

Carter Sanford Component Plant 298 Harvey Faulk Rd Sanford, NC 27332

Phone #:919-775-1450

Builder: Wellco Const. Model: Plan 1 BNS GRH

THE PLACEMENT PLAN NOTES:

1. The Placement Plan is a diagram for truss installation. It is not an engineered drawing and has not been reviewed by an engineer. The Owner/Building Designer is responsible for obtaining an engineer's review if one is required by the local jurisdiction.

2. The responsibilities of the Owner, Contractor, Building Designer, Component Designer and Component Manufacturer shall be as set forth in ANSI/TPI 1. Capitalized terms shall be as defined in ANSI/TP 1 unless otherwise indicated.

3. Each Component is designed as an individual component utilizing information provided by others. The Owner/Building Designer is responsible for reviewing all Component Submittal Packages and individual Component Design Drawings for compliance with the Construction Documents and compatibility with the overall Building design.

4. Contractor will not proceed with component installation until the Owner/Building Designer has reviewed the Component Submittal Package. Questions on the suitability of any Component will be resolved by the Building Designer.

5. The Building Designer and Contractor are responsible for all temporary and permanent bracing.

6. The Placement Plan assumes the building is dimensionally correct, structurally sound, and in a suitable condition to support each Component during installation and thereafter, including but not limited to installation of all bearing points. Proper design and construction of all structural components, including foundations, headers, beams, walls and columns are the responsibility of the Owner, Building Designer and Contractor.

7. Do not cut, drill, or modify any Component without first consulting the Component Manufacturer or Building Designer. Damaged Components shall not be installed unless directed by the Building Designer or approved by the Component Manufacturer.

8. Components must be handled and installed following all applicable safety standards and best practices, including but not limited to BCSI, OSHA, TPI and local codes. Failure to properly handle, brace or otherwise install Component can result in serious injury or death.

Apprved by: _____

Date: _____

IER

*

8 **∤ - 6**

PLANT

	F 00/00/	Revis	sion: N	s Iam	е
	00/00/	00	N	lam	е
	00/00/	00	Ν	lam	е
	00/00/	00	N	lam	е
	00/00/	00	N	lam	е
SS TO TRUSS CONNECTIONS ARE TOE-NAILED, UNLESS NOTED OTHERWISE.	THIS IS A TRUSS PLACEMENT DIAGRAM ONLY. These trusses are designed as individual components to be incorporated into the building design at the specification of the building designer. See Individual design sheets for	each truss design identified on the placement drawing. The building designer is responsible for temporary and permanent bracing of the roof and floor evetems and for the overall structure. The design of the trues support	structure including headers, beams, walls, and columns is the responsibility of the building designer. For general guidance regarding the bracing, consult	"Bracing of Wood Truss" available from the Truss Plate Institute, 583 D'Onifrio Drive: Madison, WI 53179	
ENSIONS ARE READ AS: FOOT-INCH-SIXTEENTH.			Building Materials	A Division of the Genter Lumber Gommenny	
TED TOGETHER PRIOR TO ADDING ANY LOADS.	Wellco Contractor	14 Overhills Creek-Roof-1 BNS	GRH	COMPONENT	PLACEMENT PLAN
NNEC	Scale:	N	TS		
	Date: 1(0/15 Des	/202 igner:	24	
UST B	24	Projec	t Num	ber:	
RS M	<u></u>	Sheet	Numl	ber:	
GIRDE		1			
_ I I	1		7		
k					

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24100066-01 14 Overhills Creek-Roof-1 BNS GRH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I68913518 thru I68913561

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

October 15,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A1	Piggyback Base Structural Gable	1	1	Job Reference (optional)	168913518

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:51 ID:v28o_B5VsOnzjXVnQPrKPoyV?V1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

	6-4-3	12-6-11	19-10-5	26-0-13	32-3-4	38-5-8
	6-4-3	6-2-8	7-3-10	6-2-8	6-2-7	6-2-4
Scale = 1:79.4						

Plate Offsets (X, Y): [5:0-6-4,0-2-0], [6:0-4-4,0-2-0], [9:0-6-12,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/	/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.67 0.67	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.13 -0.21 0.05	(loc) 22-24 22-24 19	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 253 lb	GRIP 244/190 FT = 20%		
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS REACTIONS	DL 10.0 IMBER Image: None of the state of			 VEDS 2222-47/566, 12-19=-94/29, 3-25=0/187, or the 3-24=-529/193, 8-20=-148/68, 3-06- 8-22=-358/173, 9-20=0/479, 9-19=-2303/305, 10-11=-149/44, 13-18=-171/62, 10) All be 11/1 Provide 14-17=-175/59 VInbalanced roof live loads have been considered for this design. Vind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-11-6 to 2-10-13, Interior (1) 23-10-3 to 39-5-3 zone; cantilever left and right exposed; end vertical left and right exposed; porch right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult gualified building designer as per ANSI/TPI 1. 							 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) All bearings are assumed to be SP No.2. 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 129 lb uplift at joint 15, 59 lb uplift at joint 18, 4 lb uplift at joint 17 and 129 uplift at joint 15. 12) Graphical purlin representation does not depict the sit or the orientation of the purlin along the top and/or bottom chord. LOAD CASE(S) Standard 				
FORCES TOP CHORD BOT CHORD	(b) - Maximum Com Tension 1-2=0/55, 2-3=-2010 5-6=-1146/343, 6-8= 8-9=-1749/286, 9-10 9-11=-33/652, 11-13 14-15=-106/702, 15 2-26=-1575/300 25-26=-146/470, 24 22-24=0/1071, 20-2: 19-20=-74/917, 18-1 17-18=-657/134, 15	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 g overhangs no Provide adeo Gable studs	7-16; Pr=20.0 psf (15); Pg=20.0 psf; late DOL=1.15); ls= ; Cs=1.00; Ct=1.10 snow loads have be s been designed fo bsf or 2.00 times fla on-concurrent with uate drainage to pl spaced at 2-0-0 oc.	(roof LL Pf=18.9 1.0; Rc , Lu=50 een cor r greate t roof lo other liv revent v	: Lum DOL=1 psf (Lum ough Cat B; Fr)-0-0 isidered for th er of min roof pad of 13.9 ps re loads. vater ponding	I.15 ully iis live sf on I.		Mannan.		SEA 0363	L 22 ILBERT	Mounning			

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

TRENCO AMITEK ATTILIA

818 Soundside Road Edenton, NC 27932

October 15,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A2	Piggyback Base	5	1	Job Reference (optional)	l68913519

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:52 ID:3rkE64K5AqwjinLRc91GqhyV?J6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

		-1-0-0 	<u>6-4-4</u> 6-4-4		<u>12-4-15</u> 6-0-12		20-0-1 7-7-2		<u>26-0-13</u> 6-0-12	<u>29-4-</u> 3-3-	<u>11 32</u> 4 2-1	- <u>3-4</u> 0-9	<u>38-5-8</u> 6-2-4	39-{ 1-0	5-8 H -0
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4х8 г 2 25 📓 3х5 ш	2ĝ ⁰	10^{12} 3 3x5 \neq 31 3 3 24 4 4 3 24 4x5=	42	5 5 23 3x5=	33 34 35 33 34 35 20 18 22 21 19 3x8= 2x4 17-6 ^{3x6} = 17-6 ^{3x6} =	6 6 8	36 37 37 47 15 15 14 2x4 II 3x5= 2x4= 2x4=	2x4 µ 38 7	5x10 = 8 13 3x6	2x4 ∥ 9 9 12 = 3x5=	12 14 390	410 9x5=	11 ° 7 40 8
		L	6-4-4		12-6-11	14-0-	15-11-5 15-6-6 0 15-10-9	22-6-	24-571 24-1-9 1 24-0-13	68 –) 30-0-(_32	2-3-4	38-5-8		
Scale = 1:86.7			6-4-4		6-2-8	1-5-	5 0-4-4 1-6-61-6-12	5-0-0	1-6-12 0-0-12	5-6-3	2	-3-4	6-2-4		
Plate Offsets (2	X, Y): [5:0-6-4,0-2-	0], [6:0-6-	4,0-2-0], [14:	:0-4-0,0-2	2-8]		0-0-12		0-4	-					
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0	Space Plate Lumb Rep * Code	Grip DOL Grip DOL Der DOL Stress Incr	2-0-0 1.15 1.15 YES IRC20)21/TPI2014	C T B W M	SI C C /B atrix-MSH	0.76 0.63 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in (1 0.05 12 -0.21 15 0.06	oc) I/c -28 >9 -19 >9 12 I	lefl L/ 199 24 199 18 n/a n/	d PLATE 0 MT20 0 a Weight:	3 270 lb	GRIP 244/190
	10.0	_			1) Unbalar	ced roo	f live loads hav	e been (considered for				weight.	27010	11 - 2076
TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD	2x4 SP 2400F 2.0 2x4 SP No.2 *Exc 2400F 2.0E 2x4 SP No.3 *Exc 23-5,6-21,6-14,5-2 SP No.2 Structural wood sl 5-2-2 oc purlins, 6 2-0-0 oc purlins (5 Rigid ceiling direc bracing, Except: 6-0-0 oc bracing: 1 Row at midpt (size) 10=0-3- Max Horiz 25=-226 Max Uplift 10=-168 25=175 (lb) - Maximum Co Tension 1-2=0/57, 2-3=-23 5-6=-1497/192.6	E ept* 20-1 ept* 21:2x4 SF heathing except er 5-3-13 ma tly applier 10-12,17- 3-23 -8, 12=0- 6 (LC 13) 0 (LC 62), 8 (LC 52), 8 (LC 50) compression 43/144, 3 7=-2348/	6,13-22:2x4 \$ P No.2, 25-2:2 directly applie id verticals, a ix.): 5-6. d or 10-0-0 or 18,16-17. 3-8, 25=0-3-8 12=2384 (LC) Dn/Maximum 8-5=-1978/211 192.	SP 2x6 ed or nd c c 254), 254),	 this desi Wind: A Vasd=10 II; Exp E Exteriori 12-4-15, 16-3-2 tr (1) 23-11 exposed reaction DOL=1. TCLL: A Plate DO DOL=1. Exp.; Ce Unbalar design. This trust load of 1 overhan 200.0lb 200.0lb Provido 	ign. SCE 7-1 03mph; ;; Enclos (2E) -0' , Exterio 0-3 to 38 1; end v 4; C-C foi s showr 33 SCE 7 DL=1.15 15 Plate e=0.9; C cced snor ss has b 12.0 psf gs non-t AC unit end, su adeque	6; Vult=130mp TCDL=6.0psf; B sed; MWFRS (e 11-6 to 2-10-13 r(2R) 12-4-15 t , Exterior(2R) 2 9-5-3 zone; can ertical left and I r members and ; Lumber DOL= 16; Pr=20.0 psf; DOL=1.15); Is s=1.00; Ct=1.1 w loads have b een designed fr or 2.00 times fl concurrent with load placed on pported at two	h (3-sec BCDL=6 BCDL=6 , Interior o 16-3-2 20-0-1 tr tillever lo inght exp forces 4 =1.60 pl (roof LL Pf=18.5 =1.0; Rc 0, Lu=50 been cor or great at roof lo other lin the bott points, f	and gust) .0psf; h=25ft;) and C-C (1) 2-10-13 tot , Interior (1) 23-10-3, Inter- aft and right ossed; porch ri MWFRS for ate grip :: Lum DOL=1) psf (Lum ugh Cat B; Fu)-0-0 isidered for thi er of min roof I ad of 13.9 psl re loads. om chord, 20- 5-0-0 apart.	Cat. ior ght 15 Illy s ive ion D-1			in ATE	CA	NUMITION OF THE STATE
BOT CHORD WEBS	7-8=-2296/54, 8-9 10-11=0/23, 2-25= 24-25=-138/495, 2 21-23=0/1308, 19 14-15=0/2299, 12 18-20=0/30, 17-18 3-24=-1/199, 3-23 2-24=0/1345, 20-2	2348/ =0/771, 9 =-1822/19 23-24=0/1 -21=0/22 -14=0/11 3=-1194/0 =-548/20 21=0/353)-10=-8/826,)9 1700, 99, 15-19=0/2 80, 10-12=-7(0, 16-17=-86/4 6, 5-23=-91/5 , 6-20=0/358,	2299, 63/4, 8 523,	 Provide * This trion on the b 3-06-00 chord ar All bearing Provide bearing 10. 	adequa uss has ottom cl tall by 2 nd any o ngs are mechar plate ca	te drainage to p been designed nord in all areas -00-00 wide wil ther members, assumed to be ical connection pable of withsta	for a liv for a liv where If fit betw with BC SP No. (by oth anding 1	water ponding. e load of 20.0p a rectangle veen the botton DL = 10.0psf. 2 . ers) of truss to 60 lb uplift at j	osf m oint		Conner	2170 0	SEAI	
NOTES	6-16=-12/816, 14- 9-12=-457/175, 8- 15-17=0/213, 14-1 18-21=-1304/0, 5-	·16=-9/78 ·12=-2837 17=-1222 ·21=0/361	4, 7-14=-493, 7/0, 8-14=0/6 /0, 18-19=0/2	/252, 39, 256,	11) Graphic or the or bottom of LOAD CAS	al purlin rientation chord. E (S) S	representation n of the purlin a tandard	does no long the	ot depict the si top and/or	ze		in the	CRIC .	GINF 1. G	E.R. KINN
													0	ctober	15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A3	Piggyback Base	2	1	Job Reference (optional)	168913520

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:52 ID:11gD1y0g?HIInzz4cX5kA0yVHkI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

	F	6-4-4 6-4-4	12-4-15 6-0-12 5x8=	<u>20-0-1</u> 7-7-2	6x8=	<u>26-0-13</u> 6-0-12	<u>29-4-11</u> 3-3-14	<u>32-3-4</u> 2-10-9		<u>38-5-8</u> 6-2-4	39-5-8 1-0-0	
	11-2-5 	$10^{12} 33$ $3x5 =$ 30^{3} 2^{29} 28^{2	4 66 ¢ 1 41 22 3 3x5=	32 334 35 32 334 35 32 334 35 32 334 35 32 334 35 34 35 34 35 35 35 35 35 35 35 35 35 35	5	36 37 3 3 3 4 5 14 13 2x4 II 3x5=	2x4 # 8 6 5x1 7	0.2 7 2x 7 2x 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12 7 8 1 5=	4 3940	9 10 °, 40 3x5=	
Scale = 1:83.5	⊢ X X): [4:0-6-4:0-2-0]	6-4-4 6-4-4	<u>12-6-11</u> <u>14-0</u> 6-2-8 <u>1-5-</u> 0-2-8] [24:Edge 0-	17-6 ² ¥ ⁴ " 15-11-5 15-6-6 -0 15-10-9 -0 15-10-9 5 0-4-4 1-6-6 1-6-12 7-41 12	<u>22-6-1</u> 5-0-0	2x4= 24-5-162 24-0-13 	<u>30-0-0</u> 5-6-3	32-3-4 2-3-4		<u>38-5-8</u> 6-2-4		
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing 2-C Plate Grip DOL 1.1 Lumber DOL 1.1 Rep Stress Incr YE Code IRC	0 5 5 S C2021/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.64 0.99	DEFL Vert(LL) Vert(CT) Horz(CT)	in (loc) 0.05 11-27 -0.21 14-18 0.06 11	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 26	GRIP 244/190 7 lb FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x4 SP No.2 *Excep 2400F 2.0E 2x4 SP No.3 *Excep 22-4,5-20,5-13,4-20: Structural wood shea 5-2-1 oc purlins, exc 2-0-0 oc purlins (5-3 Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9-1 1 Row at midpt (size) 9=0-3-8, 1 Max Horiz 24=-219 (I Max Grav 9=154 (LC 24=1706 ((lb) - Maximum Com Tension 1-2=-2369/150, 2-4= 4-5=-1505/195, 5-6= 6-7=-2301/57, 7-8=0 9-10=0/23, 1-24=-17 23-24=-101/446, 22- 20-22=0/1317, 18-2C 13-14=0/230, 11-13 17-19=0/30, 16-17=- 2-23=0/210, 4-22=-9	t* 12-21,19-15:2x4 SP t* 2x4 SP No.2 athing directly applied or cept end verticals, and -4 max.): 4-5. applied or 10-0-0 oc 11,16-17,15-16. 2-22 (1=0-3-8, 24=0-3-8 LC 13) C 62) C 52), 11=2392 (LC 54), (LC 60) pression/Maximum -1993/220, -2353/195, //779, 8-9=0/836, '65/144 23=0/1729, D=0/2304, 14-18=0/2304, 3=0/1179, 9-11=-773/0, 1193/0, 15-16=-85/8 17/541, 1-23=0/1433,	 Unbalanced this design. Wind: ASCE Vasd=103m; II; Exp B; En- Exterior(2E)) Exterior(2E)) Exterior(2R)) 20-0-1, Exter 24-0-10 to 35 exposed; en- exposed; en- exposed; en- exposed; en- creactions sho DOL=1.33 TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Unbalanced design. This truss ha load of 12.0 p overhangs m 200.0lb AC u from left end, Provide adect * This truss h on the bottom 3-06-00 tall b chord and ar All bearings a Provide mect 	roof live loads have 7-16; Vult=130mph bt; TCDL=6.0psf; E closed; MWFRS (e 0-1-12 to 4-2-5, Int 12-4-15 to 16-5-8, ior(2R) 20-0-1 to 2 -5-3 zone; cantilev d vertical left and ri- for members and wn; Lumber DOL= 7-16; Pr=20.0 psf; ate DOL=1.15); Is= t; Cs=1.00; Ct=1.10; snow loads have be s been designed for osf or 2.00 times file con-concurrent with nit load placed on s upported at two plates designed n chord in all areas y 2-00-00 wide will y other members, nare assumed to be hanical connection	e been of n (3-sec SCDL=6 nvelope erior (1) Interior 4-0-10, ver left a ight exp forces a 1.60 pl (roof LL Pf=18.9 =1.0; Rc other lin the bott other lin the bott other lin the bott where if the betw where if the betw other lin to prevent for a liv where if the betw other lin to prevent for a liv to prevent to prevent the betw the bet	considered for cond gust) (.0psf; h=25ft; C e) and C-C (1) 16-5-8 to Interior (1) and right bosed; porch rig & MWFRS for ate grip c: Lum DOL=1. D psf (Lum Dough Cat B; Ful D-0-0 hsidered for this er of min roof lin boad of 13.9 psf ve loads. com chord, 20-0 5-0-0 apart. water ponding. e load of 20.0p a rectangle veen the botton CDL = 10.0psf. 2.	Cat. 15, 9ht 15 ly s ve on 9-1 sf	(Mariana)	the second se	ORTH S 03	CAP SCIONARIA EAL 6322	
NOTES	19-20=0/358, 5-19=(13-15=-9/781, 8-11= 6-13=-493/255, 2-22 14-16=0/213, 13-16= 17-20=-1303/0, 4-20)/363, 5-15=-13/813, -452/175, 7-11=-2850/0, =-575/213, 7-13=0/644, =-1222/0, 17-18=0/255, =0/357	 bearing plate 9. 11) Graphical pu or the orienta bottom chore LOAD CASE(S) 	rancal connection capable of withsta rlin representation ation of the purlin al l. Standard	does no	63 lb uplift at jo ot depict the siz top and/or	bint e	1100 Carlos		A Octo	INEER GILBER bber 15,2024	líte.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	A4	Piggyback Base	4	1	Job Reference (optional)	168913521

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53 ID:Fvn5IIFq04XKwxDPmMJx9pyV?BT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

