

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Const. Model: Plan 1 BNS GRH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____

PLANT

TO BY

UNL FSS

** DAMAGED COMPONENTS SHOULD NOT BE INSTA

COMPONENTS

TO PLANS WHILE SETTING

REFER

MUST

IER

*

8 − e −

	00/00/		ions Nar	ne
	00/00/	00	Nan	ne
	00/00/	00	Nan	ne
	00/00/	00	Nan	ne
	00/00/	00	Nan	ne
S TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor systems and for the overall structure. The design of the truss support	structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult "Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio	
OT-INCH-SIXTEENTH.			Building Materials Vision of the	er Lumber company
ENSIONS ARE READ AS: FO			V	U U U U U U U U U U U U U U U U U U U
TED TOGETHER PRIOR TO ADDING ANY LOADS.	Wellco Contractor	14 Overhills Creek-Roof-1 BNS	COMPONENT AU	PLACEMENT PLAN
INNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Mellco Contractor	4 14 Overhills Creek-Roof-1 BNS <	COMPONENT S	PLACEMENT PLAN
FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Mellco Contractor Scale: Date: 10	14 Overhills Creek-Roof-1 BNS		PLACEMENT PLAN
ST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Nellco Contractor	14 Overhills Creek-Roof-1 BNS	TS 2024 gner: Number:	PLACEMENT PLAN
IS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Melico Contractor	14 Overhills Creek-Roof-1 BNS	TS 2024 gner: Number: Number:	PLACEMENT PLAN
IRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Scale: Date: 10 24	14 Overhills Creek-Roof-1 BNS Designment Sheet	TS 2024 gner: Number: Number:	PLACEMENT PLAN
" GIRDERS MUST BE FULLY CONNECTED TOGETHER PRIOR TO ADDING ANY LOADS.	Scale: Date: 10 24	14 Overhills Creek-Roof-1 BNS Designment Sheet	TS 2024 gner: Number: 66-01 Number:	PLACEMENT PLAN

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24100066-01 14 Overhills Creek-Roof-1 BNS GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I69201118 thru I69201146

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

October 30,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A1	Piggyback Base Structural Gable	1	1	Job Reference (optional)	169201118

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:39 ID:v28o_B5VsOnzjXVnQPrKPoyV?V1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

-1-0-0 1-0-0 39-5-8 1-0-0 6-4-3 12-4-15 20-0-1 26-0-13 29-4-11 32-5-0 38-5-8 6-4-3 6-0-12 7-7-2 6-0-12 3-3-14 3-0-5 6-0-8 5x8= 5x6= 35 36 ⊠ 5 34 6 12 10 3x6 🍫 3x6、 3x5 🍫 37 4³³ ³⁸7 ^{3x5} 2x4 II 11-2-5 7-9-14 32 39 2x4 II 3 8 11-5-10 2x4 II 12 14 5x10≈ 2x4 II 30³¹ 40) 11 2x4 🛛 2-6-4 -10-32-6-4 13 ł 4x8 10 ¹⁴41 2 10-3 15 16 ℃ □ 16 □ 26 Ř 25 42 24 23 43 22 21 44 20 19 18 17 3x5 II 4x5= 3x5= 3x6= 3x8= 3x6= 3x5= 3x5= 2x4 u 3x5=

6-4-3 6-2-8 7-3-10 6-2-8 6-2-7 6-2-4	6-4-3	12-6-11	19-10-5	26-0-13	32-3-4	38-5-8
	6-4-3	6-2-8	7-3-10	6-2-8	6-2-7	6-2-4

Plate Offsets (X, Y): [5:0-6-4,0-2-0], [6:0-4-4,0-2-0], [9:0-6-12,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing 1 Plate Grip DOL 1.7 Lumber DOL 1.7 Rep Stress Incr YE Code IR	11-4 15 15 25 C2021/TPI2014	CSI TC () BC () WB () Matrix-MSH	0.72 0.67 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.21 0.05	(loc) 22-24 22-24 19	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x4 SP No.2 *Excep 2400F 2.0E 2x4 SP No.2 2x4 SP No.3 *Excep 24-5,22-5,22-6,9-19: 2x4 SP No.3 Structural wood she 3-6-12 oc purlins, e 2-0-0 oc pu	t* 5-6,6-7,7-12:2x4 SP t* 26-2:2x6 SP No.2, 2x4 SP No.2 athing directly applied or xcept end verticals, and -0 max.): 5-6, 9-12. applied or 6-0-0 oc 5-22, 3-24, 8-22 17=6-4-0, 18=6-4-0, 26=0-3-8, 27=6-4-0 LC 13) LC 62), 17=-4 (LC 16), C 12), 27=-129 (LC 62) C 52), 17=288 (LC 44), .C 52), 19=1834 (LC 54), (LC 60), 27=69 (LC 52)	WEBS NOTES 1) Unbalanced this design. 2) Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) 12-4-15, Ext 16-3-2 to 200 (1) 23-10-3 t exposed; er exposed; c-C reactions shh DOL=1.33 3) Truss design only. For stt see Standard or consult qu	2-25=0/1119, 5-24=-5 6-22=-43/566, 12-19= 3-24=-529/193, 8-20= 8-22=-358/173, 9-20= 10-11=-149/44, 13-18 14-17=-175/59 roof live loads have b 7-16; Vult=130mph (bh; TCDL=6.0psf; BC closed; MWFRS (env -0-11-6 to 2-10-13, In erior(2R) 12-4-15 to 1 0-1, Exterior(2R) 20-1 0 39-5-3 zone; cantile d vertical left and righ C for members and for bwn; Lumber DOL=1. red for wind loads in t ds exposed to wind (d Industry Gable End alified building design	53/653 94/2 148/ =0/479 	8, 5-22=-153/8 9, 3-25=0/187 68, 0, 9-19=-2303/ /62, considered for ond gust) .0psf; h=25ft; () and C-C (1) 2-10-13 tc , Interior (1) 23-10-3, Inter set of the dright osed; porch ri- tate grip ane of the trus; al to the face), Is as applicable per ANSI/TPI	88, 7, /305, /305, Cat. o rior ight s; , le, 11.	9) * Th on t 3-0(cho 10) All t 11) Pro bea 15, upli 12) Gra or ti bott LOAD (his truss he botto 5-00 tall rd and a oearings vide meer ring plat 59 lb up ft at joint phical phical phical phical on chor CASE(S)	has be m choi by 2-0 ny oth- are as e capaa lift at jc 15. urlin re ation c d. Star	een designed for rd in all areas wh 0-00 wide will fit er members, with ssumed to be SP al connection (by ble of withstandi oint 18, 4 Ib uplift presentation doe of the purlin along ndard	a live load of 20.0psf ere a rectangle between the bottom BCDL = 10.0psf. No.2. others) of truss to ng 129 lb uplift at join at joint 17 and 129 lb is not depict the size g the top and/or	it C
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=0/55, 2-3=-2010 5-6=-1146/343, 6-8= 8-9=-1749/286, 9-10 9-11=-33/652, 11-13 14-15=-106/702, 15- 2-26=-1575/300 25-26=-146/470, 24 22-24=0/1071, 20-22 19-20=-74/917, 18-1 17-18=-657/134, 15-	pression/Maximum //288, 3-5=-1658/358, 1610/351, 153/674, 13-14=-80/690 -16=0/23, -25=-97/1447, 2=-68/1289, 9=-657/134, -17=-657/134	 4) TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 5) Unbalanced design. 6) This truss ha load of 12.0 overhangs n 7) Provide aded 8) Gable studs 	7-16; Pr=20.0 psf (rc .15); Pg=20.0 psf; Pf late DOL=1.15); Is=1. 2; Cs=1.00; Ct=1.10, I snow loads have bee us been designed for g psf or 2.00 times flat i on-concurrent with ot quate drainage to pre- spaced at 2-0-0 oc.	oof LL =18.9 .0; Rc Lu=50 en con greate roof Ic her liv	: Lum DOL=1. psf (Lum ugh Cat B; Fu -0-0 sidered for thi er of min roof I vad of 13.9 psf e loads. vater ponding.	.15 ully is live f on		Winning		SEA 0363	L 22 EER. KIN	•

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

818 Soundside Road Edenton, NC 27932

October 30,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A2	Piggyback Base	5	1	Job Reference (optional)	169201119

TCDL

BCLL

BCDL

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:40 ID:3rkE64K5AqwjInLRc91GqhyV?J6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Edenton, NC 27932

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A3	Piggyback Base	2	1	Job Reference (optional)	169201120

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:41 ID:I1gD1y0g?HIInzz4cX5kA0yVHkI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

818 Soundside Road Edenton, NC 27932

	F	<u>6-4-4</u> 6-4-4	12-4-15 6-0-12 5x8=	20-0-1 7-7-2 =	6x8=	<u>26-0-13</u> 6-0-12	<u>29-4-11</u> 3-3-14	32-3-4 2-10-9	<u>38-5-8</u> 6-2-4	39-5-8
	11-5-10 -10-3 -10-3 -11-2-5 -11-2-5 -11-2-5 -11-2-5 -11-2-5 -11-2-5 -11-2-5 -11-2-5 -11-2-5 -11-2-5 -12-5 -	$ \begin{array}{c} 10^{12} \\ 3x5 \\ 3x5 \\ 30 \\ 2 \\ 29 \\ 28 \\ 29 \\ 28 \\ 4x5 = \\ \hline 6-4-4 \\ 6-4-4 \\ \hline 6-4-4 \\ \hline$	4 3x6 , 31 41 3x5 = 12-6-11 14- 6-2-8 15	21 20 18 3x6= 2x4= 17-62x4= 15-11-5 0-0 15-10-9	22-6-1 5-0-0	36 37 37 37 46 45 14 13 2x4 II 3x5 = 2x4 = 245,163 24-1-9 24-0-13 4 6 12	^{2x4} " ³⁸ ⁶ ^{5x1} ³ ³ ³ ³ ³ ³ ³ ⁵	$0 \approx$ 7 2x4 8 9 12 12 11 3x6= 3x5= 32-3-4 2-3-4	¹² ₁₄ " <u>3940</u> - <u>38-5-8</u> 6-2-4	9 10 °0 3x5=
Scale = 1:83.5	X XX: [4:0.0.4.0.2.0]	IS-0 C 4 0 0 01 140-0 4	0.0.0.01 [0.4-Edge 0	1-6-61-6-12		0-0-12			-	
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 0.0*	Spacing 2 Plate Grip DOL 1 Lumber DOL 1 Rep Stress Incr Y Code IF	0,0-2-8], [24:Eage,0 -0-0 .15 .15 ES RC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.64 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.05 11-27 -0.21 14-18 0.06 11	l/defl L >999 2- >999 1: n/a r	_/d PLATES 40 MT20 80 1/a Weight: 26	GRIP 244/190 7.lb ET = 20%
BCDL 10.0 Weight: 267 lb FT = 20% LUMBER TOP CHORD 2x4 SP 2400F 2.0E 30T CHORD 1) Unbalanced roof live loads have been considered for this design. SOT CHORD 2x4 SP 2400F 2.0E 200F 2.0E 1) Unbalanced roof live loads have been considered for this design. WEBS 2x4 SP 2400F 2.0E 224 SP 0403 * 2xcept 1 1) Unbalanced roof live loads have been considered for this design. BRACING TOP CHORD Structural wood sheathing directly applied or 5-2:1 or putitins, except end verticals, and 2-0-0 or putitins (5-34 max): +5. 1) Unbalanced roof live 1204-10, Interior (1) +2-0-112 to 4-2-5. Interior (1) +2-0-10 to 395-43 zone; cantilever left and right exposed: c-0 to the and right exposed; porch right exposed: c-0 to 2+0-10, Interior (1) +2-0-10 to 1395-43 zone; cantilever left and right exposed; porch right exposed: c-0 to particle; 24-219 (LC 13) Max Horiz 24-229 (LC 13) Max Grav 9=154 (LC 52), 11-2392 (LC 54), +2-4-1765 (LC 66) 3) FORCES (b) - Maximum Compression/Maximum TOP CHORD 12-2-369(150, 24-11939220), 42-4705 (LC 60), +2-2-201317, 7-8-00739, 8-9-0038, -6-7-2301167, 7-8-00739, 8-9-0038, -6-7-2301167, 7-8-00739, 8-9-0038, -6-7-2301167, 7-8-00739, 8-9-0038, -6-7-2301167, 7-8-00739, 8-9-0038, -6-7-2301167, 7-8-00739, 8-9-0038, -7-19-0039, 16-12-1755114, -1-19-030, 16-18-1020, -1-19-030, 16-18-1020, -1-19-030, 16-18-1020, -1-19-030, 16-18-1020, -1-19-030, 16-24-19, 10-19, 16-26, -10 mo leth ont some considered for this design. BOT CHORD 12-2-369(16, 12-4-19, 120, 16-18, 10-10, 12-60, 120, 120, 120, 120, 120, 120, 120, 12										
NOTES			LOAD CASE(S) Standard					Octo	GIL,

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A4	Piggyback Base	4	1	Job Reference (optional)	169201121

19=1566 (LC 60)

(lb) - Maximum Compression/Maximum

1-2=0/53, 2-3=-2102/297, 3-5=-1722/369,

7-8=-1793/284, 8-9=0/607, 9-10=-47/666,

3-18=0/207, 3-17=-564/203, 5-17=-56/686,

5-15=-162/84, 6-15=-43/587, 2-18=0/1140,

7-14=-167/84, 8-14=0/483, 9-12=-454/177,

5-6=-1188/353, 6-7=-1668/361,

10-11=0/23, 2-19=-1624/305

18-19=-144/511, 17-18=-103/1515,

15-17=0/1114, 14-15=-62/1334,

8-12=-2323/216, 7-15=-369/170

Unbalanced roof live loads have been considered for

12-14=-66/980, 10-12=-612/82

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

this design.

