORD Struc	tural wood sheathing directly applie	d or 6-0-0 oc purlins except
BOT CHORD 2x4 SP			end v	ceiling directly applied or 6-0-0 oc l	
		, 20=1121/0-4-8 (min. 0-1-8), 14	C C		
	av 27=400(LC 3), 20=1121(L				
		250 (lb) or less except when sho 2/0, 3-4=-1180/0, 4-5=-1180/0, 5			
6-7=0	582, 7-8=0/802, 8-9=-718/22	4, 9-10=-718/224, 10-11=-978/0 =0/1066, 22-23=0/1066, 21-22=	, 11-12=-672/0		
19-20	=-1417/0, 18-19=-513/394, 17	7-18=-513/394, 16-17=0/960, 15 42/0, 5-22=-483/0, 6-22=0/499,	-16=0/968, 14-15=0/672		
7-21=		1/0, 8-17=0/514, 10-17=-399/0, 1			
NOTES- (5)					
	e loads have been considere , 4, 5, 6 has/have been modil	d for this design. ïed. Building designer must revi	ew loads to verify that they ar	e correct for the intended	
use of this truss. 3) Recommend 2x6 str	ongbacks, on edge, spaced a	at 10-0-0 oc and fastened to ea	ch truss with 3-10d (0.131" X	3") nails. Strongbacks to	
be attached to walls 4) CAUTION, Do not e	at their outer ends or restrair rect truss backwards.	ned by other means.	,	, C	
LOAD CASE(S) Stand	ard				
1) Dead + Floor Live (t Uniform Loads (plf)	palanced): Lumber Increase=	1.00, Plate Increase=1.00		WHITE A	CAD DUIL
Vert: 14-27= Concentrated Loads	7, 1-13=-67 s (Ib)			IN THE OFE	SSIG
Vert: 12=-86 2) Dead: Lumber Incre	65 ase=1.00, Plate Increase=1.0	00		and a second	1 and 1
Uniform Loads (plf) Vert: 14-27=	7, 1-13=-67			28	AL MORAL MULTIN
Concentrated Loads Vert: 12=-86	35 Í				
Uniform Loads (plf)	· · · · ·	ease=1.00, Plate Increase=1.00		A RK	NEL
Concentrated Loads				Minnes K.	March High
Vert: 12=-86	5	0		10/	14/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-12	Floor	2	1	Job Reference (optional)	# 53379
	·		Run: 8.630 s Jul 1	2 2024 Pri	nt: 8.630 s Jul 12 2024 MiTek Industries. Inc.	Tue Oct 15 17:32:42 2024 Page 2

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 Mi Lek Industries, Inc. Tue Oct 15 17:32:42 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-doLHJkZtO16PAeYC_m3jnXfeEKwlpJ3?Mk34dRyT6a3

LOAD CASE(S) Standard

4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00

Uniform Loads (plf) Vert: 14-27=-7, 1-7=-13, 7-13=-67

Concentrated Loads (lb)

- Vert: 12=-865
- 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)

Vert: 14-27=-7, 1-7=-67, 7-13=-13 Concentrated Loads (lb)

- Vert: 12=-865
- 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
- Vert: 14-27=-7, 1-7=-13, 7-13=-67 Concentrated Loads (lb)
- Vert: 12=-865

Job	Truss	Truss Type	Qty	Ply LOT 0.0015 HONE	EYCUTT HILLS 371 SHELE	BY MEADOW LANE ANGIER, NC
24-8565-F01	F1-12A	Floor	7	1 Job Reference (ontional)	# 53379
			Run: 8.630 s Jul 12 ID:5fxLxLn?0	2 2024 Print: 8.630 s Jul 12 20	24 MiTek Industries, Inc. Tu	ue Oct 15 17:32:43 2024 Page 1 KICnOkEsYkg8aOod9tyT6a2
						0-3-8
<u> </u>			1-5-4	1-0-4		0 ₁ 4_10 Scale = 1:38.0
		3x8 =				4x8 =
3x6 =	3x4 = 3x4 = 2	3x8 FP= 3x4 = 4 5 6	= 5x12 = 7	3x8 = 8		(4 = 3x4 0 11∧/∂2
,						
		3 B 1 3 3			B2 3	
28 27	26	25 24 23	22 21 20	19 18 17	16	15 14 13
$3x4 \parallel 3x4 =$		3x4 = 1.5x3 3x4 =	3x6 = 3x8 F			3x4
			3x4 4	4x10 =		4x4 =4x6 =
	1	3-2-4	14-5-6 13-3-12	15-8-8 15-7-0	22-6-8	23-2-8
		3-2-4	0-1-8 1-1-10	1-1-10 0-1-8	6-10-0	23-2-8 0-8-0
Plate Offsets (X,Y)	[13:Edge,0-1-8], [28:Edge,0-1	-8]				
LOADING (psf) TCLL 40.0	SPACING- 1-4-0 Plate Grip DOL 1.00		DEFL. in Vert(LL) -0.06	(loc) l/defl L/d 25 >999 480	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0	Lumber DOL 1.00 Rep Stress Incr NC	D BC 0.41	Vert(CT) -0.08 2 Horz(CT) 0.01	16-17 >999 360 13 n/a n/a		
BCDL 5.0	Code IRC2021/TPI2014				Weight: 120	lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP	No 1/flat)		BRACING- TOP CHORD	Structural wood sheath	ng directly applied or 6	6-0-0 oc purlins, except
BOT CHORD 2x4 SP				end verticals. Rigid ceiling directly ap		
	4 SP No.2(flat)		Ber energy	ngiù cenng uncery ap		ıg.
	e) 28=331/0-4-8 (min. 0-1-8) rav 28=351(LC 3), 21=1926(Li	, 21=1926/0-4-8 (min. 0-1-8), ·	13=1223/0-4-8 (min. 0-1-	-8)		
		,,, , , , , , , , , , , , , , , , , ,				
TOP CHORD 1-28=	-347/0, 1-2=-434/0, 2-3=-910/	250 (lb) or less except when sh /37, 3-4=-831/245, 4-5=-831/24	5, 5-6=-206/614,			
BOT CHORD 26-27	7=0/810, 25-26=-119/986, 24-2	81/0, 9-10=-1676/0, 10-11=-96 25=-400/646, 23-24=-400/646,	22-23=-845/0,			
15-1	6=0/1426, 14-15=0/770, 13-14)4,		
	, , ,	59/2, 5-25=0/258, 5-23=-568/0 2200, 8-19=-1960/0, 9-16=-278	, , ,			
10-15	i=-565/0, 11-15=0/416, 11-13=	1462/0				
NOTES- (5) 1) Unbalanced floor liv	/e loads have been considere	d for this design.				
2) Load case(s) 1, 2, 3 use of this truss.	3, 4, 5, 6 has/have been modi	fied. Building designer must rev	view loads to verify that th	ney are correct for the ir	tended	
3) Recommend 2x6 st	rongbacks, on edge, spaced as at their outer ends or restrain	at 10-0-0 oc and fastened to ea	ach truss with 3-10d (0.13	31" X 3") nails. Strongb	acks to	
4) CAUTION, Do not e						
LOAD CASE(S)	balanced): Lumber Increase=	1 00 Plate Increase=1 00			WHINTH CAR	OI MIL
Uniform Loads (plf)					TOFESSIO	N. THE
Concentrated Load	s (lb)				SEAL	No.
	2 11=-865 ease=1.00, Plate Increase=1.0	00			28147	11114
	=-7, 1-12=-67					
Concentrated Load Vert: 8=-93					ARK	RAL
	ve (unbalanced): Lumber Incr	ease=1.00, Plate Increase=1.0	0		SEAL 28147	mon
Vert: 13-28	=-7, 1-7=-67, 7-12=-13				10/14/.	2024
		efore use. This design is based only the corporation of component is responsible to the component of the second se		-	-	

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SH	ELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-12A	Floor	7	1	Job Reference (optional)	# 53379

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Tue Oct 15 17:32:43 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-5_vfX4aV9KEGno7PXUayKICnOKEsYkg8aOod9tyT6a2

LOAD CASE(S)

Concentrated Loads (lb) Vert: 8=-932 11=-865

- 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 13-28=-7, 1-7=-13, 7-12=-67
- Concentrated Loads (lb)
- Vert: 8=-932 11=-865 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
- Uniform Loads (plf)
- Vert: 13-28=-7, 1-7=-67, 7-12=-13
- Concentrated Loads (lb) Vert: 8=-932 11=-865
- 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 13-28=-7, 1-7=-13, 7-12=-67
- Concentrated Loads (lb) Vert: 8=-932 11=-865

Job	Truss	Truss Type	Qty	Ply LOT 0.0015 HONEY	CUTT HILLS 371 SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-13	Floor	1	1	# 53379
L1-3-0			Run: 8.630 s Jul 1 ID:5fxLxLn		ptional) 4 MiTek Industries, Inc. Tue Oct 15 17:32:44 2024 Page 1 S1kQa7weM6Pyib5B5Bsyl?s8ciHEhlp2YBhJyT6a1 -5-41-0-0 0118 Scale = 1:26.0
$1^{3x6} =$	3x4 = 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3x4 = 1.5x3 3 4 2 10 14 3x8 =	3x4 = 51 $B1$ 13 $3x4 =$	3x4 = 6 2 12 3x6 =	3x4 = $3x8 = 1.5x3 =$ 7 8 10 $3x4 = 3x4 =$ $3x4 = 3x4 =$
Plate Offsets (X Y) 18	:0-1-8,Edge], [17:Edge,0-1-8	<u>13-2-4</u> 13-2-4			<u>15-9-12</u> 2-7-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 1-4-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.30 BC 0.24 WB 0.44	DEFL. in Vert(LL) -0.05 Vert(CT) -0.07 Horz(CT) 0.01	(loc) l/defl L/d 14 >999 480 14 >999 360 11 n/a n/a	PLATES GRIP MT20 244/190 Weight: 80 lb FT = 20%F, 11%E
	No.1(flat) No.3(flat)	9=-353/0-3-8 (min. 0-1-8), 11:	BRACING- TOP CHORD BOT CHORD	end verticals. Rigid ceiling directly appl	g directly applied or 6-0-0 oc purlins, except ied or 6-0-0 oc bracing.
Max Up	lift9=-413(LC 3) av 17=395(LC 3), 11=1096(LC		- 1090/0-4-6 (11111. 0-1-6	>)	
TOP CHORD 1-17=- 7-8=0/ BOT CHORD 15-16=	391/0, 9-18=0/419, 8-18=0/41 540 0/943, 14-15=0/1229, 13-14=	250 (lb) or less except when sh 18, 1-2=-504/0, 2-3=-1098/0, 3- 0/1002, 12-13=0/272, 11-12=- 36/0, 5-13=-435/0, 6-13=0/468,	4=-1169/0, 4-5=-1169/0 1189/0, 10-11=-1196/0		1/0
2) Provide mechanical3) Recommend 2x6 str	ongbacks, on edge, spaced a at their outer ends or restrain	s to bearing plate capable of w t 10-0-0 oc and fastened to ea			cks to
LOAD CASE(S) Standa	ard				
					ANNIHII MILLA