October 15,2024

818 Soundside Road Edenton, NC 27932

		-1-0-0	<u>6-4-4</u> 6-4-4		<u>12-4-15</u> 6-0-12	<u>20-0-1</u> 7-7-2		<u>26-0-13</u> 6-0-12		29-4-1 3-3-1	11 3 4 2	<u>2-3-4</u> -10-9	<u>38-5-8</u> 6-2-4	39-5-8	3
11-5-10 3-4-7 11-2-5	· 3.4.7 · 7.9.14 · . 0.10.3 1	2 19 8x10=	234	10^{12} 3x6 $3x5 \neq$ 25^{4} 3^{4} 3^{4} 18^{3} 4x5=	5. 5 6 6 17 3x	x8= <u>27 28 21</u> 3x6 =	5x 9 € 15 3xi	30 30 31 32 38 38	11 3x ³ 32 14	5. 7 7 4 x5=	5x8≥ 8 13 3x	6=	12 14 2x4 ⊪ 9 33 8 12 12 3x5=	4 350 1 ₩ 3x5=	1 °+1 -0
		 	<u>6-4-4</u> 6-4-4		12-6-11 6-2-8	<u>19-10-5</u> 7-3-10		<u>26-0-13</u> 6-2-8			<u>32-3-4</u> 6-2-7		38-5-8	——–	
$\frac{\text{Scale} = 1:76.3}{\text{Plate Offsets (2)}}$	X, Y): [5:0-	-6-4,0-2-0],	[6:0-4-4,0-2-0],	[19:Edge,(0-7-4]										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1	(psf) 20.0 8.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DO Lumber DOL Rep Stress In Code	2-0- DL 1.15 1.15 cr YES IRC	0 5 5 2021/TPI2014	CSI TC BC WB Matrix-MSH	0.73 0.69 0.81	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.21 0.05	(loc) 12-22 15-17 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 245 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP 2 2x4 SP N 2x4 SP N 2x4 SP N No.2 Structura 5-7-13 oc 2-0-0 oc 1 1 Row at (size) Max Horiz Max Horiz Max Uplift Max Grav (lb) - Max Tension 1-2=0/53, 5-6=-118 7-8=-179 10-11=0/2 15-17=0/ 12-14=-61 3-18=0/22 5-15=-16: 7-14=-16 8-12=-23: ded roof live 1	400F 2.0E o.2 o.3 *Except l wood sheat purlins, expurlins, (e-o- ing directly Except: bracing: 10- midpt :: 10=0-3-8, 19=-224 (I 10=-115 (I 10=205 (L 19=1566 (imum Comp 2-3=-2102, 8/353, 6-7= 3/284, 8-9= 23, 2-19=-1 44/511, 17- 1114, 14-15 6/980, 10-1: 07, 3-17=-5 2/84, 6-15= 7/84, 8-14= 23/216, 7-1: loads have	* 17-5,15-5,15- athing directly a ccept end vertic -0 max.): 5-6. applied or 10-0 -12. 3-17, 5-15, 7-19 12=0-3-8, 19=0 LC 13) LC 12) C 52), 12=1978 LC 60) pression/Maxim /297, 3-5=-1722 -1668/361, 0/607, 9-10=-43 624/305 18=-103/1515, 5=-62/1334, 2=-612/82 64/203, 5-17=-4 43/587, 2-18=6 0/483, 9-12=-43 5=-369/170 been considere	-6:2x4 SP applied or als, and -0 oc 5 -3-8 3 (LC 54), num 2/369, 7/666, 56/686, 0/1140, 54/177, ed for	 Wind: ASC Vasd=103 II; Exp B; I Exterior(2) 12-4-15, E 16-3-2 to 2 (1) 23-10- exposed; exposed; exposed; reactions : DOL=1.33 TCLL: AS Plate DOL DOL=1.15 Exp.; Ce= Unbalance design. This truss load of 12 overhangs Provide at 3-06-00 ta chord and All bearing pl 10. Graphical or the orie bottom ch- LOAD CASE(CE 7-16; Vult=130r imph; TCDL=6.0ps Enclosed; MWFRS E) -0-11-6 to 2-10- Exterior(2R) 12-4-1; 20-0-1, Exterior(2R) 3 to 39-5-3 zone; c end vertical left an 2-C for members ai shown; Lumber DC CE 7-16; Pr=20.0 p =1.15); Pg=20.0 p 5 Plate DCL=1.15); 0.9; Cs=1.00; Ct=1 ed snow loads have has been designed 0 psf or 2.00 times s non-concurrent w dequate drainage to shas been designed tom chord in all are any other member gs are assumed to uechanical connectiant at capable of with purlin representation ord. S) Standard	nph (3-sec f; BCDL=6 (envelop 13, Interio 5 to 16-3-2 2) 20-0-1 to antilever li dright exp nof forces c 0L=1.60 pl pasf (roof LL fs; Pf=18.5 Is=1.0; RL -10, Lu=50 e been cor d for great f flat roof li ith other li o preven 4 sas where will fit betw rs, with BC be SP No. ion (by oth standing 1 on does no n along the	cond gust) .0psf; h=25ft; C .0psf; h=25ft; C .0psf; h=25ft; C .1) 2-10-13 to .1) 12-10-13 to .1) 12-10	Cat. or ht 15 ly con sf n bint e				SEA 0363	L 22 L BER	- Annoning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B1	Attic Supported Gable	1	1	Job Reference (optional)	168913522

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53 ID:euN5eeBIDqVcSLeF_LY?3RyV??x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:70.3 Plate Offsets (X, Y): [2:Edge,0-0-9], [10:0-3-0,0-3-0], [14:0-3-0,0-3-0]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	18.9	(psf) 20.0 9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.38 0.17 0.15	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) 21	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 276 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x6 SP No.: 2x4 SP No.: 2.0E 2x4 SP No.: No.3 2x4 SP No.:	2 2 *Except 2 *Except 3	* 26-25:2x10 SP 24(* 16-25,21-20:2x4 S	F 00F Т Р	ORCES	(lb) - Maximum Con Tension 1-2=0/38, 2-3=-293/ 4-5=-235/206, 5-6=- 8-9=-187/287, 9-10= 10-11=-159/269, 11 12-13=-159/269, 13 14-15=-242/197, 15	242, 3 219/20 -154/3 -12=-1 -14=-1	on/Maximum 4=-246/209, 4, 6-8=-205/2 22, 59/269, 59/269, 59/269, 11/230	28,	3) Ti or se or 4) T(Pl D	russ design hly. For st e Standar consult q CLL: ASCI ate DOL= OL=1.15 F	ned for uds ex rd Indu ualified E 7-16 1.15); Plate D	r wind loads in th posed to wind (n stry Gable End E building designe ; Pr=20.0 psf (roc Pg=20.0 psf; Pf= OL=1.15); Is=1.0 1.00; Ct=1.10 L	e plane of the truss ormal to the face),)etails as applicable, er as per ANSI/TPI 1. of LL: Lum DOL=1.15 18.9 psf (Lum 0; Rough Cat B; Fully U=50-0.0
BRACING TOP CHORD BOT CHORD	Structural w 6-0-0 oc pu 2-0-0 oc pu Rigid ceiling	vood shea rlins, exc rlins (6-0- g directly	athing directly applied ept end verticals, an 0 max.): 10-14. applied or 10-0-0 oc	dor d E	SOT CHORD	16-17=-135/311, 17 16-17=-135/311, 17 18-19=-140/148, 19 20-21=-116/76 2-32=-137/109, 31-3 29-30=-54/74, 28-29	-10=-3 -18=-1 -20=-1 32=-54, 3=-54,7	70/209, 21/107, 74, 30-31=-54 4, 27-28=-54/	4/74, /74,	5) TI lo ov 6) Pi 7) Al	his truss had of 12.0 verhangs r rovide ade I plates ar	as bee psf or non-co equate e 2x4	2.00 times flat ro ncurrent with oth drainage to preve MT20 unless oth	reater of min roof live sof load of 13.9 psf on er live loads. ent water ponding. erwise indicated. obord horizon
WEBS JOINTS	bracing. 1 Row at m 1 Brace at 3 36, 37, 38	idpt 2 Jt(s): 35,	26-33, 25-34, 9-27	v	VEBS	24-27=-36/74, 23-22 21-22=-55/72 26-33=-487/46, 10-3 25-34=-589/0, 16-34	+=-55/7 33=-44 1=-620, 7/2, 27	3, 22-23=-55/ 4/52, (0, 33-36=-7/2	, ,	able requil able studs This truss the botto	has be m cho	ad at 2-0-0 oc. een designed for rd in all areas wh	a live load of 20.0psf ere a rectangle	
REACTIONS	(size) 2 2 2 3 Max Horiz 2 2 Max Uplift 2 2 2 2 3 Max Grav 2 2 2 2 2 3 3 3 Max Grav 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	=28-7-8, :3=28-7-8, :6=28-7-8, :6=28-7-8, :2=28-7-8, :2=28-7-8, :2=28-10, :2=2-51 (LC, :2=-51 (LC, :2=-115 (L, :2=-115 (L, :2=160 (LC, :2=160 (LC, :2=160 (LC, :2=187 (L, :2=187 (L, :	$\begin{array}{l} 21 = 28 - 7.8, \ 22 = 28 - 7.8, \ 25 = 28 - 7.8, \ 25 = 28 - 7.8, \ 25 = 28 - 7.8, \ 25 = 28 - 7.8, \ 25 = 28 - 7.8, \ 21 = 28 - 7.8, \ 31 = 28 - 7.8, \ 31 = 28 - 7.8, \ 31 = 28 - 7.8, \ 31 = 23 - 7.8, \ 31 = 23 - 7.8, \ 31 = 23 - 7.8, \ 31 = 23 - 7.8, \ 31 = 23 - 7.8, \ 31 = 23 - 7.8, \ 32 - 7.8, $	-8, 7-8, 7-8, 7-8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0), 2)	IOTES) Unbalanced this design.) Wind: ASCI Vasd=103m II; Exp B; El Exterior(2E; 12-4-15, Ex 16-7-14 to 2 Interior (1) 2 right expose for member Lumber DO	34-38=-8/2, 12-35=- 13-37=-11/29, 15-36 17-24=-38/155, 18-2 19-22=-119/78, 9-27 6-29=-138/59, 5-30= 3-32=-100/78 I roof live loads have E 7-16; Vult=130mph ph; TCDL=6.0psf; B nclosed; MWFRS (er 1-0-9-13 to 2-2-3, Int terior(2R) 12-4-15 to 20-0-1, Exterior(2R) 2 24-2-15 to 28-5-12 zd ed; end vertical left as and forces & MWF L=1.60 plate grip DC	6/32, 1 3=-19/1 23=-12/7 	1-36=-4/37, 31, 3/72, 2, 8-28=-118/ 0, 4-31=-131/ considered for ond gust) .0psf; h=25ft; b) and C-C) 2-2-3 to 4, Interior (1) to 24-2-15, ntilever left ar tt exposed;C-f reactions sho 3	/91, /60, Cat. Cat. C wn;	ch (11) C 33 12) A	eiling deac 5-36, 35-3 I bearings	iny oth d load 7, 37-3 are as	sound funders, with (10.0 psf) on mer (10.0 psf)	BCDL = 10.0psf. nber(s). 33-36, IN0.2, L 22

October 15,2024

818 Soundside Road Edenton, NC 27932

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and properly damage. For general guidance regarding the fabrication, storage, delivery, recetion and bracing of trusses and truss systems, see **ANSI/TPI Quility Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH			
24100066-01	B1	Attic Supported Gable	1	1	Job Reference (optional)	l68913522		
Carter Components (Sanford, N	C), Sanford, NC - 27332,	Run: 8.73 S. Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 11:28:53						

13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 202 lb uplift at joint 2, 11 lb uplift at joint 21, 136 lb uplift at joint 24, 41 lb

- uplift at joint 23, 51 lb uplift at joint 22, 61 lb uplift at joint 27, 47 lb uplift at joint 28, 37 lb uplift at joint 29, 37 lb uplift at joint 30, 35 lb uplift at joint 31, 115 lb uplift at joint 32 and 202 lb uplift at joint 2.
- 14) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.
- 15) Attic room checked for L/360 deflection.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53 ID:euN5eeBIDqVcSLeF_LY?3RyV??x-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication for the trust structure Bucking Component Advancement and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B2	Attic	3	1	Job Reference (optional)	168913523

Run: 8,73 S Sep 25 2024 Print: 8,730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53 ID:7i61FsRMyTU?JA02XUu9kAyV?_K-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

bottom chord

LOAD CASE(S) Standard

11) Attic room checked for L/360 deflection.

NOTES

WEBS

Loading

TCDL

BCLL

BCDL

LUMBER

WEBS

WEBS

FORCES

WEDGE

BRACING

Unbalanced roof live loads have been considered for 1) this design.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) 818 Soundside Road and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com) Edenton, NC 27932

G minim October 15,2024

SEAL

036322

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B3	Attic Girder	1	2	Job Reference (optional)	168913524

Scale = 1:71.8

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53 ID:cjFhAe3ziS1dZA_2aPqLr7yV_zW-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Plate Offsets (X, Y): [5:0-3-0,0-3-0], [6:0-8-4,0-4-0], [10:0-3-8,0-4-8], [11:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.68 0.52 0.86	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.22 -0.38 0.01 -0.17	(loc) 11-12 11-12 9 10-11	l/defl >999 >895 n/a >642	L/d 240 180 n/a 360	PLATES MT20 Weight: 515 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD BOT CHORD	2x6 SP No.2 2x6 SP 2400F 2.0E 2400F 2.0E 2x4 SP No.3 *Excep Left: 2x4 SP No.3 2-0-0 oc purlins (6-0 verticals (Switched from shee Rigid ceiling directly bracing Excent:	*Except* 11-10:2x10 t* 13-14:2x4 SP No.2 -0 max.), except end sted: Spacing > 2-8-0 applied or 10-0-0 oc	1) SP 2 1 2)).	2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chorc staggered at oc. Web connect All loads are except if notte CASE(S) sec provided to d	be connected toge ails as follows: connected as follow 0-9-0 oc, 2x4 - 1 rc is connected as fol 0-9-0 oc, 2x10 - 2 ted as follows: 2x4 considered equally ed as front (F) or ba tion. Ply to ply con istribute only loads	ether wir s: 2x6 - ow at 0- lows: 2 rows sta - 1 row applied ick (B) f nection noted a	th 10d 2 rows 9-0 oc. 66 - 2 rows aggered at 0- at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B),	7-0 DAD	12) Gra or ti botti 13) Use 14- left cho 14) Fill 15) Attii LOAD (1) De	phical ph	urlin re ation o d. on Stro 2 Trus onnec oles w hecke) Sta ow (ba	epresentation doo of the purlin alon- ing-Tie HTU26 (1 is) or equivalent t truss(es) to fror there hanger is ir d for L/360 defle- ndard alanced): Lumbe	is not depict th g the top and/c 0-16d Girder, at 12-7-12 from t face of bottor contact with I ction.	ne size or n the m umber. 5, Plate
JOINTS REACTIONS	6-0-0 oc bracing: 9-1 1 Brace at Jt(s): 5, 6, 13, 14, 8 (size) 2=0-3-8, 9 Max Horiz 2=367 (LC Max Grav 2=2719 (L	10. 9=0-3-8 C 8) .C 22), 9=2653 (LC 2	3) 4) 3)	unless other Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; End and right exp	wise indicated. roof live loads have 7-16; Vult=130mph bh; TCDL=6.0psf; E closed; MWFRS (e osed - end vertical	e been o n (3-sec CDL=6 nvelope	considered fo ond gust) .0psf; h=25ft; ;); cantilever	r Cat. left	Ur	Vert: 1-5 10-11=- oncentra Vert: 11	bads (II 5=-72, 45, 9-1 ted Lo =-923	b/ft) 5-6=-87, 6-8=-72 10=-30, 13-14=-3 ads (lb) (F)	2, 11-15=-30, 0	
FORCES	(lb) - Maximum Com Tension 1-2=0/59, 2-3=-3667 5-6=-2493/156, 6-7= 7-82690/51, 8-92	pression/Maximum //69, 3-5=-2976/109, 2906/262, 2847/0	5)	Lumber DOL TCLL: ASCE Plate DOL=1 DOL=1.15 Pl	=1.60 plate grip DC 7-16; Pr=20.0 psf .15); Pg=20.0 psf; ate DOL=1.15); Is=	DL=1.33 (roof LL Pf=18.9 1.0; Rc	: Lum DOL= psf (Lum ugh Cat B; F	1.15 ully				WITH CA	RO	
BOT CHORD WEBS	2-12=-288/2892, 9-1 10-14=-57/458, 7-14 13-14=-1255/171, 3- 11-13=-114/1752, 5- 6-13=-203/1758, 6-1 3-11=-926/260, 8-10	2=-203/2892 =-1175/428, 12=-59/551, 13=-5/1513, 4=-251/1861, =-39/2376	6) 7) 8)	This truss ha load of 12.0 p overhangs no Provide adeo * This truss h on the bottom	been designed fc s been designed fc port 2.00 times fla port acconcurrent with quate drainage to p las been designed n chord in all areas	or greate or greate other liv revent v for a liv where	er of min roof bad of 13.9 p ve loads. vater ponding e load of 20.0 a rectangle	live sf on g.)psf		1 million	E.	OF FESS	De l	and the second
NOTES			9)	3-06-00 tall b chord and an Ceiling dead	by 2-00-00 wide will by other members. load (10.0 psf) on	fit betw	r(s). 13-14	om		THE PARTY		0363	22	unu,

- 10) Bottom chord live load (40.0 psf) and additional bottom chord dead load (5.0 psf) applied only to room. 10-11
 - 11) All bearings are assumed to be SP 2400F 2.0E .

October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

C

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B4	Attic Girder	1	2	Job Reference (optional)	168913525

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53 ID:vKimCrL13q3DRsqf_RGzpByV_z8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:72.7 Plate Offsets (X, Y): [2:Edge,0-0-0], [5:0-3-0,0-3-0], [6:0-8-4,0-4-0], [10:0-6-0,Edge], [11:0-3-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-10-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.83 0.78 0.95	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.23 -0.45 0.01 -0.15	(loc) 11-12 11-12 9 10-11	l/defl >999 >691 n/a >676	L/d 240 180 n/a 360	PLATES MT20 MT20HS Weight: 491 lb	GRIP 244/190 187/143 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS WEDGE BRACING TOP CHORD JOINTS REACTIONS FORCES TOP CHORD WEBS	2x6 SP No.2 2x6 SP 2400F 2.0E 2400F 2.0E 2x4 SP No.3 *Excep Left: 2x4 SP No.3 2-0-0 oc purlins (6-0 verticals (Switched from shee Rigid ceiling directly bracing, Except: 6-0-0 oc bracing: 9-1 1 Brace at Jt(s): 5, 6, 13, 14, 8 (size) 2=0-3-8, 9 Max Horiz 2=378 (LC Max Uplift 2=-142 (LI Max Grav 2=2746 (L (lb) - Maximum Com Tension 1-2=0/56, 2-3=-3749 5-6=-2591/348, 6-7 7-8=-2608/293, 8-9 2-12=-415/2935, 9-1 10-14=-120/36, 7-4 11-13=-266/1903, 5- 6-13=-250/1971, 6-1 8-10=-334/3274, 34 036	*Except* 11-10:2x10 ** 13-14:2x4 SP No.2 -0 max.), except end ted: Spacing > 2-8-0 applied or 10-0-0 oc 0. =0-3-8 : 8) C 9), 9=-191 (LC 9) C 22), 9=3385 (LC 2 pression/Maximum (260, 3-5=-3053/328, -2985/418, -4044/317 2=372/235 4=110/237 13=-139/1621, 4=300/2037, 13=913/203 322	1) SP 2) 2) 3) 4) 2) 5) 6) 7) 8) 9) 10) 11) 12)	2-ply truss to (0.131"x3") n Top chords c staggered at Bottom chorco xtaggered at oc. Web connect All loads are except if note except if note provided to d unless otheru Unbalanced this design. Wind: ASCE Vasd=103mp II; Exp B; Enn and right exp Lumber DOL TCLL: ASCE Plate DOL=11 DOL=1.15 PI Exp;; Ce=0.9 This truss ha load of 12.0 g overhangs no Provide aded All plates are * This truss h on the bottom 3-06-00 tall b chord and an Ceiling dead Bottom chorc chord dead la All bearings a	be connected toge ails as follows: onnected as follows: on-9-0 oc, 2x4 - 1 ro is connected as follow 0-9-0 oc, 2x10 - 2 r ed as follows: 2x4 considered equally ad as front (F) or ba tion. Ply to ply com- istribute only loads vise indicated. roof live loads have 7-16; Vult=130mph th; TCDL=6.0psf; B closed; MWFRS (er osed; end vertical =1.60 plate grip DC 7-16; Pr=20.0 psf; I ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 s been designed fo posf or 2.00 times fla on-concurrent with or juate drainage to pri MT20 plates unless as been designed fo nchord in all areas y 2-00-00 wide will y other members. load (10.0 psf) on r f live load (40.0 psf) pad (5.0 psf) applie are assumed to be	ther with s: 2x6 - w at 0- ows: 2; ows station - 1 row applier - 1 row applier - 1 row applier - 1 row - 1 ro	th 10d 2 rows 9-0 oc. 66 - 2 rows aggered at 0- at 0-9-0 oc. 4 to all plies, ace in the LC is have been as (F) or (B), considered for ond gust) .0psf; h=25ft;); cantilever I right expose Lum DOL=: psf (Lum rugh Cat B; F)-0-0 er of min roof pad of 13.9 ps re loads. vater ponding wise indicate e load of 20.0 a rectangle reen the bottor r(s). 13-14 dditional botto o room. 10-1 0F 2.0E.	9-0 DAD r (Cat. left ad; 1.15 fully live sf on g. d. Dpsf om 1	13) Pro bec 2 a 14) Gra 14) Gra 15) Usa 14- to 0 16) Usa 14- left cha 17) Fill 18) Atti LOAD 1) D In U	wide me aring plat and 191 II aphical p the orien tom choose Simpso 10d Trus connect te simpso 10dx1 1. end to c ord. all nail h c room C CASE(S ead + Sr crease= niform Lo Vert: 1-4 10-11=- oncentra	chanic: e capa o uplift urlin re d. on Stro ss) or e russ(e on Stro 2 Trus onnect oles w hecke) Stata (1.15) Stata (1.15) Stata (1.15) Stata (1.15) Stata (1.15) (1.1	al connection (by bible of withstandi at joint 9. presentation doe of the purlin along ng-Tie HTU26-2 equivalent at 17-1 s) to front face of ng-Tie HTU26 (1 s) or equivalent at truss(es) to back here hanger is in d for L/360 deflect ndard alanced): Lumber 5-6=-82, 6-8=-68 0-28, 13-14=-2 ads (lb)	r others) of truss to ng 142 lb uplift at joint es not depict the size g the top and/or (20-10d Girder, 0-12 from the left end bottom chord. 0-16d Girder, at 12-7-12 from the k face of bottom contact with lumber. tion. • Increase=1.15, Plate 8, 11-15=-28, 8
	in the second se	uninin,										Octobe	r 15,2024

A Mitek Affiliate

Continued on page 2 WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH		
24100066-01	B4	Attic Girder 1		2	Job Reference (optional)	l68913525	
Carter Components (Sanford, NC), Sanford, NC - 27332,		Run: 8.73 S Sep 2	5 2024 Print: 8	.730 S Sep 2	5 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53	Page: 2	