1)

Tension

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:41 ID:Fvn5ilFq04XKwxDPmMJx9pyV?BT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

- This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
 Provide adequate drainage to prevent water ponding.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
 All bearings are assumed to be SP No.2.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 115 lb uplift at joint 10.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B1	Attic Supported Gable	1	1	Job Reference (optional)	169201122

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:41 ID:euN5eeBIDqVcSLeF_LY?3RyV??x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.3

Plate Offsets (X, Y): [2:0-0-10,0-3-10], [10:0-3-0,0-3-0], [14:0-3-0,0-3-0], [25:0-5-0,0-3-8], [26:0-5-0,0-3-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	I-11-4 I.15 I.15 YES RC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.16 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 291 II	GRIP 244/190	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	2x6 SP No.2 2x6 SP No.2 *Excep 2.0E 2x4 SP No.2 *Excep No.3 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing. 1 Row at midpt 1 Brace at Jt(s): 34, 35, 36, 37 (size) 2=28-7-8, 23=28-7-4 26=28-7-4	t* 26-25:2x10 SP 2400 t* 16-25,21-20:2x4 SP athing directly applied of cept end verticals, and -0 max.): 10-14. applied or 10-0-0 oc 26-32, 25-33, 9-27 21=28-7-8, 22=28-7-8 3, 24=28-7-8, 25=28-7-8 3, 24=28-7-8, 28=28-7-4	TOP CHORD F bot CHORD WEBS	$\begin{array}{c} 1 \\ 1-2=0/45, 2-3=-250/\\ 4-5=-234/202, 5-6=-\\ 8-9=-184/280, 9-10=\\ 10-11=-157/264, 11\\ 12-13=-157/264, 13\\ 14-15=-242/193, 15\\ 16-17=-132/304, 17\\ 18-19=-138/142, 19\\ 20-21=-117/69\\ 2-31=-59/79, 30-31=\\ 28-29=-53/76, 27-22\\ 23-24=-54/74, 22-22\\ 26-32=-484/45, 10-5\\ 25-33=-586/0, 16-33\\ 34-35=-7/2, 12-34=-\\ 13-36=-11/29, 15-37\\ 17-24=-38/155, 18-2\\ 19-22=-116/78, 9-27\\ 6-29=-139/59, 5-30-22\\ 12-32-39/59, 5-30-22\\ 12-32-39/59, 5-30-22\\ 12-32-39/59, 5-30-22\\ 12-32-32/50, 12-32\\ 12-32-39/59, 5-30-22\\ 12-32-32-32\\ 12-32-32-32\\ 12-32-3$	195, 3- 217/20 -151/3 -12=-11 -12=-11 -16=-3 -18=-11 -20=-11 -20=-11 -20=-12 -53/76 3=-54/7 3=-54/7 3=-18/12 2=-12/7 2=-36/8 2=-12/7 2=-36/8 2=-12/7	4=-242/213, 11, 6-8=-202/22 116, 57/264, 57/264, 41/226, 57/203, 20/99, 5, 29-30=-53/76 6, 24-27=-58/7 16, 24-27=-58/7 1/51, 1/51, 1/51, 1/51, 1/53=-4/37, 31, 3/72, 13, 8-28=-119/5 9, 4-31=-159/6	22, 6, 76, 74 , 92, 67	4) TC Pla DC Exi 5) Thi loa ove 6) Prc 7) All 8) Ga 9) Ga 9) Ga 9) Ga 9) Ga 9) Ga 10) * T on 3-0 cho 11) Ce 34- 12) All	LL: ASCI te DOL= rL=1.15 f o; Ce=0. s truss h d of 12.0 erhangs r wide ade plates ar ble requi ble studs his truss the botto 6-00 tall ord and a lling dea 35, 34-3 bearings	E 7-16 1.15); Plate D 9; Cs= as bee psf or hon-col- quate e 2x4 I res con space has be m chol by 2-0 ny oth- d load 6, 36-3 are as	; Pr=20.0 psf (r Pg=20.0 psf; P Pg=20.0 psf; P OCL=1.15); Is=1 1.00; Ct=1.10, en designed for 2.00 times flat ncurrent with oi drainage to pre MT20 unless of ntinuous botton ad at 2-0-0 oc. been designed for d in all areas v 0-00 wide will fi er members, w (10.0 psf) on m 87, 33-37 ssumed to be S	pop LL: Lum f=18.9 psf (LL) 0.0; Rough Cá Lu=50-0-0 greater of mi roof load of ' ther live load d' where live load d' where a recta t between th th BCDL = 1 ember(s). 32 P No.2.	DOL=1.15 um at B; Fully in roof live 13.9 psf on s. onding. sated. ng. of 20.0psf ngle e bottom 0.0psf. -35,
FORCES	29=28-7-1 Max Horiz 2=238 (LC Max Uplift 2=-96 (LC (LC 14), 2 (LC 38), 2 (LC 13), 3 (LC 13), 3 (LC 13), 3 (LC 13), 3 Max Grav 2=247 (LC 22=153 (I 24=34 (LC 26=760 (I 28=205 (I 30=181 (I (Ib) - Maximum Com Tension	8, 30=28-7-8, 31=28-7-1 C 12) 9), 21=-4 (LC 9), 22=- 23=-36 (LC 14), 24=-17- 27=-108 (LC 39), 28=-4: 99=-38 (LC 13), 30=-36 11=-48 (LC 13) C 31), 21=115 (LC 33), C 31), 21=115 (LC 33), C 31), 23=223 (LC 31) C 12), 25=830 (LC 39), LC 33), 27=32 (LC 11), LC 30), 29=193 (LC 30) and an	 NOTES NOTES Unbalanced this design. Vasd=103n II; Exp B; E Exterior(2E 12-4-15, Ex 16-7-14 to 2 Interior (1) 2 right expositions Truss design only. For sise Standa or consult of the second se	d roof live loads have E 7-16; Vult=130mph nph; TCDL=6.0psf; B nclosed; MWFRS (er) -0-9-13 to 2-2-3, Int terior(2R) 12-4-15 to 20-0-1, Exterior(2R) 2 24-2-15 to 28-5-12 zc ed; end vertical left a s and forces & MWF DL=1.60 plate grip DC ned for wind loads in tuds exposed to wind rd Industry Gable En jualified building desi	been of CDL=6 Nvelope erior (1 16-7-1 20-0-1 one; ca and righ RS for DL=1.3; the pla I (norm d Deta gner as	considered for cond gust) .0psf; h=25ft; () and C-C) 2-2-3 to 4, Interior (1) to 24-2-15, ntilever left and t exposed; C-C reactions show ane of the truss al to the face), ils as applicabl s per ANSI/TPI	Cat. d C wn; s , le, l 1.		Mannan.		SEA 0363	AROUTAL B22 VEER	Annon annon

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE.

October 30,2024

Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B1	Attic Supported Gable	1	1	Job Reference (optional)	169201122

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 96 lb uplift at joint 2, 4 lb uplift at joint 21, 174 lb uplift at joint 24, 36 lb uplift at joint 27, 174 lb uplift at joint 24, 36 lb uplift at joint 28, 58 lb uplift at joint 29, 36 lb uplift at joint 28, 38 lb uplift at joint 29, 36 lb uplift at

joint 30 and 48 lb uplift at joint 31.

14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:41 ID:euN5eeBIDqVcSLeF_LY?3RyV??x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B2	Attic	3	1	Job Reference (optional)	169201123

Scale = 1:70.3

Loading

TCDL

BCLL

TCLL (roof)

Snow (Pf/Pg)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Mon Oct 28 10:08:41 ID:7i61FsRMyTU?JA02XUu9kAyV?_K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BCDL LUMBER TOP CHORD 2x6 SP No 2 2x6 SP No.2 *Except* 11-10:2x10 SP 2400F BOT CHORD 2.0E WEBS 2x4 SP No.3 *Except* 13-14:2x4 SP No.2 WEDGE Left: 2x4 SP No.3 BRACING TOP CHORD Structural wood sheathing directly applied or 5-2-12 oc purlins, except end verticals, and 2-0-0 oc purlins (5-11-4 max.): 5-6. BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing, Except: 6-0-0 oc bracing: 9-10 10-14, 13-14, 3-11 WEBS 1 Row at midpt **REACTIONS** (size) 2=0-3-8, 9=0-3-8 Max Horiz 2=245 (LC 12) Max Grav 2=1375 (LC 30), 9=1461 (LC 3) FORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=0/39, 2-3=-1944/14, 3-5=-1621/107, 5-6=-1303/99, 6-7=-1627/224, 7-8=-1526/26, 8-9=-1609/19 BOT CHORD 2-12=-152/1495, 9-12=-114/1495 WEBS 3-12=0/212, 11-13=0/674, 5-13=0/604, 10-14=-118/256, 7-14=-614/265, 13-14=-520/67, 6-13=-52/687, 6-14=-126/886, 8-10=0/1206, 3-11=-475/138 NOTES Unbalanced roof live loads have been considered for 1) this design.

2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-13 to 2-2-3, Interior (1) 2-2-3 to 12-4-15, Exterior(2R) 12-4-15 to 16-7-14, Interior (1) 16-7-14 to 20-0-1, Exterior(2R) 20-0-1 to 24-2-15, Interior (1) 24-2-15 to 28-5-12 zone; cantilever left and right exposed : end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 This truss has been designed for greater of min roof live
- load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding.
- 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- Ceiling dead load (10.0 psf) on member(s). 13-14 7)
- 8) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 10-11
- 9) All bearings are assumed to be SP No.2
- 10) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord
- 11) Attic room checked for L/360 deflection.
- LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B3	Attic Girder	1	2	Job Reference (optional)	169201124

5x6=

5

12-4-15

6-2-3

4x6 🖌

Carter Components (Sanford, NC), Sanford, NC - 27332

11-5-10

Scale = 1:70.3

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

REACTIONS

TOP CHORD

BOT CHORD

WEBS

NOTES

oc

Continued on page 2

WARNING

JOINTS

FORCES

TOP CHORD

BOT CHORD

2.0E

2400F 2.0E

verticals

bracing.

Tension

(size)

6, 13, 14, 8

TCLL (roof)

Snow (Pf/Pg)

6-2-12

6-2-12

12 10Γ

21-1-4

1-1-3

 $8 \times 10 =$

6 2x4 u 28-7-8

7-6-4

20-0-1

7-7-2

Page: 1

8-3-0 18 3x5 / Ø١ <5= 3 1-2 8-1-14 6x8. 1-0-2 0-10-3 9 R 12 11 10 MT20HS 8x12 " 10x12= 2x4 II 10x12= 6x8 II 6-2-12 12-5-0 21-3-0 28-7-8 6-2-12 6-2-4 8-10-0 7-4-8 Plate Offsets (X, Y): [2:Edge,0-0-1], [5:0-3-8,0-3-4], [6:0-7-0,0-3-0], [8:0-3-4,0-1-8], [10:0-3-8,0-7-8], [11:0-3-8,0-4-8] 4-0-0 CSI DEFL in (loc) l/defl L/d PLATES GRIP (psf) Spacing 20.0 Plate Grip DOL 1.15 TC 0.81 Vert(LL) -0.15 10-11 >999 240 MT20 244/190 18.9/20.0 Lumber DOL 1.15 BC 0.57 Vert(CT) -0.20 10-11 >999 180 MT20HS 187/143 Rep Stress Incr WB Horz(CT) 10.0 NO 0.91 0.03 9 n/a n/a 0.0 IRC2021/TPI2014 Matrix-MSH -0.09 >999 360 Code Attic 10-11 10.0 Weight: 537 lb FT = 20% 2) All loads are considered equally applied to all plies, 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate except if noted as front (F) or back (B) face in the LOAD Increase=1.15 2x6 SP No.2 *Except* 6-8:2x6 SP 2400F CASE(S) section. Ply to ply connections have been Uniform Loads (lb/ft) provided to distribute only loads noted as (F) or (B), 2x10 SP 2400F 2.0E *Except* 2-11:2x6 SP Vert: 1-2=-95, 2-5=-215, 5-6=-235, 6-18=-215, unless otherwise indicated. 11-15=-40, 10-11=-160 (F=-100), 9-10=-170 3) 2x4 SP No.3 *Except* 13-14,9-8:2x4 SP No.2 Unbalanced roof live loads have been considered for (F=-130), 13-14=-40 Left: 2x4 SP No.3 this design. Trapezoidal Loads (lb/ft) Wind: ASCE 7-16; Vult=130mph (3-second gust) 4) Vert: 18=-215-to-8=-324 (F=-109) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Dead + Roof Live (balanced): Lumber Increase=1.15, 2) 2-0-0 oc purlins (5-9-0 max.), except end II; Exp B; Enclosed; MWFRS (envelope); cantilever left Plate Increase=1.15 and right exposed ; end vertical left and right exposed; Uniform Loads (lb/ft) (Switched from sheeted: Spacing > 2-8-0). Lumber DOL=1.60 plate grip DOL=1.33 Vert: 1-2=-120, 2-5=-240, 5-6=-240, 6-18=-240, Rigid ceiling directly applied or 10-0-0 oc TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 11-15=-40, 10-11=-163 (F=-103), 9-10=-173 5) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum (F=-133), 13-14=-40 1 Brace at Jt(s): 5, DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Trapezoidal Loads (lb/ft) Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0 Vert: 18=-240-to-8=-352 (F=-112) 2=0-3-8, 9=0-3-8 This truss has been designed for greater of min roof live Dead + 0.75 Roof Live (balanced) + 0.75 Attic Floor: 3) Max Horiz 2=483 (LC 8) load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on Lumber Increase=1.15, Plate Increase=1.15 Max Grav 2=5128 (LC 22), 9=7515 (LC 22) overhangs non-concurrent with other live loads. Uniform Loads (lb/ft) (lb) - Maximum Compression/Maximum Provide adequate drainage to prevent water ponding. Vert: 1-2=-100, 2-5=-200, 5-6=-200, 6-18=-200, All plates are MT20 plates unless otherwise indicated. 8) 11-15=-40, 10-11=-347 (F=-167), 9-10=-297 1-2=0/79, 2-3=-6656/0, 3-5=-5866/0, * This truss has been designed for a live load of 20.0psf 9) (F=-257), 13-14=-40, 11 5-6=-4548/0, 6-7=-5832/0, 7-8=-6044/0, on the bottom chord in all areas where a rectangle 8-9=-6550/0 3-06-00 tall by 2-00-00 wide will fit between the bottom 2-12=-22/5077, 9-12=-31/5077 chord and any other members. 10-14=-85/1324, 7-14=-1851/205, 10) Ceiling dead load (10.0 psf) on member(s). 13-14 13-14=-1488/0, 3-12=-267/224, 11) Bottom chord live load (40.0 psf) and additional bottom 11-13=0/2525, 5-13=0/2264, 6-13=0/1940, chord dead load (5.0 psf) applied only to room. 10-11 6-14=0/3100, 3-11=-1311/88, 8-10=0/4550 12) Bearings are assumed to be: Joint 2 SP 2400F 2.0E, SEAL Joint 9 SP 2400F 2.0E . 036322 1) 2-ply truss to be connected together with 10d 13) Load case(s) 1, 2, 3 has/have been modified. Building (0.131"x3") nails as follows: designer must review loads to verify that they are correct Top chords connected as follows: 2x6 - 2 rows for the intended use of this truss. staggered at 0-9-0 oc, 2x4 - 1 row at 0-9-0 oc. 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or Bottom chords connected as follows: 2x6 - 2 rows bottom chord. staggered at 0-9-0 oc, 2x10 - 2 rows staggered at 0-9-0 15) Attic room checked for L/360 deflection. GI 40000 Web connected as follows: 2x4 - 1 row at 0-9-0 oc. LOAD CASE(S) Standard October 30,2024 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

