Mark Morris, P.E.

#126, 1317-M, Summerville, SC 29483 843 209-5784, Fax (866)-213-4614

The truss drawing(s) listed below have been prepared by **Atlantic Building Components** under my direct supervision based on the parameters provided by the truss designers.

AST #: 53246 JOB: 24-8566-R01 JOB NAME: LOT 0.0017 HONEYCUTT HILLS Wind Code: ASCE7-16 Wind Speed: Vult= 120mph Exposure Category: B Mean Roof Height (feet): 23 These truss designs comply with IRC 2018 as well as IRC 2021. 64 Truss Design(s)

Trusses:

GR01, GR02, GR03, GR04, GR05, GR06, GR07, J01, J02, J03, J04, J05, J06, J07, J08, J09, J11, J12, J13, J14, J15, J16, J17, J19, J20, J21, J22, J23, J24, J25, J26, J27, J28, P01, R01, R02, R03, R04, R05, R06, R07, R08, R09, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21, R22, R23, R24, R24A, R25, R26, R27, VT01, VT02

Warning !-- Verify design parameters and read notes before use.

Continued on pard 2009 parameters and react intersection of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is designed and building construction is the responsibility of the sector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, NC
24-8566-R01	GR02	Hip Girder	1	2	Job Reference (optional)	# 53246
		Dura 0	400 - E-L 4	0.0004 D	t 0.000 - bil 40.0004 MiT-b below this - bes	Thu O + 40 40 00 47 0004 Dame 0

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:39:47 2024 Page 2 ID:qqlfH?RqemZ1wWmxuKuRIUzBcTx-XymONRoGx5Osic1UqUujJF7QGwcl8ieUkEQ1p_yUqKg

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-5=-60, 5-8=-60, 2-7=-20

Concentrated Loads (lb)

Vert: 4=-83(F) 5=-83(F) 10=-97(F) 3=-48(F) 13=-58(F) 12=-29(F) 11=-29(F) 6=-48(F) 9=-58(F) 14=-63(F) 15=-15(F) 16=-83(F) 17=-83(F) 18=-15(F) 19=-63(F) 20=-43(F) 21=-97(F) 22=-29(F) 23=-29(F) 24=-43(F)

TOP CHORD

BOT CHORD

LUMBER-

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

Left 2x4 SP No.3 1-5-0 SLIDER

REACTIONS. (Ib/size) 4=48/Mechanical, 2=144/0-3-8 (min. 0-1-8), 5=20/Mechanical Max Horz 2=53(LC 12) Max Uplift4=-35(LC 12), 2=-3(LC 12) Max Grav 4=52(LC 20), 2=147(LC 18), 5=40(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs

non-concurrent with other live loads.

- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 4 and 3 lb uplift at joint 2.

LOAD CASE(S) Standard

Structural wood sheathing directly applied or 2-0-0 oc purlins.

Rigid ceiling directly applied or 10-0-0 oc bracing.

- 7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 7 and 40 lb uplift at joint 4.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)
 - Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20

SEAL 28147 2.024 '10 10/9/2024

TOP CHORD

BOT CHORD

TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2

WEBS 2x4 SP No.3

Structural wood sheathing directly applied or 5-0-0 oc purlins, except end verticals.

Rigid ceiling directly applied or 6-0-0 oc bracing. MiTek recommends that Stabilizers and required cross bracing be installed during truss erection, in accordance with Stabilizer Installation guide.

REACTIONS. (lb/size) 7=259/0-3-8 (min. 0-1-8), 4=108/Mechanical, 5=78/Mechanical Max Horz 7=87(LC 12) Max Uplift4=-27(LC 9), 5=-7(LC 12)

Max Grav 7=259(LC 1), 4=108(LC 1), 5=86(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (10)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 27 lb uplift at joint 4 and 7 lb uplift at joint 5.

LOAD CASE(S) Standard

Installation guide.

REACTIONS. (lb/size) 7=259/0-3-8 (min. 0-1-8), 4=68/Mechanical, 5=117/Mechanical Max Horz 7=125(LC 12) Max Uplift4=-8(LC 9), 5=-58(LC 12)

Max Grav 7=259(LC 1), 4=68(LC 1), 5=120(LC 20)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=115mph (3-second gust) Vasd=91mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 8 lb uplift at joint 4 and 58 lb uplift at joint 5.

LOAD CASE(S) Standard

- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 132 lb uplift at joint 3.

LOAD CASE(S) Standard

vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be instanted and toaded of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

- 7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 16 lb uplift at joint 4 and 36 lb uplift at joint 5.
 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on c non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 91 lb uplift at joint 3 and 8 lb uplift at joint 4.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

- sheetrock be applied directly to the bottom chord.
- Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

5)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 64 lb uplift at joint 4 and 34 lb uplift at joint 5.

8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum

sheetrock be applied directly to the bottom chord. 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

3) TCLL: ASCE 7-16; Pr=20.0 pst (root LL: Lum DOL=1.15 Plate DOL=1.15); Pt=20.0 pst (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; I Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.

9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 5 and 27 lb uplift at joint 6.
 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

Installation guide.

REACTIONS. (Ib/size) 7=281/0-3-8 (min. 0-1-8), 4=116/Mechanical, 5=88/Mechanical Max Horz 7=72(LC 10) Max Uplift7=-31(LC 10), 4=-39(LC 7), 5=-9(LC 10)

Max Grav 7=281(LC 1), 4=118(LC 26), 5=96(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (12)

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS

(envelope) gable end zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough

Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10

4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

5) Provide adequate drainage to prevent water ponding.

6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

8) Refer to girder(s) for truss to truss connections.

- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 31 lb uplift at joint 7, 39 lb uplift at joint 4 and 9 lb uplift at joint 5.
- 10) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf) Vert: 1-2=-60, 2-3=-60, 3-4=-60, 5-7=-20 Concentrated Loads (lb) Vert: 3=-12(F) 6=-29(F) 8=-12(F) 9=-29(F)

NOTES- (11)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Provide adequate drainage to prevent water ponding.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 8) Refer to girder(s) for truss to truss connections.
- 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 14 lb uplift at joint 4 and 48 lb uplift at joint 5.
 10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

- (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for
- members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 102 lb uplift at joint 3 and 7 lb uplift at joint 4.
- 8) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum
- sheetrock be applied directly to the bottom chord.
- Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

Max Grav 3=74(LC 24), 2=187(LC 1), 4=66(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 40 lb uplift at joint 3 and 8 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. (lb/size) 3=53/Mechanical, 2=159/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=55(LC 20), 2=159(LC 1), 4=50(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 3 and 10 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. (lb/size) 3=53/Mechanical, 2=159/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=55(LC 24), 2=159(LC 1), 4=50(LC 5)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 30 lb uplift at joint 3 and 10 lb uplift at joint 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


REACTIONS. All bearings 1-3-0 except (jt=length) 4=Mechanical, 5=Mechanical.