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:53 ID:vKimCrL13q3DRsqf_RGzpByV_z8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Vert: 11=-945 (B), 18=-998 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH		
24100066-01	B5	Piggyback Base	1	1	Job Reference (optional)	168913526	

Page: 1

Scale	= 1:70.2	

Plate Offsets	(X, Y): [5:0-6-4,0-2-0],	[6:Edge,0-1-8]												
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.84 0.40 0.54	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.04 -0.07 0.01	(loc) 7-8 8-10 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 140 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: ASI Vasd=103 II; Exp B; Exterior(2 12-4-15, E 16-7-14 tc exposed; members Lumber D	2x4 SP No.2 2x4 SP No.2 2x4 SP No.2 *Excep No.3, 11-2:2x6 SP N Structural wood shea 5-7-15 oc purlins, e: 2-0-0 oc purlins, (e-0 Rigid ceiling directly bracing. 1 Row at midpt (size) 7= Mecha Max Horiz 11=328 (LC Max Grav 7=819 (LC (lb) - Maximum Com Tension 1-2=0/57, 2-3=-1011 5-6=-174/188, 6-7= 10-11=-604/601, 8-1 7-8=-222/461 3-10=0/264, 3-8=-52 5-7=-828/247, 2-10= ed roof live loads have n. CE 7-16; Vult=130mph Smph; TCDL=6.0psf; BG Enclosed; MWFRS (en E) -0-11-6 to 2-0-10, In Exterior(2R) 12-4-15 to 0 17-7-8 zone; cantileve end vertical left and rig and forces & MWFRS OL=1.60 plate grip DO	 * 3-10,8-3,10-2:2x4 o.2 athing directly applied coept end verticals, -0 max.): 5-6. applied or 7-7-1 oc 6-7, 3-8, 5-7 nical, 11=0-3-8 C 10) 10) 2 29), 11=850 (LC 2 pression/Maximum /117, 3-5=-623/199 168/81, 2-11=-875/1 0=-350/836, 4/177, 5-8=-66/633 -39/404 been considered fo (3-second gust) 2DL=6.0psf; h=25ft; velope) and C-C terior (1) 2-0-10 to 16-7-14, Interior (1) rt eff and right ht exposed; C-C for for reactions shown L=1.33 	3) + SP 4) ed or 5) (6) 7) 8) 9) 9) 10 , 139 L0 , r Cat.	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.5 This truss ha load of 12.0 overhangs n Provide aded * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 7. D) Graphical pu or the orienta bottom chord DAD CASE(S)	 7-16; Pr=20.0 psf 1.15); Pg=20.0 psf; late DOL=1.15); Is b; Cs=1.00; Ct=1.1; is been designed find the drainage to phase been designed an chord in all areasion of the members, assumed to be: Joer(s) for truss to trushanical connection acapable of withstancial connection ation of the purlin ad. Standard 	(roof LL Pf=18.5 =1.0; Rc 0, Lu=50 or great at roof lc other lin or grevent v for a liv s where I fit betw with BC Doint 11 5 uss conr to (by oth anding 8 does no long the	:: Lum DOL= a) psf (Lum) uph Cat B; F)-0-0 er of min roof pad of 13.9 ps //e loads. water ponding e load of 20.0 a rectangle //een the botto DL = 10.0psf SP No.2. hections. ers) of truss t i0 lb uplift at j bt depict the se top and/or	1.15 fully live sf on g. ppsf om cont size		Charles and a second se		SEA 0363	RO ICAL 22 ILBER	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone 818 Soundside Road Edenton, NC 27932 and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI minim October 15,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B6	Piggyback Base Girder	1	2	Job Reference (optional)	168913527

Scale = 1:72.7

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:54 ID:o9zZeG5ADngm9IrdfH1aJtyV?95-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [2:0-5-1,0-1-7], [6:0-6-4,0-2-0], [7:0-3-4,0-2-0], [13:0-4-12,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL	(psf) 20.0 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.23 0.09 0.24	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.04 0.01	(loc) 12-13 12-13 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD	2x4 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2x8 SP 2400F 2.0E 2x4 SP No.3 *Excep No.2 Left 2x4 SP No.3 1 Structural wood shea 6-0-0 oc purlins, ex 2-0-0 oc purlins, ex 2-0-0 oc purlins (6-0 Rigid ceiling directly bracing.	Except* 13-10:2x10 t* 13-6,12-6,12-7:2x4 l-6-0 athing directly applie cept end verticals, ar -0 max.): 6-7. applied or 10-0-0 oc	1) SP 4 SP d or ²) nd	2-ply truss to (0.131"x3") n Top chords c oc. Bottom chord staggered at oc. Web connect All loads are except if note CASE(S) sec provided to d unless othern	be connected toge ails as follows: onnected as follows: as connected as follows as connected as follows as follows: 2x4 considered equally ad as front (F) or ba tion. Ply to ply conn istribute only loads vise indicated.	ther wi s: 2x4 - ows: 2: ows st - 1 row applied ck (B) t nection noted	th 10d 1 row at 0-9- x8 - 2 rows aggered at 0- at 0-9-0 oc. d to all plies, face in the LC s have been as (F) or (B),	-0 9-0 DAD	11) Gra or ti bott 12) Use 14-' to c 13) Fill LOAD (1) De Inc Ur	phical prine orient om chore Simpso 10d Trust onnect t all nail h CASE(S) ead + Sn crease= iform Lo Vert: 1-6 oncentra	urlin re ation of d. on Stro ss) or e russ(e oles w) Stat ow (ba 1.15 cow (ba 1.15 cow (ba 1.15 cow (ba 1.25 cow (ba 1.25) cow (ba 1.25)	vyeignt: 513 ib epresentation do of the purlin alon ng-Tie HTU26-2 equivalent at 17- s) to back face c here hanger is ii ndard alanced): Lumbe b/ft) 6-7=-58, 7-9=-4 ads (lb)	r I = 20% es not depict the size g the top and/or ? (20-10d Girder, 10-12 from the left end of bottom chord. n contact with lumber. er Increase=1.15, Plate 8, 10-15=-20
WEBS REACTIONS	1 Row at midpt (size) 2=0-3-8, 1 Max Horiz 2=245 (LC Max Uplift 2=-100 (Li 11=-195 (Li Max Grav 2=1539 (Li 11=1827 (6-12 (0=2-10-4, 11=2-10-4 2 8) C 9), 10=-61 (LC 6), LC 10) (LC 21), 10=227 (LC 2 (LC 22)	1=2-10-4 Wind: ASCE 7-16; Vult=130mph (3-second gust) Vert: 20=-802 (B) 1 (LC 6), Viscord (B) Viscord (B) 227 (LC 28), Lumber DOL=1.60 plate grip DOL=1.33 Lumber DOL=1.60 plate grip DOL=1.33										
FORCES	(lb) - Maximum Com Tension 1-2=0/53, 2-4=-1791 6-7=-998/250, 7-8=- 9-10=-276/45	pression/Maximum /166, 4-6=-1529/253 1375/290, 8-9=-174/-	s, ^{49,} 6)	Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha	(15); Pg=20.0 psf; Iate DOL=1.15); Is=; Cs=1.00; Ct=1.10s been designed fo	Pf=18.9 1.0; Ro , Lu=50 r greate) psf (Lum bugh Cat B; F)-0-0 er of min roof	live			A.L.	ORTH CA	AD LIANS
BOT CHORD WEBS	2-14=-228/1435, 12- 11-12=-46/125, 10-1 6-13=-86/834, 6-12= 7-12=-148/543, 4-14	14=-228/1435, 1=-41/33 -285/133, =-25/149,	7) 8)	verhangs no Provide adeo * This truss h on the botton	on-concurrent with o juate drainage to pr as been designed f n chord in all areas	other liv revent v for a liv where	ve loads. water ponding e load of 20.0 a rectangle	g.)psf			Ð	SEA	L
NOTES	8-12=-216/1199, 9-1	1=-42/204	9) 10	3-06-00 tall b chord and an Bearings are Joint 11 SP 2) Provide mecl bearing plate 2, 61 lb uplift	y 2-00-00 wide will y other members, v assumed to be: Jo 2400F 2.0E . nanical connection capable of withsta at joint 10 and 195	int betw with BC int 2 SF (by oth nding 1 Ib uplit	veen the botto DL = 10.0psf 2 2400F 2.0E ers) of truss to 00 lb uplift at to at joint 11.	om , o joint		1111.	A A A A A A A A A A A A A A A A A A A		EER. KINN

818 Soundside Road Edenton, NC 27932

October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	B7	Piggyback Base	3	1	Job Reference (optional)	168913528

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:54 ID:49G4Hb8FbprqoJte5ueH9QyV?AJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [5:0-6-4,0-2-0], [6:0-3-4,0-2-0], [15:0-5-8,0-2-0]

	<i>(</i> ^											DI 4750	
Loading	(pst)	spacing	2-0-0		5	0.00	DEFL	in	(IOC)	I/detl	L/d	PLATES	GRIP
ICLL (roof)	20.0	Plate Grip DOL	1.15		IC	0.99	Vert(LL)	-0.12	11-13	>999	240	MT20	244/190
Snow (Pf/Pg)	18.9/20.0	Lumber DOL	1.15		BC	0.62	Vert(CT)	-0.19	11-13	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.48	Horz(CT)	0.03	9	n/a	n/a		
BCLL	0.0*	Code	IRC2021	/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 210 lb	FT = 20%
			2)	Wind: ASCE	7 16: \/ult_120mph	(2 000	rond quet)						
	0		2)	Vind 102mr	h TCDL 6 Opering		Onafi h 25ft	Cat					
	2X4 SP N0.2			II: Evo B: Eo	placed: MW/EPS (or		0 p s i, n = 2 s i t	, Gal.					
BOICHORD	2X4 SP N0.2	* * * * * * * * * * * * *		Extorior(2E)		torior ((1) 2 0 10 to						
WEBS	2x4 SP No.3 *Except	t^ 13-5,11-5,11-6:2x4	4 SP	12 4 15 Evt	-0-11-0102-0-10, 11	16 7 1	1) 2-0-10 (0 4. Interior (1)	`					
	NO.2, 15-2:2x6 SP N	0.2		16 7 14 to 20	101(2R) 12-4-1010	0 0 1 1	4, III.eII.01 (1))					
BRACING				Interior (1) 20	1.2 15 to 29 5 12 7	20-0-11	0 24-2-15, ntilovor loft o	nd					
TOP CHORD	Structural wood shea	athing directly applie	d or	right exposed	-2-15 10 20-5-12 20	und righ	t ovposod.C	C					
	4-3-7 oc purlins, exc	cept end verticals, ar	nd	for mombors	and forces & MW/E	DS for	roactions sh	-0					
	2-0-0 oc purlins (2-2-	-0 max.): 5-6.		Lumber DOL	-1 60 ploto grip DC			JWII,					
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 oc	: 2)		7 16: Dr 20 0 pof			1 15					
	bracing.		3)	Dioto DOI -1	15); Da 20.0 psi (Luni DOL=	1.15					
WEBS	1 Row at midpt	3-13, 5-11			. 15), Pg=20.0 psi, i	1 0. 0	psi (Lum Nuch Cot B: E						
REACTIONS	(size) 9=0-3-8, 1	5=0-3-8		DUL=1.15 PI	ale DOL=1.15), IS=	1.0, KC	идп Сагь, г	ully					
	Max Horiz 15=255 (L	.C 12)	4)	Exp., Ce=0.8	, CS=1.00, Cl=1.10	, Lu=50)-U-U or of min roof	live					
	Max Grav 9=1272 (L	.C 3), 15=1336 (LC 2	29) ⁴	lood of 12 0	s been designed to	r greate		of on					
FORCES	(lb) - Maximum Com	pression/Maximum	,	IUau UI 12.0 p	on concurrent with	t 1001 it	au or 13.9 p	51 011					
	Tension	procolori/maximum	E)	Drewide edec	uneto droinogo to p		veter pending	~					
	1-2=0/57 2-3=-1708	/109 3-5=-1370/188	3) 3 6)	* This trues h	luate urainage to pr	event v	valer portuiri	y. Onof					
	5-6876/105 6-7	1202/172 7-8807/	² , 6)	This truss r	as been designed i	oraliv		opsi					
	2-15-1381/130 8-0	-1/00/77	105,	on the botton	n chord in all areas	where	a rectangle						
	14-15-250/471 13-	1/183/1310		3-06-00 tall 0	y 2-00-00 wide will		Plan the boll	0111 ¢					
	11-13-02/00/ 10-1	1-02/636 0-10-66	3/75 -	chord and an	y other members, v		DL = 10.0psi	I.				minin	11111
WEBS	3-14-0/205 3-13-4	13/12/ 5-13-3/603	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	All bearings a	are assumed to be	5P NO.	∠ .					W'TH CA	ROUL
WLD0	5-11-278/76 6-11-		y, 8)	Graphical pu	riin representation of	loes no	ot depict the s	size			1	a''	Jon the
	2-14-0/866 7-107	55/139 8-1026/11	, 10	or the orienta	mon of the purlin al	ung the	top and/or				SI	0'.EE89	GAN'I
	2 14-0/000, 1-10=1	00/100, 0-10-00/11	10	pottom chord							57	1251	This and
NULES			LC	AD CASE(S)	Standard					2		101	n U

1)

Scale = 1:69.4

Unbalanced roof live loads have been considered for this design.

SEAL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	C1	Piggyback Base Structural Gable	1	1	Job Reference (optional)	168913529

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:54 ID:00Cl97cLqcHQTdc9i48UwsyV?Wy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	1,	(psf) 20.0 8.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MSH	0.14 0.26 0.14	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.02 -0.03 0.01	(loc) 31-33 31-33 24	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 306 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD WEBS JOINTS	R ORD 2x4 SP No.2 ORD 2x4 SP No.2 Second Stream Forces Forces Forces Second Stream Second Stream Forces Second Stream Forces Second Stream Forces Second Stream Second Stream Forces Second Stream Second Stream Second Stream Second Stream Forces Second Stream SecondS				Max Grav 24=19 26=18 28=20 30=31 35=26 37=19 40=19 42=24 (lb) - Maximum C Tension 1-2=0/51, 2-3=-1 4-5=-89/103, 5-7 8-9=-150/249, 9- 10-11=-122/207, 12-13=-122/207, 12-13=-122/207, 14-15=-139/180,	25=215 (LC , 27=192 (LC , 29=179 (LC , 34=637 (LC , 33=192 (LC , 41=179 (LC , 41=179 (LC , 43=188 (LC on/Maximum -4=-98/113, 7-8=-111/196 (71, 22/207, 22/207, 55/240, 14/128,	30), 30), 30), 2), 29), 29), 29), 30)	 Unbalanced roof live loads have been considered this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=24 II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) -0-11-6 to 2-2-8, Interior (1) 2-2-8 to 12-4-15, Exterior(2R) 12-4-15 to 16-11-15, Interior 16-11-15 to 20-0-1, Exterior(2R) 20-0-1 to 24-7-1, Interior (1) 24-7-1 to 33-4-6 zone; cantilever left at exposed; end vertical left and right exposed; C-C members and forces & MWFRS for reactions shot Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the 1 only. For studs exposed to wind (normal to the fa see Standard Industry Gable End Details as appli or consult qualified building designer as per ANSI. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOI Plate DOL=1.15); Pg=20.0 psf (roof LL: Lum DOI Plate DOL=1.15); Pate DOL=1.15); Is=1.0; Rough Cat B Exp : Ce=0 9: Cs=1 00: Ct=1 10, Lu=50-0-0 						
REACTIONS	(size) Max Horiz Max Uplift	24=12-7-8 27=12-7-8 30=0-3-8, 36=14-9-8 40=14-9-8 43=-220 (l 24=-31 (Ll 26=-25 (Ll 28=-36 (Ll 35=-207 (l 35=-207 (l 39=-36 (Ll 41=-25 (Ll 43=-73 (Ll	a, 25=12-7-8, 26=12-7 b, 28=12-7-8, 29=12-7 34=14-9-8, 35=14-9-4 b, 37=14-9-8, 39=14-9 b, 41=14-9-8, 42=14-9 b, 41=14-9-8, 42=14-9 c, 41), 25=-83 (LC 14) C 14), 25=-83 (LC 14) C 14), 29=-48 (LC 14) C 14), 29=-48 (LC 14) C 14), 29=-48 (LC 13) C 13), 42=-40 (LC 13) C 13), 42=-85 (LC 13) C 9)	-8, -8, -8, -8, -8, -8, -8, -8, -8, -8,	$\begin{array}{l} 16\text{-}17\text{=-}139/180, 17\text{-}19\text{=-}114/128, \\ 19\text{-}20\text{=-}92/78, 20\text{-}21\text{=-}95/58, 21\text{-}22\text{=-}121/85, \\ 22\text{-}23\text{=-}0/51, 2\text{-}43\text{=-}146/69, 22\text{-}24\text{=-}157/33 \\ 42\text{-}43\text{=-}117/131, 41\text{-}42\text{=-}117/131, \\ 40\text{-}41\text{=-}117/131, 39\text{-}40\text{=-}117/131, \\ 37\text{-}39\text{=-}117/131, 39\text{-}40\text{=-}117/131, \\ 35\text{-}36\text{=-}117/131, 39\text{-}40\text{=-}117/131, \\ 33\text{-}34\text{=-}76/106, 31\text{-}33\text{=-}76/106, \\ 30\text{-}31\text{=-}76/106, 29\text{-}30\text{=-}77/108, \\ 28\text{-}29\text{=-}77/108, 27\text{-}28\text{=-}77/108, \\ 28\text{-}29\text{=-}77/108, 27\text{-}28\text{=-}77/108, \\ 24\text{-}25\text{=-}77/108, 25\text{-}26\text{=-}77/108, \\ 24\text{-}25\text{=-}77/108, 12\text{-}34\text{-}45\text{=-}135/68, 44\text{-}45\text{=-}134/70, \\ 15\text{-}44\text{=-}112/63, 14\text{-}44\text{=-}71/29, 31\text{-}44\text{=-}48/30, \\ 13\text{-}45\text{=-}55/39, 33\text{-}45\text{=-}54/38, 11\text{-}35\text{=-}42/8, \\ 9\text{-}36\text{=-}121/36, 8\text{-}37\text{=-}140/104, 7\text{-}39\text{=-}131/76, \\ 5\text{-}40\text{=-}132/62, 4\text{-}41\text{=-}130/54, 3\text{-}42\text{=-}148/88, \\ 16\text{-}29\text{=-}125/100, 17\text{-}28\text{=-}135/78, \\ 19\text{-}27\text{=-}131/62, 20\text{-}26\text{=-}132/54, \\ 21\text{-}25\text{=-}135/87 \\ \end{array}$				Pla DC Ex	te DDL= DL=1.15 F o.; Ce=0.	1.15); Plate D 9; Cs=	Pg=20.0 pst; Pf= JOL=1.15); Is=1. =1.00; Ct=1.10, L ORTH CA ORTH CA ORTH CA ORTH CA	-18.9 pst (Lum); Rough Cat B; Fu u=50-0-0	

818 Soundside Road Edenton, NC 27932

October 15,2024

Continued on page 2

Scale = 1:75.4

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING Design valid for use only with MTek connectors. This design is based only upon parameters and property incorporate this design is based only upon parameters and property incorporate this design into the overall building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	C1	Piggyback Base Structural Gable	1	1	Job Reference (optional)	168913529

- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on overhangs non-concurrent with other live loads.
- Provide adequate drainage to prevent water ponding. 6)
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Truss to be fully sheathed from one face or securely braced against lateral movement (i.e. diagonal web). 9) Gable studs spaced at 2-0-0 oc.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) All bearings are assumed to be SP No.2.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 73 lb uplift at joint 43, 31 lb uplift at joint 24, 74 lb uplift at joint 34, 207 lb uplift at joint 35, 46 lb uplift at joint 37, 36 lb uplift at joint 39, 40 lb uplift at joint 40, 25 lb uplift at joint 41, 85 lb uplift at joint 42, 48 lb uplift at joint 29, 36 lb uplift at joint 28, 40 lb uplift at joint 27, 25 lb uplift at joint 26, 83 lb uplift at joint 25 and 21 lb uplift at joint 30.
- 13) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 11:28:54 ID:00Cl97cLqcHQTdc9i48UwsyV?Wy-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	C2	Piggyback Base	4	1	Job Reference (optional)	168913530

TCDL

BCLL

BCDL

WEBS

WEBS

FORCES

TOP CHORD

BOT CHORD

this design.

WEBS

NOTES

1)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 11:28:54

Page: 1

load of 12.0 psf or 2.00 times flat roof load of 13.9 psf on

Provide adequate drainage to prevent water ponding.

* This truss has been designed for a live load of 20.0psf

3-06-00 tall by 2-00-00 wide will fit between the bottom

Graphical purlin representation does not depict the size

chord and any other members, with BCDL = 10.0psf.

or the orientation of the purlin along the top and/or

All bearings are assumed to be SP No.2.

All plates are 3x5 MT20 unless otherwise indicated.

on the bottom chord in all areas where a rectangle

overhangs non-concurrent with other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org)

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4)

6)

7)

8)

9)

bottom chord.