Job	Truss	Truss Type		Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	В3	Attic Girder		1	2	Job Reference (optional)	l69201124
Carter Components (Sanford, NO	R	un: 8.73 S Sep 25	2024 Print: 8.	730 S Sep 2	5 2024 MiTek Industries, Inc. Mon Oct 28 10:08:42	Page: 2	

ID:cjFhAe3ziS1dZA_2aPqLr7yV_zW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Trapezoidal Loads (lb/ft) Vert: 18=-200-to-8=-382 (F=-182)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B6	Piggyback Base Girder	2	2	Job Reference (optional)	169201125

Scale = 1:70.3

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:42 ID:o9zZeG5ADngm9IrdfH1aJtyV?95-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(lo	c) l/defl	L/d	PLATES	GRIP	
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.31	Vert(LL)	-0.06	11-1	3 >999	240	MT20	244/190	
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.19	Vert(CT)	-0.10	11-1	3 >999	180			
TCDL	10.0	Rep Stress Incr	NO		WB	0.54	Horz(CT)	0.02		9 n/a	n/a			
BCLI	0.0*	Code	IRC202	1/TPI2014	Matrix-MSH		, , ,							
BCDI	10.0		11(0202									Weight: 567 lt	o FT = 20%	
									-		rreigna oor a			
LUMBER			2)	All loads are	considered equall	y applie	d to all plies,			Vert: 18	=-168	-to-7=-242, 7=-2	242-to-8=-277	
TOP CHORD	2x6 SP No.2 *Excep	ot* 5-6,6-8:2x8 SP 24	00F	except if note	ed as front (F) or b	ack (B)	face in the LC	DAD	2)	Dead + Ro	of Liv	e (balanced): Lu	umber Increase=1.15,	
	2.0E			CASE(S) sec	tion. Ply to ply cor	nnection	s have been			Plate Incre	ease=1	.15		
BOT CHORD	2x8 SP 2400F 2.0E			provided to d	provided to distribute only loads noted as (F) or (B), Uniform Loads (lb/ft)									
WEBS	2x4 SP No.3 *Excep	ot* 11-5:2x4 SP No.2		unless other	se indicated. Vert: 1-5=-180, 5-6=-180, 6-18=-180, 13-15=-20,									
BRACING			Unbalanced	roof live loads hav	e been (considered fo	r		9-13=-8	0 (F=-	30, B=-30)			
TOP CHORD	Structural wood she	athing directly applie	d or	this design.						Trapezoid	al Loa	ds (lb/ft)		
	6-0-0 oc purlins, ex	cept end verticals, ar	nd ⁴⁾	Wind: ASCE	7-16; Vult=130mp	h (3-sec	cond gust)			Vert: 18	=-180	-to-7=-257, 7=-2	257-to-8=-292	
	2-0-0 oc purlins (6-0)-0 max.): 5-6.		Vasd=103mp	oh; TCDL=6.0psf; I	BCDL=6	5.0psf; h=25ft;	; Cat.	3)	Dead + 0.	75 Roo	of Live (balanced	d) + 0.75 Uninhab. Attic	
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc		II; Exp B; En	closed; MWFRS (e	envelope	e); cantilever l	left		Storage +	0.75 A	ttic Floor: Lumb	per Increase=1.15,	
	bracing.			and right exp	osed ; end vertica	l left and	d right expose	ed;		Plate Incre	ease=1	.15		
WEBS	1 Row at midpt	5-11		Lumber DOL	=1.60 plate grip D	OL=1.33	3			Uniform Lo	bads (l	b/ft)		
REACTIONS	(size) 2=0-3-8 9	9=2-10-4 10=2-10-4	5)	TCLL: ASCE	7-16; Pr=20.0 psf	(roof LL	.: Lum DOL=	1.15	Vert: 1-5=-150, 5-6=-150, 6-18=-150. 13-15=-35.					
	Max Horiz 2-241 (1 (C 8)		Plate DOL=1	.15); Pg=20.0 psf;	Pf=18.9	⁹ psr (Lum 13-19=-230 (F=-90, B=-90), 9-19=-215 (F						-19=-215 (F=-90,	
	Max Gray 2-3311 (I	C 21) 9–1136 (LC 2	21)	DOL=1.15 PI	ate DOL=1.15); Is	=1.0; Ro	ough Cat B; F	ully		B=-90)				
	10-4382	(I C 22)	- '),	Exp.; Ce=0.9	; Cs=1.00; Ct=1.1	0, Lu=50	0-0-0			Trapezoid	al Loa	ds (lb/ft)		
FORCES	(lh) Maximum Cam		6)	This truss ha	s been designed f	or great	er of min roof	live		Vert: 18	=-150	-to-7=-217, 7=-2	217-to-8=-248	
FURGES	(ID) - Maximum Con	ipression/iviaximum		load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on										
		20/0 2 E 2E17/0	_	overhangs no	on-concurrent with	other liv	ve loads.							
TOP CHORD	5 6- 2050/0 6 7- 2	00/0, 3-3=-3517/0, 000/0 = 000/0	()	Provide adec	luate drainage to p	orevent	water ponding	g.						
	3-0=-2030/0, 0-7=-3 8-911/0/0	000/0, 7-0=-090/0,	8)	* This truss h	as been designed	for a liv	e load of 20.0	Upst						
	2-14-0/3103 13-14	-0/3103 11-13-0/25	03	on the botton	n chord in all areas	s where	a rectangle					mm	11111	
DOT CHOILD	10-11-0/456 9-10-	-32/32	05,	3-06-00 tall b	y 2-00-00 wide wi	II fit betv	veen the botto	om				IN TH C	ARO	
WEBS	3-14-27/55 5-13-0	-02/02		chord and an	y other members,	with BC	DL = 10.0pst	ſ.			1	all		
WEBS	6-1137/985 7-10-	3864/0 8-10-0/753	9)	All bearings a	are assumed to be	SP 240	0F 2.0E .			/	S.	O EES	This Area	
	5-11-739/0 7-11-0	- 3004/0, 0 10-0/730 1/2209	, 10	 Load case(s) 	1, 2, 3 has/have t	been mo	aified. Buildir	ng		4	23	10-1	A	
NOTES	0 11- 700/0, 7 11-0	J/2205		designer mus	st review loads to	verity that	at they are co	orrect		-		:0 - a		
NUTES		the second the A O of	4	for the intend	ed use of this trus	iS.				-				
1) 2-piy truss	s to be connected toge	ther with 10d	1	i) Graphical pu	tion of the nurlin of	does no	ot depict the s	size				SE/	AL : =	
(U.131 X3) halls as follows:			or the orienta	luon of the punin a	along the	e top and/or			=	:	0261	222 : =	
TOP CHOID		S. ZXO - Z IUWS	· ·								÷	0303	522 : :	
staggered	at 0-9-0 0C, 2x8 - 2 10	ws staggered at 0-9-		DAD CASE(S)	Standard						0		2 - Z	
OC, 2X4 -	1) Dead + Show (balanced): Lumbe							Plate			1	1. A	0	
BOLLOITI CI	orus connecteu as ion	0ws. 2xo - 2 10ws		Increase=1.	15						2.5	S. SNGIN	IFEN. A	
Wob conn	at 0-9-0 00.	1 row at 0.0.0 ac		Uniform Loa	ads (Ib/ft)						1	A/2.	L. CAN	
WED COIII	10110W5. 284 ·	- 1 10W at 0-3-0 0C.		Vert: 1-5:	=-168, 5-6=-178, 6	5-18=-16	8, 13-15=-20	,			1	ICA I	211 Brin	
				9-13=-80	(⊢=-30, B=-30)							1111	a line	
				Irapezoidal	Loads (lb/ft)								00.0004	
												Uctobe	er 30,2024	

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B7	Piggyback Base	3	1	Job Reference (optional)	169201126

Scale = 1:69.4

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:42 ID:49G4Hb8FbprqoJte5ueH9QyV?AJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202 ⁴	1/TPI2014	CSI TC BC WB Matrix-MSH	0.82 0.75 0.50	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.17 -0.27 0.03	(loc) 11-13 11-13 9	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 MT18HS Weight: 209 lb	GRIP 244/190 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 *Excep 5-6:2x4 SP No.1 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep No.2 Structural wood sheat 4-0-5 oc purlins, exc 2-0-0 oc purlins (5-4 Rigid ceiling directly bracing, 1 Row at midpt (size) 9=0-3-8, 1 Max Horiz 15=254 (L Max Grav 9=1242 (L (lb) - Maximum Com Tension 1-2=0/53, 2-3=-1691 5-6=-860/196, 6-7=- 2-15=-1349/128, 8-9 14-15=-255/504, 13 -11=3=-93/984, 10-1 3-14=0/165, 3-13=-4 5-11=-281/77, 6-11= 2-14=0/816, 7-10=-7	t* 4-5:2x4 SP No.3, t* 13-5,11-5,11-6:2x4 athing directly applie cept end verticals, ar -10 max): 5-6. applied or 10-0-0 oc 3-13, 5-11 15=0-3-8 .C 10) .C 3), 15=1311 (LC 2 pression/Maximum //110, 3-5=-1379/189 1192/172, 7-8=-783/ 192/172, 7-8=-783/ 192/172, 7-8=-783/ 192/172, 7-8=-783/ 192/172, 7-8=-783/ 192/172, 7-11=-43/326 (783/134, 8-10=-89/10) been considered for	2) 4 SP d or nd 3) (29) (5) (6) (7) (106, 7) (106, 7) (106, 7) (106, 7) (107, 8) (9) (7) (7) (107, 8) (9) (7) (7) (107, 8) (9) (7) (107, 7) (107, 8) (9) (7) (107, 1) (107, 1)) (107, 1)) (107, 1)(107, (Wind: ASCE Vasd=103m II; Exp B; En Exterior(2E) 12-4-15, Ext 16-7-14 to 21 Interior (1) 2 right expose for members Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 This truss ha load of 12.0 overhangs n Provide ader All plates are * This truss to on the bottor 3-06-00 tall b chord and ar All bearings Graphical pu or the orienta bottom chore	7-16; Vult=130mp ph; TCDL=6.0psf; closed; MWFRS (-0-11-6 to 2-0-10, erior(2R) 12-4-15 0-0-1, Exterior(2R) 4-2-15 to 28-5-12 d; end vertical left and forces & MW =1.60 plate grip D 7-16; Pr=20.0 psf late DOL=1.15); Is 9; Cs=1.00; Ct=1.1 as been designed 1 psf or 2.00 times f on-concurrent with quate drainage to a MT20 plates unle as been designed to 200 times f and been designed on chord in all area by 2-00-00 wide w ny other members are assumed to be rifin representation ation of the purlin a d. Standard	oh (3-sec BCDL=6 envelope Interior to 16-7-1) 20-0-1 zone; cat t and righ (FRS for 00L=1.3; f (roof LL ; Pf=18.5 s=1.0; Rc 10, Lu=50 for great ilat roof k for great ilat roof k for a great for a gr	cond gust) 5.0psf; h=25fi and C-C (1) 2-0-10 to 14, Interior (1 to 24-2-15, ntilever left a tt exposed;C reactions sh 3 :: Lum DOL= 9 psf (Lum bugh Cat B; f 0-0-0 er of min roo pad of 13.9 p ve loads. water pondinate te load of 20. a rectangle veen the bott :DL = 10.0ps 2. ot depict the te top and/or	t; Cat.) and -C iown; =1.15 Fully of live sof on ng. opsf tom sf. size				SEA 0363	L BOULL 22 BERTIN

GI A. GIL October 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	C1	Piggyback Base Structural Gable	1	1	Job Reference (optional)	169201127

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:42 ID:00Cl97cLqcHQTdc9i48UwsyV?Wy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

10-11=-122/207, 11-12=-122/207,

12-13=-122/207, 13-14=-122/207, 14-15=-122/207, 15-16=-159/240,

16-17=-139/180, 17-19=-114/128,

42-43=-117/131. 41-42=-117/131.