(lb) - Max Horz 7=38(LC 11)

Max Uplift All uplift 100 lb or less at joint(s) 4, 7, 6 Max Grav All reactions 250 lb or less at joint(s) 4, 7, 5, 6, 6

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (11)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) Unbalanced snow loads have been considered for this design.
- 5) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 6) Gable studs spaced at 2-0-0 oc
- 7) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 8) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

9) Refer to girder(s) for truss to truss connections.

- 10) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 7, 6.
- 11) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 3=54/Mechanical, 2=160/0-3-8 (min. 0-1-8), 4=35/Mechanical Max Horz 2=65(LC 12) Max Uplift3=-30(LC 12), 2=-10(LC 12) Max Grav 3=56(LC 24), 2=160(LC 1), 4=50(LC 5)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (8)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Refer to girder(s) for truss to truss connections.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


Max Horz 2=76(LC 11) Max Uplift5=-97(LC 11), 2=-21(LC 10)

Max Grav 5=511(LC 21), 2=186(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 3-5=-481/291

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 5, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

REACTIONS. (lb/size) 4=148/Mechanical, 2=213/0-3-8 (min. 0-1-8) Max Horz 2=50(LC 13) Max Uplift4=-23(LC 14), 2=-47(LC 10) Max Grav4=197(LC 21), 2=290(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads. 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6)* This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit
- between the bottom chord and any other members.
- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 4, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

10/9/2024

vertically. Applicability of design parameters and rever have been used only application of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

<u>0-1-8</u> Plate Offsets (X,Y)-- [1:0-1-14,0-1-0] LOADING (psf) SPACING-DEFL PLATES GRIP 2-0-0 CSI. in (loc) l/defl I/d TCLL (roof) 20.0 Plate Grip DOL 1.15 тс 0.46 Vert(LL) 0.07 3-6 >849 240 **MT20** 244/190 Snow (Pf) 20.0 Lumber DOL 1.15 BC 0.35 Vert(CT) -0.07 3-6 >805 180 TCDL 10.0 WB 0.00 Rep Stress Incr YES Horz(CT) 0.01 1 n/a n/a BCLL 0.0 Code IRC2021/TPI2014 Matrix-AS Weight: 17 lb FT = 20% BCDL 10.0 LUMBER-BRACING-TOP CHORD 2x4 SP No.2 TOP CHORD Structural wood sheathing directly applied, except end verticals.

BOT CHORD 2x4 SP No.2 2x4 SP No 3 WFBS

BOT CHORD

Rigid ceiling directly applied. MiTek recommends that Stabilizers and required cross bracing

be installed during truss erection, in accordance with Stabilizer Installation guide

REACTIONS. (lb/size) 1=194/0-5-12 (min. 0-1-8), 3=194/0-1-8 (min. 0-1-8) Max Horz 1=57(LC 13) Max Uplift1=-56(LC 10), 3=-65(LC 10) Max Grav 1=260(LC 21), 3=260(LC 21)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 6) Bearing at joint(s) 3 considers parallel to grain value using ANSI/TPI 1 angle to grain formula. Building designer should verify capacity of bearing surface.
- 7) Provide mechanical connection (by others) of truss to bearing plate at joint(s) 3.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 1, 3.
- 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
- 10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

or individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELE	BY MEADOW LANE ANGIER, NC
24-8566-R01	J26	Half Hip Girder	1	1	Job Reference (optional)	# 53246

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MITek Industries, Inc. Thu Oct 10 12:40:21 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-XUpEW3CbxXh1nqd1qdVhhQXF6d6q65kVZXfq00yUqK8

LOAD CASE(S) Standard Concentrated Loads (Ib)

Vert: 3=-2(B) 6=-7(B) 10=-2(B) 11=-7(B)

FORCES. (Ib) - Max. Comp./Max. Ten. - All forces 250 (Ib) or less except when shown.

NOTES- (9)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed; end vertical left and right exposed; porch left exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit

between the bottom chord and any other members.

- 7) Refer to girder(s) for truss to truss connections.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4, 2.
- 9) Trusses designed with 2018 IRC also comply with 2015 IRC.

```
LOAD CASE(S) Standard
```


Max Uplift3=-69(LC 12), 4=-36(LC 12) Max Grav 5=187(LC 18), 3=61(LC 24), 4=47(LC 10)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown.

NOTES- (

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs
- non-concurrent with other live loads.
- 4) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 5) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.

6) Refer to girder(s) for truss to truss connections.

- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 4.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

NOTES- (10)

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 5) Gable requires continuous bottom chord bearing.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 4.
- 9) See Standard Industry Piggyback Truss Connection Detail for Connection to base truss as applicable, or consult qualified building
- designer. 10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY MEADOW	LANE ANGIER, NC
24-8566-R01	R01	HIP GIRDER	1	1	Job Reference (optional) # 5	53246
		Run: 8.4 ID:Gł	30 s Feb 1 OhT5MC	2 2021 Prir v4FkLKIP	it: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:4 fX2c9QzXMNI-ic OggLULw3TcWz8zRCGdIU2g3sKI	40:32 2024 Page 2 BsN65kpvttyUgJz

NOTES- (12)

11) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf)

Vert: 1-Ӟ=-60, 3-4=-60, 4-11=-60, 11-12=-60, 12-13=-60, 13-14=-60, 26-27=-20, 23-30=-20, 15-22=-20

Concentrated Loads (lb) Vert: 4=-22(F) 11=-36(F) 12=-64(F) 26=-36(F) 6=-22(F) 19=-22(F) 25=-42(F) 21=-22(F) 23=-42(F) 7=-36(F) 17=-22(F) 34=-43(F) 35=-8(F) 36=-22(F) 37=-22(F) 38=-22(F) 40=-36(F) 42=-36(F) 43=-36(F) 45=-36(F) 46=-36(F) 47=-11(F) 48=-58(F) 49=-42(F) 50=-42(F) 51=-42(F) 52=-22(F) 53=-22(F) 54=-22(F) 55=-22(F) 56=-22(F) 56=-22(F) 58=-22(F) 58=-25(F)

vertically. Applicability of design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual obliding component to be instanted and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

[Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT H	HILLS 371 SHELBY MEADOW LANE ANGIE	ER, NO
	24-8566-R01	R04	HIP	1	1	Job Reference (optional)	# 53246	
			Run IE	8.430 s Feb :ydjkN6vuyc	12 2021 Prii Zf_Qy5IC	nt: 8.630 s Jul 12 2024 MiTek aT4RzWPfe-PXbAwFTm_	Industries, Inc. Thu Oct 10 12:40:42 2024 Pa K2o3k3YXNc1svl95EQXN_aOIEREIy	age 2 /UqJp