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HON	EYCUTT HILLS	371 SHELBY MEADOW LAN	E ANGIER, NC
24-8565-F01	F1-14	Floor	4	1			# 53379	
			Run: 8.630 s Jul 1	2 2024 Prin	Job Reference t: 8.630 s Jul 12 2	(optional) 024 MiTek Industr	ies, Inc. Tue Oct 15 17:32:45 6HnfudQPAHAcYyx0hwR	
1-3-0			ID:5fxLxLn?	'C6dWjia?	SHK4thzkcYI-1	1-5-4		
1-3-0					├ ───	1-3-4	1-0-0	чно
							So	cale = 1:26.0
							3x4	
1 ^{3x6} =	3x4 = 2	3x4 = 1.5x3 3 4	3x4 =	3x4 =	=	3x8 7	= 1.5 8	5x3 =
		3 4		6			ہ ج] 1
					\searrow	W3	Wa E	
			B1					
			<u> </u>					
16 12 16	- 15	14	13		12		10 29	
3x4 3x4	= 3x4 =	3x8 =	3x4 =		3x6 =	3x4	$ \qquad 3x4 = 3x$	(4
1-6-0 1-6-0	4-0-0 2-6-0	<u>9-1-8</u> 5-1-8		11-7-8 2-6-0	B	13-2-4	<u>14-6-12</u> <u>15-9-12</u> <u>1-4-8</u> <u>1-3-0</u>	
	0-1-8,Edge], [17:Edge,0-1-8							
LOADING (psf)	SPACING- 1-4-0		DEFL. in		/defl L/d		ATES GRIP	
TCLL 40.0 TCDL 10.0	Plate Grip DOL 1.00 Lumber DOL 1.00		Vert(LL) -0.05 Vert(CT) -0.07		>999 480 >999 360	MT	20 244/190	
BCLL 0.0	Rep Stress Incr YES	WB 0.44	Horz(CT) 0.01	11	n/a n/a			
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH				VVe	eight: 80 lb FT = 20%	6F, 11%E
LUMBER- TOP CHORD 2x4 SP N	lo 1(flot)		BRACING- TOP CHORD	Structure	wood sheath	ing directly on	plied or 6-0-0 oc purlins	except
BOT CHORD 2x4 SP N	lo.1(flat)			end verti	cals.			, елеері
WEBS 2x4 SP N	lo.3(flat)		BOT CHORD	Rigid cei	ling directly ap	plied or 6-0-0	oc bracing.	
()	,	9=-353/0-7-8 (min. 0-1-8), 11=	1096/0-4-8 (min. 0-1-8	3)				
	ft9=-413(LC 3) v 17=395(LC 3), 11=1096(L0	C 1)						
FORCES. (lb) - Max C	omp /Max Ten - All forces	250 (lb) or less except when sho). WD					
TOP CHORD 1-17=-3	91/0, 9-18=0/419, 8-18=0/4	18, 1-2=-504/0, 2-3=-1098/0, 3-4), 5-6=-65	0/0, 6-7=0/378	3,		
7-8=0/5 BOT CHORD 15-16=0		=0/1002, 12-13=0/272, 11-12=-1	189/0, 10-11=-1196/0					
WEBS 7-11=-1	065/0, 1-16=0/597, 2-16=-5	36/0, 5-13=-435/0, 6-13=0/468,	6-12=-791/0, 7-12=0/93	32, 7-10=	0/777, 8-10=-6	61/0		
NOTES- (5)								
	loads have been considered	l for this design. s to bearing plate capable of wi	thstanding 413 lb uplift	at joint 9				
3) Recommend 2x6 stro	ngbacks, on edge, spaced a	it 10-0-0 oc and fastened to ead				backs to		
4) CAUTION, Do not ere	at their outer ends or restrair ect truss backwards.	eu by other means.						
LOAD CASE(S) Standa	rd							
	-							

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCU	TT HILLS 371 SHEI	LBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-15	Floor	1		Job Reference (optio	nal)	# 53379
			Run: 8.630 s Ju ID:5fxLxLn?	 12 2024 Pi C6dWjia?	rint: 8.630 s Jul 12 2024 M SHK4thzkcYI-VZao96c	iTek Industries, Inc. OSFcgeGs Dc8fy	Tue Oct 15 17:32:46 2024 Page 1 NqKSxICl8NaGM1HmCyT6a?
0-1-8				, <u> </u>			
⊣ ⊢					1-4-	8	1-0-0 0-1-8 Scale = 1:26.0
3x4 = $1.5x3 =$ 1 18 18 10 18 10 10 10 10 10 10 10 10	3x4 = 2 2 = 15 3x4 =	3x4 = 1.5x3 3 4 2 6 14 3x8 =	3x4 = 5 1 8 1 13 3x4 =	6	4 = 12 4x4 =	3x8 = 7 3x4	3x4 = 1.5x3 = 8 19 10 $3x4 = 3x4 \parallel$
Plate Offsets (X,Y) [8:0)-1-8,Edge], [17:Edge,0-1-8	<u>13-1-8</u> 13-1-8	1				15-9-0 2-7-8
LOADING (psf) TCLL 40.0	SPACING- 1-4-0 Plate Grip DOL 1.00		DEFL. i Vert(LL) -0.0	n (loc) 5 14	l/defl L/d >999 480	PLATES MT20	GRIP 244/190
TCDL 10.0 BCLL 0.0 BCDL 5.0	Lumber DOL 1.00 Rep Stress Incr YES	WB 0.43	Vert(CT) -0.0 Horz(CT) 0.0		>999 360 n/a n/a	Waight: 90) b ET - 20% E 11% E
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH				Weight: 80) lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No BOT CHORD 2x4 SP No			BRACING- TOP CHORD	Structu end ve		lirectly applied or	⁻ 6-0-0 oc purlins, except
WEBS 2x4 SP No			BOT CHORD		eiling directly applied	l or 6-0-0 oc brac	sing.
Max Uplif	17=389/0-3-8 (min. 0-1-8) 9=-409(LC 3) 17=389(LC 3), 11=1088(LC	9=-348/0-7-8 (min. 0-1-8), 11 ; 1)	=1088/0-4-8 (min. 0-1	-8)			
TOP CHORD 17-18=-3	386/0, 1-18=-385/0, 9-19=0/	250 (lb) or less except when sh 414, 8-19=0/414, 1-2=-503/0, 2		5/0, 4-5=-	-1155/0, 5-6=-632/0,		
BOT CHORD 15-16=0		:0/986, 11-12=-1178/0, 10-11= 29/0, 5-13=-439/0, 6-13=0/472,		904, 7-10	=0/768, 8-10=-654/0		
2) Provide mechanical co3) Recommend 2x6 stror	igbacks, on edge, spaced a their outer ends or restrain	s to bearing plate capable of w t 10-0-0 oc and fastened to ea				s to	

SEAL 28147 10/14/2024

Job	Truss		Truss Type)		Qty	Ply	LOT 0.0015	HONEYCUTT H	ILLS 371 SHELE	BY MEADOW LANE ANGIER, N
24-8565-F01	F1-19		GABLE			1	1	Job Doforo	nce (optional)		# 53379
0 ₁ 1 ₇ 8					Run II	8.630 s Jul 1 D:5fxLxLn?(12 2024 Pr C6dWjia?	int: 8 630 s Jul	12 2024 MiTek	Industries, Inc. Tu ZkhGPRAmJfuU	ue Oct 15 17:32:47 2024 Page JbNZqLh5UhskV0mrleyT6a Scale = 1:22.
	.5x3 2	1.5x3 3	1.5x3 4	1.5x3 ∏ 5	$6^{3x4} = 11^{3x4}$	1.5x3 7		.5x3 8	1.5x3 9	1.5x3 10	1.5x3 3x4 11 12
	e ST1 e XXXXXX	ST1			* * * * * * *	ST1	××××	₽ ST1 ₽ XXXXXX			
	23 .5x3	22 1.5x3	21 1.5x3	20 1.5x3	19 1.5x3	18 3x4 =		17 .5x3	16 1.5x3 ∣∣	15 1.5x3	14 13 3x4
⊢ <u>1-4-0</u> 1-4-0 Plate Offsets (X,Y)	<u></u>) 1-4-) 1- 4-	0 1-4-0	+ 8-0-0 1-4-0		<u>9-4-0</u> 1-4-0	<u> </u>) <u>12</u>	-0-0 · · · · · · · · · · · · · · · · · ·	1.5x3 13-4-0 <u>13-11-8</u> 1-4-0 0-7-8
LOADING (psf)			2-0-0	CSI.	DEFL	in	(loc)	l/defl L/	d	PLATES	GRIP
TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Lum Rep	e Grip DOL ber DOL	1.00 1.00 YES	TC 0.06 BC 0.01 WB 0.03 Matrix-SH	Vert(L Vert(C Horz(0	L) n/a CT) n/a	(100) - - 13	n/a 99 n/a 99 n/a 99 n/a n/	9 9	MT20 Weight: 59	244/190
OTHERS 2x4 SF		14.0				ING- CHORD CHORD	end ver	ticals.	Ū.	tly applied or 6 10-0-0 oc brac	6-0-0 oc purlins, except ing.

REACTIONS. All bearings 13-11-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 24, 13, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-(6)

Gable requires continuous bottom chord bearing.
 Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

Job	Truss	Truss Type	Qty Ply	LOT 0.0015 HONEYCUTT HILLS	S 371 SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-20	Floor	4	1 Job Reference (optional)	# 53379
			Run: 8.630 s Jul 12 20 ID:5fxLxLn?C6dW	24 Print: 8.630 s Jul 12 2024 MiTek Indu jia?SHK4thzkcYII8AMSd0DZkh0	ustries, Inc. Tue Oct 15 17:32:47 2024 Page 1 GPRAmJfuUbNU7LYvUZZkV0mrleyT6a_
0-1-8					
⊢					1-2-4 Scale = 1:23.5
					00010 - 1.20.0
$4x4 \equiv$					
1.5x3 =	3x4 =	3x4 =	3x8 =	3x4 =	4x4 = 3x4
1	2	3	4 T1	5	6 7
	4		Б1 6		

11

1.5x3 ||

9-1-8

10

3x4 =

12

3x4 =

1-6-0	2-6-0	2-6-0	2-7-8	2-6-0	2-5-4 0-3-0
	[1:Edge,0-1-8], [15:Edge,0-1-8]	2-0-0	2-1-0	2-0-0	2-0-4 0-0-0
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.36 BC 0.59 WB 0.56 Matrix-SH	DEFL. in (loc Vert(LL) -0.17 11-1 Vert(CT) -0.23 11-1 Horz(CT) 0.04	2 >999 480	PLATES MT20 GRIP 244/190 Weight: 71 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP BOT CHORD 2x4 SP				ctural wood sheathing d verticals.	irectly applied or 6-0-0 oc purlins, except

WEBS 2x4 SP No.3(flat)

1-6-0

BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

11_7_8

9

4x4 =

14-0-12

3x6 =

14-3-12

REACTIONS. (lb/size) 15=767/0-7-8 (min. 0-1-8), 8=773/0-4-8 (min. 0-1-8)

4-0-0

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 15-16=-762/0, 1-16=-760/0, 1-2=-1038/0, 2-3=-2447/0, 3-4=-3029/0, 4-5=-2818/0, 5-6=-1811/0

BOT CHORD 13-14=0/1946, 12-13=0/2911, 11-12=0/3120, 10-11=0/3120, 9-10=0/2499, 8-9=0/1084

13

3x4 =

1-14=0/1182, 2-14=-1108/0, 2-13=0/611, 3-13=-567/0, 4-10=-363/0, 5-10=0/389, 5-9=-840/0, 6-9=0/888, 6-8=-1302/0 WEBS

6-6-0

NOTES-(3)

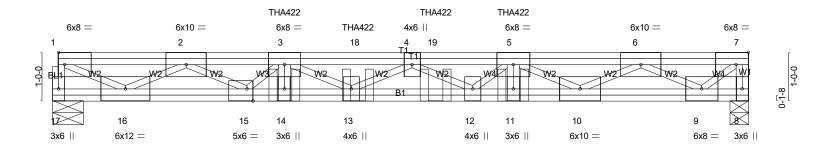
1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

2) CAUTION, Do not erect truss backwards.