40-41=-117/131, 39-40=-117/131,

37-39=-117/131, 36-37=-117/131,

35-36=-117/131, 34-35=-117/131,

33-34=-76/106, 31-33=-76/106,

30-31=-76/106, 29-30=-77/108,

28-29=-77/108, 27-28=-77/108,

26-27=-77/108, 25-26=-77/108,

15-30=-113/59, 12-34=-179/32,

34-45=-135/68, 44-45=-134/70,

24-25=-77/108

21-25=-135/87

19-20=-92/78 20-21=-95/58 21-22=-121/85

15-44=-112/63, 14-44=-71/29, 31-44=-48/30,

9-36=-121/36, 8-37=-140/104, 7-39=-131/76, 5-40=-132/62, 4-41=-130/54, 3-42=-148/88, 16-29=-125/100, 17-28=-135/78, 19-27=-131/62, 20-26=-132/54,

13-45=-55/39, 33-45=-54/38, 11-35=-42/8,

22-23=0/51. 2-43=-146/69. 22-24=-157/33

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

Continued on page 2

Scale = 1:75.4

Loading

TCDL

BCLL

BCDL

WEBS

OTHERS

BRACING

TOP CHORD

BOT CHORD

REACTIONS (size)

1 Row at midpt

45

1 Brace at Jt(s): 44,

43=14-9-8

43=-73 (LC 9)

Max Uplift 24=-31 (LC 10), 25=-83 (LC 14),

Max Horiz 43=-220 (LC 11)

15-30, 12-34, 11-35,

9-36, 8-37, 16-29

24=12-7-8, 25=12-7-8, 26=12-7-8,

27=12-7-8, 28=12-7-8, 29=12-7-8

30=0-3-8, 34=14-9-8, 35=14-9-8,

36=14-9-8, 37=14-9-8, 39=14-9-8

40=14-9-8, 41=14-9-8, 42=14-9-8,

26=-25 (LC 14), 27=-40 (LC 14),

28=-36 (LC 14), 29=-48 (LC 14),

35=-207 (LC 37), 37=-46 (LC 13),

39=-36 (LC 13), 40=-40 (LC 13),

41=-25 (LC 13), 42=-85 (LC 13),

30=-21 (LC 10), 34=-74 (LC 9),

WEBS

JOINTS

LUMBER

BOT CHORD

TCLL (roof)

Snow (Pf/Pg)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

BOT CHORD

WEBS

NOTES

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	C1	Piggyback Base Structural Gable	1	1	Job Reference (optional)	169201127

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- 6) Provide adequate drainage to prevent water ponding.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web).
 Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) All bearings are assumed to be SP No.2 .
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 43, 31 lb uplift at joint 24, 74 lb uplift at joint 34, 207 lb uplift at joint 35, 46 lb uplift at joint 37, 36 lb uplift at joint 39, 40 lb uplift at joint 40, 25 lb uplift at joint 41, 85 lb uplift at joint 42, 48 lb uplift at joint 29, 36 lb uplift at joint 28, 40 lb uplift at joint 27, 25 lb uplift at joint 26, 83 lb uplift at joint 25 and 21 lb uplift at joint 30.
- Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:42 ID:0OCl97cLqcHQTdc9i48UwsyV?Wy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	C2	Piggyback Base	4	1	Job Reference (optional)	169201128

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:43 ID:aNnJQnjUZgeZlfgAaJLvbyyV?ZO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading

TCDL

BCLL

BCDL

WEBS	2x4 SP No.2 2x4 SP No.3 *Except* 15-5,13-6,5-13:2x4 SP No.2, 18-2,11-9:2x8 SP 2400F 2.0E		Exterior(2E) -0-11-6 to 2- 12-4-15, Exterior(2R) 12-
BRACING TOP CHORD	Structural wood sheathing directly applied or		16-11-15 to 20-0-1, Exter Interior (1) 24-7-1 to 33-4 exposed ; end vertical lef
BOT CHORD	2-0-0 oc purlins (4-3-4 max.): 5-6. Rigid ceiling directly applied or 10-0-0 oc	3)	members and forces & M Lumber DOL=1.60 plate TCLL: ASCE 7-16; Pr=20
	1 Row at midpt 3-15, 8-13, 5-13 (size) 11-0-3-8 18-0-3-8		Plate DOL=1.15); Pg=20. DOL=1.15 Plate DOL=1.1
	Max Horiz 18=-231 (LC 11) Max Grav 11=1483 (LC 30), 18=1489 (LC 29)	4)	Exp.; Ce=0.9; Cs=1.00; C This truss has been desig
FORCES	(lb) - Maximum Compression/Maximum Tension	5)	overhangs non-concurrer Provide adequate drainag
TOP CHORD	1-2=0/60, 2-3=-1929/115, 3-5=-1620/194, 5-6=-1189/202, 6-8=-1611/194, 8-9=-1922/114, 9-10=0/60, 2-18=-1560/138, 9-11=-1554/138	6) 7)	All plates are 3x5 MT20 u * This truss has been des on the bottom chord in all 3-06-00 tall by 2-00-00 w
BOT CHORD	17-18=-217/455, 15-17=-21/1390, 13-15=0/1098, 12-13=0/1381, 11-12=-52/329	8)	chord and any other men
WEBS	3-17=0/178, 3-15=-414/122, 5-15=-1/585, 6-13=-1/566, 8-13=-415/122, 8-12=0/181, 2-17=0/1069, 9-12=0/1064, 5-13=-116/117	9)	Graphical purlin represent or the orientation of the p bottom chord.

NOTES

Unbalanced roof live loads have been considered for 1) this design.

tation does not depict the size urlin along the top and/or LOAD CASE(S) Standard

SEAL 036322 G 11111111 October 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall a fuss system. Before use, the building designer index very the applications of design had very the applications of design index very the application of the system below and/or chord members only. Additional terms are prevent buckling of individual truss were band/or chord members only. Additional terms are grading the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

WILLIAM INTERNATION

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D1	Attic Supported Gable	1	1	Job Reference (optional)	169201129

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:43 ID:G8CEeYFKR9u5p?ZYFph0jCyV?3k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:71.2

Plate Offsets (X, Y): [5:0-2-10,0-1-11], [6:0-2-2,Edge], [10:0-2-2,Edge], [11:0-2-7,0-2-0], [16:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.98 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 214 lb	GRIP 244/190 FT = 20%	6
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	 2x6 SP No.2 2x4 SP No.3 *Except* 19-18:2x10 SP 2400F 2.0E 2x4 SP No.3 *Except* 5-11:2x4 SP No.2 2x4 SP No.3 Structural wood sheathing directly applied or 6-0-0 oc purlins, except end verticals, and 2-0-0 oc purlins (6-0-0 max.): 6-10. Rigid ceiling directly applied or 2-2-0 oc bracing. Brace at Jt(s): 22, 23, 24 (size) 16=21-7-8, 17=21-7-8, 18=21-7-8, 19=21-7-8, 20=21-7-8, 21=21-7-8 Max Horiz 21=-229 (LC 11) Max Uplift 16=-187 (LC 10), 17=-361 (LC 30), 20=-421 (LC 31), 21=-149 (LC 9) Max Grav 16=438 (LC 30), 17=109 (LC 12), 18=1157 (LC 32), 19=1201 (LC 33) 20=70 (LC 9), 21=426 (LC 31) (b) - Maximum Compression/Maximum) Unbalanced roof live loads have been considered for this design.) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-9-14 to 2-3-5, Interior (1) 2-3-5 to 7-5-13, Exterior(2R) 7-5-13 to 11-8-12, Interior (1) 11-8-12 to 14-5-3, Exterior(2R) 74-5-3 to 18-8-2, Interior (1) 18-8-2 to 22-8-14 zone; cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DCL=1.60 plate grip DCL=1.33) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.) TCLL: ASCE 7-16; Pr=20.0 psf; Pf=18.9 psf (Lum DCL=1.15); Pg=20.0 psf (PG=1.10, Lu=50-0-0)) This truss has been designed for greater of min roof live 							rtruss to plift at joint 20 and :t the size id/or			
FORCES TOP CHORD BOT CHORD WEBS NOTES	(b) - Maximum Cor Tension 2-21=-279/159, 1-2 3-4=-53/230, 4-5=-4 6-7=-915/0, 7-8=-9' 9-10=-915/0, 10-11 12-13=-97/239, 13- 14-16=-294/143 20-21=-119/133, 17 16-17=-113/128 4-19=-784/0, 12-18 22-23=0/887, 22-24 8-22=-40/33, 7-23= 3-20=-9/238, 13-17	 =0/65, 2-3=-221/132, i31/172, 5-6=-854/0, i5/0, 8-9=-915/0, =-853/0, 11-12=-430/18 14=-252/165, 14-15=0/ -20=-123/133, =-765/0, 5-23=0/887, =0/887, 11-24=0/887, -6/83, 9-24=-7/82, =-31/216 	6) 7) 8) 9) 30, 10 50, 11 12 13	overhangs no Provide adece All plates are Gable require Truss to be fi braced again) Gable studs :) * This truss h on the botton 3-06-00 tall b chord and ar) Ceiling dead 5-23, 22-23,) All bearings a	on-concurrent with a juate drainage to pr 2x4 MT20 unless of as continuous botto ully sheathed from of st lateral movemen spaced at 2-0-0 oc. as been designed in a chord in all areas y 2-00-00 wide will y other members, y load (10.0 psf) on r 22-24, 11-24 are assumed to be	ve loads. water ponding se indicated. d bearing. e or securely iagonal web) e load of 20.0 a rectangle veen the bottt DL = 10.0pst r(s). 4-5, 11-7 3.	g. /). Opsf om f. 12,		Willing		SEA 0363	L 22 EEER.	A DAMANTANA	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

October 30,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D2	Attic	5	1	Job Reference (optional)	169201130

Scale = 1:74.6

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [6:0-5-8,0-3-0], [12:0-4-12,Edge], [13:0-4-12,Edge]

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.66 Vert(LL) -0.31 12-13 Snow (Pf/Pg) 18.9/20.0 Lumber DOL 1.15 BC 0.78 Vert(CT) -0.42 12-13 TCDL 10.0 Rep Stress Incr YES WB 0.36 Horz(CT) 0.00 11 BCLL 0.0* Code IRC2021/TPI2014 Matrix-MSH Attic -0.26 12-13	/defl L/d 3 >840 240 3 >611 180 n/a n/a 3 >615 360	I PLATES GRIP MT20 244/190 Weight: 221 lb FT = 20%
 LUMBER TOP CHORD 2x6 SP No.2 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0pst; BcDL=6.0pst; BcDL		SEAL 036322

G 11111111 October 30,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D3	Attic	4	1	Job Reference (optional)	169201131

Scale = 1:74.6

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [7:0-5-8,0-3-0], [12:0-4-12,Edge], [13:0-4-12,Edge]

10-6-0

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁴	I/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.78 0.36	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.31 -0.42 0.00 -0.26	(loc) 12-13 12-13 11 12-13	l/defl >841 >613 n/a >615	L/d 240 180 n/a 360	PLATES MT20	GRIP 244/190	
BCDL LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD JOINTS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	10.0 2x6 SP No.2 2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc (6-0-0 oc purlins, exc 1-2-0-3-8, Max Horiz 14=225 (L Max Grav 11=1363 ((lb) - Maximum Com Tension 1-2=0/52, 2-3=-1258 4-5=-467/91, 5-6=-5 7-8=-465/88, 8-9=-9 2-14=-1557/11, 10-1 11-14=-231/830 3-13=-93/434, 9-12= 4-15=-1029/213, 15- 16-17=-1008/224, 8- 2-13=0/932, 10-12= 2-12=00000000000000000000000000000000000	t* 13-12:2x10 SP 24 t* 4-8:2x4 SP No.2 athing directly applie cept end verticals, ar -0 max.): 5-7. applied or 6-0-0 oc 14=0-3-8 .C 12) (LC 3), 14=1413 (LC pression/Maximum //9, 3-4=-974/120, 76/126, 6-7=-576/12 73/122, 9-10=-1258/ 1=-1498/0 96/431, 17=-1012/215, 16=-1026/223,)/938, 5-15=-1/131,	2) 00F d or d or 3) 3) 4) 5) 6, 0, 7) 8) 9)	Wind: ASCE Vasd=103mp II; Exp B; Enc Exterior(2E)) 14-5-3, Exter to 21-9-4 zor vertical left a forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs no Provide adec * This truss h on the botton 3-06-00 tall b chord and an Ceiling dead 4-15, 15-17, Bottom choro chord dead la	7-16; Vult=130mpl bh; TCDL=6.0psf; E closed; MWFRS (e -0-9-14 to 2-2-2, In 7-5-13 to 11-8-12, ior(2R) 14-5-3 to 1 e; cantilever left an nd right exposed;C FRS for reactions : ate grip DOL=1.33 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10; s been designed for sof or 2.00 times fit con-concurrent with juate drainage to p ias been designed n chord in all areas y 2-00-00 wide will y other members. Ioad (10.0 psf) on 16-17, 8-16 d live Ioad (40.0 psi) applie are assumed to be	h (3-sec 3CDL=6 anvelope terior (1 Interior 8-8-2, I ad right C for n shown; (roof LL Pf=18.5 =1.0; Rc 0, Lu=5(or great at roof k to ther liv revent v for a liv s where I fit betw membe f) and a ed only f	ond gust) .0psf; h=25ft .0psf; h=25ft .0psf; h=227 .0psf; h=25ft .0psf; h=25ft .0psf; h=875 .0psf; h=875 .0psf; h=875 .	; Cat. 5-13, o -8-2 id 1.15 fully flive sf on g. Dpsf om 3		<u> </u>		Weight: 220 lb	FT = 20%	
NOTES 1) Unbalance this design	5-17=-164/481 d roof live loads have	been considered for	11 LC	or the orienta bottom chord) Attic room ch DAD CASE(S)	ition of the purlin a l. lecked for L/360 de Standard	long the	top and/or	526		THE REAL	The second se	SEA 0363	L22 EBERTIN	