LOAD CASE(S) Standard

Max Grav 11=1483 (LC 30), 18=1489 (LC 29)

(lb) - Maximum Compression/Maximum

1-2=0/60, 2-3=-1929/115, 3-5=-1620/194

8-9=-1922/114, 9-10=0/60, 2-18=-1560/138,

13-15=0/1098, 12-13=0/1381, 11-12=-52/329

3-17=0/178, 3-15=-414/122, 5-15=-1/585,

6-13=-1/566, 8-13=-415/122, 8-12=0/181,

2-17=0/1069, 9-12=0/1064, 5-13=-116/117

5-6=-1189/202, 6-8=-1611/194,

17-18=-217/455, 15-17=-21/1390,

Unbalanced roof live loads have been considered for

Tension

9-11=-1554/138

ORTH Without and the state 1111111111 SEAL 036322 G (1111111) October 15,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D1	Attic Supported Gable	1	1	Job Reference (optional)	168913531

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:55 ID:G8CEeYFKR9u5p?ZYFph0jCyV?3k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

October 15,2024

818 Soundside Road Edenton, NC 27932

Scale = 1:71.2

Plate Offsets (X, Y): [5:0-2-10,0-1-11], [6:0-2-2,Edge], [10:0-2-2,Edge], [11:0-2-7,0-2-0], [16:Edge,0-1-8]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCCL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	I/TPI2014	CSI TC BC WB Matrix-MSH	0.60 0.61 0.64	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 16	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 214 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS	2x6 SP No.2 2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex 2-0-0 oc purlins (6-(Rigid ceiling directly bracing, 1 Brace at Jt(s): 22, 23, 24 (size) 16=21-7- 19=21-7- Max Horiz 21=-229 Max Uplift 16=-186 20=-431 Max Grav 16=441 (18=1162 20=68 (L	ot* 19-18:2x10 SP 2400 ot* 5-11:2x4 SP No.2 eathing directly applied of cept end verticals, and 0-0 max.): 6-10. applied or 10-0-0 oc 8, 17=21-7-8, 18=21-7- (LC 11) (LC 10), 17=-369 (LC 3 (LC 31), 21=-148 (LC 9 LC 30), 17=106 (LC 12) (LC 32), 19=1208 (LC 3 (LC 32), 19=1208 (LC 3)	1) or 2) or 3) 8, 4) 0),), 5)	Unbalanced i this design. Wind: ASCE Vasd=103mg II; Exp B; Ene Exterior(2E) · Exterior(2E) · Exterior(2E) · Exterior(2E) · to 22-8-14 zco vertical left an forces & MW DOL=1.60 pl. Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p	roof live loads have 7-16; Vult=130mph h; TCDL=6.0psf; B closed; MWFRS (er 0-9-14 to 2-3-5, Int 7-5-13 to 11-8-12, I ior(2R) 14-5-3 to 11 ne; cantilever left a nd right exposed; C- FRS for reactions s ate grip DOL=1.33 ed for wind loads ir ds exposed to wind laddstry Gable En alified building desi 7-16; Pr=20.0 psf; I ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 s been designed fo ssf or 2.00 times fla	been of $(3-\sec CDL=6$ drefter (1) drefter (2) drefter (3-8-2), $drefter (1)drefter (3-8-2)$, $drefter (1)drefter (3-8-2)$, $drefter (1)drefter (3-8-2)$, $drefter (1)drefter (3-8-2)$, $drefter (3-8-2)drefter (3-8-2)$, $drefter (3-8-2)drefter (3-8-2)$, $drefter (3-8-2)$, $drefter (3-8-2)drefter (3-8-2)$, $drefter (3-8$	considered for .0psf; h=25ft .0psf; h=25ft .0psf	or ; Cat. 5-13, o -8-2 end () ble, PI 1. 1.15 Fully f live sf on	14) Pro bea 21, 369 15) Gra or ti bott 16) Attic LOAD (vide meu tring plat 186 lb u 1 lb uplift uphical p hical	chanic: e capa plift at join urlin re ation c d. hecked Star	al connection (b) ble of withstand joint 16, 431 lb u t 17. presentation dou of the purlin alon d for L/360 defle ndard	others) of tri ng 148 lb upi plift at joint 2 ss not depict i g the top and ction.	uss to ift at joint 0 and the size /or
FORCES TOP CHORD BOT CHORD WEBS NOTES	(b) - Maximum Con Tension 2-21=-279/158, 1-2: 3-4=-53/229, 4-5=-4 6-7=-914/0, 7-8=-91 9-10=-914/0, 10-11: 12-13=-98/238, 13- 14-16=-294/142 20-21=-119/134, 17 16-17=-113/128 4-19=-783/0, 12-18: 22-23=0/885, 22-24 8-22=-40/33, 7-23= 3-20=-9/238, 13-17:	e/65, 2-3=-221/131, i31/171, 5-6=-853/0, i4/0, 8-9=-914/0, e-853/0, 11-12=-430/18 i4=-253/165, 14-15=0/5 -20=-123/134, e-764/0, 5-23=0/885, =0/885, 11-24=0/885, 6/83, 9-24=-7/82, e-31/215	6) 7) 8) 9) 30, 10 50, 11 12 12	overhangs nr Provide adec All plates are Gable require Truss to be fr braced again) Gable studs :) * This truss h on the botton 3-06-00 tall b chord and an) Ceiling dead 5-23, 22-23, :	on-concurrent with luate drainage to pr 2x4 MT20 unless of se continuous botto ully sheathed from of st lateral movemen spaced at 2-0-0 oc. as been designed to a chord in all areas y 2-00-00 wide will y other members, v load (10.0 psf) on r 22-24, 11-24 are assumed to be	other liv revent vo otherwi m chor one fac t (i.e. d for a liv where fit betw with BC nembe SP No.	re loads. vater ponding se indicated. d bearing. e or securely iagonal web) e load of 20.0 a rectangle veen the botto DL = 10.0pst r(s). 4-5, 11- ⁻ 2.	g. / 0psf om f. 12,		Manna		SEA 0363	L 22 EEER. K	and annunning

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D2	Attic	5	1	Job Reference (optional)	168913532

Scale = 1:74.6

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [6:0-5-8,0-3-0], [12:0-4-12,Edge], [13:0-4-12,Edge]

Loading (psf) Spacing 2-0-0 CSI DEFL in (loc) !/def L/d PLATES TCLL (roof) 20.0 Plate Grip DOL 1.15 TC 0.66 Vert(LL) -0.31 12-13 >840 240 MT20 Snow (Pt/Pg) 18.9/20.0 Lumber DOL 1.15 BC 0.78 Vert(CT) -0.42 12-13 >611 180 TCDL 10.0 Rep Stress Incr YES WB 0.36 Horz(CT) 0.00 11 n/a n/a BCLL 0.0* Code IRC2021/TPI2014 Matrix-MSH Horz -0.26 12-13 >615 360 BCDL 10.0 Horz Horz -0.26 12-13 >615 360 Horz	GRIP 244/190 FT = 20%
 LUMBER TOP CHORD 2x6 SP No.2 SX4 SP No.2 "Except" 13-12:2x10 SP 2400F 2.0E Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0ps; BCDL=6.0ps; Le25t; Cat. II; Exp SE Enclosed; WWFRS (envelope) and C-C Exterior(2E) -0-9-14 to 2-22, Interior (1) 12-22 to 7-5-13, Exterior(2R) 7-5-13 to 11-8-12, Interior (1) 12-22 to 7-5-13, Exterior(2R) 7-5-13 to 11-8-12, Interior (1) 11-8-12 to 14-5-3, Exterior(2R) 7-5-13, Exterior(2R) 10-18-9-2, Interior (1) 11-8-12 to 14-5-3, Exterior(2R) 7-6-13 to 11-8-12, Interior (1) 11-8-12 to 14-5-3, Exterior(2R) 7-6-13, Exterior(2R)	ROUL L 22 EER-ER

G 11111111 Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D3	Attic	4	1	Job Reference (optional)	168913533

Page: 1

Scale = 1:74.6

Plate Offsets (X, Y): [5:0-5-8,0-3-0], [6:0-5-8,0-3-0], [11:0-4-12,Edge], [12:0-4-12,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-MSH	0.66 0.78 0.36	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.31 -0.42 0.00 -0.26	(loc) 11-12 11-12 10 11-12	l/defl >840 >611 n/a >615	L/d 240 180 n/a 360	PLATES MT20 Weight: 218 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD JOINTS REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalance this design	2x6 SP No.2 2x4 SP No.2 *Excep 2.0E 2x4 SP No.3 *Excep Structural wood shea 5-11-15 oc purlins, 6-0 Rigid ceiling directly bracing. 1 Brace at Jt(s): 14 (size) 10=0-3-8, Max Horiz 13=225 (L Max Grav 10=1363 ((lb) - Maximum Com Tension 1-2=0/52, 2-3=-1258 4-5=-465/147, 5-6=-4 7-8=-971/122, 8-9=- 9-10=-1497/0 10-13=-231/828 3-12=-92/434, 8-11= 4-14=-1027/168, 7-1 2-12=0/929, 9-11=0/ 6-14=-55/345 ed roof live loads have b.	t* 12-11:2x10 SP 24(t* 4-7:2x4 SP No.2 athing directly applied except end verticals, -0 max.): 5-6. applied or 6-0-0 oc 13=0-3-8 (C 10) (LC 3), 13=1413 (LC pression/Maximum /9, 3-4=-973/120, 425/161, 6-7=-463/14 1257/0, 2-13=-1557/* -95/432, 4=-1023/178, 935, 5-14=-50/348, been considered for	2) DOF d or and 3) 4) 5) 6) 144, 11, 7) 8) 9) 10 11 LC	Wind: ASCE Vasd=103mp II; Exp B; End Exterior(2E) - Exterior(2R) 14-5-3, Exter to 21-9-4 zor vertical left an forces & MW DOL=1.60 pl TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs nd Provide aded * This truss h on the botton 3-06-00 tall b chord and an Ceiling dead 4-14, 7-14 Bottom chord All bearings a) Graphical pu or the orienta bottom chord Attic room ch	7-16; Vult=130mpl bh; TCDL=6.0ps; E closed; MWFRS (e 0-9-14 to 2-2-2, In 7-5-13 to 11-8-12, ior(2R) 14-5-3 to 1 re; cantilever left an hd right exposed;C FRS for reactions a te grip DOL=1.33 7-16; Pr=20.0 psf; ate DDL=1.15; Is; ; Cs=1.00; Ct=1.10; s been designed for psf or 2.00 times fla on-concurrent with juate drainage to p as been designed to pas been designed	h (3-sec 3CDL=6 nvelope terior (1 Interior 8-8-2, II and right -C for n shown; (roof LL Pf=18.9 =1.0; Rc 0, Lu=50 or great at roof k other lin revent v for a liv where I fit betw membe f) and a sd only t SP No. does no long the	ond gust) .0psf; $h=25ft$; .9) and C-C .) 2-2-2 to 7-5 (1) 11-8-12 tc therior (1) 18- exposed ; en- nembers and Lumber .: Lum DOL=: .) psf (Lum ough Cat B; F)- .)-0-0 er of min roof bad of 13.9 ps re loads of 20.0 a rectangle veen the botto r(s). 3-4, 7-8, dditional botto o room. 11-12 2. t depict the s t top and/or	Cat. -13, -2 -1,15		With the second s		SEAL OSCILLESS SEAL OSCILLESS	RO(11,1,1,1) 22 E.R. K. 1,11	Manually,

G 11111111 October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component component durate propagate component for the prevention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	D4	Attic Girder	1	2	Job Reference (optional)	168913534

Scale = 1:74.9

Plate Offsets (X, Y): [3:0-1-13,0-2-0]	, [4:0-5-8,0-3-0], [6:	0-5-8,0-3-0)], [7:0-1-13,0-2	2-0], [11:0-4-12,0-	3-8], [12	:0-4-12,0-3-8]						
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2027	I/TPI2014	CSI TC BC WB Matrix-MSH	0.50 0.89 0.52	DEFL Vert(LL) Vert(CT) Horz(CT) Attic	in -0.20 -0.34 0.01 -0.18	(loc) 11-12 11-12 10 11-12	l/defl >999 >770 n/a >914	L/d 240 180 n/a 360	PLATES MT20 Weight: 408 lb	GRIP 244/190 FT = 205	%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x6 SP No.2 2x6 SP No.2 *Except 2.0E 2x4 SP No.3 *Except Structural wood shee 6-0-0 oc purlins, exc 2-0-0 oc purlins, exc	* 12-11:2x10 SP 24 * 3-7:2x4 SP No.2 athing directly applie cept end verticals, a 0 may 1: 4-6	2) 100F 3) ed or nd 4)	All loads are except if note CASE(S) sec provided to d unless otherw Unbalanced this design. Wind: ASCE Vasd=103mp	considered equall ed as front (F) or b ction. Ply to ply col listribute only load wise indicated. roof live loads hav 7-16; Vult=130mp oh; TCDL=6.0psf;	y applied ack (B) f nnection s noted a re been o bh (3-sec BCDL=6	d to all plies, face in the LC s have been as (F) or (B), considered fo cond gust) copsf; h=25ft;	DAD r ; Cat.	15) Har pro- lb d 12 l of s othe 16) Attie LOAD (1) De	nger(s) o vided su own and b up at uch cont ers. c room c CASE(S) ead + Sn	r other fficient I 17 Ib 13-5-1 nection hecke) Stat	r connection dev to support con- up at 9-11-12, 2 on top chord. a device(s) is the d for L/360 defle ndard	ice(s) shall entrated loa and 1139 lb The design ⇒ responsibi ection.	be ad(s) 1617 down and /selection lity of
BOT CHORD JOINTS REACTIONS	Rigid ceiling directly bracing. 1 Brace at Jt(s): 15 (size) 10=0-3-8, Max Horiz 13=211 (L Max Gray 10=3285 (applied or 6-0-0 oc 13=0-3-8 C 8) LC 17), 13=3120 (L	5) C 17)	II: Exp B: Enclosed: MWFRS (envelope); cantilever leftIncrease=1.15and right exposed; end vertical left and right exposed;Uniform Loads (lb/ft)Lumber DOL=1.60 plate grip DOL=1.33Vert: 1-2=-48, 2-3=-68, 3-4=-48, 4-6=TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.157-8=-68, 8-9=-48, 12-13=-20, 11-12=Plate DOL=1.15; Pg=20.0 psf; Pf=18.9 psf (Lum3-14=-20, 14-15=-20, 7-11DOL=1.15 Plate DOL=1.15; Is=1.0; Rough Cat B; FullyConcentrated Loads (lb/ft)									8, 4-6=-58, 11-12=-30, 20, 7-16=-2	6-7=-48, 10-11=-20, 0
FORCES	(lb) - Maximum Com Tension 1-2=-2941/0, 2-3=-26 4-5=-3808/261, 5-6= 6-7=-2489/204, 7-8=	pression/Maximum 610/2, 3-4=-2089/19 -1862/333, -2767/3, 8-9=-3022/ 2525/0	6) 7) 02, //0,	Provide adeo * This truss h on the botton 3-06-00 tall b chord and an	y, CS=1.00, Ct=1.1 quate drainage to p has been designed n chord in all area by 2-00-00 wide wi hy other members.	o, Lu=50 prevent v I for a liv s where Il fit betw	water ponding e load of 20.0 a rectangle veen the botto	g.)psf om		Vert: 17 (F)	=-859	(B), 18=-605 (B	, 19=-839 (F), 20=-585
BOT CHORD WEBS	10-13=-220/2086 3-14=-1018/91, 14-1 15-16=-486/1914, 7- 2-12=-2/393, 8-11=- 9-11=0/2462, 4-14=0 5-15=-917/81, 5-16=	-3223/0 5=-986/94, 16=-651/88, 32/350, 1-12=0/242()/229, 4-15=-112/26 -2171/103, 6-16=-3/	8) 9) 6, 10 74, 11 /898	Ceiling dead 3-14, 14-15, Bottom chorc chord dead lo) All bearings a) Graphical pu or the orienta	load (10.0 psf) on 15-16, 7-16 d live load (40.0 ps oad (5.0 psf) appli are assumed to be rlin representation ation of the purlin a	membe of) and a ed only t SP No. does no along the	r(s). 2-3, 7-8, dditional botto o room. 11-1 2 . ot depict the s top and/or	om 2 size		4	the second	ORTH CA	ROLI	
NOTES 1) 2-ply truss (0.131"x3" Top chord staggered Bottom ch staggered oc. Web conn	to be connected toget) nails as follows: s connected as follows at 0-6-0 oc, 2x4 - 1 rov ords connected as follows at 0-9-0 oc, 2x10 - 2 ro ected as follows: 2x4 -	her with 10d : 2x6 - 2 rows w at 0-9-0 oc. ows: 2x6 - 2 rows ows staggered at 0-1 1 row at 0-9-0 oc.	12 13 9-0 14	bottom chord) Use Simpsor 14-10dx1 1/2 left end to co chord.) Use Simpsor Truss, Single the left end to chord.) Fill all nail ho	A Strong-Tie HTU2 Truss) or equival nnect truss(es) to Strong-Tie LUS2 Ply Girder) or equival p connect truss(es ples where hanger	26 (10-16 ent at 9- front fac i6 (4-10c uivalent i) to front is in cor	6d Girder, 11-12 from the e of bottom I Girder, 3-10 at 13-5-12 fro t face of botto ttact with lum	d om om ber.		THUNK		SEA 0363		Annunun Annunun Annunun

October 15,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	E1	Flat Girder	1	2	Job Reference (optional)	168913535

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:55 ID:xSpDQIqRxEc1fPDKLmaxhYyV?fj-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f _____

Page: 1

Scale = 1:52.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 NO IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.79 0.05 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 107 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD 3OT CHORD WEBS BRACING TOP CHORD 3OT CHORD WEBS REACTIONS (9 M FORCES TOP CHORD 3OT CHORD WEBS NOTES 1) 2-ply truss tr (0.131"x3") Top chords oc. Bottom chor staggered a Web connec 2) All loads are except if not CASE(S) se provided to unless other 3) Wind: ASE(S) se provided to unless other 3) Wind: ASE(S) se provided to unless other and right ex Lumber DOI	2x4 SP No.1 2x10 SP 2400F 2.0E 2x4 SP No.3 2-0-0 oc purlins: 1-2. Rigid ceiling directly bracing. 1 Row at midpt size) 3= Mecha fax Horiz 4=-229 (Li fax Uplift 3=-392 (Li fax Grav 3=1322 (Li (lb) - Maximum Com Tension 1-4=-688/355, 1-2=-9 3-4=-206/182 1-3=-345/345 o be connected toget nails as follows: connected as follows: connected as follows: ds connected as follows: ds connected as follows ds connected as follows: ction. Ply to ply com distribute only loads i wise indicated. 57-16; Vult=130mph ph; TCDL=6.0psf; B0 ciolosed; MWFRS (en posed ; end vertical I L=1.60 plate grip DO	, except end verticals applied or 10-0-0 oc 1-4, 2-3 nical, 4= Mechanical C 7) C 6), 4=-378 (LC 5) C 20), 4=1062 (LC 2 pression/Maximum 91/68, 2-3=-652/33 ther with 10d c: 2x4 - 1 row at 0-9-0 cows: 2x10 - 2 rows 1 row at 0-9-0 oc. applied to all plies, ck (B) face in the LO/ ections have been noted as (F) or (B), (3-second gust) CDL=6.0psf; h=25ft; (velope); cantilever le eft and right exposed L=1.33	 4) TCLL: A Plate DC DOL=1.1 Exp.; Ce 5) Provide a 6) * This true on the bc 3-06-00 f chord an 7) Refer to 8) Provide a 9) Graphica or the orision of the orision of the orision bottom c 10) Use Sim Truss, Si left end t chord. 11) Fill all na 12) Hanger(s provided lb down a design/ss responsi LOAD CASE 1) Dead + ND Increas 1) Dead + Vert: Concer 24. 	SCE 7-16; Pr=20.0 ps L=1.15); Pg=20.0 ps S Plate DOL=1.15); I =0.9; Cs=1.00; Ct=1. dequate drainage to ss has been designe thom chord in all aree all by 2-00-00 wide w d any other members girder(s) for truss to t nechanical connectic late capable of withs 2 Ib uplift at joint 3. I purlin representatio entation of the purlin nord. uson Strong-Tie LUS rigle Ply Girder) or er o connect truss(es) to I holes where hange) or other connection sufficient to support ind 23 Ib up at 1-9-1 lection of such conn sility of others. (S) Standard Snow (balanced): Lu =1.15 Loads (Ib/ft) 1-2=-58, 3-4=-20 trated Loads (Ib) 5=-987, 6=-611 (B)	f (roof LL ; Pf=18.5 s=1.0; Rc 10, Lu=56 prevent of d for a liv as where vill fit betw rruss conr n (by oth tanding 3 n does no along the 26 (4-10c uivalent b back fac r is in cor device(s concentra 2 on top ection de mber Inc	:: Lum DOL=: psf (Lum pugh Cat B; F)-0-0 water ponding e load of 20.0 a rectangle veen the botto mections. ers) of truss t 78 lb uplift at tot depict the s tot and/or l Girder, 3-10 at 1-9-12 from ex of bottom tact with lumi) shall be tited load(s) 1 chord. The vice(s) is the rease=1.15, F	1.15 ully j. opsf om joint ize d n the ber. 000				SEA 0363	22 E.B.E.H.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I.I	Manually

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	L1	Roof Special	1	1	Job Reference (optional)	168913536