14

3x4 ||

3x8 =


LOAD CASE(S) Standard

ſ	Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHELBY MEADOW LANE ANGIER, NC			
	24-8565-F01	F1-21	Floor Girder	1	1	Job Reference (optional) # 53379			
	Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Oct 15 17:32:48 2024 Page 1 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-SyiYande_tsYuZ0MK1A71ovbNlpnDvftkgWOp4yT6Zz								

0-1-8

$$| -7-12|$$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8|$
 $| -8-8$

Plate Offsets (X,Y)	4-9-4 4-9-4 [7:0-3-0,Edge], [15:0-1-8,Edge]	1	9-5-12 4-8-8	14-3-12 4-10-0		
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2021/TPI2014	CSI. TC 0.58 BC 0.94 WB 0.96 Matrix-SH	DEFL. in (lo Vert(LL) -0.29 12-1 Vert(CT) -0.36 12-1 Horz(CT) 0.05	13 >582 480	PLATES MT20 Weight: 112 II	GRIP 244/190 b FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) *Except* W2: 2x4 SP No.2(flat)			end	uctural wood sheathing o d verticals. id ceiling directly applied		

REACTIONS. (lb/size) 17=1444/0-7-8 (min. 0-1-8), 8=1447/0-4-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 1-17=-1420/0, 7-8=-1434/0, 1-2=-2401/0, 2-3=-6230/0, 3-18=-7839/0, 4-18=-7839/0, 4-19=-7715/0, 5-19=-7715/0, 5-6=-5453/0, 6-7=-1493/0

BOT CHORD 15-16=0/4497, 14-15=0/7313, 13-14=0/7314, 12-13=0/8289, 11-12=0/7252, 10-11=0/7255, 9-10=0/3697

WEBS 3-13=0/602, 4-13=-525/0, 4-12=-669/0, 5-12=0/614, 5-10=-2063/0, 6-10=0/2048, 6-9=-2571/0, 7-9=0/2008,

1-16=0/2716, 2-16=-2445/0, 2-15=0/2022, 3-15=-1481/0

NOTES- (6)

1) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means.

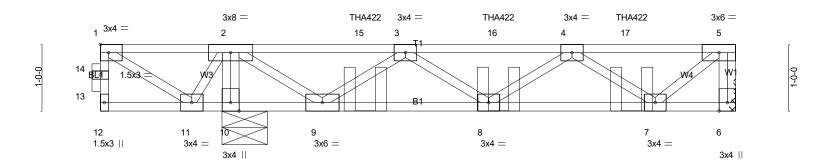
- 2) CAUTION, Do not erect truss backwards.
- 3) Use Simpson Strong-Tie THA422 (6-16d Girder, 6-10d Truss) or equivalent spaced at 1-7-3 oc max. starting at 4-9-4 from the left end to
- 9-5-12 to connect truss(es) F1-24 (1 ply 2x4 SP), F1-23 (1 ply 2x4 SP), F1-22 (1 ply 2x4 SP) to back face of top chord.

4) Fill all nail holes where hanger is in contact with lumber.

5) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00


- Uniform Loads (plf)
- Vert: 8-17=-10, 1-7=-100
- Concentrated Loads (Ib)

Vert: 3=-425(B) 5=-447(B) 18=-236(B) 19=-236(B)

J	ob	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, NC
2	4-8565-F01	F1-22	Floor Girder	1	1	Job Reference (optional)	# 53379
			Run	3 630 s. Jul	12 2024 Pri	nt: 8 630 s Jul 12 2024 MiTek Industries Inc.	Tue Oct 15 17:32:49 2024 Page 1

		-5-8 4-8	<u>5-11-8</u> 2-6-0	-	<u>8-5-8</u> 2-6-0	<u>9-8-0</u> 1-2-8
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO	CSI. TC 0.50 BC 0.24 WB 0.47	DEFL. in Vert(LL) -0.03 Vert(CT) -0.03 Horz(CT) 0.01) 8 >9 8 >9	defl L/d 999 480 999 360 n/a n/a	PLATES GRIP MT20 244/190
BCDL 5.0	Code IRC2021/TPI2014	Matrix-SH				Weight: 51 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	end vertic	als.	directly applied or 6-0-0 oc purlins, except
	e) 6=528/Mechanical, 10=1370/0-8 Grav 6=547(LC 4), 10=1370(LC 1)	-0 (min. 0-1-8)				
TOP CHORD 5-6=- BOT CHORD 10-1	. Comp./Max. Ten All forces 250 (I -543/0, 1-2=0/623, 3-16=-994/0, 4-16 1=-902/0, 9-10=-871/0, 8-9=0/863, 7 =-1320/0, 1-11=-749/0, 2-11=0/489,	5=-994/0, 4-17=-517/0, 5- -8=0/1088	-17=-517/0			
 Unbalanced floor li Refer to girder(s) fd Load case(s) 1, 2, use of this truss. 	ive loads have been considered for t or truss to truss connections. 3, 4, 5, 6 has/have been modified. B	uilding designer must rev				
be attached to wall (5) CAUTION, Do not	strongbacks, on edge, spaced at 10- Is at their outer ends or restrained by erect truss backwards. ng-Tie THA422 (Single Chord Girder	other means.	, ,	,	Ũ	
to connect truss(es 7) Fill all nail holes wh	s) F1-27 (1 ply 2x4 SP) to back face here hanger is in contact with lumbe E(S) section, loads applied to the fac	of top chord.	C C			
L OAD CASE(S) Stan 1) Dead + Floor Live	idard (balanced): Lumber Increase=1.00, I	Plate Increase=1.00				
Uniform Loads (plf						THE CAROLULA
		3)				S YOU WAY &
Concentrated Loac Vert: 1=-26 2) Dead: Lumber Incr Uniform Loads (plf		-)			intra la	SEAL
Concentrated Load Vert: 1=-26 2) Dead: Lumber Incr Uniform Loads (plf Vert: 6-12= Concentrated Load Vert: 1=-26	rease=1.00, Plate Increase=1.00) =-10, 1-2=-190(F=-90), 2-5=-100 ds (Ib) 64 15=-144(B) 16=-144(B) 17=-144(B)	3)			antin name.	SEAL 28147
Concentrated Load Vert: 1=-26 2) Dead: Lumber Incr Uniform Loads (plf Vert: 6-12= Concentrated Load Vert: 1=-26 3) 1st Dead + Floor L Uniform Loads (plf	rease=1.00, Plate Increase=1.00 	3)	0		00070101010	SEAL 28147

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded CONTINUED of provide the provided of th

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SH	ELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-22	Floor Girder	1	1	Job Reference (optional)	# 53379
•			Pup: 8,630 c, Jul	12 2024 Dri	nt: 8 630 c. Jul 12 2024 MiTok Industrias Inc.	Tuo Oct 15 17:32:40 2024 Page 2

ID:5fxLxLn?C6dWjia?SHK4thzkcYI-w8Gwn7eGIA?PVjaYukhMZ0SoP9KsyTU1zKFyMXyT6Zy

LOAD CASE(S) Standard

4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 6-12=-10, 1-2=-110(F=-90), 2-5=-100

- Concentrated Loads (lb)
- Vert: 1=-264 15-144(B) 16=-144(B) 17=-144(B)
- 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 6-12=-10, 1-2=-190(F=-90), 2-5=-20 Concentrated Loads (lb)
- Vert: 1=-264 15-224(B) 16-224(B) 17-224(B) 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf) Vert: 6-12=-10, 1-2=-110(F=-90), 2-5=-100

Concentrated Loads (lb) Vert: 1=-264 15=-144(B) 16=-144(B) 17=-144(B)

Job	Truss	Truss Type	Qty Ply	y LOT 0.0015 HONEYCUT	T HILLS 371 SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-23	Floor Special	2	1 Job Reference (optior	# 53379
0-1-8 	1-3-0 <u>0-5-8</u>		Run: 8.630 s Jul 12 ID:5fxLxLn?C6c	100 Kelefence (option 024 Print: 8:630 s Jul 12 2024 Mi JWjia?SHK4thzkcYI-OKqJ?Tf	Ial) Inc. Tue Oct 15 17:32:50 2024 Page 1 iuWU7G7t9ISSCb6D_?aZgfhzGAB_?VuzyT6Zx 0-11-8 Scale = 1:17.3
1 ^{3x4} 14 BL 13 ¹² 1.5x3	1.5x3 W3	9 3x4 =	3x4 = 3 1 B1 8 3x4	3x4 = 4 =	3x6 = 5 5 7 6 $3x4 = 3x4 $
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	Plate Grip DOL 1 Lumber DOL 1	3-5-8 1-4-8 0-0 CSI. 00 TC 0.35 00 BC 0.14 NO WB 0.31 114 Matrix-SH	5-11-8 2-6-0 DEFL. in (I Vert(LL) -0.02 Vert(CT) -0.02 Vert(CT) -0.02 Horz(CT) 0.00	8-5-8 2-6-0 oc) I/defl L/d 8 >999 480 8 >999 360 6 n/a	<u>9-8-0</u> <u>1-2-8</u> PLATES GRIP MT20 244/190 Weight: 51 lb FT = 20%F, 11%E
REACTIONS. (Ib/siz			en	ructural wood sheathing di Id verticals. gid ceiling directly applied	rectly applied or 6-0-0 oc purlins, except or 6-0-0 oc bracing.