G October 30,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancement description (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D3A	Attic	1	1	Job Reference (optional)	169201132

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:44 ID:StXyLBcCqt73sNiGN2DWo1yV?1z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70

Plate Offsets (X, Y): [4:0-5-8,0-3-0], [6:0-5-8,0-3-0], [11:0-4-12,Edge], [12:0-4-12,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.78 0.36	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.31 -0.42 0.00 -0.26	(loc) 11-12 11-12 10 11-12	l/defl >841 >613 n/a >615	L/d 240 180 n/a 360	PLATES MT20 Weight: 218 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x4 SP No.2 *Except 2.0E 2x4 SP No.3 *Except 8-7,2-3:2x6 SP No.2 Structural wood shea 6-0-0 oc purlins, exc 2-0-0 oc purlins (6-0- Rigid ceiling directly bracing. 1 Brace at Jt(s): 16 (size) 10=0-3-8, Max Horiz 13=213 (L Max Gray, 10=1364)	t* 12-11:2x10 SP 24(t* 3-7:2x4 SP No.2, athing directly applied sept end verticals, an -0 max.): 4-6. applied or 6-0-0 oc 13=0-3-8 C 12) 12=1364 (I C	2) DOF d or d 3) 3) 5)	Wind: ASCE Vasd=103mp II; Exp B; Eno Exterior(2E) 0 7-5-13, Exter 11-8-12 to 14 (1) 18-8-2 to exposed ; en members and Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.9 Provide adec * This truss h	7-16; Vult=130mph bh; TCDL=6.0psf; E closed; MWFRS (e 0-1-12 to 3-1-12, Ir ior(2R) 7-5-13 to 1 -5-3, Exterior(2R) 21-9-4 zone; cantil d vertical left and rid forces & MWFRS =1.60 plate grip DC 7-16; Pr=20.0 psf; ate DOL=1.15; Is= ; Cs=1.00; Ct=1.10; uate drainage to p as been designed	n (3-sec 3CDL=6 nvelope nterior (' 1-8-12, 14-5-3 = ever lef ight exp for rea DL=1.33 (roof LL Pf=18.9 =1.0; RC 0, LU=50 revent v for a liv	ond gust) .0psf; h=25ft; .) and C-C 1) 3-1-12 to Interior (1) .o 18-8-2, Inte t and right osed;C-C for ctions shown .: Lum DOL= ² .) psf (Lum .) psf (Lum .) po-0 water ponding e load of 20.0	c Cat. erior ; 1.15 fully g. Dpsf					
	(lb) - Maximum Com Tension	pression/Maximum	3)	on the botton 3-06-00 tall b chord and an	n chord in all areas y 2-00-00 wide will y other members.	where fit betv	a rectangle /een the botto	om					
BOT CHORD WEBS	4-5=-753/129, 5-6=-5 7-8=-975/119, 8-9=-1 9-10=-1501/0 10-13=-218/833 2-12=-96/431, 8-11= 3-14=-1034/215, 14 15-16=-1016/218, 7- 1-12=0/942, 9-11=0// 6-15=0/132, 5-16=-2 6-16=-166/480	-96/431, 1259/0, 1-13=-1501/(-96/431, 16=-1016/217, 15=-1034/216, 942, 4-14=-1/132, 16/78, 4-16=-166/48	1, 6) 1, 7) 8) 9) 0, 10]	3-14, 14-16, Bottom chord chord dead la All bearings a Graphical pu or the orienta bottom chord Attic room ch AD CASE(S)	load (10.0 psf) on 1 15-16, 7-15 l live load (40.0 psf bad (5.0 psf) applie are assumed to be rlin representation tition of the purlin al l. ecked for L/360 de Standard	membe d only t SP No. does no long the	r(s). 2-3, 7-8, dditional botto o room. 11-12 2 . ot depict the s top and/or	om 2 size		Guin	I. I.	NUTH CA	ROWN
NOTES 1) Unbalance this design	ed roof live loads have n.	been considered for								DITL'S			ER. Kul

NOT

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G 111111111 October 30,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB1	Piggyback	2	1	Job Reference (optional)	169201133

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:44 ID:dmFR6rikcz04dGBeyRwMy9yV?h9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.4

Plate Offsets (X, Y):	[2:0-2-1,0-1-0],	[6:0-2-1,0-1-0]
-----------------------	------------------	-----------------

						-								
Loading	(psf)	Spacing	1-11-4		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
ICLL (roof)	20.0	Plate Grip DOL	1.15			0.06	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999			
	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	15	n/a	n/a			
BCLL	0.0*	Code	IRC202'	1/TPI2014	Matrix-MP									
BCDL	10.0					-						Weight: 30 lb	FI = 20%	
LUMBER			3)	Truss desigr	ned for wind loads	in the pla	ane of the tru	ISS						
TOP CHORD	2x4 SP No.2			only. For stu	ids exposed to w	ind (norm	al to the face	e),						
BOT CHORD	2x4 SP No.2			see Standar	d Industry Gable	End Deta	ils as applica	ble,						
OTHERS	2x4 SP No.3		4	or consult qu	alified building de	esigner a	s per ANSI/11	PI 1.						
BRACING			4)	Diete DOI	: 7-16; Pr=20.0 ps			1.15						
TOP CHORD	Structural wood shea	athing directly applie	d or	DOL=1.15 P	late DOL=1.15); Pg=20.0 ps	s=1.0: R	ough Cat B: F	ullv						
	6-0-0 oc punins.	applied or 10.0.0 oc		Exp.; Ce=0.9	9; Cs=1.00; Ct=1.	10	, ,							
	bracing.	applied of 10-0-0 oc	5)	This truss ha	as been designed	for great	er of min roof	live						
REACTIONS	(size) 2=6-3-11,	6=6-3-11, 8=6-3-11	,	overbangs n	on concurrent wit	h othor liv	au or 13.9 p	51 011						
	9=6-3-11,	10=6-3-11, 11=6-3-	11, ₆)	Gable requir	es continuous ho	ttom chor	d bearing							
	15=6-3-11		7)	Gable studs	spaced at 2-0-0 (a boaring.							
	Max Horiz 2=54 (LC	12), 11=54 (LC 12)	8)	* This truss I	has been designe	d for a liv	e load of 20 (Opsf						
	Max Uplift 2=-9 (LC 9	9), 8=-43 (LC 14), 10)=-43	on the bottor	m chord in all area	as where	a rectangle							
	(LC 13), 1	1=-9 (LC 9)	450	3-06-00 tall I	by 2-00-00 wide w	vill fit betv	veen the bott	om						
	Max Grav 2=67 (LC	30), 6=65 (LC 2), 8=	159	chord and a	y other members	s.								
	(LC 30), 9 20) 11_6	7 (LC 2), 10=15	9 (LC 9)	All bearings	are assumed to b	e SP No.	2.							
	(lb) Maximum Cam	7 (LC 30), 15=05 (LC	⁽²⁾ 10) Provide med	hanical connection	on (by oth	ers) of truss t	to						
FURCES	Tension	pression/waximum		bearing plate	e capable of withs	standing 9	b uplift at jo	vint 2,						
TOP CHORD	1-2=0/19, 2-3=-59/42	2, 3-4=-85/79,		at joint 2.	t joint 10, 43 ib up	nint at join	10 4110 9 10 0	ipint						
	4-5=-85/78, 5-6=-58/	/35, 6-7=0/19	11) See Standar	d Industry Piaavb	ack Trus	s Connection					11111 00	E'lle	
BOT CHORD	2-10=-29/73, 9-10=-2	29/73, 8-9=-29/73,		Detail for Co	nnection to base	truss as a	applicable, or				1	TH UA	ROIL	•
WED0	6-8=-29/73			consult quali	fied building desig	gner.					1	N. JESS	· ····································	1
WEBS	4-9=-67/0, 3-10=-17	//1//, 5-8=-1///1/6	LC	DAD CASE(S)	Standard						~ ~	in the second	No. 2	1
NOTES				.,						U	Ŋ	27/ d		
1) Unbalance	ed roof live loads have	been considered for												3
this desigr	n.	(a								=		SEA	L È	=
2) Wind: ASC	CE 7-16; Vult=130mph	(3-second gust)	• •							=	:	0202	22 :	
Vasd=103	Smpn; ICDL=6.0psf; BC	UL=6.Upst; h=25ft;	Cat.							1	- :	0363	~~ :	-
II; EXP B; I	ETICIOSED; IVIVERS (ED E) 0-2-14 to 3-2-14 Int	erior (1) 3-2-14 to 2	0-0							-	e e			-
Exterior(2)	R) 3-9-9 to 6-7-8 Interi	ior (1) 6-7-8 to 7-4-4	5-3,							5	2	·	a.	3
ZODE: Can	tilever left and right exe	osed · end vertical l	eft								24	NGIN	FERIA	5
and right e	exposed:C-C for memb	ers and forces &									11,	710	- AFY	
MWFRS f	or reactions shown: Lu	mber DOL=1.60 plat	e									IL A G	ILD	
grip DOL=	=1.33											1111111	in the second se	

October 30,2024

Page: 1

TRENCO A MiTek Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB2	Piggyback	22	1	Job Reference (optional)	169201134

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:44 ID:SvciNunVCpnELBeoJi1mCQyV?h3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

6-3-11

Sca	le =	1:29	

Loading TCLL (roof) Snow (Pf/Pg)	(psf) 20.0 13 9/20 0	Spacing Plate Grip DOL	2-0-0 1.15 1.15		CSI TC BC	0.18	DEFL Vert(LL)	in n/a n/a	(loc) -	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190
TCDL	10.0/20.0	Rep Stress Incr	YES		WB	0.02	Horiz(TL)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 28 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood sh 6-0-0 oc purlins. Rigid ceiling direct bracing.	heathing directly applie ly applied or 10-0-0 oc	3) ed or ; 5) 7 7 2 6)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 PI Exp.; Ce=0.5 Gable requiri Gable studs	hed for wind loads uds exposed to wi d Industry Gable E alified building de 7-16; Pr=20.0 ps 1.15); Pg=20.0 ps late DOL=1.15); Is 0; Cs=1.00; Ct=1.7 es continuous bot spaced at 4-0-0 o	in the pland (norm End Deta esigner as of (roof LL ; Pf=13.9 s=1.0; Ro 10 tom chor oc.	ane of the tru al to the face ils as applica s per ANSI/TI .: Lum DOL=) psf (Lum ough Cat B; F d bearing.	ss), ble, PI 1. 1.15 Fully					
NEACTIONS	(3)2e) 1=1772 6=77-2 Max Horiz 1=-56 (I Max Uplift 1=-202 4=-69 (I 7=-78 (I Max Grav 1=73 (L 4=363 (6=169 (I 10=363)	, 2-17-2, 4-17-2, 3= , 7=7-2, 10=7-7-2 ,C 9) (LC 29), 2=-78 (LC 13) (LC 14), 5=-169 (LC 30) (LC 13), 10=-69 (LC 14) (C 13), 2=397 (LC 29), LC 30), 5=55 (LC 14), LC 2), 7=397 (LC 29), (LC 30)), 8)), 9)	 * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 2, 69 lb uplift at joint 5, 78 	has been designed in chord in all area by 2-00-00 wide w by other members are assumed to be hanical connectio e capable of withs t at joint 4, 202 lb lb uplift at joint 2 a	d for a liv as where ill fit betv e SP No. n (by oth tanding 7 uplift at ju and 69 lb	e load of 20.0 a rectangle veen the botto 2 . ers) of truss t 8 lb uplift at j boint 1, 169 lb o uplift at joint	Opsf om oint uplift 4.					
FORCES	(lb) - Maximum Co Tension	mpression/Maximum	10	 See Standar Detail for Co consult quali 	d Industry Piggyb nnection to base t fied building desig	ack Trus truss as a gner.	s Connection applicable, or						11.5
TOP CHORD	1-2=-132/181, 2-3 4-5=-115/159	=-125/96, 3-4=-125/95	, F	OAD CASE(S)	Standard							W'LL CA	Della
BOT CHORD WEBS	2-6=-68/67, 4-6=-6 3-6=-84/8	68/72								6	A.L.	ORTHOR	N.
 Unbalance this design Wind: AS(Vasd=103 II; Exp B; Exterior(2 Exterior(2 zone; can and right e MWFRS f grip DOL= 	ed roof live loads hav n. CE 7-16; Vult=130mg 3mph; TCDL=6.0psf; Enclosed; MWFRS (E) 0-2-14 to 3-2-14, R) 3-9-9 to 6-7-8, Int tilever left and right e exposed;C-C for mer for reactions shown; I =1.33	te been considered for bh (3-second gust) BCDL=6.0psf; h=25ft; envelope) and C-C interior (1) 3-2-14 to 3- erior (1) 6-7-8 to 7-4-4 xposed ; end vertical I nbers and forces & Lumber DOL=1.60 plat	Cat. 9-9, eft te							C. HILLING.		SEA 0363	EER.H. ILBERTITION r 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