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:55 ID:vVTT4LmQ4i6qTaqPMsYJLYyTVmh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [4:0-2-9,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI20	4	CSI TC BC WB Matrix-MSH	0.59 0.46 0.87	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.07 -0.13 0.03	(loc) 9-10 9-10 12	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 104 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: AS(Vasd=103 II; Exp B; Exterior(2 zone; can and right 6 grip DOL=	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 4-7-11 oc purlins, ei 2-0-0 oc purlins, (4-3 Rigid ceiling directly bracing. (size) 11=0-1-8, Max Horiz 11=-100 (Max Uplift 12=-7 (LC Max Grav 11=682 (L (Ib) - Maximum Com Tension 1-2=-153/127, 2-3=-4 4-5=-1397/99, 5-6=- 1-11=-166/108 10-11=-49/395, 9-10 7-9=-99/1394 2-11=-660/51, 4-10= 3-10=-104/1674, 5-9 5-7=-1359/98, 6-12= ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; BG Enclosed; MWFRS (en E) 2-0-3 to 8-4-14, Inte tilever left and right exp exposed; C-C for memb or reactions shown; Lu =1.33	athing directly applied xcept end verticals, a -9 max.): 4-6. applied or 10-0-0 oc 12= Mechanical LC 13) 16) .C 2), 12=859 (LC 43 pression/Maximum 643/99, 3-4=-1630/18 177/10, 6-7=-15/644, l=-109/1270, -1357/166, =0/170, 4-9=-130/19 -870/54 been considered for (3-second gust) CDL=6.0psf; h=25ft; 0 velope) and C-C rior (1) 8-4-14 to 18-to posed ; end vertical levers and forces & mber DOL=1.60 plate	 3) TCLL: Plate I DOL= Exp.; (4) Unbala design 6) * This on the 3-06-0 chord 7) Bearin 8) Refer 9) Provid bearin 10) Provid bearin 10) Provid bearin 11) Graph or the botton LOAD CA 5, 	ASCE DOL=1 1.15 P Ce=0.9 e adeet truss F bottor 0 tall b bottor 0 tall b bottor 0 tall b and ar gg are e mecc g plate e mecc g plate cal putor intata a chore SE(S)	7-16; Pr=20.0 psf, .15); Pg=20.0 psf; late DOL=1.15); Is- b; Cs=1.00; Ct=1.10; snow loads have b quate drainage to p- has been designed in chord in all areas by 2-00-00 wide will by other members. assumed to be: Jo er(s) for truss to tru- hanical connection at joint(s) 11. hanical connection capable of withsta rlin representation ation of the purlin at Standard	(roof LL Pf=18.5 =1.0; Rc 0, Lu=50 eeen cor prevent y for a liv s where I fit betw bint 11 S us contr (by oth anding 7 does no long the	:: Lum DOL= p psf (Lum ugh Cat B; F)-0-0 sidered for th water ponding e load of 20.0 a rectangle veen the botto SP No.2. ers) of truss t ers) of truss t 'lb uplift at jo ot depict the s top and/or	1.15 Fully his g. Dopsf om to sint size		With the second s		SEA O363	ROLL 22 E.R. K	a hanning

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

G minimum) October 15,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	L2	Roof Special	1	1	Job Reference (optional)	168913537

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:?IU67ftx2TK67SKEfNEVUSyTVp8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (X, Y): [3:0-3-8,Edge], [6:0-4-0,0-2-2]

Loading FCLL (roof) Snow (Pf/P FCDL	(psf) 20.0 g) 18.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	I/TPI2014	CSI TC BC WB Matrix-MSH	0.53 0.55 0.57	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.14 0.03	(loc) 7-8 7-8 10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190	
BCDL	10.0	Code	11(02021	/11 12014	Matrix-WOT							Weight: 62 lb	FT = 20%	
LUMBER FOP CHOR 30T CHOR WEBS BRACING FOP CHOR 30T CHOR REACTION	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 3x4 SP No.3 3x5 Structural wood sheat 6-0-0 oc purlins, exc. 2-0-0 oc purlins, exc. 2-0-0 oc purlins (3-7 x5 Rigid ceiling directly bracing. x6 Size) 9=0-3-0, 1 x7 Max Horiz 9=-70 (LC Max Uplift 9=-26 (LC Max Grav 9=521 (LC Max	athing directly applie ept -9 max.): 3-5. applied or 10-0-0 oc (0= Mechanical : 16) : 16) : 22), 10=605 (LC 35	4) 5) 6) d or 7) 5; 8) 9) 10,	Unbalanced design. Provide adec * This truss h on the botton 3-06-00 tall b chord and an Bearings are Refer to girde Provide mech bearing plate 9.) Graphical pu or the orienta bottom chorc	snow loads have b quate drainage to p has been designed in chord in all areas by 2-00-00 wide wil by other members. assumed to be: Jd er(s) for truss to tru hanical connection capable of withsta rlin representation ation of the purlin a d.	peen cor for a liv s where Il fit betv bint 9 SI uss conr (by oth anding 2 does no long the	nsidered for t water pondin e load of 20.1 a rectangle veen the bott P No.2 . nections. ers) of truss i 6 lb uplift at j bt depict the s e top and/or	his g. 0psf om to joint size						
ORCES	Tension	pression/waximum	LC	AD CASE(S)	Standard									
TOP CHOR	RD 1-2=-22/0, 2-3=-98/7 4-5=-293/28	74, 3-4=-1838/99,												
SOT CHOR WEBS	RD 8-9=0/1242, 7-8=0/1 2-9=-163/91, 3-8=0/8 5-6=0/424, 4-7=-56/9 4-6=-1591/72, 5-10=	248, 6-7=-98/1835 87, 3-9=-1323/82, 92, 3-7=-138/603, 669/48											1111	
OTES	. 0= 100 1/12, 0 10=											TH CA	RO,"	1.
 Unbala this des Wind: A Vasd=1 II; Exp Exterio zone; c and rigl MWFR. grip DC TCLL: A Plate D DOL=1 	nced roof live loads have sign. ASCE 7-16; Vult=130mph 03mph; TCDL=6.0psf; B(B; Enclosed; MWFRS (enc) (2E) 0-0 to 3-2-6, Interi antilever left and right exp nt exposed;C-C for memb S for reactions shown; Lu DL=1.33 ASCE 7-16; Pr=20.0 psf (OL=1.15); Pg=20.0 psf; F .15 Plate DOL=1.15); 1=10	been considered for (3-second gust) CDL=6.0pst; h=25ft; ivelope) and C-C or (1) 3-2-6 to 11-7- bosed ; end vertical I ers and forces & mber DOL=1.60 plat roof LL: Lum DOL=1 2f=18.9 psf (Lum 1.0; Rough Cat B; Ft Ju=50-00	Cat. 12 eft te .15							A THURSDAY	A THE AND A THE	SEA 0363	L 22 EER ILBER	A A A A A A A A A A A A A A A A A A A

grip DOL=1.33 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

October 15,2024

minum

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	M1	Jack-Closed	1	1	Job Reference (optional)	168913538

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:STDrrWzvEM_J7FryihVBbGyTWWC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:66.1

Plate Offsets (X, Y): [2:0-1-0,0-2-0],	[4:0-3-8,0-3-0]											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.86 0.30 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.05 -0.08 0.01	(loc) 6-7 6-7 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 92 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Except 2.0E, 5-6:2x4 SP No Structural wood shea 6-0-0 oc purlins, exc	t* 8-2:2x8 SP 2400F .2 athing directly applie cept end verticals.	4) 5) 6) d or 7)	* This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate 6	as been designed n chord in all areas y 2-00-00 wide wil y other members. assumed to be: Jo er(s) for truss to tru nanical connection capable of withsta	for a liv s where I fit betv Dint 8 SI uss conr (by oth anding 1	e load of 20.0 a rectangle veen the both P No.2 . nections. ers) of truss to 05 lb uplift at	Dpsf om to t joint					
BOT CHORD	Rigid ceiling directly bracing.	applied or 7-1-12 oc	LC	DAD CASE(S)	Standard								
WEBS	1 Row at midpt	5-6, 3-6											
REACTIONS	(size) 6= Mecha Max Horiz 8=328 (LC Max Uplift 6=-105 (LC Max Grav 6=536 (LC	nical, 8=0-3-8 C 10) C 10) C 29), 8=564 (LC 2)											
FORCES	(lb) - Maximum Com	pression/Maximum											
TOP CHORD	2-8=-587/157, 1-2=0 3-5=-276/220, 5-6=-2	/60, 2-3=-586/109, 243/226											
BOT CHORD	7-8=-662/584, 6-7=-2	294/464											
WEBS	3-7=0/167, 3-6=-491	/240, 2-7=-169/371										minin	U117.
NOTES												IN'TH CA	ROUL
 Wind: ASC Vasd=103 II; Exp B; I Exterior(21 12-5-4 zor vertical lef forces & M DOL=1.60 TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=I This truss load of 12 overhanos 	CE 7-16; Vult=130mph imph; TCDL=6.0psf; BC Enclosed; MWFRS (en E) -0-11-6 to 2-0-10, In re; cantilever left and ri t and right exposed;C-(MWFRS for reactions sf 0 plate grip DOL=1.33 CE 7-16; Pr=20.0 psf; P i Plate DOL=1.15); Is=' 0.9; Cs=1.00; Ct=1.10 has been designed for .0 psf or 2.00 times flat s pon-concurrent with o	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C terior (1) 2-0-10 to ight exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1 Y=13.9 psf (Lum 1.0; Rough Cat B; Fu greater of min roof 1 roof load of 13.9 ps ther live loads	Cat. .15 Jlly f on							Wannus		SEA 0363	L 22 LBERTIN

October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB1	Piggyback	2	1	Job Reference (optional)	168913539

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:dmFR6rikcz04dGBeyRwMy9yV?h9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:31.4

Plate Offsets (X, Y):	[2:0-2-1,0-1-0]	, [6:0-2-1,0-1-0]
-----------------------	-----------------	-------------------

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	1-11-4 1.15		CSI TC	0.06	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES MT20	GRIP 244/190	
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.02	Vert(CT)	n/a	-	n/a	999			
TCDL	10.0	Rep Stress Incr	YES		WB	0.05	Horz(CT)	0.00	15	n/a	n/a			
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								FT and	
BCDL	10.0											Weight: 30 lb	FT = 20%	
LUMBER TOP CHORD 30T CHORD DTHERS BRACING TOP CHORD 30T CHORD REACTIONS	$\begin{array}{l} 2x4 \; SP \; \text{No.2} \\ 2x4 \; SP \; \text{No.2} \\ 2x4 \; SP \; \text{No.3} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	athing directly applie applied or 10-0-0 oc 6=6-3-11, 8=6-3-11, 10=6-3-11, 11=6-3- 12), 11=54 (LC 12) 3), 8=-43 (LC 14), 10 1=-9 (LC 9) 30), 6=65 (LC 2), 8= =109 (LC 2), 10=156 7 (LC 30), 15=65 (LC	3) d or 11, 6) 7) 9=-43 8) 159 9 (LC 9) 22) 9)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 overhangs n Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings a	ed for wind loads ids exposed to wind d Industry Gable E lailfied building de 7-16; Pr=20.0 ps .15); Pg=20.0 ps late DOL=1.15); Is b; Cs=1.00; Ct=1.1 s been designed psf or 2.00 times f on-concurrent with es continuous bott spaced at 2-0-0 o has been designed n chord in all area by 2-00-00 wide w by other members are assumed to be hanical connection	in the pland (norm and norm and Deta signer as f (roof LL; FF=13.9; ==1.0; RC for greated lat roof lo to other lin tom chor c. d for a liv s where ill fit betwo e SP No.	ane of the tru al to the face ils as applica s per ANSI/TI :: Lum DOL= p psf (Lum ough Cat B; F er of min roof oad of 13.9 pr <i>re</i> loads. d bearing. e load of 20.0 a rectangle veen the botto 2.	ss), ble, Pl 1. 1.15 fully live sf on Opsf om						
FORCES	(lb) - Maximum Com	pression/Maximum	10	bearing plate	e capable of withst	anding 9	lb uplift at jo	int 2,						
TOP CHORD	1-2=0/19, 2-3=-59/42	2, 3-4=-85/79,		43 lb uplift at at ioint 2.	i joint 10, 43 lb upl	lift at join	t 8 and 9 lb u	plift						
BOT CHORD	4-5=-85/78, 5-6=-58/ 2-10=-29/73, 9-10=-2 6-8=-29/73	/35, 6-7=0/19 29/73, 8-9=-29/73,	11) See Standar Detail for Co	d Industry Piggyba nnection to base t fied building desig	ack Trus russ as a	s Connection applicable, or				an'	HTH CA	ROLL	1,
WEBS	4-9=-67/0, 3-10=-17	7/177, 5-8=-177/176	LC	DAD CASE(S)	Standard	,					52	FES	97 y	in ,
NOTES				(-)						4	0	QZ /	A.	4.
1) Unbalance	ed roof live loads have	been considered for								-		. ~		
Wind: ASG Vasd=103 II; Exp B; Exterior(2 Exterior(2 zone; can and right e MWFRS fr grip DOL=	IL CE 7-16; Vult=130mph mph; TCDL=6.0psf; BG Enclosed; MWFRS (en E) 0-2-14 to 3-2-14, Int R) 3-9-9 to 6-7-8, Interi tilever left and right exp exposed;C-C for memb or reactions shown; Lu ±1.33	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C erior (1) 3-2-14 to 3- or (1) 6-7-8 to 7-4-4 posed ; end vertical li- ers and forces & mber DOL=1.60 plat	Cat. 9-9, eft e							11111112	A A A A A A A A A A A A A A A A A A A	SEA 0363	EER.RA	annun 19

October 15,2024

Page: 1

TRENGINEERING BY A MITEK Affiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB2	Piggyback	22	1	Job Reference (optional)	168913540

Scale = 1:29 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design

WFBS

NOTES

1)

REACTIONS (size)

Snow (Pf/Pg)

Page: 1

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 11:28:56 ID:SvciNunVCpnELBeoJi1mCQyV?h3-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-7-7 6-11-3-1-13 6-3-11 0-7-7 3-1-13 0-7-7 3-1-13 4x5 = 3 12 10 Г 3-1-15 9-0-1 -4-13 6 2x4 = 2x4 II 2x4 = 6-3-11 Spacing 2-0-0 CSI DEFL l/defl L/d PLATES GRIP (psf) in (loc) 20.0 Plate Grip DOL 1.15 TC 0.18 Vert(LL) n/a n/a 999 MT20 244/190 BC 13 9/20 0 Lumber DOL 1 15 0.07 Vert(TL) n/a n/a 999 10.0 Rep Stress Incr YES WB 0.02 Horiz(TL) 0.00 4 n/a n/a 0.0 Code IRC2021/TPI2014 Matrix-MP 10.0 Weight: 28 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), 2x4 SP No.2 2x4 SP No.2 see Standard Industry Gable End Details as applicable, 2x4 SP No.3 or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum Structural wood sheathing directly applied or DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully 6-0-0 oc purlins. Exp.: Ce=0.9; Cs=1.00; Ct=1.10 Rigid ceiling directly applied or 10-0-0 oc 5) Gable requires continuous bottom chord bearing bracing. 6) Gable studs spaced at 4-0-0 oc. 1=7-7-2, 2=7-7-2, 4=7-7-2, 5=7-7-2, 7) This truss has been designed for a live load of 20.0psf 6=7-7-2, 7=7-7-2, 10=7-7-2 on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom Max Horiz 1=-56 (LC 9) chord and any other members. Max Uplift 1=-202 (LC 29), 2=-78 (LC 13), All bearings are assumed to be SP No.2 . 8) 4=-69 (LC 14), 5=-169 (LC 30), Provide mechanical connection (by others) of truss to 7=-78 (LC 13), 10=-69 (LC 14) bearing plate capable of withstanding 78 lb uplift at joint Max Grav 1=73 (LC 13), 2=397 (LC 29), 2, 69 lb uplift at joint 4, 202 lb uplift at joint 1, 169 lb uplift 4=363 (LC 30), 5=55 (LC 14), at joint 5, 78 lb uplift at joint 2 and 69 lb uplift at joint 4. 6=169 (LC 2), 7=397 (LC 29), 10=363 (LC 30) 10) See Standard Industry Piggyback Truss Connection (lb) - Maximum Compression/Maximum Detail for Connection to base truss as applicable, or Tension consult qualified building designer. 1-2=-132/181, 2-3=-125/96, 3-4=-125/95, LOAD CASE(S) Standard 4-5=-115/159 ORT 2-6=-68/67, 4-6=-68/72 3-6=-84/8Unbalanced roof live loads have been considered for SEAL Wind: ASCE 7-16; Vult=130mph (3-second gust) 036322

2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 3-9-9, Exterior(2R) 3-9-9 to 6-7-8, Interior (1) 6-7-8 to 7-4-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

818 Soundside Road

Edenton, NC 27932

GI

mmm October 15,2024 VIIIIIIIIII

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB3	Piggyback	1	2	Job Reference (optional)	168913541

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:tUIq?wpNUk9oCfNN_qbTq2yV?h0-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:29

					_											
Loa	ding		(psf)	Spacing	2-0-0		CSI	0.00	DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCL	L (root)		20.0	Plate Grip DOL	1.15			0.08	Vert(LL)	n/a	-	n/a	999	M120	244/190	
Sno	w (Pf/Pg)	1	3.9/20.0	Lumber DOL	1.15		BC	0.03	Vert(TL)	n/a	-	n/a	999			
TCL)L		10.0	Rep Stress Incr	YES		WB	0.01	Horiz(TL)	0.00	4	n/a	n/a			
BCL	_L		0.0*	Code	IRC20	21/1912014	Matrix-MP									
BCI	JL		10.0											Weight: 55 lb	F1 = 20%	
LUN	MBER				:	 Unbalanced 	roof live loads hav	e been	considered fo	r						
TOP		2x4 SP N	0.2				7 16: Vult 120mm	h (2 aa)	and quat)							
OTL		2X4 SP N	0.2			Vasd=103m	h: TCDI -6 Opsf: I	BCDI –	Ond gust) Onsf: h=25ft:	Cat						
		284 SP N	0.5			II; Exp B; Enclosed; MWFRS (envelope) and C-C										
BRA		Christense	المرامة مرامة	athing diseath (opplie		Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 3-9-9,										
TOP	CHORD	Structura	i wood snea	athing directly applie	a or	Exterior(2R)	3-9-9 to 6-7-8, Inte	erior (1)	6-7-8 to 7-4-4	1						
BOT		Rigid ceil	ing directly	applied or 10-0-0 oc		zone; cantile	ver left and right e	xposed	; end vertical	left						
		bracing.	ing uncerty		•	and right exposed;C-C for members and forces &										
RE	ACTIONS	(size)	1=7-7-2 2	=7-7-2 4=7-7-2 5=	7-7-2	MWFRS for reactions shown; Lumber DOL=1.60 plate										
		(0.20)	6=7-7-2.7	/=7-7-2, 10=7-7-2	,	grip DOL=1.	33									
			- ,	, -) I russ design anly For at 	ied for wind loads i	n the pl	ane of the tru	SS \						
		Max Horiz	1=-56 (LC	11)		see Standar	d Industry Cable F	nd Deta	ile as applical), bla						
	Max Uplift 1=-192 (LC 29), 2=-76 (LC 13),					or consult qualified building designer as per ANSI/TPI 1.										
	4=-67 (LC 14), 5=-160),	3) TCLL: ASCE	7-16: Pr=20.0 psf	(roof Ll	: Lum DOL=	1.15						
			7=-76 (LC	13), 10=-67 (LC 14))	Plate DOL=1	.15); Pg=20.0 psf;	Pf=13.9) psf (Lum							
		Max Grav	1=/1 (LC	13), 2=385 (LC 29),		DOL=1.15 P	late DOL=1.15); Is	=1.0; Ro	ough Cat B; F	ully						
			4=352 (LC	(10, 30), 3=32 (LC 14), 30, 7=395 (LC 20)		Exp.; Ce=0.9	; Cs=1.00; Ct=1.1	0								
			10-352 (LC	(10, 20)		Gable requir	es continuous botte	om choi	d bearing.							
FOR	PCES	(lb) - Max		pression/Maximum		 Gable studs 	spaced at 4-0-0 oc									
FOR	NOE3	Tension		pression/maximum		 This truss h 	nas been designed	for a liv	e load of 20.0	Opsf						
TOF	CHORD	1-2=-126	/175. 2-3=- ⁻	122/90. 3-4=-123/89.	_	on the bottor	n chord in all areas	s where	a rectangle	~~~				MILLIN	1111	
		4-5=-110	/152		,	chord and ar	by 2-00-00 wide wi	ii iii belv	veen me bollo	511				WHY CA	Pall	
BO	T CHORD	2-6=-71/7	4, 4-6=-71/	/80		0) All bearings	are assumed to be	SP No	2					alti		
WE	BS	3-6=-87/9)			1) Provide med	hanical connection	(by oth	ers) of truss t	0			K.	O'EESS	10 Vin	
NO	TES					bearing plate	capable of withsta	anding 7	6 lb uplift at i	oint		/	55		The	
1)	2-ply truss	s to be conn	ected toget	her as follows:		2, 67 lb uplif	at joint 4, 192 lb u	ıplift at j	oint 1, 160 lb	uplift				51 ×	a. e	
	Top chord	ls connected	d with 10d (0.131"x3") nails as		at joint 5, 76	lb uplift at joint 2 a	nd 67 lb	uplift at joint	4.				OF A	1 E E	
	follows: 2x	x4 - 1 row at	t 0-9-0 oc.									=		SEA	4 <u>8</u> 8	
	Bottom ch	ords conne	cted with 10	0d (0.131"x3") nails a	as	12) See Standard Industry Piggyback Truss Connection										
follows: 2x4 - 1 row at 0-9-0 oc.						Detail for Connection to base truss as applicable, or										
2) All loads are considered equally applied to all plies,						consult qualified building designer.										
except if noted as front (F) or back (B) face in the LOAD					AD	LUAD CASE(S)	Standard						10	N. SNOW	-FRIX S	
	provided to	o distribute	only loads	noted as (F) or (B)									1	P. GIN	5. 28 1	
	unless oth	nerwise indic	cated.										1	CA C	BEIN	
													1111. 6	in the second se		
															I.I. C. S. C	