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 3	371 SHELBY MEADOW LANE ANGIER, NC
24-8566-R01	R05	HIP	1	1		# 53246
			Run: 8.430 s Feb 1	 2 2021 Pri	Job Reference (optional) nt: 8.630 s Jul 12 2024 MiTek Industri	es. Inc. Thu Oct 10 12:40:45 2024 Page 1
0.40.0	220 740	45.0.0	ID:ydjkN6vu	iydZf_Qy	5ICaT4RzWPfe-q6GJYHVeHvidf	WTeEgxJfUXGSIF8jjJ14GT5rdyUqJm
0-10-8 2	2-3-8 4-10-1	7-10-7	6-0-0	7	-6-0 7-6	i-0
						Scalo - 1:71 2
		5x8 =	5x8 =	=		Scale - 1.71.2
		8.00 12 7	8			
I						T
				\searrow		
	2.0	. 12		<u> </u>	2	
	3X0 %))	3x8 🕅	
	6x10 🖉 (w9	//	9 2x4 //	
-7-2	5		8		10	-7-2
	<u> </u>	// Ŵ8	//	Wib	27	10
4xo 🚧	3x4 26			//	14	
	4 W3 W4	W5		/	W11	
3	W2 BE	33			\mathbb{N}	
$\frac{1}{2}$			B5		B6	
	15x10 =1/	5x10 = W7	28	13	12 29 30	
	19 2x4			3x8 =	= 4x4 =	4x6
4x4 =	= 0x0 =	3x4				
		6x8 =				
	2-3-8 7-1-9	13-6-0 15-0-0	25-6-0		36-0-0	
	2-3-8 4-10-1	6-4-7 1-6-0	10-6-0		10-6-0	
Plate Offsets (X,Y) [2:0-	<u>-0-0,0-0-7], [3:0-1-4,0-1-12]</u>	, [7:0-5-8,0-1-12], [8:0-5-12,0-2-0], [<u>16:0-3-12,0-3-0], [</u>	18:0-4-4	,0-3-0], [19:0-2-12,0-4-0]	
LOADING (psf)	SPACING-	2-0-0 CSI .	DEFL.	in (l	oc) l/defl L/d	PLATES GRIP
Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.79	Vert(LL)	-0.45 12	-14 >958 240	MT20 244/190
TCDL 10.0	Rep Stress Incr	YES WB 0.97	Horz(CT)	0.23	11 n/a n/a	
BCDL 10.0	Code IRC2021/TPI	2014 Matrix-AS				Weight: 225 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x4 SP No	.2 1 *Except*		TOP CHORD	Structur	al wood sheathing directly ap	plied.
B1: 2x6 SP	¹ No.2, B4: 2x4 SP No.2, B	5: 2x4 SP SS	WEBS	1 Row a	at midpt 7-14, 8-14	
WEBS 2x4 SP No	.3 *Except*			MiTek	recommends that Stabilizers	and required cross bracing
WEDGE	P NO.2			be inst	talled during truss erection, in	accordance with Stabilizer
Right: 2x4 SP No.3				Installe		
REACTIONS. (lb/size)	2=1493/0-3-8 (min. 0-1-12)	. 11=1439/0-3-8 (min. 0-1-13)				
Max Horz	2=203(LC 9)					
Max Uplift Max Grav	2=-104(LC 12), 11=-89(LC 2=1493(LC 1)_11=1529(LC	13) : 21)				
	- 100(201), 11 1020(20	2.)				
FORCES. (lb) - Max. Cor	np./Max. Ten All forces 2 8/133_3-4=-3980/355_4-26	50 (lb) or less except when shown.	1921/188			
6-7=-1802	2/227, 7-8=-1342/235, 8-9=	-1968/250, 9-10=-2080/212, 10-27=	=-2081/199,			
11-27=-22	253/165	18- 205/2284 16 17- 205/2284 1	5 16- 202/0			
14-28=-1/	/1318, 13-28=-1/1318, 12-1	3=-1/1318, 12-29=-92/1803, 29-30=	=-92/1803,			
11-30=-92	2/1803 5/1702 5 17-0/222 5 16-	990/225 14 16-0/1600 7 16- 104	/1100			
7-14=-63	3/161, 3-18=-315/2746, 3-1	9=-1167/153, 8-12=-110/881, 10-12	2=-421/232			
NOTES (10)						
1) Unbalanced roof live lo	ads have been considered	for this design.				
2) Wind: ASCE 7-16; Vult	=120mph (3-second gust)	/asd=95mph; TCDL=5.0psf; BCDL=	=5.0psf; h=23ft; Ca	t. II; Exp	B; Enclosed; MWFRS	
(envelope) gable end z 27-9-7 to 31-2-6. Exteri	one and C-C Exterior(2E) - or(2E) 31-2-6 to 36-0-0 zon	ue: cantilever left and right exposed	o 8-2-9, Exterior(2) : end vertical left a	R) 8-2-9	exposed:C-C for	TH CARCING
members and forces &	MWFRS for reactions show	vn; Lumber DOL=1.60 plate grip DC	L=1.60		Contra State	FESSIA
3) TCLL: ASCE 7-16; Pr= Cat B: Partially Exp : C	20.0 pst (roof LL: Lum DOL e=1 0 [.] Cs=1 00 [.] Ct=1 10	=1.15 Plate DOL=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DC	DL=1.15); IS=1.0; Rough	R. N.
4) This truss has been de	signed for greater of min ro	of live load of 12.0 psf or 2.00 times	flat roof load of 20	0.0 psf o	n overhangs	SEAL
non-concurrent with oth	ner live loads. Jage to prevent water pondi	ng			1111	28147
6) This truss has been de	signed for a 10.0 psf botton	n chord live load nonconcurrent with	any other live loa	ds.	41111	
7) * This truss has been d	esigned for a live load of 30	0.0psf on the bottom chord in all are	as where a rectan	gle 3-6-0) tall by 1-0-0 wide will fit	NOINEER
8) Provide mechanical co	nnection (by others) of trus	s to bearing plate capable of withsta	nding 100 lb uplift	at joint(s	s) 11 except (jt=lb)	94 K MORPHINN
2=104.			، بالد معالية معالم الم	• • •	and 4/0" avmax	When the second states and states
sheetrock be applied di	res that a minimum of //16' irectly to the bottom chord	structural wood sheathing be appli	ea airectly to the to	op chord	and 1/2" gypsum	10/9/2024
1 Warninges designed with	parameters and read notes be	fore use. This design is based only upon	parameters shown, ar	nd is for ar	individual building component to	be installed and loaded
vertically. Applicability of c	design parameters and proper in	corporation of component is responsibility	of building designer	– not trus	s designer or truss engineer. Bracin	ng shown is for lateral support
of individual web members of	only. Additional temporary brac	cing to ensure stability during construction	is the responsibility	of the erec	tor. Additional permanent bracing	of the overall structure is the

responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, N
24-8566-R01 R	R05	HIP	1	1	Job Reference (optional)	# 53246
		Dum 0.4	20 a Eah 1	2 2024 Duin	the COO endul 10 0004 MiTels Industrian Inc.	Thu Oat 10 10:40:45 0004 Dama (