SINEEDING

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB3	Piggyback	1	2	Job Reference (optional)	169201135

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:44 ID:tUIq?wpNUk9oCfNN_qbTq2yV?h0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29

Loading TCLL (roof) Snow (Pf/Pg) TCDL	1	(psf) 20.0 3.9/20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.08 0.03 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190
BCDL		10.0	Code	IRC202	1/1912014	Matrix-MP							Weight: 55 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	LUMBER TOP CHORD 2x4 SP No.2 30T CHORD 2x4 SP No.2 DTHERS 2x4 SP No.3 BRACING 500 CHORD STOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. 30T CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. REACTIONS (size) 1=7-7-2, 2=7-7-2, 4=7-7-2, 5=7-7-2, 6=7-7-2, 7=7-7-2, 10=7-7-2 Max Horiz 1=-56 (LC 11) Max Uplift 1=-192 (LC 29), 2=-76 (LC 13),				 Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp B; Enn Exterior(2E) i Exterior(2E) i zone; cantiler and right exp MWFRS for r grip DOL=1.3 Truss desion 	roof live loads have 7-16; Vult=130mpf h; TCDL=6.0psf; E closed; MWFRS (e 0-2-14 to 3-2-14, Ir 3-9-9 to 6-7-8, Inte ver left and right ex osed;C-C for mem eactions shown; Lu 3 ed for wind loads in	e been o h (3-sec 3CDL=6 nvelope nterior (rior (1) cposed bers an umber I n the ol	considered for cond gust) .0psf; h=25ft e) and C-C 1) 3-2-14 to 3 6-7-8 to 7-4 e end vertical d forces & DOL=1.60 pla ane of the tru	or ; Cat. 3-9-9, 4 left ate				-	
	Max Horiz Max Uplift Max Grav	1=-56 (LC 1=-192 (L0 4=-67 (LC 7=-76 (LC 1=71 (LC 4=352 (LC 6=174 (LC 10=352 (L	11) C 29), 2=-76 (LC 13), 14), 5=-160 (LC 30), 13), 10=-67 (LC 14) 13), 2=385 (LC 29), 30), 5=52 (LC 14), c 2), 7=385 (LC 29), C 30)	6	 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 6) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 7) Gable requires continuous bottom chord bearing. 									
FORCES	(lb) - Max Tension		pression/Maximum	8	 Gable studs : * This truss h on the botton 	spaced at 4-0-0 oc. as been designed n chord in all areas	for a liv where	e load of 20.0 a rectangle	0psf					
 TOP CHORD 1-2=-126/175, 2-3=-122/90, 3-4=-123/89, 4-5=-110/152 BOT CHORD 2-6=-71/74, 4-6=-71/80 WEBS 3-6=-87/9 NOTES 1) 2-ply truss to be connected together as follows: Top chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. Bottom chords connected with 10d (0.131"x3") nails as follows: 2x4 - 1 row at 0-9-0 oc. 2) All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. 				1 1 s 1	 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 67 lb uplift at joint 5, 76 See Standard Detail for Con consult qualif OAD CASE(S) 	y 2-00-00 wide will y other members. are assumed to be nanical connection capable of withsta at joint 4, 192 lb uj lb uplift at joint 2 ar d Industry Piggybac nection to base tr ied building design Standard	I fit betv (by oth Inding 7 plift at ju nd 67 lb ck Trus uss as a her.	veen the bott 2. ers) of truss i 6 lb uplift at j int 1, 160 lb uplift at joint s Connection applicable, or	om ioint uplift 4.		Welling		SEA 0363	

October 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB4	Piggyback	2	2	Job Reference (optional)	169201136

-0-7-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:44 ID:DS5j2etWJGn5IQFLnNAeX6yV?gx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-11-1

Page: 1

Scale = 1:29.1

Plate Offsets (X, Y): [2:0-2-1.0-1-0]. [4:0-2-1.0-1-0]

(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.11 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
BCDL 10.0 LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.3 BRACING Zx4 SP No.3 BRACING TOP CHORD 2-0-0 oc purlins (6-0-0 max.) (Switched from sheeted: Spacing > 2-8-0). Solution BOT CHORD 2-0-0 oc purling (6-0-0 max.) (Switched from sheeted: Spacing > 2-8-0). Solution BOT CHORD Rigid ceiling directly applied or 10-0-0 oc bracing. Solution REACTIONS (size) 2=6-3-11, 4=6-3-11, 6=6-3-11, 7=6-3-11, 11=6-3-11 Max Horiz 2=-83 (LC 11), 7=-83 (LC 11) Max Horiz 2=-83 (LC 13), 4=-21 (LC 14), 7=-13 (LC 13), 11=-21 (LC 14), 80 (LC 2), 7=269 (LC 2), 4=269 (LC 2), 6=291 (LC 2), 7=269 (LC 2), 11=269 (LC 2), 20 FORCES (lb) - Maximum Compression/Maximum				 4) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 3-9-9, Exterior(2R) 3-9-9 to 6-7-8, Interior (1) 6-7-8 to 7-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 5) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 6) TCLL: ASCE 7-16; Pr=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 							weight: 55 lb	<u>F1 = 20%</u>
(lb) - Maximum Com Tension 1-2=0/29, 2-3=-220/1 4-5=0/29 2-6=-44/108 4-6=-39	pression/Maximum 148, 3-4=-220/146, 9/114	8) 9)	 load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. Gable requires continuous bottom chord bearing. Gable studs spaced at 4-0-0 oc. 									um.
3-6=-105/0	5/111	10)	on the botton	as been designed i chord in all area	d for a liv as where	e load of 20.0 a rectangle	Jpst				WTH CA	Roilin
			3-06-00 tall b	y 2-00-00 wide w	ill fit betv	veen the bott	om			1	OR JESS	DO INIT
to be connected toget is connected with 10d (44 - 1 row at 0-9-0 oc. iords connected with 10 44 - 1 row at 0-9-0 oc. are considered equally a ioted as front (F) or bac section. Ply to ply conn o distribute only loads n erwise indicated. ed roof live loads have n.	11) 12) s ND 13) 14) LO	 chord and any other members. 11) All bearings are assumed to be SP No.2. 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 13 lb uplift at joint 2, 21 lb uplift at joint 4, 13 lb uplift at joint 2 and 21 lb uplift at joint 4. 13) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer. 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 								EER. HILL 11.BET. III. 11.BET.		
	$\begin{array}{c} (\text{psf}) \\ 20.0 \\ 13.9/20.0 \\ 10.0 \\ 0.0^* \\ 10.0 \\ 0.0^* \\ 10.0 \\ \end{array}$	$\begin{array}{c c} (psf)\\ 20.0\\ 13.9/20.0\\ 13.9/20.0\\ 10.0\\ 0.0^{*}\\ 10.0\\ 0.0^{*}\\ 10.0\\ \end{array} \begin{array}{c} Plate Grip DOL\\ Lumber DOL\\ Rep Stress Incr\\ Code\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(psf) 20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr Code $3-0-0$ Plate Grip DOL 1.15 Rep Stress Incr NO Code2x4 SP No.2 2x4 SP No.34)Wind: ASCE Vasd=103mp II; Exp B; Enc Streior(2E) (Exterior(2E) (Exterio	(psf) 20.0Spacing Plate Grip DOL 1.15 $3.0-0$ Plate Grip DOL 1.15CSI TC BC13.9/20.010.01.15TC BC10.010.0Rep Stress Incr CodeNO2.4SP No.2Rep Stress Incr CodeNO2.4SP No.2Stress Incr2.4SP No.2Stress Incr2.4ST Ins Stress IncrStress Incr(Size)2.6-3-11, 4.6-3-11, T-6-3-11, 11-6-3-11Stress IncrMax Horiz263Stress IncrMax Grav2269 (LC 2), 1=269 (LC 2), 6=291 (LC 2), 7=269 (LC 2), 1=269 (LC 2), 6=20 (LC 2), 7=269 (LC 2), 6=20 	(psf) 20.0 13.9/20.0 13.9/20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.15 Rep Stress Incr CodeCSI TC 0.11 WB WB 0.01 WB WB 0.01 WB WB 0.01 WB WB 0.01 WB WB WS Matix-MP2x4 SP No.2 2x4 SP No.2 2x4 SP No.34Wind: ASCE 7-16; Vult=130mph (3-sec Vasd=103mph; TCDL=6.0pst; BOL=6 Stectior(2E) 0-2-14 to 3-2-14, Interior (1) zone; cantilever left and right exposed to 2-2-04 to 3-2-14, Interior (1) zone; cantilever left and right exposed to 2-2-14 to 3-2-14, Interior (1) zone; cantilever left and right exposed to 2-2-14 to 3-2-14, Interior (1) zone; cantilever left and right exposed to 2-2-14 to 3-2-14, Interior (1) zone; cantilever left and right exposed to 3-8-11, 11=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, T-a-6-3-11, 12=6-3-11, Max Upilit 2=-13 (LC 13), 4=-21 (LC 14), T-a-13 (LC 13), 11=-21 (LC 1	(psf) 20.0 13.9/20.0 13.9/20.0 13.9/20.0 13.9/20.0 10.0 0.0*Spacing Plate Grip DOL 1.15 Lumber DOL 1.15 Lumber DOL 1.15 NO CodeCSI TC 0.11 BC 0.11 WB Matrix-MPDEFL Vert(LT) Vert(LT) Wert(CT) WB Matrix-MP2x4 SP No.2 2x4 SP No.2 2x4 SP No.34)Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf, BCDL=6.0psf, bcDL=5.0psf, bc2DL=5.0psf, b	(pst) 20.0 13.9/20.0 13.9/20.0 	(psf) 20.0 13.9/20.0 13.9/20.0 10.0Spacing Plate Grip DOL 1.15 Lumber DOL 1.003-0-0 1.15 RC2021/TPI2014CSI TC TC BCDEFL ver(LL) ver(LL) N/a - Horz(CT)in (loc) Ver(CT) Horz(CT)2x4 SP No.2 2x4 SP No.32-0-0 oc purlins (6-0-0 max.) (Switched from sheeted: Spacing > 2-0-0). Rigid ceiling directly applied to 100-00 oc bracing.4)Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0pst; BCDL=6.0pst; Bc2DL=6.0pst; Bc2DL=6.1pst; Bc2DL=1pst;	(psf) Spacing 3-0-0 CSI DEFL in (loc) I/defl 13.9/20.0 Lumber DOL 1.15 BC 0.11 Vert(CJ) v/a - n/a 10.0 0.0* 10.0 Code IRC2021/TPI2014 WB 0.01 Vert(CJ) v/a - n/a 2x4 SP No.2 2x4 SP No.3 Exterior(2E) 0.2-14 to 3-2-14, Interior(1) 3-2-14 to 3-9-9, Exterior(2E) 0.2-14 to 3-2-14, Interior(1) 3-2-16 to 2-14 to 3-2-14, Interior(2E) 3-20-9, Exterior(2E) 0.2-14 to 3-2-14, Interior(1) 3-2-16 to 2-14 to 3-2-14, Interior(1) 3-2-16 to 2-14 to 3-2-14, Interior(2E) 3-20-9, Exterior(2E) 3-20-9, Exterio	(ps) (20.0 (13.9/20.0 (10.0 0.00Spacing (Plate Grip DOL 1.15 (Source DOL (200)3-0-0 (1.15 (TC C (C00)CSI (TC (C00)DEFL (1.15 (TC (C00)In (loc) (loc)I/deft (Ld) (Vert(C1) (Val - n/a) (Vert(C1) (Vert(C1) (Vert(C1))DEFL (1.15 (Vert(C1)) (Vert(C1))In (loc) (loc)I/deft (Ld) (Vert(C1))Ld (Vert(C1))DEFL (1.15 (Vert(C1)) (Vert(C1))In (loc) (loc)I/deft (Ld) (Vert(C1))Ld (Vert(C1))DEFL (1.15 (Vert(C1))In (loc) (loc)I/deft (Ld) (Vert(C1))I/deft (Ld) (Vert(C1))DEFL (1.15 (Vert(C1))In (loc) (loc)I/deft (Ld) (Vert(C1))I/deft (Ld) (Vert(C1))DEFL (1.15) (Vert(C1))I/deft (Ld) (Vert(C1))I/deft (Ld) (Vert(C1))I/deft (Ld) (Vert(C1))I/deft (Ld) (Vert(C1))DEFL (I.15) (Vert(C1))I/deft (Ld) (Vert(C1)	(psf) Spacing 3-0-0 CSI 0 DEFL in (loc) Videll L/d PLATES 13.35/200 Lumber DOL 1.15 TC 0.11 Vert(CT) n/a - n/a 999 10.0 Rep Stress Incr NO BC 0.11 Vert(CT) n/a - n/a 999 2x4 SP No.2 Wint: ASCE 7-16; Vult=130mph (3-second gust) Vert(CT) 0.00 4 n/a n/a 2x4 SP No.2 2x4 SP No.3 Exterior(2R) 3-99 to 6-7.8, Interior (1) 6-7.8 to 7-4.4 2006 CSI (1) 7-43