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

TOP CHORD 5-6=-332/0, 1-2=0/522, 2-3=0/501, 3-4=-546/145, 4-5=-297/2

BOT CHORD 10-11=-763/0, 9-10=-745/0, 8-9=-296/443, 7-8=-33/611

WEBS 2-10=-940/0, 1-11=-627/0, 2-11=0/423, 2-9=0/650, 3-9=-598/0, 4-7=-384/38, 5-7=-3/381

NOTES- (6)

1) Unbalanced floor live loads have been considered for this design.

2) Refer to girder(s) for truss to truss connections.

3) Load case(s) 1, 2, 3, 4, 5, 6 has/have been modified. Building designer must review loads to verify that they are correct for the intended use of this truss.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

5) CAUTION, Do not erect truss backwards.

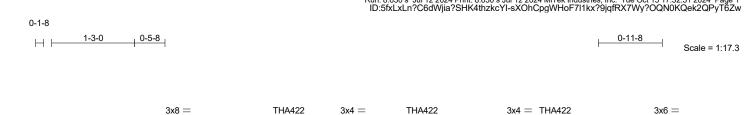
Vert: 6-12=-10, 1-2=-20, 2-5=-100

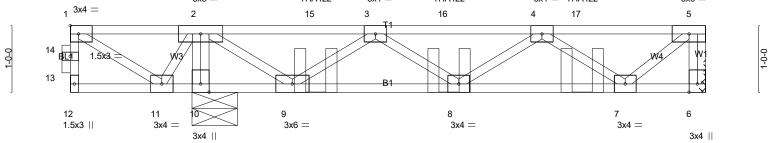
LOAD CASE(S) Standard

1) Dead + Floor Live (balanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 6-12=-10, 1-5=-100 Concentrated Loads (lb) Vert: 1=-264 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 6-12=-10, 1-5=-100 Concentrated Loads (lb) Vert: 1=-264 3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 6-12=-10, 1-2=-100, 2-5=-20 Concentrated Loads (lb) Vert: 1=-264 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded Continued of provide the provided of the provided the pro

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHELE	BY MEADOW LANE ANGIER, NC		
24-8565-F01	F1-23	Floor Special	2	1	Job Reference (optional)	# 53379		
	Bury 9, 620 a. Jul 12, 2024 Drint, 9, 620 a. Jul 12, 2024 MiTek, Industrian, Inc. Tuo Oct 15, 17:22:50, 2024, Dage 2							


un: 8.630 s_Jul 12 2024 Print: 8.630 s_Jul 12 2024 Mi Lek Industries, Inc. Tue Oct 15 17:32:50 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-OKqJ?TfuWU7G7t9ISSCb6D_?aZgfhzGAB_?VuzyT6Zx


LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 1=-264 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 6-12=-10, 1-2=-100, 2-5=-20 Concentrated Loads (lb) Vert: 1=-264 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 6-12=-10, 1-2=-20, 2-5=-100 Concentrated Loads (lb)

Vert: 1=-264

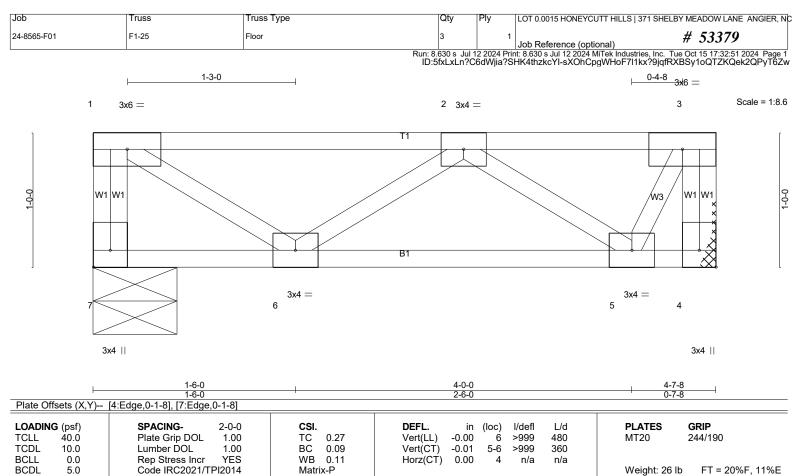
Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371	SHELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-24	Floor Girder	1	1	Job Reference (optional)	# 53379
			Run: 8.630 s Jul 2	12 2024 Pri	nt: 8.630 s Jul 12 2024 MiTek Industries,	Inc. Tue Oct 15 17:32:51 2024 Page 1

		-5-8 -4-8	<u>5-11-8</u> 2-6-0	8-5-8 2-6-0	9-8-0
L OADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr NO Code IRC2021/TPI2014	CSI. TC 0.53 BC 0.24 WB 0.47 Matrix-SH	DEFL. in Vert(LL) -0.03 Vert(CT) -0.03 Horz(CT) 0.01	(loc) I/defi L/d 8 >999 480 8 >999 360 6 n/a n/a	PLATES GRIP MT20 244/190 Weight: 51 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SF BOT CHORD 2x4 SF WEBS 2x4 SF			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing end verticals. Rigid ceiling directly applie	directly applied or 6-0-0 oc purlins,except d or 6-0-0 oc bracing.
	e) 6=506/Mechanical, 10=1382/0-8 Grav 6=525(LC 4), 10=1382(LC 1)	3-0 (min. 0-1-8)			
TOP CHORD 5-6=- BOT CHORD 10-1 WEBS 2-10=	. Comp./Max. Ten All forces 250 (I -521/0, 1-2=0/616, 3-16=-984/0, 4-1/ 1=-891/0, 9-10=-859/0, 8-9=0/862, 7 =-1332/0, 1-11=-740/0, 2-11=0/483,	6 [´] 984/0, 4-17 [`] =-508/0, 5-1 '-8=0/1068	7=-508/0		
 2) Refer to girder(s) for 3) Load case(s) 1, 2, use of this truss. 4) Recommend 2x6 s be attached to wall 5) CAUTION, Do not 	ive loads have been considered for t or truss to truss connections. 3, 4, 5, 6 has/have been modified. E strongbacks, on edge, spaced at 10- ls at their outer ends or restrained by erect truss backwards. ng-Tie THA422 (Single Chord Girden truss(es) F1-25 (1 ply 2x4 SP) to from	Building designer must revie 0-0 oc and fastened to eac y other means. r) or equivalent spaced at 2 nt face of top chord.	ch truss with 3-10d (0.1	31" X 3") nails. Strongback	is to
7-9-12 to connect t 7) Fill all nail holes wh	here hanger is in contact with lumbe E(S) section, loads applied to the fac		front (F) or back (B).		
7-9-12 to connect t 7) Fill all nail holes wi 8) In the LOAD CASE LOAD CASE(S) Stan 1) Dead + Floor Live Uniform Loads (plf Vert: 6-12= 2) Dead: Lumber Incr Uniform Loads (plf Vert: 6-12= Concentrated Load Vert: 1=-26	E(S) section, loads applied to the fac (balanced): Lumber Increase=1.00,) 10, 1-2=-190, 2-5=-100 ds (lb) 64 15=-141(F) 16=-141(F) 17=-141(F rease=1.00, Plate Increase=1.00) 10, 1-2=-190, 2-5=-100 ds (lb) 54 15=-141(F) 16=-141(F) 17=-141(F ive (unbalanced): Lumber Increase=	e of the truss are noted as Plate Increase=1.00 ⁻)	front (F) or back (B).		SEAL 28147

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHE	LBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-24	Floor Girder	1	1	Job Reference (optional)	# 53379
		Run 8	630 e lul	12 2024 Pri	nt: 8.630 s. Jul 12.2024 MiTek Industries Inc.	Tue Oct 15 17:32:51 2024 Page 2

ID:5fxLxLn?C6dWjia?SHK4thzkcYI-sXOhCpgWHoF7I1kx?9jqfRX7Wy?OQN0KQek2QPyT6Zw

LOAD CASE(S) Standard


4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)

Vert: 6-12=-10, 1-2=-110, 2-5=-100 Concentrated Loads (lb)

- Vert: 1=-264 15=-141(F) 16=-141(F) 17=-141(F)
- 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf)
 - Vert: 6-ï2=-10, 1-2=-190, 2-5=-20
 - Concentrated Loads (lb)
- Vert: 1=-264 15=-221(F) 16=-221(F) 17=-221(F) 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00
 - Uniform Loads (plf) Vert: 6-12=-10, 1-2=-110, 2-5=-100

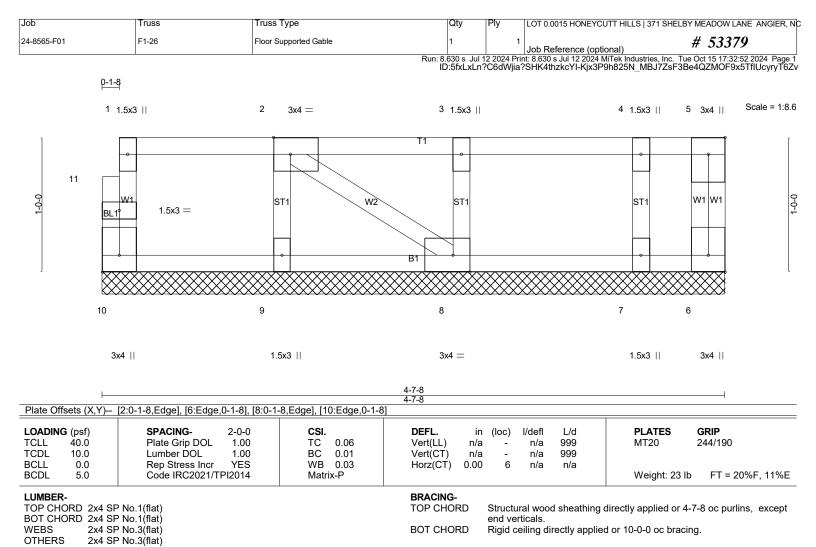
 - Concentrated Loads (lb) Vert: 1=-264 15=-141(F) 16=-141(F) 17=-141(F)

_					
	LUMBER-		BRACING-		
	TOP CHORD 2x4	SP No.1(flat)	TOP CHORD	Structural wood sheathing of	directly applied or 4-7-8 oc purlins, except
	BOT CHORD 2x4	SP No.1(flat)		end verticals.	
	WEBS 2x4	SP No.3(flat)	BOT CHORD	Rigid ceiling directly applied	d or 10-0-0 oc bracing.

REACTIONS. (lb/size) 7=241/0-7-8 (min. 0-1-8), 4=241/Mechanical

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

BOT CHORD 5-6=0/357 WEBS 2-5=-300/0


NOTES- (3)

1) Refer to girder(s) for truss to truss connections.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

REACTIONS. All bearings 4-7-8.