8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 Millek Industries, Inc. Thu Oct 10 12:40:45 2024 Page 2 ID:ydjkN6vuydZf_Qy5lCaT4RzWPfe-q6GJYHVeHvidfWTeEgxJfUXGSIF8jjJ14GT5rdyUqJm

LOAD CASE(S) Standard

10/9/2024

vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY	MEADOW LANE ANGIER, NO
24-8566-R01	R07	Piggyback Base	1	1	Job Reference (optional)	# 53246
		Run: 8.4 ID:yo	130 s Feb 1 djkN6vuyd	2 2021 Prir Zf_Qy5IC	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu aT4RzWPfe-belKE0bfONjUdl4AiL4B_AseM	Oct 10 12:40:53 2024 Page 2 W?UbKLCwVPW79yUqJe

as as as as as a second in a page set tabe in the intervent of page set tabe in the intervent of page set tabe in the intervent of page set tabe interven	Job		Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY MEADOW LANE ANGIER, NO
$\frac{1}{22} + \frac{1}{12} $	24-8566-R01		R08	Piggyback Base	1	1	# 53246
$\frac{3.33234}{100} + \frac{1.0}{100} + \frac{10.0}{100} + $					Run: 8.430 s Feb	12 2021 Prir	JOD Reference (optional) nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:40:56 2024 Page 1
Old 238 4/bit //bit 866 3/bit 2/bit 3/bit 4/bit Sole 1/7/d 0		-0	0-10-82-3-8 7-1-9	15-0-0 2'	1-0-0 24-	9-12 2	27-6-12 32-11-7 36-11-8 37-10-8
$ \begin{array}{c} a_{B}^{-} & b_{B}^{-} \\ b_{B}^{-} & b_{B}^{-} \\ c_{B}^{-} & b_{B}^{-} & b_{B}^{-} & b_{B}^{-} & b_{B}^{-} \\ c_{B}^{-} & b_{B}^{-} & b_{B}^{-} & b_{B}^{-} & b_{B}^{-} \\ c_{B}^{-} & b_{B}^{-} & b_{B}^{-} & b_{B}^{-} & b_{B}^{-} & b_{B}^{-} \\ c_{B}^{-} & b_{B}^{-} \\ c_{B}^{-} & b_{B}^{-} $		0	1-10-8 2-3-8 4-10-1	7-10-7 6	-0-0 3-9	9-12	2-9-0 5-4-11 4-0-2 0-11-0
$ \frac{1}{10^{10} \text{ cm}^{2}} = \frac{1}{240} + \frac{1}{241} + \frac{1}{240} + $				6x8 =	5x8 —		Scale = 1:77.8
Image: control of the second secon				8.00 12 7	8		
$ \frac{1}{10^{10}} \frac{1}{10^{10}}$	I					_	- 5×9 —
$ \frac{1}{10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{$				т2		^{[4} 9 ⁵⁾	$x_6 = \frac{3x_6}{10}$
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		T	3x	8 31		A	32
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}$			5x8 💋	6 W6	w9/		
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}$	2-7-0		5		8		
Image: Second		-0- -0-	<6 [/] ∕	W5 WB	/	`\\ w₽	
1 2 1 1 2 1 2 1 2 2 2 2 3 3 0 1 1 6 5 1 6 5 1 6 5 1 6 5 5 1 1 6 5 1 1 6 5 5 1		œ	4 W3 V	/4 1 1			
Bit of the second sec			2 3 yz 4	B3	B6		W15 12
$ \begin{array}{c} - 2^{23(1)} = 2x_{11} & - 2x_{22} & 22 & 23 & 33 & 37 & 20 & 17 & 40 & 10 & 50 & 50 & 15 & 14 \\ 4x_{1} = & 6x_{0}^{2} = & 2x_{11}^{2} & - 2x_{22}^{2} & 21 & 33 & 37 & 20 & 17 & 40 & 10 & 50 & 50 & 34 & 1 \\ 4x_{2} = & & 2x_{1}^{2} = & 2x_{$		0-7-2		24 24 24 25 6x8 - W7	B5 W Ag		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			$27^{5\times10} = 27^{2}$	(4 23 22 ²¹	^{33 37} 20	17 4 8	18 35 36 15 14
UP Def Def State 1			$4x4 \equiv 6x6 \equiv$	$3x4 \parallel 2x4 =$	2x4	4x8	6x8 = 3x4
Plate T.19 13.8.0 15.0.0 20.0.4 25.0.0 23.11.7 36.11.8 Plate Offsets (XY)- [20.0.0.0.0.20], [50.2-10.0.1.12], [70.5-12.0.2.0], [80.4-0.2-24], [10.0-4.10.2-0], [20.2-24.0.2.0], [20.2-24.				7x0 —	274	2x4 =	=
L248 7.149 19.40 15.00 20.00 25.00 32.117 36.118 Plate Offents (X, Y) 12.04.07.03.01 15.02.21 10.02.01 12.02.2							
Plate Offsets (X/)- [2:0:0:0:0:0:3] [3:0:1:4:0:0:0] [2:0:0:0:0:0:0:3] LOADING (prf) 2:0 PACING. 2:0:0 Ref National State (State (<u>2-3-8</u> <u>7-1-9</u> <u>2-3-8</u> <u>4-10-1</u>	<u>13-6-0</u> <u>15-0-0</u> <u>20-0</u> 6-4-7 <u>1-6-0</u> <u>5-0</u>	0-0 25-0 -0 5-0)-0 -0	<u>32-11-7</u> <u>36-11-8</u> 7-11-7 <u>4-0-2</u>
DetRing (psf) TCLL (ro) SPACING- 20:0 PLATES GRIP MIZD TCLL (ro) 20:0 Plate Grp DOL 1.15 TC 8.81 Vert(C1) 0.5816.20 >503.20 MIZD MIZD 24/190 TCLL (ro) 0.0 Continet DOL 1.15 BC 8.87 >503.10 MIZD 24/190 BCLL 0.0 0.0 Context (CC) MIXA	Plate Offsets (X,Y) [2:0)-0-0,0-0-3], [3:0-1-4,0-2-0], Edge 0-4-0]	[5:0-2-10,0-1-12], [7:0-5-12,0-2-0], [8	3:0-6-4,0-2-4], [10	:0-6-4,0-2	2-4], [12:0-2-14,0-2-0], [24:0-2-4,Edge], [26:0-4-0,0-3-0],
TCLL (roof) 20.0 Printe Ging DOL 11.5 TC Data Wart(L) 0.4 wirt(L)	LOADING (psf)		200	DEEL	in //	
TCDL TOD Lumber DOL T15 BC D8 D8 Hor (T1) Outside D3 T00 BCLL 10.0 Code (RC2021/TPI2014 Matrix-AS Matrix-AS Weight: 283 tb erg 20% Weight: 283 tb erg 20% LUMBER: TOP CHORD 2:44 SP No.2 "Except" Structural wood sheathing directly applied, except end verticals. Rigid celling directly applied, except end verticals. BOT CHORD 2:44 SP No.1 "Except" WEIS Structural wood sheathing directly applied, except end verticals. BOT CHORD 2:44 SP No.1 "Except" WEIS WEIS Structural wood sheathing directly applied, except end verticals. WEIS 2:44 SP No.3 "Except" WEIS WEIS Mile end miles and regulated aross bracing be installed during truss erection, in accordance with Stabilizer REACTIONS. (Ibdize) 2:16070-3-8 (min. 0-20), 14=1635/0-3-0 (min. 0-23) Max Fraze201038, 10-220-1089, 23-24-4920 Too 23-24-4920, 10-2200168, 10-220-1089, 23-24-4920, 10-2200168, 10-220-1089, 23-24-4920, 10-220-108, 10-220-1080, 10-220-1092, 23-23-201949, 3-4-4624228, 4-5-48627429, 4-5-4827473, 0-54-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-2264713, 0-37-22647123, 0-37-1212670, 0-22-4-49200, 1-22-4-49200, 1-22-4-4920472, 2-4-492062, 1-22-4-4-920648, 1-23-4-4-49204971, 1-22-4-4920, 0-22-4-4-	TCLL (roof) Snow (Pf)	20.0 20.0	Plate Grip DOL	1.15 TC 0.81	Vert(LL)	-0.54 16-	-20 >813 240 MT20 244/190