October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB4	Piggyback	1	2	Job Reference (optional)	168913542

3-1-13

-0-7-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:DS5j2etWJGn5IQFLnNAeX6yV?gx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-3-11

6-11-1

Scale = 1:29.1

Plate Offsets (X, Y): [2:0-2-1,0-1-0], [4:0-2-1,0-1-0]

	(,,, ,): [=:0 = :;0 : 0];	[::::::::::::::::::::::::::::::::::::::											
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	3-0-0 1.15 1.15 NO IRC2021	/TPI2014	CSI TC BC WB Matrix-MP	0.11 0.11 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES 1) 2-ply truss Top chord follows: 22 Bottom ch follows: 22 2) All loads a except if n CASE(S) provided t unless oth 3) Unbalance this design	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2-0-0 oc purlins (6-0 (Switched from shee Rigid ceiling directly bracing. (size) 2=6-3-11, 7-6-3-11, Max Horiz 2=-83 (LC (LC 2), 7= 2) (lb) - Maximum Com Tension 1-2=0/29, 2-3=-220/4 4-5=0/29 2-6=-44/108, 4-6=-32 3-6=-105/0 is to be connected toget is connected with 10d (x4 - 1 row at 0-9-0 oc. are considered equally oted as front (F) or bar section. Ply to ply com rewise indicated. ed roof live loads have n.	-0 max.) applied Spacing > 2-8-0 applied or 10-0-0 oc 4=6-3-11, 6=6-3-11, 11=6-3-11 11), 7=-83 (LC 11) 13), 4=-21 (LC 14) 2), 4=269 (LC 2), 6- 269 (LC 2), 11=269 appression/Maximum 148, 3-4=-220/146, 9/114 ther as follows: (0.131"x3") nails as 0d (0.131"x3") nails as 0d (0.131"x3") nails as plied to all plies, ck (B) face in the LO) nections have been noted as (F) or (B), been considered for	4) 5) -291 LC 7) 8) 9) 10) 11) 12) s AD 13) 14) LO	Wind: ASCE Vasd=103mp II; Exp B; Enc Exterior(2E) zone; cantile and right exp MWFRS for I grip DOL=1.3 Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 ţ overhangs nu Gable requirt Gable studs * non the bottom 3-06-00 tall b chord and ar All bearings a Provide mecl bearing plate 2, 21 lb uplift uplift at joint See Standard Detail for Cou consult qualif Graphical pu or the orienta bottom chorce	7-16; Vult=130m h; TCDL=6.0psf; closed; MWFRS (0-2-14 to 3-2-14, 3-9-9 to 6-7-8, Int ver left and right ef osed;C-C for mer reactions shown; I 33 ed for wind loads dds exposed to wind d Industry Gable E alified building de 7-16; Pr=20.0 psf late DOL=1.15); Is b; Cs=1.00; Ct=1.1 s been designed por-concurrent with es continuous bot spaced at 4-0-0 o hans been designed or-concurrent with es continuous bot spaced at 4-0-0 o hans been designed or-concurrent with es continuous bot spaced at 4-0-0 o was been designed or-concurrent with es continuous bot spaced at 4-0-0 o hand to the purlin at the field building designed rlin representation tion of the purlin at the standard	bh (3-sec BCDL=6 envelope Interior (erior (1) exposed mbers an Lumber I in the plan d (norm End Deta signer as f (roof LL ; Pf=13.9 s=1.0; RC 10 for great ilat roof la tom chore li tom chor c. d for a liv is where ill fit betv e SP No. n (by oth tanding 1 plift at joi ack Truss as a along the	cond gust) .0psf; h=25ft; b) and C-C 1) 3-2-14 to 3 6-7-8 to 7-4-2 cond gust) and of croces & DOL=1.60 plating ane of the tru al to the face ils as applical s per ANSI/TF c: Lum DOL= 0 psf (Lum Dugh Cat B; F er of min roof pad of 13.9 pi ve loads. d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss t 3 lb uplift at j nt 2 and 21 lb s Connection applicable, or b to depict the s top and/or	Cat. -9-9, I left ite ss), ble, 11.15 fully live sf on opsf om oint b		Charles and a second seco		SEA 0363	L 22 L L B E E E E E E E E E E E E E E E E E

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affilia 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB5	Piggyback	1	1	Job Reference (optional)	168913543

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:e1nshfwPcB9g9u_wSWkL8kyV?gu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

. 49

Scale = 1:34.4

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MP	0.20 0.06 0.03	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 2	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 23 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 5-4-5 oc purlins, ex Rigid ceiling directly bracing. (size) $1=5-4-5, 2$ 7=5-4-5, 8 Max Horiz $1=74$ (LC Max Uplift $1=-211$ (L 5=-21 (LC Max Grav $1=77$ (LC (LC 30), 6 29)	athing directly applied cept end verticals. applied or 10-0-0 oc 2=5-4-5, 5=5-4-5, 6=5 3=5-4-5 12) C 29), 2=-75 (LC 13), 30), 2=378 (LC 29), 5 3=188 (LC 29), 8=378	3) 4) l or -4-5, 5) 6) 6) 6) 7) -4-5, 7) -4-5, 8) 9) (LC 10	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Gable requiri Gable studs * This truss I on the bottor 3-06-00 tall b chord and ar All bearings : Bearing at jo value using / designer sho) Provide mec	ed for wind loads ds exposed to wird d Industry Gable E alified building de: 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; 14te DOL=1.15); Isb c Cs=1.00; Ct=1.1 es continuous bott spaced at 4-0-0 or has been designed n chord in all area by 2-00-00 wide wi by other members. are assumed to be int(s) 2, 5, 1, 7, 2 of NNSI/TPI 1 angle t uld verify capacity hanical connection	in the pl ind (norm ind Deta signer a: f (roof LL Pf=13.9 e1.0; Re 0 om chor c. l for a liv s where ll fit betw s SP No. consider o grain f o for ar i of bear n (by oth	ane of the trus al to the face) ils as applicat s per ANSI/TF er ANSI/TF b psf (Lum Dough Cat B; Fr d bearing. e load of 20.0 a rectangle veen the botto 2. s parallel to g ormula. Build ormula. Build ng surface.	ss , le, I 1. .15 JIIy psf m rain rain					
 FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-329/272, 2-3=-172/142, 3-4=-65/85, 5-7=0/0, 4-5=-80/84 BOT CHORD 2-6=-90/62, 5-6=-37/40 WEBS 3-6=-147/86 NOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Exterior(2E) 0-2-14 to 3-2-14, Interior (1) 3-2-14 to 3-9-9, Exterior(2E) 3-9-9 to 5-2-9 zone; cantilever left and right exposed; c-C for members and forces 8. MWFEPS (to reactions shown) 				bearing plate 2, 21 lb uplift uplift at joint) See Standar Detail for Co consult quali DAD CASE(S)	capable of withst at joint 5, 211 lb u 2. d Industry Piggyba nnection to base ti fied building desig Standard	anding 7 uplift at ju ack Trus russ as a ner.	5 lb uplift at jc pint 1 and 75 l s Connection applicable, or	b b		Annu annu annu annu annu annu annu annu	A MARINE AND	SEA 0363	

Lumber DOL=1.60 plate grip DOL=1.33

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

October 15,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB6	Piggyback	1	1	Job Reference (optional)	168913544

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:tmpGZk12UyIOkGAeUuOS0eyV?gl-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.6

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing 1- Plate Grip DOL 1. Lumber DOL 1. Rep Stress Incr Y Code IF	-11-4 15 15 ES RC2021/TPI2014	CSI TC BC WB Matrix-MP	0.08 0.02 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 14	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 29 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS NOTES 1) Unbalanc this desig 2) Wind: AS Vasd=100 II; Exp B; Exterior(2 vertical le forces & I DOL=1.6(2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-9-12, 9=5-9-12, 14=5-9-12 Max Horiz 2=59 (LC Max Uplift 2=-17 (LC (LC 14), 1 (LC 9), 14 Max Grav 2=62 (LC (LC 30), 9 29), 11=67 (lb) - Maximum Com Tension 1-2=0/18, 2-3=-131/5 4-5=-91/28, 5-6=-90/ 2-10=-37/84, 9-10=-5 6-8=-37/84 4-9=-60/0, 3-10=-194 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; BK Enclosed; MWFRS (en E) zone; cantilever left ft and right exposed;C- 4/WFRS for reactions sl 0 plate grip DOL=1.33	athing directly applied or applied or 10-0-0 oc 6=5-9-12, 8=5-9-12, 10=5-9-12, 11=5-9-12, 11=5-9-12, 11=5-9-12, 11=5-9-12, 12, 11=59 (LC 12) i9), 6=-8 (LC 10), 8=-59 0=-60 (LC 13), 11=-17 =-8 (LC 10) 30), 6=54 (LC 29), 8=16 I=103 (LC 2), 10=161 (L0 2 (LC 30), 14=54 (LC 29) pression/Maximum 55, 3-4=-91/74, /57, 6-7=0/18 37/84, 8-9=-37/84, 4/260, 5-8=-195/205 been considered for (3-second gust) CDL=6.0psf; h=25ft; Cat ivelope) and C-C and right exposed ; end C for members and hown; Lumber	 3) Truss desig only. For s see Standa or consult of 1 TCLL: ASC 4) TCLL: ASC Plate DOL= DOL=1.15 Exp.; Ce=0 5) This truss t load of 12.0 overhangs 6) Gable requ 7) Gable stud 8) * This truss on the botto 3-06-00 tal chord and 3: 9) All bearing: 10) Provide me bearing pla 2, 8 lb uplif joint 8, 17 I 11) See Standa Detail for C consult quat LOAD CASE(S) 	ned for wind loads tuds exposed to win rd Industry Gable E jualified building det F 7-16; Pr=20.0 psf; Plate DOL=1.15); Is 9; Cs=1.00; Ct=1.1 ias been designed f psf or 2.00 times f non-concurrent with ires continuous bott s spaced at 2-0-0 oc has been designed by 2-00-00 wide wi any other members. s are assumed to be chanical connection te capable of withsta at joint 6, 60 Ib uplio to uplif at joint 2 and rd Industry Piggyba onnection to base ta lified building desig) Standard	in the pl ad (norm nd Deta signer a (roof Ll or great 1.0; R 0 or great 1.0; R 0 or great 1.0; R 1 other li or dreat 10 i other li or dreat 10 for a liv s where Il fit betv SP No h (by oth anding 2 ift at join t at poin t at bup ack Truss as a ner.	ane of the tru al to the face ils as applica is per ANSI/TI :: Lum DOL= 0 psf (Lum ough Cat B; F er of min roof oad of 13.9 p ve loads. d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss t 7 lb uplift at j t 10, 59 lb up lift at joint 6. s Connectionapplicable, or	iss s), ble, PI 1. 1.15 Fully f live sf on Opsf om to joint blift at				SEA 0363	L 22 ILBERT	and an
											1111111	LITT.	

October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB7	Piggyback	10	1	Job Reference (optional)	168913545

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:56 ID:HLVOCm3wntgzbkvD91y9eGyV?gi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

5-9-12

Scale = 1:30.4

Plate Offsets (X, Y):	[2:0-2-6,0-1-0],	[4:0-2-6,0-1-0]
-----------------------	------------------	-----------------

			-										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2027	I/TPI2014	CSI TC BC WB Matrix-MP	0.17 0.17 0.01	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 2=5-9-12, 7=5-9-12, Max Horiz 2=61 (LC Max Uplift 2=-8 (LC (LC 14), 1 Max Grav 2=171 (LC (LC 2), 7= 2)	athing directly applied applied or 10-0-0 oc 4=5-9-12, 6=5-9-12, 10=5-9-12 12), 7=61 (LC 12) 14), 4=-11 (LC 14), 7= 10=-11 (LC 14) C 2), 4=171 (LC 2), 6= 171 (LC 2), 10=171 (LC	4) or 6) 7) 8) 	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 This truss ha load of 12.0 p overhangs nc Gable require Gable studs : * This truss h on the bottom 3-06-00 tall b chord and an All bearings a) Provide mecl bearing plate 11 lb uplift at	7-16; Pr=20.0 psf 15); Pg=20.0 psf; ate DOL=1.15); Is; ; Cs=1.00; Ct=1.11; s been designed fr psf or 2.00 times flip on-concurrent with secontinuous bott spaced at 4-0-0 oc as been designed n chord in all areas y 2-00-00 wide will y other members. are assumed to be nanical connection capable of withsts joint 4, 8 lb uplift a	(roof LL Pf=13.9 =1.0; Rc 0 or great at roof k other liv om chor : for a liv s where Il fit betv SP No. (by oth anding 8 at joint 2	.: Lum DOL= psf (Lum pugh Cat B; F er of min roof pad of 13.9 ps re loads. d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss t ilb uplift at joi and 11 lb up	1.15 ully live sf on Dpsf Dm on int 2, lift at					
FORCES	(lb) - Maximum Com Tension 1-2=0/19, 2-3=-152/	pression/Maximum 103, 3-4=-153/126,	11) See Standard Detail for Cor consult qualif	d Industry Piggyba nection to base tr ied building desigr	ick Trus russ as a ner.	s Connection applicable, or						
BOT CHORD WEBS	4-5=0/19 2-6=-56/64, 4-6=-33, 3-6=-50/3	/68	LC	OAD CASE(S)	Standard							TH CA	Palin
 Unbalance this design Wind: ASC Vasd=103 II; Exp B; Exterior(2 vertical lef forces & M DOL=1.6C Truss des only. For see Stand or consult 	ed roof live loads have n. CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er E) zone; cantilever left ft and right exposed;C- MWFRS for reactions s) plate grip DOL=1.33 igned for wind loads in studs exposed to wind lard Industry Gable En- qualified building desig	been considered for (3-second gust) CDL=6.0psf; h=25ft; C ivelope) and C-C and right exposed; ei C for members and hown; Lumber the plane of the truss (normal to the face), d Details as applicable gner as per ANSI/TPI	Cat. nd 9, 1.							William.		SEA 0363	EER. R. Human r 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	PB8	Piggyback	1	2	Job Reference (optional)	168913546

-0-7-7

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:57 ID:ahQ2g98J71YzxpxZ3?aoQkyV?gb-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

6-11-1

Page: 1

Scale = 1:29

Loading TCLL (roof) Snow (Pf/Pg TCDL BCLL BCDL	(psf) 20.0 3) 13.9/20.0 10.0 0.0 10.0	* C	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-10-0 1.15 1.15 NO IRC20	21/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.05 0.01	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 55 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHOR BOT CHOR OTHERS BRACING TOP CHOR BOT CHOR REACTION	 D 2x4 SP No.2 D 2x4 SP No.2 2x4 SP No.3 D 2-0-0 oc purlins ((Switched from s D Rigid ceiling direction bracing. S (size) 1=7-7- 6=7-7- Max Horiz 1=-79 Max Uplift 1=-272 Max Grav 1=101 4=499 6=246 10=49 (lb) - Maximum C Tension 	5-0-0 heeter ttly ap 2, 2=7 (LC 9) (LC 2 (LC 1 (LC 1 (LC 3 (LC 1 (LC 3) (LC 3) (LC 2) (LC 2)	max.) d: Spacing > 2-8-0 oplied or 10-0-0 oc 7-7-2, 4=7-7-2, 5=7 7-7-2, 10=7-7-2) 29), 2=-107 (LC 13 4), 5=-227 (LC 130) 13), 10=-95 (LC 14 13), 10=-95 (LC 14), 30), 5=74 (LC 29), 30) ession/Maximum). 7-7-2, (),	 b) Unbalanced this design. b) Wind: ASCE Vasd=103mg II; Exp B; En Exterior(2E) Exterior(2E) Exterior(2R) zone; cantile and right exp MWFRS for grip DOL=1.3 c) Truss design only. For stu see Standard or consult qu c) TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 c) Gable require c) Gable studs c) * This truss h on the bottor 	roof live loads have 7-16; Vult=130mpt bh; TCDL=6.0psf; E closed; MWFRS (e 0-2-14 to 3-2-14, In 3-9-9 to 6-7-8, Inte ver left and right ex losed; C-C for mem reactions shown; Li 33 ed for wind loads in ds exposed to wind d Industry Gable Er alified building des 7-16; Pr=20.0 psf; late DOL=1.15); Is= ; Cs=1.00; Ct=1.10 es continuous botto spaced at 4-0-0 oc nas been designed n chord in all areas	e been of h (3-sec 3CDL=6 nvelope terior (1) cposed bers an umber I n the plid d (norm nd Deta igner a: (roof LL Pf=13.5 =1.0; Rc om chor for a liv where	considered fo ond gust) .0psf; h=25ft .0psf; h=2	or ; Cat. 3-9-9, 4 left ate ss ble, pl 1. 1.15 Fully 0psf						
TOP CHOR BOT CHOR WEBS NOTES 1) 2-ply tru Top chc follows: Bottom follows: 2) All load except i CASE(5 provider unless o	D 1-2=-168/248, 2- 4-5=-144/211 D 2-6=-98/97, 4-6= 3-6=-123/11 ss to be connected to trds connected with 10 2x4 - 1 row at 0-9-0 c chords connected with 2x4 - 1 row at 0-9-0 c s are considered equa f noted as front (F) or s) section. Ply to ply c d to distribute only loa otherwise indicated.	gethe 98/10 98/10 01 (0.1 0. 01 10d c. 110d c. 110d c. 110d c. 110d c. 100d c c c c c c c c c c c c c c c c c c	1/124, 3-4=-171/12 25 er as follows: 131"x3") nails as (0.131"x3") nails a oplied to all plies, (B) face in the LO/ ztions have been sted as (F) or (B),	22, Is	 a) Of all be bolton a) Of all be chord and ar a) All bearings a b) Provide mec bearing plate b) Provide mec bearing plate c) See Standar c) See Standar c) Detail for Co c) See Standar c) Graphical pu or the oriente bottom chord 	y 2-00-00 wide will yy other members. are assumed to be hanical connection capable of withsta at joint 4, 272 lb up 7 lb uplift at joint 2 a d Industry Piggybar nnection to base tru fied building design rlin representation ation of the purlin al d. Standard	I fit betv SP No. (by oth unding 1 plift at ju and 95 ck Trus uss as a her. does no long the	veen the both 2. ers) of truss t 07 lb uplift at oint 1, 227 lb b uplift at joir s Connection applicable, or ot depict the s top and/or	om t joint uplift nt 4. size		Manine .		SEA 0363 SEA 0363	ROUL 22 E.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F.F	and an and and and and and and and and a

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	R1	Flat Girder	1	1	Job Reference (optional)	168913547

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:57 ID:2WiGcNA?wnSGWTv_?_mP68yTWUf-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

3-8-0

Scale = 1:52.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 18.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC2021/	/TPI2014	CSI TC BC WB Matrix-MP	0.77 0.07 0.11	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 3-4 3-4 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 60 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD WEBS REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD WEBS	2x8 SP 2400F 2.0E 2x10 SP 2400F 2.0E 2x4 SP No.3 2-0-0 oc purlins: 1-2. Rigid ceiling directly bracing. 1 Row at midpt (size) 3= Mecha Max Horiz 4=-218 (Li Max Grav 3=1195 (Li (b) - Maximum Com Tension 1-4=-868/197, 1-2=-8 3-4=-196/173 1-3=-287/287	, except end verticals applied or 10-0-0 oc 1-4, 2-3, 1-3 nical, 4= Mechanical C 5) C 6), 4=-236 (LC 5) C 20), 4=1163 (LC 2 pression/Maximum 37/64, 2-3=-751/0	7) 8) 3. 9) 10) LO 1)	Graphical pu or the orienta bottom chord Use Simpsor Truss, Single left end to co chord. Fill all nail ho In the LOAD of the truss a AD CASE(S) Dead + Snc Increase=1. Uniform Loz Vert: 1-2= Concentrate Vert: 5=-	lin representation of tion of the purlin al Strong-Tie LUS26 Ply Girder) or equ nnect truss(es) to b les where hanger is CASE(S) section, I re noted as front (F Standard w (balanced): Lum 15 ads (lb/ft) =-56, 3-4=-19 d Loads (lb) 1258, 6=-388 (B)	does no ong the ivalent oack fac s in cor oads a c) or ba ber Inc	at depict the s e top and/or at 1-9-12 fron se of bottom attact with lumi oplied to the f ck (B). rease=1.15, F	ize d n the ber. ace Plate					
NOTES 1) Wind: ASC Vasd=103 II; Exp B; I and right e Lumber DD 2) TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce=I 3) Provide acd 4) * This trus on the bot 3-06-00 ta chord and	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en exposed; end vertical I obl=1.60 plate grip DO CE 7-16; Pr=20.0 psf; P Plate DOL=1.10; Js=' Plate DOL=0.15; Js=' op; CS=1.00; Ct=1.10, dequate drainage to prr s has been designed for tom chord in all areas v II by 2-00-00 wide will i pay other members.	(3-second gust) CDL=6.0psf; h=25ft; C velope); cantilever lei eft and right exposed L=1.33 roof LL: Lum DOL=1. f=18.9 psf (Lum 1.0; Rough Cat B; Ful Lu=50-0-0 event water ponding. or a live load of 20.0p where a rectangle fit between the botton	Cat. ft ; 15 lly sf							An	KAN	SEAI	ROLA MUTULI

- Refer to girder(s) for truss to truss connections. 5)
- Provide mechanical connection (by others) of truss to 6) bearing plate capable of withstanding 236 lb uplift at joint 4 and 237 lb uplift at joint 3.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL1	Valley	1	1	Job Reference (optional)	168913548