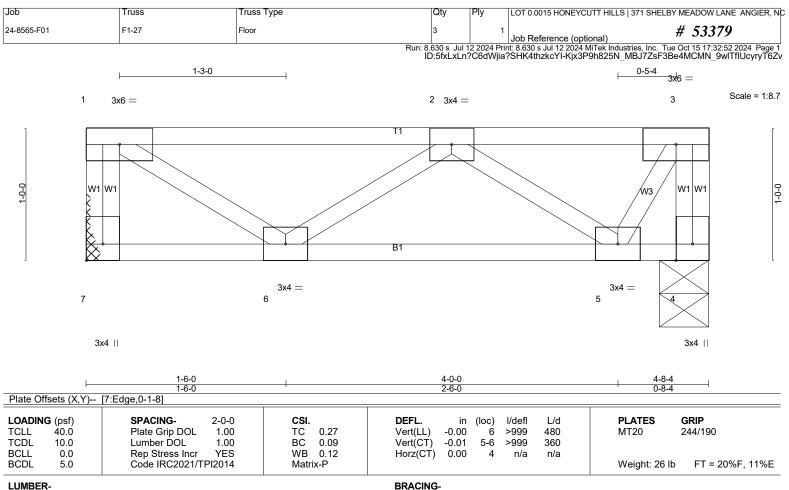
(lb) - Max Grav All reactions 250 lb or less at joint(s) 10, 6, 9, 8, 7

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (6)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).


3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to

be attached to walls at their outer ends or restrained by other means. 5) CAUTION, Do not erect truss backwards.

LOAD CASE(S) Standard

LUMBER-

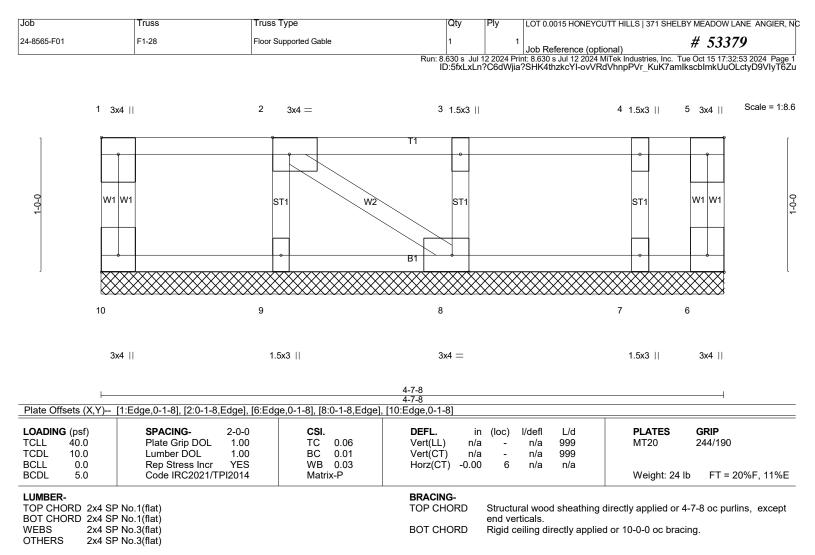
TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) 2x4 SP No.3(flat) WEBS

TOP CHORD Structural wood sheathing directly applied or 4-8-4 oc purlins, except end verticals BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing.

REACTIONS. (lb/size) 7=244/Mechanical, 4=244/0-4-8 (min. 0-1-8)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

BOT CHORD 5-6=0/368 WEBS 2-5=-298/0


NOTES-(3)

1) Refer to girder(s) for truss to truss connections.

2) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

REACTIONS. All bearings 4-7-8.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 10, 6, 9, 8, 7

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (5)

1) Gable requires continuous bottom chord bearing.

2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).

3) Gable studs spaced at 1-4-0 oc.

4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.

LOAD CASE(S) Standard

ob	Truss	Truss Type		Qty	Ply	LOT 0.0015 HONEYO	CUTT HILLS 371 SHELBY MEADOW LANE ANGIER, N
4-8565-F01	F1-29	Floor		1	1	Job Reference (op	tional) # 53379
	I.			Run: 8.630 s Ju ID:5fxLxL	il 12 2024 Pri n?C6dWjia	int: 8.630 s Jul 12 2024	MiTek Industries, Inc. Tue Oct 15 17:32:54 2024 Page 2 pqriPZjdicUTWhHHXG39gFA0Wdh_m6czj1kyT6Z
0-1-8							
H <u>1-3-0</u>						0-7-2	<u>0-6-12</u> <u>0-10-8</u> <u>1-1-8</u> Scale = 1:25.9
							Scale - 1.23.8
3x4 =							
1.5x3 =	3x4 =	3x8 =		3x4 =			4x8 = 3x4 674x6 = 83x6 = 9
1	2	3		4 	5	- P	
						W3	We We G
				B1	/		
	19	18 17	16	15			
3x4	3x4 =	3x4 = 1.5x3	3x4 =	3x4 =	=	$3x4 \equiv 3$	$3x4 \parallel 4x6 = 4x6 = 3x6 =$
							13-8-10
							13-0 4 3-3-12 12-9-0 13-3-6 14-3-6
			<u>12-4-2</u> 12-4-2			1	2 <u>15-10, 13-1-14 14-1-14 15-9-6</u> 0-1-8 0-3-6 0-4-14 0-1-8 1-6-0
							0-3-6 0-1-8 0-5-4 0-1-8
Plate Offsets (X,Y)	[20:Edge 0-1-8]						0-0-6
* * *		1.1.0		DEEL	(1.5.5)	1/-1	
LOADING (psf) TCLL 40.0	SPACING- Plate Grip DOL	-	CSI. FC 0.43	DEFL. i Vert(LL) -0.0	n (loc) 5 17	l/defl L/d >999 480	PLATES GRIP MT20 244/190
TCDL 10.0 BCLL 0.0	Lumber DOL Rep Stress Incr		3C 0.28 NB 0.65	Vert(CT) -0.0 Horz(CT) 0.0		>999 360 n/a n/a	
BCDL 5.0	Code IRC2021/T		Matrix-SH		1 12	11/a 11/a	Weight: 85 lb FT = 20%F, 11%E
LUMBER-	l			BRACING-			
TOP CHORD 2x4 SF BOT CHORD 2x4 SF				TOP CHORD	Structur end ver		directly applied or 6-0-0 oc purlins, except
	P No.3(flat)			BOT CHORD			ed or 6-0-0 oc bracing.
REACTIONS. (lb/siz	e) 20=402/0-7-14 (mir	n. 0-1-8). 10=-340/1-7	-8 (min. 0-1-8).	11=-396/1-7-8 (min. 0)-1-8), 11=	-396/1-7-8 (min. 0	-1-8), 12=2204/0-4-8 (min. 0-1-8)
	Jplift10=-372(LC 3), 11=				- //		-,,
	. Comp./Max. Ten All f						
	1=-399/0, 1-21=-398/0, 9=0/973, 17-18=0/1311,						0.
10-1	1=-614/0 =-462/0, 7-12=-934/0, 7-						
	4=0/589, 6-12=-1622/0	-11-0/1357, 8-10-0/7	20, 1-19-0/594,	2-19550/0, 4-154	29/0, 5-15	-0/455, 5-14750	,
NOTES- (6-9)							
1) Unbalanced floor li	ive loads have been con			ith standing 070 lb und		10 and 170 lb unlift	-4
joint 11.	al connection (by others)	0.		•		·	
3) Load case(s) 1, 2, use of this truss.	3, 4, 5, 6 has/have beer	n modified. Building d	esigner must revi	iew loads to verify tha	t they are	correct for the inter	nded
4) Recommend 2x6 s	strongbacks, on edge, sp			ch truss with 3-10d (0	.131" X 3"	') nails. Strongbac	ks to
	Is at their outer ends or r erect truss backwards.	restrained by other m	eans.				
6) Graphical bracing i the member must b	representation does not	depict the size, type	or the orientation	of the brace on the m	ember. Sy	mbol only indicate	s that
		entations of a possibl	e bearing condition	on. Bearing symbols a	are not cor	nsidered in the stru	ctural
design of the truss Web bracing show	re only graphical represent to support the loads ind n is for lateral support of cing of Metal Plate Conn MMARY SHEET- PERM	licated. f individual web mem	bers only Refer t	o BCSI - Guide to Go	od Practic	e for Handling Ins	talling TH CAROLUL
Restraining & Brac	cing of Metal Plate Conn	ected Wood Trusses	for additional bra	cing guidelines, inclu	ding diago	onal bracing.	OFESSION
	MMARY SHEET- PERMANG REQUIREMENTS OI					OR RECOMMENDE	D AND AR
-, -== =	VAYS CONSULT THE F					CONSIDERATIO	SEAL
MINIMUM BRACIN						1111	2014/
MINIMUM BRACIN	idard						
MINIMUM BRACIN GUIDELINES, ALV LOAD CASE(S) Stan 1) Dead + Floor Live	(balanced): Lumber Incr	ease=1.00, Plate Inc	rease=1.00				AN NOINFER
MINIMUM BRACIN GUIDELINES, ALV LOAD CASE(S) Stan 1) Dead + Floor Live Uniform Loads (plf Vert: 10-20	(balanced): Lumber Incr))=-7, 1-9=-67	ease=1.00, Plate Inc	rease=1.00				A SNOINEER SUM
MINIMUM BRACIN GUIDELINES, ALV LOAD CASE(S) Stan 1) Dead + Floor Live Uniform Loads (plf Vert: 10-20 Concentrated Load	(balanced): Lumber Incr))=-7, 1-9=-67 ds (lb)	ease=1.00, Plate Inc	rease=1.00				A MOINEER SUMMER
MINIMUM BRACIN GUIDELINES, ALV LOAD CASE(S) Stan 1) Dead + Floor Live Uniform Loads (plf Vert: 10-20	(balanced): Lumber Incr))=-7, 1-9=-67 ds (lb)	ease=1.00, Plate Inc	rease=1.00				Alling Series Seal 28147

Continues of provide the sign parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, NC		
24-8565-F01	F1-29	Floor	1	1	Job Reference (optional)	# 53379		
Run 8 630 s. Jul 12 2024 Print: 8 630 s. Jul 12 2024 MiTek Industries, Inc. Tue Oct 15 17:32:54 2024 Page 2								

un: 8.630 s. Jul 12 2024 Print: 8.630 s. Jul 12 2024 Mi Lek Industries, Inc. Tue Oct 15 17:32:54 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-G53pqriPZjdicUTWhHHXG39gFA0Wdh_m6czj1kyT6Zt

LOAD CASE(S) Standard 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 10-20=-7, 1-9=-67 Concentrated Loads (lb) Vert: 6=-735 3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 10-20=-7, 1-7=-67, 7-9=-13 Concentrated Loads (lb) Vert: 6=-735 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 10-20=-7, 1-7=-13, 7-9=-67 Concentrated Loads (lb) Vert: 6=-735 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 10-20=-7, 1-7=-67, 7-9=-13 Concentrated Loads (lb) Vert: 6=-735 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 10-20=-7, 1-7=-13, 7-9=-67 Concentrated Loads (lb)