Cont Code RC202117PI2014 Matrix-AS Weight 283 Ib FT = 20% LUMBER. TDP CHORD 2x4 SP No.1 ERACING. T1: 2x4 SP No.1 BRACING. T1: 2x4 SP No.1 BRACING. T1: 2x4 SP No.1 BRACING. T0P CHORD 2x4 SP No.1 Structural wood sheathing directly applied, except end verticals. R00 CHORD 2x4 SP No.1 Structural wood sheathing directly applied, except end verticals. T0P CHORD 2x4 SP No.1 Structural wood sheathing directly applied, except end verticals. R00 CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 Except 1 Structural wood sheathing directly applied, except end verticals. R00 CHORD 2x4 SP No.1 Structural wood sheathing directly applied, except end verticals. R00 CHORD 2x4 SP No.1 REACTIONS. (Ubjez) 2-161070-38 (min. 0-2-0). (14=16350-3-0 (min. 0-2-3) Max Horz 2=227(UC 11) Max Grav 2=1674(LC 20). (14=1632(LC 3) Structural wood sheathing directly applied, strailation guide. FORCES. (Ib) - Max. Comp.Max. Ten All forces 250 (Ib) or less except when shown. T0P CHORD 2:23-230(99, 34=4624/228, 4=482/296, 5=4234/5/128, 5:1==226/138, 7:31==222/168, 7:4==107/112, 1:1==21/2078, 2:4:2==5 Structural wood sheathing directly applied, except end werticals. Max Grav 2=1674(LC 20), 1:1==2:147/1018, 8=4=7/2080(2;2;3, 6=31=-226/193, 7:31==226/138, 7:4==167/112/208, 1:1=2:12/168, 1:1=2:11 Structural wood sheathing directly applied. Structural wood sheathing directly applied. BOT CHORD 2:3:5:6:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	TCDL	10.0	Rep Stress Incr	1.15 BC 0.87 YES WB 0.86	Vert(CT) Horz(CT)	-0.88 16- 0.25	-20 >503 180 14 n/a n/a
LUMBER- TOP CHORD 2x4 SP No.2 "Except" TDP CHORD 2x4 SP No.2, BS PN of the second sec	BCDL	10.0	Code IRC2021/TP	I2014 Matrix-AS			Weight: 283 lb FT = 20%
BOT CHORD BOT CHORD BOT CHORD Big dealing directly applied. BOT CHORD Big dealing directly applied. How at minute. Comparison of total content of total content of total content of total content. BOT CHORD Big dealing directly applied. How at minute. Comparison of total content of total content of total content of total content of total content. BOT CHORD State SP No.2 How at minute. Comparison of total content of total content. WEBS 2x4 SP No.1 How at minute. Content of total conten content of total content of total content of total co	LUMBER-	2x4 SP No	2 *Excent*		BRACING-	Structur	al wood sheathing directly applied except end verticals
BOT CHORD 244 SP No 1 EXdept WEBS Tow at Implif 5-24, 7-22, 5-21, 9-16, 10-13 WEBS 214 SP No.3 "Except WEBS Tow at Implif 5-24, 7-22, 5-21, 9-16, 10-13 WEBS 224 SP No.3 "Except WEBS Tow at Implif 5-24, 7-22, 5-21, 9-16, 10-13 MERCTIONS: (bbisze) 2+1607(0-3-8 (min. 0-2-0), 14=1635(0-3-0 (min. 0-2-3) Max Horz; 2-227(Cl 1) Max Horz; 2-227(Cl 1) Max Upit72=-63(LC 12), 14=-65(LC 13) Max Grav2=1674(LC 20), 14=1632(DC 3) Statistics of the stabilizer and required cross bracing be installed during truss erection, in accordance with Stabilizer mission of the stabilizer mission		T1: 2x4 SF	P No.1		BOT CHORD	Rigid ce	elling directly applied.
WEBS 2x4 SP No.3 "Except" be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS. (b/size) 2=1607/0-3-8 (min. 0-2-0), 14=1635/0-3-0 (min. 0-2-3), Max Horz 2=227/1C 11) be installed during truss erection, in accordance with Stabilizer Installation guide. REACTIONS. (b/size) 2=1607/0-3-8 (min. 0-2-0), 14=1635/0-3-0 (min. 0-2-3), Max Grav2=1674/LC 20), 14=-65/LC 13, Max Grav2=1674/LC 20), 14=-65/LC 3 be installed during truss erection, in accordance with Stabilizer Installation guide. FORCES. (b) Amx Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3=-2350/93, 34=-4624/258, 5-6=-2345/123, 6-31=-2260/136, 7-32=-1895/227, 7-31=-2225/153, 7-8=-1673/188, 8-8=-2539/238, 9-10=-2060/158, 10-32=-1895/227, 15-22-151/1844, 28-27=-67/893, 28-26=-121/2679, 23-24=-985/27, 33-36=60/1723, 35-36=0/1723, 35-36=0/1723, 35-36=0/1723, 15-36=0/1723, 35-36=0/1723, 15-36=0/1723, 35-36=0/1723, 15-36=0/1723, 35-36=0/1723, 15-36=0/1723, 35-36=0/1723, 15-26=0/1726, 12-20, 10/12-14, 10-16=0/10-175, 11-16=0/12-150, 12-20, 10/12-14		B1: 2x6 SF	P No.2, B4: 2x4 SP No.2, B	5,B7: 2x4 SP SS	WEDS	MiTek	recommends that Stabilizers and required cross bracing
REACTIONS. (Ib/size) 2=1607/0-3-8 (min. 0-2-0), 14=1635/0-3-0 (min. 0-2-3) Max Horz 2=227(LC 11) Max Grav 2=1674(LC 20), 14=-65(LC 13) Max Grav 2=1674(LC 20), 14=-1632(23), 5-682346/123, 8-312260/136, T-31=-2226/163, 7-8=-1673/185, 8-9=-2539/238, 9-10=-2060/158, 10-32e-1895/227, 11-32e-1986(200, 11-12)=-1477/120, 12-14=-1806/119 BOT CHORD 2=27=-151/1844, 26-27=67/1893, 25-26=-121/2678, 24-25=-121/2679, 23-24=-4930, 22-33=01/648, 20-33=01/648, 12-340-01648, 16-37=01/648, 16-37=01/648, 16-37=01/723, 35-36=01/123, 15-36=01/123 WEBS 5-25=0/232, 5-264252/217, 22-24=0/2099, 7-24=-74/1265, 7-22=-585/185, 8-18=-116/1228, 16-16=-104/1104, 5-26=-204/1929, 3-26=-224/3206, 3-27=-1363/115, 9-16=-1470/160, 10-16=01074, 11-15=-303/176, 10-15=-326/75, 12-15=-21/1658 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16, Vuller 120mph (3-second gust) Vascl=96mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, interior(1) 3-11-2 to 10-2-6, Exterior(2E) 32-11-9 to 37-10-8 zone; (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, interior(1) 3-11-2 to 10-2-6, Exterior(2E) 32-11-9 to 37-10-8 zone; (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, interior(1) 3-11-10 to 10-26, 20 to 1-10-8 zone; (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, interior(1) 3-11-2 to 10-26, Exterior(2E) 32-11-9 to 32-40 zone; (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 0-110; 10-24-10 to 2-10, Exterior(2E) 32-11-9 to 1-0-36-10 ta 20, 0 tri 10 to 1-10, 0 te 1-10, 0 t	WEBS	2x4 SP No W2: 2x4 S	5.3 *Except* SP No.2			be inst Installa	talled during truss erection, in accordance with Stabilizer