818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH				
24100066-01	PB6	Piggyback	1	1	Job Reference (optional)	169201137			

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:44 ID:tmpGZk12UyIOkGAeUuOS0eyV?gl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TP	912014	CSI TC BC WB Matrix-MP	0.08 0.02 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-9-12, 9=5-9-12, 14=5-9-12 Max Horiz 2=59 (LC Max Uplift 2=-17 (LC (LC 14), 1 (LC 9), 14 Max Grav 2=62 (LC (LC 30), 9 29), 11=62	athing directly applied applied or 10-0-0 oc 6=5-9-12, 8=5-9-12, 10=5-9-12, 11=5-9-12 12), 11=59 (LC 12) :9), 6=-8 (LC 10), 8=- 0=-60 (LC 13), 11=-1 :=-8 (LC 10) 30), 6=54 (LC 29), 8= 1=103 (LC 2), 10=161 2 (LC 30), 14=54 (LC	3) Tri on se or 4) TC Pla DC C Ex 5) Th loa 5) Th loa 2, 6) Ga 7) Ga 7) Ga 7) Ga 59 8) *T 7 on 3-(ch (LC 9) All 9) Pla Loa 2, 6) Ga 7) Ga 7 59 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 8 8 1 7 0 7 0 7 0 8 1 8 1 7 0 7 0 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	russ designing investigation of the state of the state of the state consult quarter of the state of th	ed for wind loads ir ds exposed to wind I ndustry Gable Er alified building desi 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10; s been designed fo psf or 2.00 times fla on-concurrent with as continuous botto spaced at 2-0-0 oc. as been designed in chord in all areas y 2-00-00 wide will y other members. are assumed to be nanical connection capable of withsta	the plat d (norm d Deta gner as (roof LL Pf=13.9 at.0; Rc of r great troof k other liv other liv fit betw SP No. (by oth nding 1	ane of the tru: alt to the face is as applical sper ANSI/TF .: Lum DOL= psf (Lum ough Cat B; F er of min roof pad of 13.9 ps re loads. d bearing. e load of 20.0 a rectangle reen the botto 2. ers) of truss t 7 lb uplift at j	ss),)le, PI 1. I.15 ully live sf on ppsf om on						
TOP CHORD	(ID) - Maximum Com Tension 1-2=0/18, 2-3=-131/5	55, 3-4=-91/74,	2, joii 11) Se	8 lb uplift a int 8, 17 lb u Standard	it joint 6, 60 lb uplif uplift at joint 2 and	t at join 8 lb upl	t 10, 59 lb up ift at joint 6.	lift at				, mining	11111	
BOT CHORD	4-5=-91/88, 5-6=-90/ 2-10=-37/84, 9-10=-3 6-8=-37/84	/57, 6-7=0/18 37/84, 8-9=-37/84,	De	etail for Cor	nnection to base tru ied building design	uss as a er.	applicable, or				and the	OP EESS	ROIN	1
WEBS	4-9=-60/0. 3-10=-194	4/260. 5-8=-195/205	LOAD	CASE(S)	Standard						20	CP)	Min.	27
NOTES		,										:2	K .	-
 Unbalanc this desig Wind: AS Vasd=103 II; Exp B; Exterior(12 vertical le forces & N DOL=1.60 	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) zone; cantilever left ft and right exposed;C-1 MWFRS for reactions sl 0 plate grip DOL=1.33	been considered for (3-second gust) CDL=6.0psf; h=25ft; C ivelope) and C-C and right exposed ; e C for members and hown; Lumber	cat. nd							THE AVEN	A MARINE AND	SEA 0363	L 22 ILBERT	and

October 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH				
24100066-01	PB7	Piggyback	10	1	Job Reference (optional)	169201138			

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:44 ID:HLVOCm3wntgzbkvD91y9eGyV?gi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:30.4

Plate Offsets (X, Y):	[2:0-2-6,0-1-0],	[4:0-2-6,0-1-0]
-----------------------	------------------	-----------------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	014	CSI TC BC WB Matrix-MP	0.17 0.17 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-9-12, 7=5-9-12, Max Horiz 2=61 (LC Max Uplift 2=-8 (LC - (LC 14), 1 Max Grav 2=171 (LC (LC 2), 7=	4) TCL Plate DOL Exp. 5) This d or 6) Gab 7) Gab 8) * Thi 3-06 chor =-8 9) All b eat LC 10) Prov bear 11 lb	 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads. 6) Gable requires continuous bottom chord bearing. 7) Gable studs spaced at 4-0-0 oc. 8) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. 9) All bearings are assumed to be SP No.2. 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 2, 11 lb uplift at joint 4, 8 lb uplift at joint 2 and 11 lb uplift at 										
FORCES	(lb) - Maximum Com Tension 1-2=0/19, 2-3=-152/ [/]	pression/Maximum 103, 3-4=-153/126,	joint 11) See Deta cons	 11) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building designer 									
BOT CHORD WEBS	4-5=0/19 2-6=-56/64, 4-6=-33/ 3-6=-50/3	/68	LOAD C	LOAD CASE(S) Standard								TH CA	RO
 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 										Contraction of the second s		SEA 0363	EER. HILL 122 ILBERTITION r 30,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL1	Valley	1	1	Job Reference (optional)	169201139

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:1FpsTdwzw?qIKHj9eHG6qRyV?iA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.7

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.05 0.13 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=18-7-2, 13=18-7-2	athing directly applie applied or 10-0-0 oc 11=18-7-2, 12=18-7 2 14=18-7-2 16=18-	WE NC d or 1) -2, 7-2	BS 5 3 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 7 5 0 9 0 7 5 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0	-17=-157/113, 4-1 -19=-160/152, 2-2 -16=-157/113, 8-1 -13=-160/152, 10- oof live loads have 7-16; Vult=130mpt h; TCDL=6.0psf; B Jossed; MWFRS (e 3-3-9, Exterior(2N)	8=-155/ 0=-125/ 4=-155/ 12=-12- e been of been of (3-sec CDL=6 nvelope (3-3-9 1	141, 96, 141, 4/94 considered fo cond gust) .0psf; h=25ft; e) and C-C Cc o 9-3-9, Corr	r Cat. orner her	11) Bev surf LOAD (eled plat ace with CASE(S)	te or si truss Star	him required to pr chord at joint(s) 1 ndard	ovide full bearing , 11.
	13=10772 17=18-7-2 20=18-7-2 20=18-7-2 20=18-7-2 20=18-7-2 13=-59 (L) 13=-59 (L) 16=-25 (L) 18=-63 (L) 18=-63 (L) 18=-63 (L) 12=161 (L) 12=161 (L) 14=162 (L) 17=300 (L) 19=212 (L)	2, 18=18-7-2, 10=10- 2, 18=18-7-2, 19=18- 2 10) 11), 11=-37 (LC 12) C 14), 14=-63 (LC 12) C 14), 17=-28 (LC 12) C 13), 19=-57 (LC 12) C 13), 11=127 (LC 14) C 29), 13=214 (LC 2) C 29), 16=296 (LC 2) C 28), 18=160 (LC 2) C 28), 20=181 (LC 2)	7-2, 7-2, 4), 3), 3) 3), 4), 29), 4) 29), 4) 28), 28),	(3R) 9-3-9 to zone; cantile and right exp MWFRS for r grip DOL=1.3 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9	12-3-9, Exterior(2) ver left and right ex osed;C-C for mem eactions shown; Lu 3 ed for wind loads in ds exposed to wind Industry Gable Er alified building des 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10;	N) 12-3- posed bers an umber I d (norm d Deta igner as (roof LL Pf=13.9 c1.0; Rc	9 to 18-2-14 end vertical d forces & DOL=1.60 pla ane of the trus al to the face ils as applicat s per ANSI/TF .: Lum DOL=' 0 psf (Lum pugh Cat B; F	left tte ss), ble, Pl 1. 1.15 fully				WTH CA	Roj
FORCES	(lb) - Maximum Com Tension 1-2=-370/154, 2-3=-: 4-5=-123/35, 5-6=-1: 7-8=-118/28, 8-9=-1 10-11=-368/154 1-20=-111/285, 19-2 18-19=-111/285, 12- 18-17=-111/285, 12- 11-12=-111/285	pression/Maximum 297/123, 3-4=-173/6i 21/55, 6-7=-121/55, 74/65, 9-10=-297/12: 0=-111/285, 18=-111/285, 16=-111/285, 13=-111/285,	5) 5, 6) 3, 8) 9) 10)	All plates are Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 1, 37 lb uplift at joint 18, 57 63 lb uplift at	2x4 MT20 unless as continuous botto spaced at 2-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members, v are assumed to be nanical connection capable of withsta at joint 11, 28 lb up 'lb uplift at joint 19 joint 14 and 59 lb u	otherwi m chor for a liv where fit betw with BC SP No. (by oth nding 5 blift at jo , 25 lb u uplift at	se indicated. d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss t 2 lb uplift at jo joint 17, 63 lb uplift at joint 1 joint 13.	Opsf om o oint uplift 16,		Mannan		SEAI 03632	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

October 30,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL2	Valley	1	1	Job Reference (optional)	169201140

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:hZYO_j3U5hLbm7dTLpTwJzyV?i_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

17-3-2

Scale = 1:57.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr * Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.19 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood s 10-0-0 oc purlins Rigid ceiling direc bracing. 1 Row at midpt (size) 1=17-3 8=17-3 Max Horiz 1=158 Max Uplift 1=-82 9=-137 Max Grav 1=100 (LC 29 28) 14	heathing directly appli tly applied or 6-0-0 oc 3-8 -2, 5=17-3-2, 6=17-3- -2, 9=17-3-2, 14=17-3 (LC 10) LC 9), 6=-132 (LC 14) (LC 12), 5=1 (LC 29), 1, 8=682 (LC 28), 9=50 =1 (LC 29)	3) ied or 5 2, 7) 2, 7) 1-2), 8) 6=536 38 (LC	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requiri Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mech bearing plate 1, 137 lb upli	ed for wind loads in ds exposed to wind d Industry Gable Er alified building des 7-16; Pr=20.0 psf; ate DOL=1.15; Is= ; Cs=1.00; Ct=1.10 es continuous botts spaced at 4-0-0 oc ias been designed in chord in all areas by 2-00-00 wide will yo other members, are assumed to be hanical connection capable of withsta ft at joint 9 and 132	n the pla d (norm nd Deta iigner as (roof LL Pf=13.9 =1.0; Rc o for a liv s where l fit betv with BC SP No. (by oth anding 8 2 lb upli	ane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= 0 psf (Lum ough Cat B; F d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss t i2 lb uplift at j it at joint 6.	iss ble, ble, Pl 1. 1.15 - ully Opsf om f. to ioint					
FORCES	(lb) - Maximum C Tension	ompression/Maximum		DAD CASE(S)	Standard								
TOP CHORD	1-2=-127/393, 2-3 4-5=-310/320	8=-34/315, 3-4=-34/29	9,										
BOT CHORD	1-9=-188/130, 8-9 5-6=-188/130)=-188/130, 6-8=-188/	130,									WH CA	ROUL
WEBS	3-8=-499/0, 2-9=-	377/330, 4-6=-376/33	0								1	R	3 Little
NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103 II; Exp B; I (3E) 0-0-4 (3R) 8-7-1 zone; cant and right e MWFRS for grip DOL=	ed roof live loads ha a. CE 7-16; Vult=130m imph; TCDL=6.0psf Enclosed; MWFRS to 3-0-4, Exterior(2 3 to 11-7-13, Exteri tilever left and right exposed;C-C for me pr reactions shown; 1.33	ve been considered for ph (3-second gust) BCDL=6.0psf; h=25ft (envelope) and C-C C N) 3-0-4 to 8-7-13, Co or(2N) 11-7-13 to 16-1 exposed; end vertical mbers and forces & Lumber DOL=1.60 pt	or ;; Cat. orner iner 11-6 left ate							Carrienter.		SEA 0363	L L L L L L L L L L L L L L L L L L L

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

October 30,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL3	Valley	1	1	Job Reference (optional)	169201141

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:_vT2S79tRqDc6CgpGn5Z5SyV?ht-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:51.9