Vert: 6=-735

	Truss	Truss Type	Qty Pl	y LOT 0.0015 HONEY	CUTT HILLS 371 SHELBY MEADOW LANE ANGIER,
4-8565-F01	F1-30	Floor	2	1 Job Reference (op	# 53379
			Run: 8.630 s Jul 12 2 ID:5fxLxLn?C	024 Print: 8.630 s Jul 12 2024	MiTek Industries, Inc. Tue Oct 15 17:32:55 2024 Page 22Bj1K0IZDe2iE?ompHirvaMWM6TvLFiGZAyT6
0-1-8					
H ⊢ 1-3-0					0-7-2 0-6-12 1-3-8 0-1-8 Scale = 1:24
3x4 = 1.5x3 =	3x4 =	3x8 =	3x4 =	3x4 =	4x8 = 1.5x3
1.5x5 —	2	3	374 — 4	5 5	6 7 4x8 = 8
					W3 W4 W5 B1 20
			B1		
	17 16 2v4 — 2v4	15 14 = 1.5x3 3x4	13		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3x4	3x4 = 3x4	- 1.5x3 3x4	= 3x4	_	3x4 = 3x4 4x6 = 7x8
					13-0-6 12-9-0
ŀ		<u>12-4-2</u> 12-4-2			12-9-0 12 ₁ 5 ₁ 10 13 ₁ 1 ₁ 14 14-9-14 0-1-8 0-3-6 1-8-0
late Offsets (X,Y)	[7:0-3-0,Edge], [9:Edge,0-3-0],				0-3-6 0-1-8
OADING (psf)	SPACING- 1-4-0	CSI.	DEFL. in (l	loc) l/defl L/d	PLATES GRIP
CLL 40.0 CDL 10.0	Plate Grip DOL 1.00 Lumber DOL 1.00	TC 0.44 BC 0.29	Vert(LL) -0.05 Vert(CT) -0.08	15 >999 480 14 >999 360	MT20 244/190
0.1 0.0				I T ~ 333 - 300	
	Rep Stress Incr NO Code IRC2021/TPI2014	WB 0.82 Matrix-SH	Horz(CT) 0.01	10 n/a n/a	Weight: 78 lb FT = 20%F, 11%E
					Weight: 78 lb FT = 20%F, 11%E
CDL 5.0 UMBER- OP CHORD 2x4 SF	P No.1(flat)		Horz(CT) 0.01 BRACING- TOP CHORD St	10 n/a n/a	
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF	P No.1(flat)		Horz(CT) 0.01 BRACING- TOP CHORD St en	10 n/a n/a tructural wood sheathing	directly applied or 6-0-0 oc purlins, except
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF /EBS 2x4 SF EACTIONS. (Ib/siz	Code IRC2021/TPI2014 P No.1(flat) P No.1(flat) P No.3(flat) e) 18=415/0-7-14 (min. 0-1-8)	Matrix-SH	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri	10 n/a n/a tructural wood sheathing id verticals. igid ceiling directly appli	directly applied or 6-0-0 oc purlins, except
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF /EBS 2x4 SF EACTIONS. (Ib/siz Max L	Code IRC2021/TPI2014 P No.1(flat) P No.1(flat) No.3(flat)	Matrix-SH	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri	10 n/a n/a tructural wood sheathing id verticals. igid ceiling directly appli	directly applied or 6-0-0 oc purlins, except
CDL 5.0 JMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF /EBS 2x4 SF EACTIONS. (Ib/siz Max U Max C DRCES. (Ib) - Max.	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH , 9=-834/0-8-0 (min. 0-1-8), 1) 50 (lb) or less except when s	Horz(CT) 0.01 BRACING- TOP CHORD St er BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown.	10 n/a n/a tructural wood sheathing id verticals. igid ceiling directly appli	g directly applied or 6-0-0 oc purlins, except
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 16-11	Code IRC2021/TPI2014 P No.1(flat) No.3(flat) No.3(flat) P	Matrix-SH , 9=-834/0-8-0 (min. 0-1-8), 1) 50 (lb) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/ =0/1383, 13-14=0/1224, 12-1	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10	10 n/a n/a tructural wood sheathing nd verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (lb/siz Max L Max C ORCES. (lb) - Max. OP CHORD 18-19 OT CHORD 16-17 (EBS 7-10)	Code IRC2021/TPI2014 P No.1(flat) No.3(flat) P No.3(flat) P No.3(flat) P No.3(flat) P 18=415/0-7-14 (min. 0-1-8) P 16=415(LC 3), 10=2215(LC Comp./Max. Ten All forces 2 9=-411/0, 1-19=-410/0, 1-2=-54	Matrix-SH , 9=-834/0-8-0 (min. 0-1-8), 1) 50 (lb) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/ =0/1383, 13-14=0/1224, 12-1	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10	10 n/a n/a tructural wood sheathing nd verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-11 OT CHORD 16-11 (EBS 7-10: OTES- (6-9)	Code IRC2021/TPI2014 P No.1(flat) No.3(flat) No.3(flat) P	Matrix-SH , 9=-834/0-8-0 (min. 0-1-8), 1) 50 (lb) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/ =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0,	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10	10 n/a n/a tructural wood sheathing nd verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-11 OT CHORD 16-1 (EBS 7-10: OTES- (6-9)) Unbalanced floor li) Provide mechanica	Code IRC2021/TPI2014 > No.1(flat) > No.3(flat) = No.3(f	Matrix-SH 9=-834/0-8-0 (min. 0-1-8), 1) 50 (lb) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313// =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0, for this design. s to bearing plate capable of	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at	10 n/a n/a tructural wood sheathing nd verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-150 6-12=0/573, 6-10=-1608 joint 9.	y directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0
CDL 5.0 UMBER- OP CHORD 2x4 SF /EBS 2x4 SF /EBS 2x4 SF EACTIONS. (lb/siz Max L Max C ORCES. (lb) - Max. OP CHORD 18-19 OT CHORD 18-19 OT CHORD 16-17 /EBS 7-10: OTES- (6-9)) Unbalanced floor lic) Provide mechanica) Load case(s) 1, 2, use of this truss.	Code IRC2021/TPI2014 P No.1(flat) No.3(flat) P No.3(flat) P No.3(fla	Matrix-SH Matrix-SH	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they	10 n/a n/a tructural wood sheathing nd verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0
CDL 5.0 UMBER- OP CHORD 2x4 SF /EBS 2x4 SF /EBS 2x4 SF EACTIONS. (Ib/siz Max U Max C ORCES. (Ib) - Max. OP CHORD 18-11 OT CHORD 16-11 /EBS 7-10: OTES- (6-9)) Unbalanced floor li) Provide mechanica:) Losa of this truss.) Recommend 2x6 s be attached to wall	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH Matrix-SH	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they	10 n/a n/a tructural wood sheathing nd verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0
CDL 5.0 UMBER- OP CHORD 2x4 SF OP CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 16-1 /EBS 7-10 OTES- (6-9)) Unbalanced floor lii) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 ss be attached to wall) CAUTION, Do not) Graphical bracing	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH 9=-834/0-8-0 (min. 0-1-8), 1) 50 (Ib) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/ =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0, for this design. s to bearing plate capable of the ed. Building designer must rest t 10-0-0 oc and fastened to each of the	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 /0
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF (EBS 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 18-19 OT CHORD 16-17 (EBS 7-10: OTES- (6-9)) Unbalanced floor li) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 s be attached to wall) CAUTION, Do not) Graphical bracing 1 the member must li) Bearing symbols a	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH 9, 9=-834/0-8-0 (min. 0-1-8), 1) 50 (lb) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/ =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0, for this design. s to bearing plate capable of the sto bearing plate capable	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-150 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac ber. Symbol only indicate	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 nded eks to
CDL 5.0 UMBER- OP CHORD 2x4 SF OP CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 16-17 (EBS 7-10: OTES- (6-9)) Unbalanced floor li) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 s be attached to wall) CAUTION, Do not) Graphical bracing I the member must I) Bearing symbols a design of the truss	Code IRC2021/TPI2014 > No.1(flat) > No.3(flat) > No.3(flat) e) 18=415/0-7-14 (min. 0-1-8) Jplift9=-871(LC 3) Srav 18=415(LC 3), 10=2215(LC . Comp./Max. Ten All forces 2 9=-411/0, 1-19=-410/0, 1-2=-54: 7=0/1010, 15-16=0/1383, 14-15 =-980/0, 7-9=0/1728, 1-17=0/61 ve loads have been considered al connection (by others) of truss 3, 4, 5, 6 has/have been modified trongbacks, on edge, spaced al sat their outer ends or restraind erect truss backwards. representation does not depict to be braced. re only graphical representation to support the loads indicated.	Matrix-SH 9=-834/0-8-0 (min. 0-1-8), 1) 50 (lb) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/ =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0, for this design. s to bearing plate capable of ed. Building designer must re t 10-0-0 oc and fastened to e ad by other means. he size, type or the orientation s of a possible bearing conditional s of a possible bearing conditional Matrix-SH	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are no	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 16-17 (EBS 7-10: OTES- (6-9)) Unbalanced floor lif) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 ss be attached to wall) CAUTION, Do not) Graphical bracing in the member must If) Bearing symbols a design of the truss) Web bracing show	Code IRC2021/TPI2014 P No.1(flat) No.3(flat) P No.3(flat) P No.3(fla	Matrix-SH 9 =-834/0-8-0 (min. 0-1-8), 1) 50 (Ib) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/- =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0, for this design. s to bearing plate capable of the ed. Building designer must re t 10-0-0 oc and fastened to e ed by other means. he size, type or the orientation s of a possible bearing condi- ual web members only. Reference	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 18-19 OT CHORD 16-17 /EBS 7-10: OTES- (6-9)) Unbalanced floor lif) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 ss be attached to wall) CAUTION, Do not) Graphical bracing in the member must I) Bearing symbols a design of the truss) Web bracing show	Code IRC2021/TPI2014 P No.1(flat) No.3(flat) P No.3(flat) P No.3(fla	Matrix-SH 9 =-834/0-8-0 (min. 0-1-8), 1) 50 (Ib) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/- =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0, for this design. s to bearing plate capable of the ed. Building designer must re t 10-0-0 oc and fastened to e ed by other means. he size, type or the orientation s of a possible bearing condi- ual web members only. Reference	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF OP CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 18-19 OT CHORD 16-17 /EBS 7-109 OT CHORD 16-17 /EBS 7-109 OT CHORD 16-17 /EBS 7-109 OT CHORD 16-17 /EBS 7-109 OT CHORD 18-19 OT CHORD 18-19 OT CHORD 18-19 OT CHORD 18-19 (CAUTION DO NOT) Bearing symbols a design of the truss) Web bracing & Bracd) SEE BCSI-B3 SUM MINIMUM BRACIN GUIDELINES, ALV	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH 9 =-834/0-8-0 (min. 0-1-8), 1) 50 (Ib) or less except when s 2/0, 2-3=-1204/0, 3-4=-1313/- =0/1383, 13-14=0/1224, 12-1 6, 2-17=-572/0, 4-13=-408/0, for this design. s to bearing plate capable of the ed. Building designer must re t 10-0-0 oc and fastened to e ed by other means. he size, type or the orientation s of a possible bearing condi- ual web members only. Reference	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF OP CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max U Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 18-19 OT CHORD 16-17 (EBS 7-10: OTES- (6-9) 0 Unbalanced floor li 0 Provide mechanica 0 Load case(s) 1, 2, use of this truss. 1 Recommend 2x6 s be attached to wall 0 CAUTION, Do not 0 Graphical bracing 1 the member must I 0 Bearing symbols a design of the truss 0 Web bracing show Restraining & Brac 0 SEE BCSI-B3 SUM MINIMUM BRACIN GUIDELINES, ALV OAD CASE(S) Stan 1 Dead + Floor Live	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH Matrix-Matrix-SH Matrix-Matrix-SH Matrix-Matrix	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF OP CHORD 2x4 SF (EBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-11 OT CHORD 16-11 (EBS 7-10: OTES- (6-9)) Unbalanced floor Ii) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 s be attached to wall) CAUTION, Do not) Graphical bracing 1 the member must 1) Bearing symbols a design of the truss) Web bracing show Restraining & Brac USEE BCSI-B3 SUN MINIMUM BRACIN GUIDELINES, ALV OAD CASE(S) Stan) Dead + Floor Live Uniform Loads (plf	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH Matrix-Matrix-SH Matrix-Matrix-SH Matrix-Matrix	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF OP CHORD 2x4 SF (EBS 2x4 SF (EBS 2x4 SF (EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 16-17 (EBS 7-10) OTES- (6-9)) Unbalanced floor lii) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 ss be attached to wall) CAUTION, Do not) Graphical bracing f the member must I) Bearing symbols a design of the truss) Web bracing show Restraining & Brac) SEE BCSI-B3 SUM MINIMUM BRACIN GUIDELINES, ALV OAD CASE(S) Stan) Dead + Floor Live Uniform Loads (plf Vert: 9-18= Concentrated Load	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH Matrix-Matrix-SH Matrix-Matrix-SH Matrix-Matrix	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF /EBS 2x4 SF /EBS 2x4 SF /EACTIONS. (Ib/siz Max U Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 16-17 /EBS 7-10: OTES- (6-9)) Unbalanced floor li) Provide mechanica) Load case(s) 1, 2, use of this truss.) Recommend 2x6 s be attached floor li) CAUTION, Do not) Graphical bracing I the member must I) Bearing symbols a design of the truss) Web bracing show Restraining & Brac) SEE BCSI-B3 SUM MINIMUM BRACIN GUIDELINES, ALV OAD CASE(S) Stan) Dead + Floor Live Uniform Loads (plf Vert: 9-18= Concentrated Load Vert: 6=-73) Dead: Lumber Incr	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH Matrix	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 //0 inded eks to es that inctural talling
CDL 5.0 UMBER- OP CHORD 2x4 SF OT CHORD 2x4 SF VEBS 2x4 SF EACTIONS. (Ib/siz Max L Max C ORCES. (Ib) - Max. OP CHORD 18-19 OT CHORD 16-1 VEBS 7-10: OTES- (6-9)) Unbalanced floor li Provide mechanica) CAUTION, Do not) Bearing symbols a design of the truss) Web bracing show Restraining & Brace) SEE BCSI-B3 SUM MINIMUM BRACIN GUIDELINES, ALV OAD CASE(S) Stan) Dead + Floor Live Uniform Loads (plf Vert: 9-18= Concentrated Load Vert: 6=-73) Dead: Lumber Incr Uniform Loads (plf	Code IRC2021/TPI2014 P No.1(flat) P No.3(flat) P No.3(f	Matrix-SH Matrix	Horz(CT) 0.01 BRACING- TOP CHORD St en BOT CHORD Ri 10=2215/0-4-8 (min. 0-1-8) hown. 0, 4-5=-890/0, 6-7=0/1504 3=0/535, 11-12=-412/59, 10 5-13=0/434, 5-12=-710/0, 6 withstanding 871 lb uplift at view loads to verify that they each truss with 3-10d (0.131 n of the brace on the memb tion. Bearing symbols are ner- r to BCSI - Guide to Good P	10 n/a n/a tructural wood sheathing d verticals. igid ceiling directly applie 0-11=-412/59, 9-10=-156 6-12=0/573, 6-10=-1608 joint 9. y are correct for the inte " X 3") nails. Strongbac per. Symbol only indicate ot considered in the stru	g directly applied or 6-0-0 oc purlins, except ed or 6-0-0 oc bracing. 04/0 /0 nded eks to es that ictural talling,