Max Horz 2=227(LC 11) Max UpitiZ=63(LC 12), 14=65(LC 13) Max Grav 2=1674(LC 20), 14=1832(LC 3) FORCES. (lb) - Max. Comp. Max. Ten All forces 250 (lb) or less except when shown. TOP CHORD 2=27=35109, 24=-46242(8, 4.5=-4852/295, 5-6=-2345/123, 6-31=-2260/136, 7-31=-2226/163, 7-8=-1673/185, 8-9=-2530/238, 9-10=-2060/158, 10-32=-1895/227, 11-32=-1896/200, 11-12=-1077/120, 12-4=-1806/119 BOT CHORD 2=27=-151/1844, 26-27=-67/803, 25-26=-121/2679, 24-25=-121/2679, 23-24=-4930, 22-33=01/1648, 20-33=01/1648, 02-34=01/1648, 15-17=01/1648, 16-35=01/1723, 35-36=01/1723, 15-36=01/123 WEBS 5-26=0/228, 5-24=-925(217, 22-24=0/2099, 7-24=-74/1265, 7-22=-585/185, 8-18=-116/1228, 16-18=-154/1104, 5-26=-200/1723 WEBS 5-26=0/228, 5-24=-925(217, 22-24=0/2099, 7-24=-74/1265, 7-22=-585/185, 8-18=-116/1228, 16-18=-154/1104, 5-26=-200/1723 WEBS 5-26=0/228, 5-24=-925(217, 22-24=0/2099, 7-24=-74/1265, 7-22=-585/185, 8-18=-116/1228, 10-16=-160/1074, 11-15=-303/176, 10-15=-326/75, 12-15=-21/1658 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Winc: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mpt; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS, cantilever lead right exposed; - cf or temtor and forces & MWFRS for reactions shown, Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=200 pg f(roof LL; Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rottor Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=200 pg f(roof LL; Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rottor Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=200 pg f(roof LL; Lum DOL=1.15 Plate DOL=1.15; Is=1.0; Rottor 2) Provide acquate drainaged for greater or min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide acquate drainaged for greater or min roof live load of non conding lateres awhere a rectangle 3-6-0 tall by 1-0-0 wide will ft between the bottom chord and any other members, with BCDL = 10.0 psf. 6)	REACTIONS.	(lb/size)	2=1607/0-3-8 (min. 0-2-0).	14=1635/0-3-0 (min. 0-2-3)		Intertaine	
Max Grav2-16120 (12), 14=1632(L2 3) FORCES. (b) - Max. Comp./Max. Ten All forces 250 (b) or less except when shown. TOP CHORD 2-3=-2350/99, 3-4=-4624/228, 4-5=-4852/295, 5-6=-2345/123, 6-31=-2260/136, T-31=-22257(153, 7-8=-1673/185, 7-8=-16759/239, 29-10=-2060/158, 10-32=-1895/227, 11-32=-1968/200, 11-12=-1947/120, 12-14=-1806/119 EOT CHORD 2-37=-151/1484, 26-27671/983, 25-26=-121/2679, 23-24=-493/0, 22-33=0/1648, 20-33=0/1648, 20-34=0/1648, 17-34=0/1648, 16-17=0/1648, 16-35=0/1723, 35-36=0/1723, 15-36=0/1723 WEBS 5-25=0/329, 5-24=-395/217, 22-24=0/2099, 7-24=-74/1265, 7-22=-585/185, 8-18=116/1228, 16-18=-164/1104, 5-26=-204/1929, 3-26=-224/3206, 3-27=-1353/115, 9-16=-1470/160, 10-16=0/1074, 11-15=-303/176, 10-15=-326/75, 12-15=-21/1658 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: -SCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 12-2-6, Exterior(2E) 10-2-5 to 21-0-0, 10 Unbalanced roof live loads have been considered for this design. 2) Wind: -SCE 7-16; Vull=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 2-11-0, Exterior(2E) 10-2-5 to 21-0-0, 2019/210-160 21-160 pate grip DCL=-1.60 3) TCLL: ASCE 7-16; P=20.0 psf (roof LL: Lum DCL=1.15; Pf=20.0 psf (Lum DCL=1.15) Plate DCL=1.15); Is=10; Rooff (artilever lift and right exposed; cnd vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; cat B; Partially Exp.; C=-10; Cs=1.00; C=1.100; 3) TCLL: ASCE 7-16; P=20.0 psf (roof LL: Lum DCL=1.15; Pf=20.0 psf (Lum DCL=1.15) Plate DCL=1.15); Is=10; Rooff (artilever lift and right exposed; code of 30.0 psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCCL = 10.0 psf.		Max Horz	2=227(LC 11)	3)			
 FORCES. ((b) - Max. Comp./Max. Ten All forces 250 ((b) or less except when shown. TOP CHORD 2-3=-2350/99, 3-4=-4624/228, 4-5=-4852/295, 6-5=-2405/123, 6-31=-2260/136, 7-31=-22251(63, 7-8=-16731/85, 8=-9=-2589/28, 9-10-2060/158, 10-32=-1895/227, 11-32=-1968/200, 11-12=-1947/120, 12-14=-1800/119 BOT CHORD 2-27=-151/1844, 26-27=-67/893, 25-26=-121/2678, 24-25=-121/2679, 23-24=-493/0, 22-33=0/1648, 20-33=0/1648, 20-33=0/1648, 20-34=0/1648, 16-17=0/1648, 16-35=0/1723, 35-36=0/1723, 15-36=0/1723 WEBS 5-25=0/329, 5-24=-925/217, 22-24=0/2099, 7-24=-74/1265, 7-22=-585/185, 8-18=-116/1228, 16-18=-164/1104, 5-26=-224/3208, 6-27=-243/308, 6-27=-1353/115, 9-16=-1470/160, 10-16=0/1074, 11-15=-309/176, 10-15=-326/75, 12-15=-21/1658 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Winci: ASCE 7-16; Vuli=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 10-2-6. Exterior(2R) 10-2-6 to 21-0-0, Exterior(2Z) 21-0-0 to 24-9.12, Exterior(2R) 24-9-12 to 32-4-6, Interior(1) 32-4-6 1, Exterior(2R) 32-11-6 to 37-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15); Pf=20.0 psf (Lum DOL=1.15); Is=1.0; Rotoph SeAL 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load on 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 7) This truss has been designed for a 10.0 psf bottom chord live load on 11.0 psf. 8) Provide adequate drainage to prevent water ponding. 8) Provide adequate drainage to prevent water ponding. 9) Provide adecuate drainage to prevent waters of t		Max Grav	2=1674(LC 20), 14=1832(L	C 3)			