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.23 0.16 0.28	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 77 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=15-11-2 7=15-11-2 Max Horiz 1=-146 (L Max Uplift 1=-24 (LC 8=-121 (L Max Grav 1=139 (LC 6=498 (LC 8=501 (LC	athing directly applied applied or 6-0-0 oc 2, 5=15-11-2, 6=15-1 2, 8=15-11-2 C 9) 9), 6=-118 (LC 14), C 13) C 29), 5=114 (LC 28), C 29), 7=444 (LC 28), C 28)	3 4 1 or 1-2, 6 7 8 9	 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Gable requiri Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate 1, 121 buoli 	ed for wind load dids exposed to w d Industry Gable lalified building d 7-16; Pr=20.0 p (15); Pg=20.0 p late DOL=1.15); 5; Cs=1.00; Ct=1 es continuous bc spaced at 4-0-0 nas been designe n chord in all are by 2-00-00 wide v y other member are assumed to I hanical connecti e capable of with ft at joint 8 and 1	s in the pl. vind (norm End Deta lesigner a: sts (roof LL st; Pf=13.9 Is=1.0; Rc 10 bttom chor oc. ed for a liv eas where will fit bett s, with BC be SP No. on (by oth standing 2 18 lb upil	ane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= 0 psf (Lum Dough Cat B; F d bearing. e load of 20.1 a rectangle veen the bott :DL = 10.0psi 2 . ers) of truss t et al point 6.	ss), ble, PI 1. 1.15 Fully Opsf f. com f.					
	(lb) - Maximum Com Tension	pression/Maximum	L	OAD CASE(S)	Standard		,						
TOP CHORD	4-5=-153/169	51/134, 5-4=-61/134,											
BOT CHORD	1-8=-105/195, 7-8=- 5-6=-105/195	105/195, 6-7=-105/19	95,									mmm	uun.
WEBS	3-7=-253/0, 2-8=-35	3/319, 4-6=-353/319									3	"TH CA	ROUL
NOTES 1) Unbalance this design 2) Wind: ASC	d roof live loads have E 7-16: Vult=130mph	been considered for (3-second gust)								4	i	ORIFESE	De la

2) Wind: AŠCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-0-4, Exterior(2N) 3-0-4 to 7-11-13, Corner(3R) 7-11-13 to 10-11-13, Exterior(2N) 10-11-13 to 15-11-6 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932 Page: 1

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL4	Valley	1	1	Job Reference (optional)	169201142

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:91dCmtHnsDc2wu?wPbo92myV?hi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:49

														_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL LUMBER TOP CHORD	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014 Truss design only. For stu	CSI TC BC WB Matrix-MSH ed for wind loads in ids exposed to wind	0.20 0.17 0.19 n the pla d (norm	DEFL Vert(LL) Vert(TL) Horiz(TL) ane of the tru al to the face	in n/a n/a 0.00 ss),	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 69 lb	GRIP 244/190 FT = 20%	
BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing.	eathing directly applie / applied or 6-0-0 oc	4) ed or 5)	see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable require	d Industry Gable Er alified building des 7-16; Pr=20.0 psf .15); Pg=20.0 psf; late DOL=1.15); Is- b; Cs=1.00; Ct=1.10 es continuous botto	nd Deta igner as (roof LL Pf=13.9 =1.0; Ro Dom chor	ils as applica s per ANSI/TI .: Lum DOL=) psf (Lum ough Cat B; F d bearing.	ble, PI 1. 1.15 ⁻ ully						
REACTIONS	(size) 1=14-7-2 7=14-7-2 Max Horiz 1=-134 (L Max Uplift 1=-25 (LC 8=-110 (L Max Grav 1=136 (L 6=444 (L 8=448 (L	, 5=14-7-2, 6=14-7-2 , 8=14-7-2 _C 9) C 9), 6=-108 (LC 14), _C 13) C 29), 5=113 (LC 28 C 29), 7=398 (LC 28 C 29)), 9)), 9)	 Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 110 bland 	spaced at 4-0-0 oc has been designed in chord in all areas by 2-00-00 wide will by other members, are assumed to be hanical connection is capable of withsta fr at hait 8 and 100	for a liv where l fit betw with BC SP No. (by oth anding 2	e load of 20.0 a rectangle veen the botto DL = 10.0pst 2. ers) of truss t 5 lb uplift at j t at joint 6	Opsf om f. to oint						
FORCES	(lb) - Maximum Con Tension	npression/Maximum	L	DAD CASE(S)	Standard	a ib upii	t at joint 6.							
TOP CHORD	1-2=-152/143, 2-3=-	-126/147, 3-4=-126/1	48,											

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-3-13, Exterior(2N) 3-3-13 to 7-3-13, Corner(3R) 7-3-13 to 10-3-13, Exterior(2N) 10-3-13 to 14-7-6 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek A 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL5	Valley	1	1	Job Reference (optional)	169201143

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:1otjcFKIvR6UPWJheQt5CcyV?he-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-3-3

Scale =	1:44.6
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.20 0.09 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-3-3, 7=11-3-3, Max Horiz 1=102 (LC Max Uplift 1=-45 (LC 6=-91 (LC Max Grav 1=82 (LC (LC 29), 7 28)	athing directly applied applied or 10-0-0 oc 5=11-3-3, 6=11-3-3, 8=11-3-3 (10) (11), 5=-19 (LC 12), (14), 8=-95 (LC 13) 29), 5=63 (LC 28), 6= '=215 (LC 2), 8=325 (L	3) or 5) 6) 7) 320 8) 9)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable requirn Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a Provide meci bearing plate	ed for wind loads ds exposed to wind a Industry Gable E alified building de 7-16; Pr=20.0 ps 15); Pg=20.0 ps ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 ss continuous bot spaced at 4-0-0 o ias been designer in chord in all area y 2-00-00 wide w yo other members are assumed to be hanical connection capable of withs	in the pl nd (norm End Deta signer a: f (roof LL ; Pf=13.9 s=1.0; Re 10 tom chor ic. d for a liv as where ill fit betv e SP No. n (by oth tanding 4	ane of the trus al to the face) ils as applicat s per ANSI/TF .: Lum DOL=1 opsf (Lum ough Cat B; Fi d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss to 5 lb uplift at jc	ss ole, 11. .15 ully psf m					
FORCES	(lb) - Maximum Com Tension 1-2=-177/103, 2-3=- 4-5169/75	pression/Maximum 185/154, 3-4=-185/153	_{3,} LC	uplift at joint	6. Standard	pint at joi							
BOT CHORD	1-8=-35/108, 7-8=-2 5-6=-35/108 3-7=-128/0, 2-8=-35	8/108, 6-7=-28/108, 1/396, 4-6=-351/396										TH CA	Route
NOTES 1) Unbalance this desig 2) Wind: AS0 Vasd=103 II; Exp B;	ed roof live loads have n. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B Enclosed; MWFRS (er	been considered for (3-second gust) CDL=6.0psf; h=25ft; C ivelope) and C-C Corr	at. her							A. The second se	in	OF SEA	L

II; EXP B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-0-4, Exterior(2N) 3-0-4 to 5-7-14, Corner (3R) 5-7-14 to 8-7-14, Exterior(2N) 8-7-14 to 11-3-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 SEAL 036322 October 30,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL6	Valley	1	1	Job Reference (optional)	l69201144

3-11-14

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:OlgcfyOQk_ImVHCfR_SGvgyV?hZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Seal	<u> </u>	. 1.3	2
Jud	C =		

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.28 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 7-11-3 oc purlins. Rigid ceiling directly bracing. (size) 1=7-11-3, Max Horiz 1=-71 (LC Max Uplift 1=-13 (LC 4=-37 (LC Max Grav 1=66 (LC (LC 2)	athing directly applied applied or 6-0-0 oc 3=7-11-3, 4=7-11-3 9) 35), 3=-13 (LC 34), 13) 34), 3=66 (LC 35), 4=	4) 5) 1 or 6) 7) 8) 9) =563 LC	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable require Gable studs s * This truss h on the bottom 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 1, 13 lb uplift DAD CASE(S)	7-16; Pr=20.0 psf 15); Pg=20.0 psf; ate DOL=1.15); Is ; Cs=1.00; Ct=1.1 scontinuous bott spaced at 4-0-0 ou as been designed o chord in all area: y 2-00-00 wide wi y ather members. are assumed to be anical connection capable of withst at joint 3 and 37 I Standard	(roof LL Pf=13.9 =1.0; Rc om chor c. for a liv s where Il fit betv SP No. (by oth anding 1 b uplift a	: Lum DOL=1.) psf (Lum) psf (Lum) pugh Cat B; Fu d bearing. e load of 20.0 a rectangle veen the botton 2 . ers) of truss to 3 lb uplift at jo t joint 4.	15 Illy osf m					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this desig 2) Wind: AS Vasd=102 II; Exp B; (3E) 0-0-4 Corner(3I zone; car and right MWFRS i grip DOL3	(lb) - Maximum Com Tension 1-2=-179/247, 2-3=- 1-4=-195/268, 3-4=- 2-4=-500/354 ered roof live loads have in. CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; Bf Enclosed; MWFRS (en 4 to 3-0-4, Exterior(2N) R) 3-11-14 to 7-3-4, Ext titlever left and right exp exposed;C-C for memb for reactions shown; Lu =1.33	pression/Maximum 167/247 195/268 been considered for (3-second gust) CDL=6.0psf; h=25ft; C velope) and C-C Cor 3-0-4 to 3-11-14, erior(2N) 7-3-4 to 7-1 osed ; end vertical le ers and forces & mber DOL=1.60 plate	Cat. ner 1-7 ft							N. Comment		SEAL 03632	ROUNDER

3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL7	Valley	1	1	Job Reference (optional)	169201145

2-3-10

2-3-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

2-3-14

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:Dv1tw0TBJqVwDCfonEZg8xyV?hT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-12

2-0-3

4x5 = 2

4-7-3

3

Page: 1

2-0-3 12 12 ┌ 0 0-0-4 1 4 2x4 🛛 2x4 💊 2x4 🥠

4-7-3

Scale = 1:27.1 _

Loading TCLL (roof)(psf) 20.0Spacing Plate Grip DOL2-0-0 1.15CSI TCDEFLin(loc)l/deflL/d LdPLAT MT2CSnow (Pf/Pg)13.9/20.0Lumber DOL1.15TC0.07Vert(LL)n/a-n/a999TCDL10.0BC0.0*BC0.04WB0.04Horiz(TL)0.003n/an/aBCDL10.0CodeIRC2021/TPI2014WB0.04Matrix-MPHoriz(TL)0.003n/an/aLUMBER CDL10.0CodeIRC2021/TPI2014Matrix-MP6Gable studs spaced at 4-0-0 oc.7* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.8)All bearings are assumed to be SP No.2.9BOT CHORD 4-7-3 oc purlins.Structural wood sheathing directly applied or 6-0-0 oc bracing.8)All bearings are assumed to be SP No.2.9BOT CHORD 4-7-3, co purlins.1=4-7-3, 3=4-7-3, 4=4-7-3LOAD CASE(S)Standard	
LUMBER 6) Gable studs spaced at 4-0-0 oc. TOP CHORD 2x4 SP No.2 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle OTHERS 2x4 SP No.3 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members. BRACING BRACING TOP CHORD Structural wood sheathing directly applied or 4-7-3 oc purlins. 8) All bearings are assumed to be SP No.2. 9 BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. 1=4-7-3, 3=4-7-3, 4=4-7-3 LOAD CASE(S) Standard	ATES GRIP F20 244/190 eight: 18 lb FT = 20%
Max Horiz 1=40 (LC 10) Max Uplift 4=-5 (LC 13) Max Grav 1=61 (LC 34), 3=61 (LC 35), 4=265	
 FORCES (b) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-51/76, 2-3=-51/76 BOT CHORD 1-4=-73/132, 3-4=-73/132 WEBS 2-4=-190/143 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; h=25f; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp; Ce=0.9; Cs=1.00; Ct=1.10 5) Gable requires continuous botom chord bearing. 	SEAL 036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL8	Valley	1	1	Job Reference (optional)	169201146

1-7-12

1-7-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Mon Oct 28 10:08:45 ID:5hHOINWiN2?Lipya04ecJnyV?hP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-1

1-4-5

3x5 =

3-3-8

3

Scale = '	1:24.6
-----------	--------

Plate Offsets (X, Y): [2:0-2-8, Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%	
LUMBER IOP CHORD 3OT CHORD BRACING IOP CHORD 3OT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD NOTES 1) Unbalance this design 2) Wind: ASC Vasd=103r II; Exp B; E (3E) zone; left and rig MWFRS fc grip DOL=: 3) Truss design OL: Sone; left and rig MWFRS fc grip DOL=: 1.15 Exp.; Ce=C 5) Gable requ 6) Gable stud	2x4 SP No.2 2x4 SP No.2 Structural wood shee 3-3-8 oc purlins. Rigid ceiling directly bracing. (size) 1=3-3-8, 3 Max Horiz 1=27 (LC Max Grav 1=132 (LC (lb) - Maximum Com Tension 1-2=-183/110, 2-3=- 1-3=-58/120 ed roof live loads have b. 2E 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en cantilever left and righ th exposed;C-C for me or reactions shown; Lu 1.33 gned for wind loads in studs exposed to wind ard Industry Gable Enc qualified building desig CE 7-16; Pr=20.0 psf (=1.15); Pg=20.0 psf; (=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous bottor dis spaced at 4-0-0 oc.	athing directly applied applied or 10-0-0 oc 3=3-3-8 12) C 2), 3=132 (LC 2) pression/Maximum 183/110 been considered for (3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C Con the exposed; end vert embers and forces & mber DOL=1.60 plat the plane of the trus (normal to the face), d Details as applicab gner as per ANSI/TP roof LL: Lum DOL=1. 1/=13.9 psf (Lum 1.0; Rough Cat B; Fu m chord bearing.	7) * This truss on the botto 3-06-00 tall chord and a 8) All bearings LOAD CASE(S Cat. rner ical e s le, I 1. .15 illy	has been designed im chord in all area by 2-00-00 wide wi any other members. are assumed to be) Standard	d for a liv s where ill fit betw e SP No.	e load of 20.0 a rectangle veen the botto 2 .)psf pm				SEA 0363	L 22 ILBERTITION 30,2024	
													1

9) 818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