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:57 ID:1FpsTdwzw?qlKHj9eHG6qRyV?iA-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:57.7

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.05 0.13 0.14	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 11	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=18-7-2	athing directly applie applied or 10-0-0 oc 11=18-7-2 12=18-7	WE NC d or 1) -2	TES 5 TES Unbalanced i this design. Wind: ASCE Vasd=103mp II; Exp B; End	-17=-157/113, 4-1 -19=-160/152, 2-2 -16=-157/113, 8-1 -13=-160/152, 10- roof live loads have 7-16; Vult=130mp h; TCDL=6.0psf; e closed; MWFRS (e	8=-155/ 20=-125/ 4=-155/ 12=-124 e been o h (3-sec 3CDL=6 envelope	141, 96, 141, 4/94 considered fo cond gust) .0psf; h=25ft; e) and C-C Co	r ; Cat. orner	11) Bev surf LOAD (eled pla ace with CASE(S)	te or si truss Star	him required to pı chord at joint(s) 1 ndard	ovide full bearing , 11.	
	(JJZC) 13-18-7-2 17=18-7-2 20=18-7-2 20=18-7-2 20=18-7-2 Max Horiz 1=165 (LC Max Uplift 1=-52 (LC 13=-59 (L 16=-25 (L 18=-63 (L 12=161 (L 14=162 (L 17=300 (L 19=212 (L	1, 14–18-7-2, 16=18 2, 14–18-7-2, 16=18 2, 18=18-7-2, 19=18- 2 2 10) 3 11), 11=-37 (LC 12) C 14), 14=-63 (LC 12) C 14), 17=-28 (LC 12) C 14), 17=-28 (LC 12) C 13), 19=-57 (LC 12) C 13), 11=127 (LC 14) C 29), 13=214 (LC 2) C 28), 18=160 (LC 2) C 28), 18=160 (LC 2) C 28), 20=181 (LC 2)	2, 7-2, 7-2, 4), 3), 3) 4), 29), 29), 4) 28), 28)	(3E) 0-0-0 to (3R) 9-3-9 to zone; cantile and right exp MWFRS for r grip DOL=1.3 Truss design only. For stu see Standarc or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl	3-3-9, Exterior(2N 12-3-9, Exterior(2N rer left and right ex osed;C-C for mem eactions shown; L a ed for wind loads i ds exposed to win I Industry Gable Er alified building des 7-16; Pr=20.0 psf; 15); Pg=20.0 psf; ate DOL=1.15); Is-) 3-3-9 1 N) 12-3- kposed bers an umber I n the pla d (norm nd Deta signer as (roof LL Pf=13.9 =1.0; Ro	o 9-3-9, Corr 9 to 18-2-14 end vertical d forces & DOL=1.60 pla ane of the tru al to the face ils as applical s per ANSI/TF : Lum DOL= 0 psf (Lum pugh Cat B; F	ner left ss), ble, Pl 1. 1.15				WITH CA	Bolta	
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-370/154, 2-3=- 4-5=-123/35, 5-6=-1 7-8=-118/28, 8-9=-1 10-11=-368/154 1-20=-111/285, 19-2 18-19=-111/285, 19-2 18-19=-111/285, 19-2 13-14=-111/285, 12- 11-12=-111/285	pression/Maximum 297/123, 3-4=-173/6 21/55, 6-7=-121/55, 74/65, 9-10=-297/12 :0=-111/285, 18=-111/285, 16=-111/285, 13=-111/285,	5) 5, 6) 3, 8) 9) 10)	Exp.; Ce=0.9 All plates are Gable require Gable studs s * This truss h on the botton 3-06-00 tall b chord and an All bearings a Provide mech bearing plate 1, 37 lb uplift at joint 18, 57 63 lb uplift at	; Cs=1.00; Ct=1.10 2x4 MT20 unless es continuous botto spaced at 2-0-0 oc as been designed n chord in all areas y 2-00-00 wide wil y other members, are assumed to be nanical connection capable of withsta at joint 11, 28 lb u ' lb uplift at joint 15 joint 14 and 59 lb	otherwi orn chor c for a liv s where l fit betw with BC SP No. (by oth anding 5 plift at jo 0, 25 lb o uplift at	se indicated. d bearing. e load of 20.0 a rectangle veen the botto DL = 10.0psf 2. ers) of truss t 2 lb uplift at joint 1 joint 13.	Opsf om o oint uplift 16,		Winning		SEA 03632		

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MiTek Affiliate

> 818 Soundside Road Edenton, NC 27932

October 15,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL2	Valley	1	1	Job Reference (optional)	168913549

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:57 ID:hZYO_j3U5hLbm7dTLpTwJzyV?i_-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

17-3-2

Scale = 1:57.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ⁻	1/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.19 0.18	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 9	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 85 lb	GRIP 244/190 FT = 20%	
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood shea 10-0-0 cc purlins. Rigid ceiling directly bracing. 1 Row at midpt (size) 1=17-3-2, 8=17-3-2, Max Horiz 1=158 (LC 9=-137 (LL Max Grav 1=100 (LC (LC 29), 8 28), 14=1	athing directly applie applied or 6-0-0 oc 3-8 5=17-3-2, 6=17-3-2, 9=17-3-2, 14=17-3-2 2 10) 5 9), 6=-132 (LC 14), C 13) C 12), 5=1 (LC 29), 6 i=682 (LC 28), 9=538 (LC 29)	3) 4) d or 5) 6) 7) 2 8) 9) 3 (LC	Truss design only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.5 Gable requiri Gable studs * This truss F on the bottor 3-06-00 tall b chord and ar All bearings a Provide mec bearing plate 1, 137 lb upli	ed for wind loads in ds exposed to wind d Industry Gable Er alified building des 7-16; Pr=20.0 psf; ate DOL=1.15); Is= ; Cs=1.00; Ct=1.10 es continuous botto spaced at 4-0-0 oc cas been designed n chord in all areas by 2-00-00 wide will yo other members, v are assumed to be hanical connection capable of withsta ft at joint 9 and 132 Standard	the platic (norm ind Detailing of the platic (norm ind Detailing of the platic (norm platic) (norm of the platic) point of the platic (norm for a liv where fit between with BC SP No. (by oth- nding 8 the platic (norm)	ane of the tru al to the face ils as applica s per ANSI/TI per ANSI/TI per ANSI/TI per ANSI/TI per ANSI/TI per ANSI/TI d bearing. e load of 20.1 a rectangle veen the both DL = 10.0psi 2. ers) of truss to 2 lb uplift at j t at joint 6.	ss), ble, Pl 1. 1.15 Fully Opsf om f. to oint						
FORCES	(lb) - Maximum Com Tension 1-2=-127/393, 2-3=-;	pression/Maximum 34/315, 3-4=-34/299		(-)										
	4-5=-310/320		,											
BOT CHORD	1-9=-188/130, 8-9=- 5-6=-188/130	188/130, 6-8=-188/1	30,									WHY CA	Dalla	
WEBS	3-8=-499/0, 2-9=-37	7/330, 4-6=-376/330									S.	RTHOM	29/14	
NOTES											5	O'.:FESS	10 NON	12
 Unbalance this design 	ed roof live loads have	been considered for								4		.2	- V	4
 Wind: ASC Vasd=103 II; Exp B; I (3E) 0-0-4 (3R) 8-7-1 zone; cant and right e MWFRS for grip DOL= 	CE 7-16; Vult=130mph mph; TCDL=6.0psf; BC Enclosed; MWFRS (en to 3-0-4, Exterior(2N) 3 to 11-7-13, Exterior(2) 3 to 11-7-13, Exterior(2) itilever left and right exp exposed;C-C for memb or reactions shown; Lu 1.33	(3-second gust) CDL=6.0psf; h=25ft; velope) and C-C Coi 3-0-4 to 8-7-13, Corr 2N) 11-7-13 to 16-11 bosed ; end vertical lu vers and forces & mber DOL=1.60 plat	Cat. rner her l-6 eft re							THUNK		SEA 0363	L 22	MILLION DE LA COMPANY

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENCO A MITEK Affiliate

818 Soundside Road Edenton, NC 27932

October 15,2024

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL3	Valley	1	1	Job Reference (optional)	l68913550

7-11-9

7-11-9

Carter Components (Sanford, NC), Sanford, NC - 27332

Scale = 1:51.9 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

WEBS

NOTES

1)

2)

TOP CHORD

BOT CHORD

this design.

REACTIONS (size)

Snow (Pf/Pg)

7-8-2 7-11-13

Spacing

Code

Structural wood sheathing directly applied or

7=15-11-2, 8=15-11-2

1=15-11-2, 5=15-11-2, 6=15-11-2,

1=139 (LC 29), 5=114 (LC 28),

6=498 (LC 29), 7=444 (LC 28),

Rigid ceiling directly applied or 6-0-0 oc

1=-146 (LC 9)

8=-121 (LC 13)

8=501 (LC 28)

(Ib) - Maximum Compression/Maximum

1-2=-160/198, 2-3=-81/134, 3-4=-81/134,

3-7=-253/0. 2-8=-353/319. 4-6=-353/319

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-0-4, Exterior(2N) 3-0-4 to 7-11-13,

Corner(3R) 7-11-13 to 10-11-13, Exterior(2N) 10-11-13 to 15-11-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber

Wind: ASCE 7-16; Vult=130mph (3-second gust)

1-8=-105/195, 7-8=-105/195, 6-7=-105/195,

Max Uplift 1=-24 (LC 9), 6=-118 (LC 14),

Plate Grip DOL

Rep Stress Incr

Lumber DOL

(psf)

20.0

10.0

0.0

10.0

13 9/20 0

2x4 SP No.2

2x4 SP No.2

2x4 SP No.3

bracing.

Max Horiz

Max Grav

Tension

DOL=1.60 plate grip DOL=1.33

4-5=-153/169

5-6=-105/195

10-0-0 oc purlins.

7-0-0

12 12∟

2-0-0

1.15

1 15

YES

4)

5)

6)

7)

8)

3x5 🍫

Run: 8,73 S Sep 25 2024 Print: 8,730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:57 ID:_vT2S79tRqDc6CgpGn5Z5SyV?ht-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

15-7-11

7-8-2

15-11-2 || 0-3-7

4x5= 3 2x4 2x4 I 2 4 13 14 8 7 6 2x4 II 2x4 II 2x4 u 3x5 💊 15-11-2 CSI DEFL l/defl L/d PLATES GRIP in (loc) TC 0.23 Vert(LL) n/a 999 MT20 244/190 n/a BC 0.16 Vert(TL) n/a n/a 999 WB 0.28 Horiz(TL) 0.00 5 n/a n/a IRC2021/TPI2014 Matrix-MSH Weight: 77 lb FT = 20%3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pg=20.0 psf; Pf=13.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 Gable requires continuous bottom chord bearing Gable studs spaced at 4-0-0 oc. * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 24 lb uplift at joint 1, 121 Ib uplift at joint 8 and 118 Ib uplift at joint 6.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH				
24100066-01	VL4	Valley	1	1	Job Reference (optional)	168913551			

Run: 8,73 S Sep 25 2024 Print: 8,730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:57 ID:91dCmtHnsDc2wu?wPbo92myV?hi-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

BOT CHORD 2x4 SP No.3 OTHERS BRACING TOP CHORD Structural wood sheathing directly applied or 6-0-0 oc purlins. BOT CHORD Rigid ceiling directly applied or 6-0-0 oc bracing. **REACTIONS** (size) 1=14-7-2, 5=14-7-2, 6=14-7-2, 7=14-7-2, 8=14-7-2 Max Horiz 1=-134 (LC 9)

Scale = 1:49 Loading

TCLL (roof)

TCDL

BCLL

BCDL

LUMBER

TOP CHORD

Snow (Pf/Pg)

- Max Uplift 1=-25 (LC 9), 6=-108 (LC 14), 8=-110 (LC 13) Max Grav 1=136 (LC 29), 5=113 (LC 28), 6=444 (LC 29), 7=398 (LC 28), 8=448 (LC 28) FORCES (Ib) - Maximum Compression/Maximum Tension
- TOP CHORD 1-2=-152/143, 2-3=-126/147, 3-4=-126/148, 4-5=-136/114 BOT CHORD 1-8=-73/168, 7-8=-73/168, 6-7=-73/168,
- 5-6=-73/168 WEBS 3-7=-205/0, 2-8=-334/322, 4-6=-334/322 NOTES
- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-3-13, Exterior(2N) 3-3-13 to 7-3-13, Corner(3R) 7-3-13 to 10-3-13, Exterior(2N) 10-3-13 to 14-7-6 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

- DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Gable requires continuous bottom chord bearing
- 6) Gable studs spaced at 4-0-0 oc.
- 7) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. All bearings are assumed to be SP No.2 8)
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 25 lb uplift at joint 1, 110 lb uplift at joint 8 and 108 lb uplift at joint 6. LOAD CASE(S) Standard
- O ann ann an SEAL 036322 G mmm October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH				
24100066-01	VL5	Valley	1	1	Job Reference (optional)	168913552			

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:57 ID:1otjcFKIvR6UPWJheQt5CcyV?he-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

11-3-3

Scale =	1:44.6
---------	--------

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.20 0.09 0.12	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 6-0-0 oc purlins. Rigid ceiling directly bracing. (size) 1=11-3-3, 7=11-3-3, Max Horiz 1=102 (LC Max Uplift 1=-45 (LC 6=-91 (LC Max Grav 1=82 (LC (LC 29), 7 28)	athing directly applied of applied or 10-0-0 oc , 5=11-3-3, 6=11-3-3, , 8=11-3-3 C 10) C 11), 5=-19 (LC 12), C 14), 8=-95 (LC 13) 29), 5=63 (LC 28), 6=3 7=215 (LC 2), 8=325 (L)	3) 4) or 5) 6) 7) 320 8) C 9)	Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 Gable requirn Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate	ed for wind loads uds exposed to wi d Industry Gable I ialified building of 7-16; Pr=20.0 ps 1.15); Pg=20.0 ps late DOL=1.15); I: 9; Cs=1.00; Ct=1. 9; Cs=1.00; Ct=1.00; Ct=1. 9; Cs=1.00; Ct=1.00; Ct=1.	in the plind (norm End Deta signer as f (roof LL ; Pf=13.5 s=1.0; Ro 10 tom chor c. d for a liv as where ill fit betv e SP No. n (by oth tanding 4 plift at io	ane of the trus al to the face) ils as applicat s per ANSI/TF D psf (Lum Dugh Cat B; Fi d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss to 5 lb uplift at jo 8 and 9 j lh	ss , le, I 1. .15 ully psf m ount					
TOP CHORD	(lb) - Maximum Com Tension 1-2=-177/103. 2-3=-	npression/Maximum 185/154. 3-4=-185/153	B. LO	uplift at joint AD CASE(S)	6. Standard								
BOT CHORD	4-5=-169/75 1-8=-35/108, 7-8=-2 5-6=-35/108	8/108, 6-7=-28/108,	- ,										Um.
WEBS	3-7=-128/0, 2-8=-35	1/396, 4-6=-351/396										WITH CA	ROUL
 NOTES 1) Unbalance this design 2) Wind: ASC 	ed roof live loads have n. CE 7-16; Vult=130mph	been considered for (3-second gust)								4	- A'	ORIEESE	Phil -

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) 0-0-4 to 3-0-4, Exterior(2N) 3-0-4 to 5-7-14, Corner (3R) 5-7-14 to 8-7-14, Exterior(2N) 8-7-14 to 11-3-7 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33

and a second The annual second SEAL 036322 GI A. GIL October 15,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH				
24100066-01	VL6	Valley	1	1	Job Reference (optional)	168913553			

3-11-14

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:OlgcfyOQk_ImVHCfR_SGvgyV?hZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

~			~~
Sca	e	= 1	:33

			_										
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.23 0.28 0.13	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 32 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 7-11-3 oc purlins. Rigid ceiling directly bracing. (size) 1=7-11-3, Max Horiz 1=-71 (LC Max Uplift 1=-13 (LC 4=-37 (LC Max Grav 1=66 (LC (LC 2)	eathing directly applied applied or 6-0-0 oc 3=7-11-3, 4=7-11-3 9) 35), 3=-13 (LC 34), 34), 3=66 (LC 35), 4:	4) 5) dor 6) 7) 8) 9) =563 LC	TCLL: ASCE Plate DOL=1 DOL=1.15 Pl Exp.; Ce=0.9 Gable require Gable studs. * This truss h on the botton 3-06-00 tall b chord and ar All bearing sa Provide mech bearing plate 1, 13 lb uplift DAD CASE(S)	7-16; Pr=20.0 ps 15); Pg=20.0 ps ate DOL=1.15); ls ; Cs=1.00; Ct=1.1 es continuous bét spaced at 4-0-0 o ias been designer n chord in all area y 2-00-00 wide w y other members are assumed to be hanical connection capable of withsl at joint 3 and 37 Standard	f (roof LL ; Pf=13.5 s=1.0; Rc 0 tom chor c. d for a liv is where d swhere ill fitt betw e SP No. n (by oth canding 1 lb uplift a	:: Lum DOL=1 p psf (Lum pugh Cat B; Fi d bearing. e load of 20.0 a rectangle veen the botto 2. ers) of truss to 3 lb uplift at jo t joint 4.	.15 ully psf m oint					
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design 2) Wind: ASG Vasd=102 II; Exp B; (3E) 0-0-4 Corner(3F Zone; can and right d MWFRS f grip DOL=	(lb) - Maximum Com Tension 1-2=-179/247, 2-3=- 1-4=-195/268, 3-4=- 2-4=-500/354 ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; B Enclosed; MWFRS (er to 3-0-4, Exterior(2N) R) 3-11-14 to 7-3-4, Ex tilever left and right ex exposed;C-C for memb for reactions shown; Lu =1.33	hpression/Maximum 167/247 195/268 been considered for (3-second gust) CDL=6.0psf; h=25ft; 6 rvelope) and C-C Con 3-0-4 to 3-11-14, terior(2N) 7-3-4 to 7-1 posed; end vertical le poers and forces & imber DOL=1.60 plate	Cat. mer 11-7 sft e							Children of the second s	T	NITH CA OR DEESS SEA 0363	

 Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affi 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH					
24100066-01	VL7	Valley	1	1	Job Reference (optional)	168913554				

2-3-10

2-3-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:Dv1tw0TBJqVwDCfonEZg8xyV?hT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-3-12

2-0-3

Page: 1

4-7-3

Scale = 1:27.1

													_
Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL PCDL	(psf) 20.0 13.9/20.0 10.0 0.0*	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.10 0.04	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20	GRIP 244/190	_
BCDL	10.0										Weight: 18 lb	FI = 20%	_
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Structural wood she 4-7-3 oc purlins. Rigid ceiling directly bracing. (size) 1=4-7-3, 3 Max Horiz 1=40 (LC Max Uplift 4=5 (LC Max Uplift 4=5 (LC	athing directly applie applied or 6-0-0 oc 3=4-7-3, 4=4-7-3 10) 13) 24) 2=61 (L C 25) 4	 6) Gable stu 7) * This tru on the bo 3-06-00 t chord an 8) All bearing p LOAD CASE 	ds spaced at 4-0-0 o ss has been designe- ttom chord in all area all by 2-00-00 wide w d any other members gs are assumed to b nechanical connectio late capable of withs (S) Standard	nc. d for a liv as where vill fit betv s. e SP No. n (by oth tanding 5	e load of 20.0 a rectangle veen the botto 2 . ers) of truss t i lb uplift at jo	Opsf om to int 4.						
	Max Grav 1=61 (LC (I C 2)	34), 3=61 (LC 35), 4	1=265										
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance	(lb) - Maximum Com Tension 1-2=-51/76, 2-3=-51 1-4=-73/132, 3-4=-7 2-4=-190/143 ed roof live loads have	pression/Maximum /76 3/132 been considered for	r										
 this design Wind: ASC Vasd=103 II; Exp B; I (3E) zone; left and rig MWFRS fr grip DOL= Truss desi only. For see Stand or consult TCLL: ASC Plate DOL DOL=1.15 Exp.; Ce= S) Gable require 	n. CE 7-16; Vult=130mph imph; TCDL=6.0psf; Bi Enclosed; MWFRS (er ; cantilever left and rigl ght exposed;C-C for more reactions shown; Lu -1.33 igned for wind loads in studs exposed to wind ard Industry Gable En qualified building designed CE 7-16; Pr=20.0 psf; CE 7-16; Pr=20.0 psf; P late DOL=1.15); Is= 0.9; Cs=1.00; Ct=1.10 uires continuous bottom	(3-second gust) CDL=6.0psf; h=25ft; welope) and C-C Co nt exposed ; end veri embers and forces & imber DOL=1.60 plat the plane of the trus (normal to the face) d Details as applicat gner as per ANSI/TP roof LL: Lum DOL=1 Pf=13.9 psf (Lum 1.0; Rough Cat B; Fu m chord bearing.	Cat. orner tical te ss , ole, 21 1. 1.15 ully						Mannan.		SEA 0363	L 22 H.B.H.H.H. 15,2024	

TRENCO A Mi Tek Atfiliate

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 14 Overhills Creek-Roof-1 BNS GRH				
24100066-01	VL8	Valley	1	1	Job Reference (optional)	168913555

1-7-12

1-7-12

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:5hHOINWiN2?Lipya04ecJnyV?hP-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3-0-1

1-4-5

3-3-8

Page: 1

818 Soundside Road Edenton, NC 27932

Plate Offsets (X, Y): [2:0-2-8,Edge]