 TOP CHORD 2-3-2350/99, 3-4-4624/228, 4-5-4852/295, 5-6-2345/123, 6-31-2260/136, 10-321895/277, 11-321987/185, 8-9-2589/238, 9-10-2060/158, 10-321895/277, 11-321987/182, 8-2-589/238, 9-10-2060/158, 10-321895/277, 11-321987/120, 12-141806/119 BOT CHORD 2-27-15111844, 26-27-67/893, 25-26-21/2287, 8, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-25121/2878, 24-251353/115, 9-161470/160, 10-16-0/1074, 11-15303/176, 10-15326/75, 12-1521/1658 NOTES - (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wini: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) 21-0-0 lo 24-9-12, Exterior(2E) 21-0-0 lo 24-9-12, Exterior(2E) 24-9-10 lo 24-9-12, Exterior(2E) 24-9-10 lo 24-9-12, Exterior(2E) 24-9-10 lo 24-9-12, Exterior(2E) 24-9-10 lo 24-9-12, Exterior(2E) 21-0-0 lo 24-9-12, Exterior(2E) 21-0-0 lo 24-9-12, Exterior(2E) 24-9-10 lo 24-9-12, Exterior(2E) 24-9-10 lo 24-9-12, Exterior(2E) 24-9-10 lo 24-9-12, Exterior(2E) 24-9-12 lo 32-4-6, Interior(1) 32-4-6 lo 32-11-6, Exterior(2E) 22-11-6 lo 10-2-6, Exterior(2E) 24-10-0, Exterior(2E) 24-0-20 psf (rout lub router) and rojce at MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.61 log late do 12.0 psf or 2.00 times flat roof load of 2.0.0 psf on overhargs non-concurrent with the posed : end will full do do 12.0 psf or 2.00 times flat roof load of 2.0.0 psf on overhargs. 6) Provide adequate drainage to grevent water proming. 6) Troide adequate drainage to grevent water proming. 6) Troide adequate drainage to grevent water proming.	FORCES. (lb)	- Max. Co	mp./Max. Ten All forces 2	250 (lb) or less except when shown.			
 11-321968/200, 11-121947/120, 12-141806/119 BOT CHORD 2-2715/11844, 26-23-68-121/2678, 24-25121/2679, 23-244930, 22-33=0/1648, 20-33=0/1648, 20-34=0/1648, 17-34=0/1648, 16-17=0/1648, 16-35=0/1723, 35-38=0/1723, 15-38	TOP CHORD	2-3=-235 7-31=-22	50/99, 3-4=-4624/228, 4-5=- 225/163, 7-8=-1673/185, 8-9	4852/295, 5-6=-2345/123, 6-31=-226)=-2539/238, 9-10=-2060/158, 10-32	60/136, =-1895/227,		
 22:33=0/1648, 20:33=0/1648, 20:34=0/1648, 17:34=0/1648, 16:47=0/1648, 16:35=0/1723, 35:36=0/1723, 15:36=0	BOT CHORD	11-32=-1	1968/200, 11-12=-1947/120	, 12-14=-1806/119 -26=-121/2678_24-25=-121/2679_23	8-24=-493/0		
 Method School (1723) Method (1723)	BOT ONORD	22-33=0/	/1648, 20-33=0/1648, 20-34	=0/1648, 17-34=0/1648, 16-17=0/16	648, 16-35=0/1723	3,	
16-18=-154/1104, 5-26=-204/1929, 3-26=-224/3206, 3-27=-1353/115, 9-16=-1470/160, 10-16=0/1074, 11-15=-303/176, 10-15=-326/75, 12-15=-21/1658 NOTES - (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3-11-2 to 10-2-6, Exterior(2R) 10-2-6 to 21-0-0, Exterior(2E) 21-0-0 to 24-9-12, to 32-4-6, Interior(1) 32-4-6 to 32-11-6, Exterior(2R) 12-16-to 37-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=-1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide adeguate drainage to prevent water ponding. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 	WEBS	5-25=0/3	329, 5-24=-925/217, 22-24=	0/2099, 7-24=-74/1265, 7-22=-585/1	85, 8-18=-116/12	28,	
 NOTES- (10) 1) Unbalanced roof live loads have been considered for this design. 2) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) -0-10-8 to 3-11-2, Interior(1) 3:21-6 to 32-11-6 to 37-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Routh C at B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of trust to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Winder K-RAPUSC BUTCH Mithod Experiment bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing shown is for lateral support of individual web members only. Add		16-18=- 10-16=0/	154/1104, 5-26=-204/1929, /1074, 11-15=-303/176, 10-	3-26=-224/3206, 3-27=-1353/115, 9 15=-326/75, 12-15=-21/1658	-16=-1470/160,		
 Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23f; Cat. II; Exp B; Enclosed; MWFRS (MWFRS (envelope) gable end zone and C-C Exterior(2E) 1-0-0 ket 03-11-2, Interior(1) 3-11-2 to 10-2-6, Exterior(2R) 10-2-6 to 21-0-0, Exterior(2E) 21-0-0 to 24-9-12, Exterior(2R) 24-9-12 to 32-4-6, Interior(1) 32-4-6 to 32-11-6, Exterior(2E) 32-11-6 to 37-10-8 zone; cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rotgut 28 has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. Provide adequate drainage to prevent water ponding. This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Wernall Set and Proper incorporation of component is responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during control, storage, deliver	NOTES- (10)					
 2) While Acode provide and the Tzuhigh Vascent galaxy vasces of the problem of the prob	1) Unbalanced	roof live lo	bads have been considered	for this design. Vasd=95mpb; TCDI =5 0psf; BCDI =	5 Onef: h=23ft: Ca	at II: Evn	B' Enclosed: MWERS
 Exterior(2E) 21-0-0 to 24-9-12, Exterior(2R) 24-9-12 to 32-4-6, ito 32-11-6, Exterior(2E) 32-11-6 to 37-10-8 Zone, cantilever left and right exposed; c-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough 7, Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Wornelly were designed for a greater and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal 	(envelope) g	gable end z	zone and C-C Exterior(2E) -	0-10-8 to $3-11-2$, Interior(1) $3-11-2$ to	0 10-2-6, Exterior(2R) 10-2-	-6 to 21-0-0,