Continued of properties and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job Tr	russ	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHELBY MEADOW LANE AN	IGIER, NC
24-8565-F01 F1	1-30	Floor	2	1	Job Reference (optional) # 53379	

n: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Oct 15 17:32:55 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-IIdC2Bj1K0IZDe2iE?ompHirvaMWM6TvLFiGZAyT6Zs

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 6=-735 3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 9-18=-7, 1-7=-67, 7-8=-13 Concentrated Loads (lb) Vert: 6=-735 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 9-18-7, 1-7=-13, 7-8=-67 Concentrated Loads (lb) Vert: 6=-735 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 9-18=-7, 1-7=-67, 7-8=-13 Concentrated Loads (lb) Vert: 6=-735 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 9-18-7, 1-7=-13, 7-8=-67 Concentrated Loads (lb) Vert: 6=-735

lob	Truss	Truss T	уре	Qty	Ply	LOT 0.0015 HONEYCUT	TT HILLS 371 SHELBY MEADOW LANE ANGIER, N
24-8565-F01	F1-31	Floor		1	1	Job Reference (option	# 53379
				Run: 8.630 s Jul 1 ID:5fxLxLn	l 2 2024 Pri ?C6dWjia	nt: 8.630 s Jul 12 2024 Mi	Tek Industries, Inc. Tue Oct 15 17:32:56 2024 Page Wkf5KtProdvoiJ?MUE0vzh05cG3avSp5dyT6Z
0-1-8							
H ⊢ 1-3-0	-1				0-7-2	2 0-6-12 0-10-8	<u>1-0-0</u> 0-1-8 Scale = 1:30.
3x4 =							1.5x3
1.5x3 =		x8 FP= 3x8 =	3x4 =	3x4 =			$x_6 = 3x_4 = 1.5x_3 = 10$
1 _] [e]	2	3 4	5		<u>}</u>	7 8 9	
0-25 _B ∎					W		
		B1			1-1-1-		
	23	22 21	20	19 18	17	16 15 14	
3x4 3	3x4 =	3x4 = 1.5x3	3x4 =	3x4 = 3x8 FP=	3x4 =	3x4 4x6 = 4x6	= 3x4 $=$ 6x6
						13-1-14 13-0-613-8-10	
L			12-4-2			12-9-0 13-3-12 14-3- 12-5-10 13-3-6 14-1-14	18-1-14
'			12-4-2			0-'1'-80-3-6' 0-4-14 0-'1'-{ 0-3-60-1-8 0-5-4 0-1-8	3 3-10-8
Plate Offsets (X Y)	· [24:Edge,0-1-8], [26	0-1-8 0-0-8				0-0-6	
LOADING (psf)	SPACING-	1-4-0	CSI.	DEFL. in	(loo)	l/defl L/d	PLATES GRIP
TCLL ÄO.Ó	Plate Grip DO	DL 1.00	TC 0.42	Vert(LL) -0.05	21	>999 480	MT20 244/190
TCDL 10.0 BCLL 0.0	Lumber DOL Rep Stress Ir	ncr NO	BC 0.27 WB 0.60	Vert(CT) -0.08 Horz(CT) 0.01	20 15	>999 360 n/a n/a	
BCDL 5.0	Code IRC202	21/TPI2014	Matrix-SH				Weight: 96 lb FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 S	SP No.1(flat)			BRACING- TOP CHORD	Structur	al wood sheathing di	irectly applied or 6-0-0 oc purlins, except
BOT CHORD 2x4 S				BOT CHORD	end ver		
	pearings 4-0-0 except	(it=length) 24=0-7	.14 15=0-4-8				
(lb) - Max	Uplift All uplift 100 b	or less at joint(s) 1	2 except 14=-517(LC	3), 14=-401(LC 1), 13=- ⁻ 401(LC 1), 15=2117(LC ⁻)	
FORCES. (lb) - Ma	x. Comp./Max. Ten	All forces 250 (lb)	or less except when sh	iown.	,		
TOP CHORD 24-2), 4-5=-1209/0, 5-6=-746	/0, 7-8=0	0/1716, 8-9=0/728,	
BOT CHORD 22-2	23=0/968, 21-22=0/13		19-20=0/1100, 18-19	=0/371, 17-18=0/371, 16	6-17=-60	5/0, 15-16=-605/0,	
WEBS 9-14		0, 8-14=0/1252, 9-1		0, 1-23=0/591, 2-23=-54	7/0, 5-19	9=-432/0,	
6-19	9=0/459, 6-17=-733/0	, 7-17=0/591, 7-15	=-1634/0				
NOTES- (6-9) 1) Unbalanced floor	live loads have been	considered for this	desian.				
				vithstanding 100 lb uplift	at joint(s	s) 12 except (jt=lb)	
	, 3, 4, 5, 6 has/have b	been modified. Buil	ding designer must rev	view loads to verify that t	hey are o	correct for the intend	ed
4) Recommend 2x6				ach truss with 3-10d (0.1	31" X 3") nails. Strongbacks	to
5) CAUTION, Do no	alls at their outer ends t erect truss backward	ds.					
the member must	be braced.		51	n of the brace on the me	,	,	WHENTH CARCHING
Bearing symbols design of the trus	are only graphical rep s to support the loads	presentations of a p indicated.	ossible bearing condit	ion. Bearing symbols are	e not con	sidered in the struct	Ind OFESSION A
				to BCSI - Guide to Good acing guidelines, includi		e for Handling, Instal	ling one have at
9) SEE BCSI-B3 SU	IMMARY SHEET- PE	RMANENT RESTR	AING/BRACING OF (CHORDS & WEB MEMB	ERS FO		SEAL
				ER FOR ADDITIONAL B		CONSIDERATIONS	S. 20147
LOAD CASE(S) Sta						ALM NOT	Ind of ESS SEAL AUM 28147
Uniform Loads (p		Increase=1.00, Pla	te Increase=1.00				THINK K. MOREMUN
	24́=-7, 1-11=-67						the for the relation
							10/14/2024

_

Continues of propagation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHELBY MEADOW LANE ANGIER, NO
24-8565-F01	F1-31	Floor	1		Job Reference (optional) # 53379

Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Tue Oct 15 17:32:57 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-hglyTskHse?GTyC5MQqEuinBfN1Fq3WCoZBNe3yT6Zq