Loading TCLL (rd Snow (F TCDL BCLL BCLL BCDL	k (psf) pof) 20.0 f/Pg) 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MP	0.07 0.07 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 11 lb	GRIP 244/190 FT = 20%
TOP CH BOT CH BRACIN TOP CH BOT CH REACTI	ORD 2x4 SP No.2 ORD 2x4 SP No.2 IG ORD Structural wood she 3-3-8 oc purlins. ORD Rigid ceiling directly bracing. ONS (size) 1=3-3-8, i Max Horiz 1=27 (LC Max Grav 1=132 (LC	eathing directly applie v applied or 10-0-0 or 3=3-3-8 12) C 2), 3=132 (LC 2)	on the bott 3-06-00 tall chord and a ad or 8) All bearings LOAD CASE(S	m chord in all area by 2-00-00 wide w iny other members are assumed to b) Standard	as where vill fit betv e SP No.	a rectangle veen the bott	om					
TOP CH BOT CH NOTES 1) Unb this 2) Win Vas II; E (3E) left a MW grip 3) Trus only grip 3) Trus only see or cc 4) TCL Plat DOL Exp 5) Gab 6) Gab	 IteA-DINS (size) 1=3-3-6, 3=3-3-6 Max Horiz 1=27 (LC 12) Max Grav 1=132 (LC 2), 3=132 (LC 2) ORCES (lb) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-183/110, 2-3=-183/110 30T CHORD 1-2=-183/110, 2-3=-183/120 VOTES 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; RCDL=6.0psf; BCDL=6.0psf; h=25f; Cat. 11; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3E) zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 3) Truss designed for wind loads in the plane of the truss only. For stude seposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANS//TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf; (PL=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pl=13.9 psf (Lum DOL=1.15); Pg=20.0 psf; Pl=1											L 22 L 15,2024
	WARNING - Verify design paramete	ers and READ NOTES ON	THIS AND INCLUDED MITEK	REFERENCE PAGE MI	-7473 rev. 1	/2/2023 BEFORE	EUSE.				ENGINEER	ING BY

WARNING - Verity design parameters and READ NOTES ON THIS AND INCLUDED MITER REFERENCE PAGE MIT-7473 rev. 17/2/2/23 BEFORE USE. Design valid for use only with MITER® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANS/ITP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL9	Valley	1	1	Job Reference (optional)	168913556

Scale = 1:32.4

Loading

TCDL

BCLL

BCDL

TCLL (roof)

Snow (Pf/Pg)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Tue Oct 15 11:28:58 ID:UrgdA3vtouAvSgumhRnfzayTVno-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GRIP

244/190

FT = 20%

LUMBER TOP CHORD BOT CHORD WEBS OTHERS	2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N 2x4 SP N	0.2 0.2 0.3 0.3
BRACING		
TOP CHORD	2-0-0 oc p	ourlins (10-0-0 max.): 1-4.
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc
	bracing,	Except:
	6-0-0 oc l	pracing: 1-8.
REACTIONS	(size)	1=10-3-0, 5=10-3-0, 6=10-3-0,
		7=10-3-0, 8=10-3-0
	Max Uplift	1=-7 (LC 11), 5=-20 (LC 2), 7=-20
		(LC 11)
	Max Grav	1=135 (LC 2), 5=-3 (LC 11), 6=252
		(LC 2), 7=349 (LC 2), 8=92 (LC 2)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	·
TOP CHORD	1-2=-63/4	5, 2-3=0/0, 3-4=0/0
BOT CHORD	1-8=-130/	142. 7-8=0/0. 6-7=0/0. 5-6=0/0
WEBS	2-7=-296/	/334, 3-6=-176/208, 4-5=-12/9
NOTES		

- Wind: ASCE 7-16; Vult=130mph (3-second gust) 1) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) and C-C Corner (3) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 3) Plate DOL=1.15); Pg=20.0 psf; Pf=18.9 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10, Lu=50-0-0

4) Unbalanced snow loads have been considered for this desian.

- 5) Provide adequate drainage to prevent water ponding.
- Truss to be fully sheathed from one face or securely 6)
- braced against lateral movement (i.e. diagonal web).
- Gable studs spaced at 4-0-0 oc. 7)
- * This truss has been designed for a live load of 20.0psf 8) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 9) All bearings are assumed to be SP No.2 .
- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 7 lb uplift at joint 1, 20 lb uplift at joint 5 and 20 lb uplift at joint 7. 11) Non Standard bearing condition. Review required.
- 12) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL10	Valley	1	1	Job Reference (optional)	168913557

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:X6wkwJsJH9CFWII25gjGxEyTVp9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.8

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roo	of)	20.0	Plate Grip DOL	1.15		TC	0.38	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf.	/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.07	Vert(CT)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.03	Horz(CT)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC2	21/TPI2014	Matrix-MP								
BCDL		10.0											Weight: 27 lb	FT = 20%
	,				3) TCLL · ASCE	7-16 [.] Pr=20.0 psf	(roof LI	· I um DOI =	1 15					
TOP CHO		2x4 SP No 2			Plate DOL=1	.15): Pa=20.0 psf:	Pf=13.9	9 psf (Lum						
BOT CHO		2x4 SP No 2			DOL=1.15 P	late DOL=1.15); Is=	=1.0: R	ough Cat B: F	ullv					
WEBS	0	2x4 SP No.3			Exp.; Ce=0.9	; Cs=1.00; Ct=1.10))	j						
OTHERS	;	2x4 SP No.3			4) This truss ha	s been designed fo	or great	er of min roof	live					
BRACINO	G				load of 12.0	psf or 2.00 times fla	at roof l	oad of 13.9 p	sf on					
TOP CHO		Structural wood sh	eathing directly applie	n or	overhangs n	on-concurrent with	other liv	ve loads.						
		4-6-5 oc purlins e	cept end verticals		Gable requir	es continuous botto	om choi	d bearing.						
вот сно	ORD	Rigid ceiling directly	y applied or 10-0-0 oc	0	 Gable studs 	spaced at 4-0-0 oc								
		bracing.			 I his truss I 	has been designed	for a liv	e load of 20.0	Jpst					
REACTIO	ONS	(size) 1=4-6-5,	5=4-6-5, 6=4-6-5		on the botton	n chord in all areas	s where	a rectangle						
		Max Horiz 1=177 (L	.C 10)		3-06-00 tall i	by 2-00-00 wide will	i iii belv	veen the bott	JIII					
		Max Uplift 1=-19 (L	C 9), 5=-176 (LC 10),		R) All bearings	are assumed to be		2						
		6=-20 (L	C 13)		a) Provide mer	hanical connection	(by oth	ers) of truss t	0					
		Max Grav 1=126 (L	.C 30), 5=253 (LC 19)),	bearing plate	capable of withsta	anding 1	76 lb uplift at	ioint					
		6=159 (L	.C 29)		5. 19 lb uplif	t at joint 1 and 20 lb	o uplift a	at joint 6.	Joint					
FORCES	;	(Ib) - Maximum Cor	npression/Maximum		10) Beveled plat	e or shim required	to provi	de full bearin	g					
тор сно	ORD	1-2=-523/160. 2-3=	-453/109. 3-4=-101/0).	surface with	truss chord at joint	(s) 1.							
		3-5=-257/547		,	LOAD CASE(S)	Standard								
BOT CHO	ORD	1-6=-140/110, 5-6=	-70/76											
WEBS		2-6=-196/78												117
NOTES														
1) Wind	I: ASC	CE 7-16; Vult=130mp	h (3-second gust)										IN TH UA	ROUL
Vasd	l=103	8mph; TCDL=6.0psf; E	SCDL=6.0psf; h=25ft;	Cat.								N	A	D. C. M.
II; Ex	рB;I	Enclosed; MWFRS (e	nvelope) and C-C								/	22	Y OFESO	PN. Si
Exter	rior(21	E) 0-0-0 to 3-0-0, Inte	rior (1) 3-0-0 to 6-3-5								4	0	u /.	Carlos -
zone	; cant	tilever left and right ex	posed ; end vertical l	left							-		.4-	N 1 1 2
and r	ight e	exposed;C-C for mem	bers and forces &							-		SEA	1 1 2	
	-R5 10	or reactions shown; L	umber DOL=1.60 pla	te							=			
2) Trucc		ianod for wind loode i	a the plane of the true	20							Ξ		0363	22 : : :
	S UESI	stude exposed to win	n the plane of the trus	55								i (i	•	1 E -
See S	Stand	lard Industry Gable Fi	nd Details as applicab	, de								1	·	A 1. 3
or co	nsult	qualified building des	igner as per ANSI/TF	911.								-1	NGINI	EENIAS
2. 00		,	5 · · · · · · · · · · · · · · · · · · ·									1	No. SIN	E. E. M. N
													1 CA O	II BY

- MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face),
- see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

818 Soundside Road Edenton, NC 27932

GI A. GIL October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL11	Valley	1	1	Job Reference (optional)	168913558

2-10-1

2-10-1

2x4 🛛

2

12 12 ┌

9

Carter Components (Sanford, NC), Sanford, NC - 27332,

4-7-5

-0-0

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:X6wkwJsJH9CFWII25gjGxEyTVp9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-10-5

4-7-1

1-9-0 4

2x4 🛛

ø

3

Page: 1

5 6 3x6 🛛 2x4 🅢 2x4 II 2-10-1 csi DEFL L/d PLATES l/defl GRIP in (loc) dimments. SEAL

Scale = 1:32.8

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	I/TPI2014	CSI TC BC WB Matrix-MP	0.43 0.04 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 18 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 2-10-5 oc purlins, e Rigid ceiling directly bracing. (size) 1=2-10-5, Max Horiz 1=128 (LC Max Uplift 1=-9 (LC 19) Max Grav 1=87 (LC (LC 10)	athing directly applie xcept end verticals. applied or 10-0-0 oc 5=2-10-5, 6=2-10-5 C 10) 9), 5=-194 (LC 10), 6 30), 5=289 (LC 19),	3) 4) 6d or 5) 6) 7) 6=-79 8) 6=96 9)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 overhangs n Gable studs * This truss 1 on the botton 3-06-00 tall I chord and an All bearings Provide mecu bearing plate 5, 9 lb uplift	E 7-16; Pr=20.0 1.15); Pg=20.0 Plate DOL=1.15 9; Cs=1.00; Ct= as been design psf or 2.00 time on-concurrent t res continuous l spaced at 4-0- has been desig m chord in all a by 2-00-00 wide ny other membrare assumed tt chanical connect e capable of wit at joint 1 and 75	psf (roof LL psf; Pf=13.9); Is=1.0; Rc =1.10 ed for great es flat roof lc with other li bottom chor 0 oc. ned for a liv reas where e will fit betv ers. o be SP No. ction (by oth thstanding 1 9 lb uplift at	2: Lum DOL= 2 psf (Lum ough Cat B; F ough Cat B; F er of min rooi oad of 13.9 p ve loads. rd bearing. re load of 20. a rectangle veen the bott 2. ers) of truss 194 lb uplift a joint 6.	1.15 Fully f live sf on Opsf om to t joint					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10) Beveled plat surface with	e or shim requi truss chord at	ired to provi joint(s) 1.	de full bearin	g					
	3-5=-317/628	91/133, 3-4=-101/0,	LC	OAD CASE(S)	Standard								
BOT CHORD	1-6=-145/63, 5-6=-4 2-6=-158/144	1/44											
NOTES 1) Wind: ASI Vasd=103 II; Exp B;	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B(Enclosed; MWFRS (er	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C	Cat.								- AN	ORTH CA	ROLIN

- Exterior(2E) 0-0-0 to 2-8-9, Interior (1) 2-8-9 to 4-7-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33 2) Truss designed for wind loads in the plane of the truss
- only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

G nnnn October 15,2024

036322

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL12	Valley	1	1	Job Reference (optional)	168913559

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:NLOiSclksuXIOgPGRC2cxryTVo?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:44.7

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.55 0.11 0.06	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 36 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 1=6-0-5, § Max Horiz 1=222 (LC Max Uplift 1=-26 (LC 6=-54 (LC Max Grav 1=163) (LC 6=-57 (LC	3) 4) ed or 5) c 6) c 7) , 8)), 9)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0.9 This truss ha load of 12.0 overhangs n Gable requir Gable studs * This truss h on the bottor 3-06-00 tall b chord and ar All bearings Provide mec bearing plate	7-16; Pr=20.0 psi .15); Pg=20.0 psi; late DOL=1.15); Is 9; Cs=1.00; Ct=1.1 sis been designed f psif or 2.00 times f fon-concurrent with es continuous bott spaced at 4-0-0 on as been designed n chord in all area by 2-00-00 wide win y other members. are assumed to be hanical connection e capable of withst	f (roof LL Pf=13.5 =1.0; Rc 0 for greate a other lin om chor C. I for a liv s where II fit betv e SP No. h (by oth anding 1	: Lum DOL= psf (Lum pugh Cat B; F er of min roof pad of 13.9 p: re loads. d bearing. e load of 20.0 a rectangle reen the botto 2. ers) of truss t 79 lb uplift at	1.15 Fully f live sf on Opsf om to						
FORCES TOP CHORD BOT CHORD	(lb) - Maximum Com Tension 1-2=-402/269, 2-3=- 3-5=-302/281 1-6=-131/166, 5-6=-	226/117, 3-4=-103/0 95/103	10 ^{),} LC	5, 26 lb uplift) Beveled plat surface with DAD CASE(S)	at joint 1 and 54 I e or shim required truss chord at join Standard	b uplift a to provi t(s) 1.	t joint 6. de full bearin	g					
WEBS NOTES 1) Wind: AS(Vasd=103 II; Exp B;	2-6=-333/137 CE 7-16; Vult=130mph mph; TCDL=6.0psf; Br Enclosed; MWFRS (er	(3-second gust) CDL=6.0psf; h=25ft; ivelope) and C-C	Cat.							6	111	OR THESS	BOJIII

- Exterior(2E) 0-0-0 to 3-0-1, Interior (1) 3-0-1 to 7-9-13 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

With the transmission :0 Wanninnin and SEAL 036322 GI October 15,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL13	Valley	1	1	Job Reference (optional)	168913560

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:0NbpOvhb1MvTHvWIefSREnyTVo4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.3

Loading TCLL (roof) Snow (Pf/Pg) TCDL BCLL BCDL	(psf) 20.0 13.9/20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 ²	1/TPI2014	CSI TC BC WB Matrix-MP	0.35 0.07 0.04	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood sh 4-4-5 oc purlins, e Rigid ceiling direct bracing. (size) 1=4-4-5 Max Horiz 1=173 (Max Uplift 1=-18 (6=-14 (L	eathing directly applie xcept end verticals. y applied or 10-0-0 or 5=4-4-5, 6=4-4-5 _C 10) C 9), 5=-181 (LC 10) C 13)	3) 4) ed or 5) c 6) c 7) , 8) y 9)	TCLL: ASCE Plate DOL=1 DOL=1.15 P Exp.; Ce=0. This truss ha load of 12.0 overhangs n Gable requir Gable studs * This truss l on the botto 3-06-00 tall chord and ai All bearings Provide mec	5 7-16; Pr=20.0 ; 1.15); Pg=20.0 ; late DQL=1.15); by Cs=1.00; Ct=1 as been designe psf or 2.00 timese on-concurrent w es continuous b spaced at 4-0-0 has been design m chord in all ard by 2-00-00 wide hare assumed to chanical connect	psf (roof LL psf; Pf=13.5; ; Is=1.0; Ro 1.10 ed for greate s flat roof lo vith other liv voottom chor o oc. ned for a liv eas where will fit betw ers. be SP No. tion (by oth	: Lum DOL= psf (Lum pugh Cat B; F er of min roo pad of 13.9 p ve loads. d bearing. e load of 20. a rectangle veen the bott 2. ers) of truss	1.15 Fully f live sf on Opsf om					
FORCES TOP CHORD BOT CHORD	(ib) - Maximum Co Tension 1-2=-300/171, 2-3: 3-5=-324/263 1-6=-102/111, 5-6:	_C 29) mpression/Maximum 251/125, 3-4=-103/(67/73), 10), LC	bearing plate 5, 18 lb uplif) Beveled plat surface with)AD CASE(S)	e capable of with t at joint 1 and 1 e or shim requir truss chord at jo Standard	nstanding 1 4 lb uplift a red to provi pint(s) 1.	81 lb uplift a t joint 6. de full bearin	t joint g					
 WEBS NOTES 1) Wind: ASG Vasd=103 II; Exp B; Exterior(2 zone; can and right 6 MWFRS f grip DOL= 2) Truss des only. For see Stand or consult 	2-6=-265/66 CE 7-16; Vult=130mp mph; TCDL=6.0psf; Enclosed; MWFRS (E) 0-0-0 to 3-0-0, Inte tilever left and right e exposed;C-C for men or reactions shown; I =1.33 igned for wind loads studs exposed to wir lard Industry Gable E qualified building de	h (3-second gust) BCDL=6.0psf; h=25ft; envelope) and C-C erior (1) 3-0-0 to 6-1-1 xposed ; end vertical bers and forces & .umber DOL=1.60 pla in the plane of the true d (normal to the face; nd Details as applical signer as per ANSI/TF	Cat. 3 left tte ss), ble, PI 1.							M. CONTRACTOR	The second secon	SEA 0363	L 22 EER. H

- zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.33
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

GI

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	14 Overhills Creek-Roof-1 BNS GRH	
24100066-01	VL14	Valley	1	1	Job Reference (optional)	168913561

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Tue Oct 15 11:28:58 ID:7cLIZYe4z8O1pIDXPpOV4xyTVo8-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:32.3

		i										1	
Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.33	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf/Pg)	13.9/20.0	Lumber DOL	1.15		BC	0.04	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.07	Horz(CT)	0.00	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 17 lb	FT = 20%
			3) TCLL: ASCE	7-16: Pr=20.0 psf	(roof Ll	: Lum DOL=	1.15					
TOP CHORE	2v4 SP No 2			Plate DOL=1	.15): Pa=20.0 psf:	Pf=13.9	9 psf (Lum						
BOT CHORE	2x4 SI No.2			DOI =1 15 P	ate DOI =1 15): Is=	=1 0' R	ough Cat B· F	ully					
WERS	2x4 SI No.2			Exp: Ce=0.9	$C_{s=1} 00^{\circ} C_{t=1} 10^{\circ}$	- 1.0, 1.)	bugh out b, i	uny					
OTUEDO	2X4 OF No.3) This trues ha	s been designed for	or areat	er of min roof	livo					
UTHERS	2X4 SP N0.3				s been designed it	n great		of on					
BRACING						athori	ua laada	51 011					
TOP CHORD	Structural wood sheat 2.8.5 oc purling over 3.8.5 oc purling	athing directly applie	ed or 5) Gable require	es continuous botto	omer in	d bearing.						
BOT CHORD	 Rigid ceiling directly bracing 	applied or 10-0-0 oc	c 6) Gable studs) * This truss h	spaced at 4-0-0 oc las been designed	for a liv	re load of 20.0	Opsf					
PEACTIONS	(cize) 1-2-8-5 F	5-2-8-5 6-2-8-5		on the bottor	n chord in all areas	where	a rectangle						
REACTIONS	$M_{OV} = 1 - 2^{-0} - 3, C$	$5 = 2 \cdot 0 \cdot 5, 0 = 2 \cdot 0 \cdot 5$		3-06-00 tall b	y 2-00-00 wide will	l fit betv	veen the botto	om					
) []) [] 004 (0 40) (chord and ar	y other members.								
	Max Upilit 1=-8 (LC s	9), 5=-204 (LC 10), 6	5 -99 8) All bearings a	are assumed to be	SP No.	2.						
	(LC 19)	aa) = aa= (1 0 4a)	ç) Provide mec	hanical connection	(by oth	ers) of truss t	0					
	Max Grav 1=84 (LC 6=109 (LC	30), 5=305 (LC 19), C 10)		bearing plate	capable of withsta	inding 2	204 Ib uplift at	joint					
FORCES	(lb) - Maximum Com	pression/Maximum	1	0) Beveled plate	e or shim required	to provi	de full bearing	g					
TOP CHORD	1-2=-185/79, 2-3=-23	31/184, 3-4=-103/0,	ı	Surface with OAD CASE(S)	truss chord at joint	(s) 1.							
	3-5=-386/263	/44	-	0/10 0/102(0)	olandara								
WEBS	2-6=-215/166	/41											
NOTES												minin	11111
1) Wind AS	CE 7-16: Vult-130mph	(3-second quist)										W'TH CA	ROUL
Vasd-10	3mph: TCDI –6 Opsf: B(CDI -6 Onsf: h-25ft:	Cat								1	21	
	Enclosed: MW/ERS (on	volono) and C C	out.							/	S.	0/100	The Ala
T, Exp B,	Eliciosed, MWERG (eli	(1) = 0 and (-0)	°							6	1 A	1115 11	
Exterior(2	2E) 0-0-0 10 3-0-0, Inten	101 (1) 3-0-0 10 4-5-1	5							4		19 20	
ZUITE, Car	averaged C C for moment		en							2	6 9		
	exposed, C-C for memo		4.0							-		SEA	L 1 2
	101 Teactions shown, Lu	Inder DOL=1.60 pla	le							-		O L/ (T
	=1.33											0363	22 ; =
2) Truss de	signed for wind loads in	the plane of the trus	SS							-	() (
only. For	stuas exposed to wind	(normal to the face)										A	1. 5
see Stan	dard Industry Gable End	d Details as applicab	ole,								2.	A. En	CRIX S
or consul	t qualified building desig	gner as per ANSI/TP	41.								21	S, GIN	CH. AN
											1	CA -	IL BE IN

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

GI October 15,2024