LOAD CASE(S) Standard Concentrated Loads (lb) Vert: 7=-735 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 12-24=-7, 1-11=-67 Concentrated Loads (lb) Vert: 7=-735 3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 12-24=-7, 1-8=-67, 8-11=-13 Concentrated Loads (lb) Vert: 7=-735 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 12-24=-7, 1-8=-13, 8-11=-67 Concentrated Loads (lb) Vert: 7=-735 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 12-24=-7, 1-8=-67, 8-11=-13 Concentrated Loads (lb) Vert: 7=-735 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 12-24=-7, 1-8=-13, 8-11=-67 Concentrated Loads (lb) Vert: 7=-735

ob	Truss	Truss Type		Qty	Ply	LOT 0.0015 HON	EYCUTT HILLS 371 SHE	LBY MEADOW LANE ANGIEF
4-8565-F01	F1-32	Floor		5	1	Job Reference	(optional)	# 53379
				Run: 8.630 s Ju ID:5fxLxLn	12 2024 Pr ?C6dWjia?	int: 8.630 s Jul 12 2 SHK4thzkcYI-9t	024 MiTek Industries, Inc. JKgClvdx7746nHw7LTF	Tue Oct 15 17:32:58 2024 Pag RvKLGnNIZaEL1DxwAVyT
0-1-8								
H ⊢ <u>1-3-0</u>					0-7-	-2 0-6-12		0-10-8 0-1-8 Scale = 1:3
3x4 =								3x4 =
1.5x3 =	3x4 = 3x8 FP	= 3x8 =	3x4 =	3x4 =		4x8 = 3x6 =	3x4 =	= 1.5x3 =
	2	4	5		Г2	7 8	9	10
9-24 _B					× W			W5 B 1 25
	í ľ	B1 6	\		-14		B2 31	
23 22	2 21	20 19	18	17	16	15 14	13	12
3x4 3x	4 = 3x4 =	1.5x3 3x4 =	3x4	=3x8 FP=	3x4 =	= 3x4 4x6 =	$_{3x4} =$	3x4 = − 3x4
						13-1-14		
		10.4.0				13-0-6 12-9-0	10 1 14	
		<u>12-4-2</u> 12-4-2				12 ₁ 5-10 0-1-80-3-6 0-3-60-1-8	<u>18-1-14</u> 5-0-0	
ate Offsets (X,Y)	[10:0-1-8,Edge], [23:Edge	0-1-8]						
DADING (psf) CLL 40.0		-4-0 CSI. 1.00 TC 0		DEFL. in Vert(LL) -0.0	n (loc) 5 20	l/defl L/d >999 480	PLATES MT20	GRIP 244/190
CDL 10.0	Lumber DOL	1.00 BC 0).29	Vert(CT) -0.0	8 19	>999 360	WI 20	244/190
CLL 0.0 CDL 5.0	Rep Stress Incr Code IRC2021/TPI			Horz(CT) 0.0	1 14	n/a n/a	Weight: 94	4 lb FT = 20%F, 11%
JMBER-				BRACING-			1	
OP CHORD 2x4 SF OT CHORD 2x4 SF			1	TOP CHORD	Structu end ver		ing directly applied o	r 6-0-0 oc purlins, excep
'EBS 2x4 SF	PNo.3(flat)		E	BOT CHORD	Rigid ce	eiling directly ap	plied or 6-0-0 oc brad	cing.
	e) 23=407/0-7-14 (min. 0 plift11=-244(LC 3)	-1-8), 11=-125/0-8-0 (mi	n. 0-1-8), 14=175	57/0-4-8 (min. C)-1-8)			
	arav 23=410(LC 3), 11=30(LC 4), 14=1757(LC 1)						
	Comp./Max. Ten All for I=-407/0, 1-24=-406/0, 1-2			1201/0 5 6- 04	6/0 7 9-1	0/1509 9 0-0/1	106	
9-10	=0/289							
13-14	2=0/997, 20-21=0/1358, 19 I=-1598/0, 12-13=-675/0							
	530/0, 8-13=0/694, 9-13= 725/0, 7-16=0/581, 7-14		12=-372/0, 1-22=0	0/608, 2-22=-56	64/0, 5-18	=-420/0, 6-18=0)/446,	
DTES- (6-9)								
	ve loads have been consic I connection (by others) of		pable of withstan	ding 100 lb upli	ft at joint(s) except (it=lb)	11=244.	
	3, 4, 5, 6 has/have been m							
Recommend 2x6 s	trongbacks, on edge, spac s at their outer ends or res		ened to each trus	s with 3-10d (0	.131" X 3'	') nails. Strongt	backs to	
CAUTION, Do not	erect truss backwards. epresentation does not de		prioritation of the	brace on the m	ombor S	mbol only india	atos that	
the member must b	be braced.						MULTIN	11/100
design of the truss	e braced. e only graphical represent to support the loads indica n is for lateral support of in ing of Metal Plate Conneci IMARY SHEFT. PERMAN	ations of a possible bear ited.	ing condition. Bea	aring symbols a	re not cor	nsidered in the s	structural WIGATH CA	ROLINI
Web bracing shown Restraining & Brac	n is for lateral support of in ing of Metal Plate Connect	dividual web members o ed Wood Trusses for ad	nly. Refer to BCS ditional bracing gi	I - Guide to Goo uidelines, incluo	od Practic ding diago	e for Handling, onal bracing.	Instabling POFESS,	Pro Pila
0LL 0001 00 0011	IMARY SHEET- PERMAN IG REQUIREMENTS OF T					OR RECOMMEN	MENMUM SEAL	
	AYS CONSULT THE PRO					CONSIDERAT	TIONS. 28147	
DAD CASE(S) Stand	dard (balanced): Lumber Increa	aa-1.00. Blata Inaraaaa-	1.00				A ANDINE	
Uniform Loads (plf)		se-1.00, Flate Increase-	1.00				ARKK	ORALS
Concentrated Load							Man Barris	annus.
Vert: 7=-73			haara di aa 1		1:- 6	- dia: da 1.1 - 1.1 - 1.1	10/14	ACCEPTION AND A CONTRACT OF A
	sign parameters and read not of design parameters and prope					iai i i adda a daniaing i	component to be motuned	and folded
ndividual web member	s only. Additional temporary bi lding designer. For general guid	acing to ensure stability durin	g construction is the	responsibility of th	ne erector.	Additional perman	ent bracing of the overall	structure is the
	Truss Construction and BCSI			-		-	-	-
'Onofrio Drive, Madis	son, WI 53719.							

Job	Truss	Truss Type	Qty	Ply	LOT 0.0015 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, NC
24-8565-F01	F1-32	Floor	5	1	Job Reference (optional)	# 53379
		Rur	: 8 630 s Jul	12 2024 Pri	nt: 8 630 s Jul 12 2024 MiTek Industries Inc.	Tue Oct 15 17:32:58 2024 Page 2

In: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Tue Oct 15 17:32:58 2024 Page 2 ID:5fxLxLn?C6dWjia?SHK4thzkcYI-9tJKgClvdx7746nHw7LTRvKLGnNIZaEL1DxwAVyT6Zp

LOAD CASE(S) Standard 2) Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-23=-7, 1-10=-67 Concentrated Loads (lb) Vert: 7=-735 3) 1st Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-23=-7, 1-8=-67, 8-10=-13 Concentrated Loads (lb) Vert: 7=-735 4) 2nd Dead + Floor Live (unbalanced): Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-23=-7, 1-8=-13, 8-10=-67 Concentrated Loads (lb) Vert: 7=-735 5) 3rd unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-23=-7, 1-8=-67, 8-10=-13 Concentrated Loads (lb) Vert: 7=-735 6) 4th unbalanced Dead: Lumber Increase=1.00, Plate Increase=1.00 Uniform Loads (plf) Vert: 11-23=-7, 1-8=-13, 8-10=-67

Concentrated Loads (lb) Vert: 7=-735

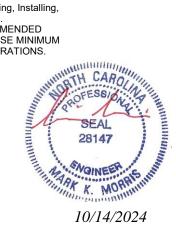
Job	Truss	Truss Type			Qty	Ply L	OT 0.0015 HONEY	CUTT HILLS 3	371 SHELBY M	EADOW LANE AND	GIER, NC
24-8565-F01	F1-33	Floor Supported Gable			1	1 J	ob Reference (op	tional)		53379	
				Run: 8	.630 s Jul 1 ID:5fxL	2 2024 Print: xLn?C6dWji	8.630 s Jul 12 2024 ia?SHK4thzkcYI-	MiTek Industri d3sitYmXOF	ies, Inc. Tue O F_iGLTTrtiz7	ct 15 17:32:59 2024 sdoBnul6qVGtgTi	Page 1 yyT6Zo
0-11-8										0 ₁ 1-8	
										Scale =	1:30.1
										1.5x3	
1.5x3	1.5x3									1.5x3	
1.5x3 = −1.5x3	3x8 FP=1.5x3	1.5x3 1.5x3	1.5x3	3x4 =	1.5x3 ∣	1.5x3	1.5x3	1.5x3	1.5x3	1.5x3 =	
1 2 _{T1}	345	6 7	8	9	10 T2	11	12	13	14	15 16	
		0 0 ST1 ST1 0 0 B1	ST1	ST1 W:	2 ST1	ST1	ST1	ST1			34 0-0-1-
XXXXXXXX	XXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		XXXXX	XXXXX			XXXXXX		XXXXXX	
32 31	30 29	28 27	26	25	24	23	22 21	20	19	18 17	
3x4 1.5x3	1.5x3 1.5x3	1.5x3 1.5x3	1.5x3	1.5x3	3x4 =	1.5x3	3x8	FP=	1.5x3	3x4	
							1.5x3	1.5x3		1.5x3	

18-1-14 Plate Offsets (X,Y) [9:0-1-8,Edge], [24:0-1-8,Edge], [32:Edge,0-1-8]						
LOADING (psf) TCLL 40.0 TCDL 10.0 BCLL 0.0 BCDL 5.0	SPACING- 2-0-0 Plate Grip DOL 1.00 Lumber DOL 1.00 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.06 BC 0.01 WB 0.03 Matrix-SH	DEFL. ii Vert(LL) n/a Vert(CT) n/a Horz(CT) 0.00	a - n/a 999	PLATES MT20 Weight: 74 lb	GRIP 244/190 FT = 20%F, 11%E
LUMBER- TOP CHORD 2x4 SP No.1(flat) BOT CHORD 2x4 SP No.1(flat) WEBS 2x4 SP No.3(flat) OTHERS 2x4 SP No.3(flat)			BRACING- TOP CHORD BOT CHORD	Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals. Rigid ceiling directly applied or 10-0-0 oc bracing.		

2x4 SP No.3(flat)

REACTIONS. All bearings 18-1-14.

(lb) - Max Grav All reactions 250 lb or less at joint(s) 32, 17, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 20, 19, 18


FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

(5-8) NOTES-

1) Gable requires continuous bottom chord bearing.

- 2) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
- 3) Gable studs spaced at 1-4-0 oc.
- 4) Recommend 2x6 strongbacks, on edge, spaced at 10-0-0 oc and fastened to each truss with 3-10d (0.131" X 3") nails. Strongbacks to be attached to walls at their outer ends or restrained by other means.
- 5) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 6) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 7) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. 8) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