Lumber DOL=1.60 plate grip DOL=1.60 3) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough (at B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Workedly. Applieability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	cantilever le	ft and right	t exposed ; end vertical left	and right exposed;C-C for members	and forces & MW	/FRS for r	reactions shown;
Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10 4) This truss has been designed for greater of min roof live load of 12.0 psf or 2.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Working ex. No. any weat for the structure is the standing to more the structure is the responsibility of design parameters and proper incorporation of component is responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	Lumber DOI 3) TCLL: ASCE	L=1.60 plat E 7-16; Pr=	te grip DOL=1.60 =20.0 psf (roof LL: Lum DOI	_=1.15 Plate DOL=1.15); Pf=20.0 pst	f (Lum DOL=1.15	Plate DO	DL=1.15); Is=1.0; Rough
 1) This trues has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 5) Provide adequate drainage to prevent water ponding. 6) This trues has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This trues has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of trues to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This trues design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Continued on page Continued on page Continued on page Continued on page Continued on the bottom chord and temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal 	Cat B; Partia 4) This truss ha	ally Exp.; C as been de	Ce=1.0; Cs=1.00; Ct=1.10	of live load of 12.0 psf or 2.00 times	flat roof load of 2	0 0 psf or	n overhangs 28147
 (a) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. (b) This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. (c) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 (c) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 (c) This truss design parameters and proper incorporation of component is responsibility of building designer – not truss designer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal 	non-concurr	ent with ot	her live loads.	ing			
 7) ^a This truss has been designed for a live load of 30.0ps for the bottom chord in all areas where a rectangle 3-6-0 tail by 1-0-0 wide will fit with a set of the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Within the bottom chord and set of the bottom chord in all areas where a rectangle 3-6-0 tail by 1-0-0 wide will fit with the bottom chord and any other members, with BCDL = 10.0psf. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 Continued on page 2. Continued on page 2.<	6) This truss ha	as been de	esigned for a 10.0 psf botto	n chord live load nonconcurrent with	any other live loa	ids.	A NOINEER SUIT
 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 2, 14. 9) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 WIFFILIPEK_VEARPHEED_INFORMATION (Structure) and the structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 WIFFILIPEK_VEARPHEED_INFORMATION (Structure) and the structural wood sheathing be applied directly to the top chord and 1/2" gypsum 10/9/2024 WIFFILIPEK_VEARPHEED_INFORMATION (Structure) and the structure is the structure is the structure of page 2 or individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal 	between the	bottom ch	nord and any other member	o.opsi on the pottom chord in all area s, with BCDL = 10.0psf.	as where a rectan	igie 3-6-0	tall by 1-0-0 wide will fit the the termination
Winning on the application of the second sec	 8) Provide med 9) This truss de 	chanical co esign requi	onnection (by others) of trus ires that a minimum of 7/16	s to bearing plate capable of withstan " structural wood sheathing be applie	nding 100 lb uplift ad directly to the to	t at joint(s op chord	s) 2, 14. and 1/2" gypsum 10/9/2024
Vértically. "Applieability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	Continued on p		II FAFII MERCERSE ARD VERIO FIDRESCO	efore use. This design is based only upon p	parameters shown, an	nd is for an	n individual building component to be installed and loaded
responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal	of individual w	eb members	design parameters and proper in only. Additional temporary bra	corporation of component is responsibility cing to ensure stability during construction	ot building designer is the responsibility	 not truss of the erect 	s designer or truss engineer. Bracing shown is for lateral support tor. Additional permanent bracing of the overall structure is the
Plate Connected Wood Truce Construction and PCSI 1 02 Children Cood Practice for Handling Installing & During of Martel Plate Connected Wood Truces from Truce From From Truce From From Truce From Truce From From From Truce From From From From From From From From	responsibility o	of the building	g designer. For general guidance	e regarding fabrication, quality control, sto	rage, delivery, erecti	on and bra	cing, consult ANSI/TPI 1 National Design Standard for Metal

D'Onofrio Drive, Madison, WI 53719.

ss Construction and BCS1 1-05 Guide to Good Practice for Handling, installing & Bracing of Metal Plate Connected wood Trusses from Truss Plat WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SH	HELBY MEADOW LANE ANGIER, NO
24-8566-R01	R08	Piggyback Base	1	1	Job Reference (optional)	# 53246
		Run: 8.4 ID	130 s Feb 1 :ydjkN6vu	2 2021 Prir ydZf_Qy5l	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc CaT4RzWPfe-?DRTs1eYhI53UCpIN	c. Thu Oct 10 12:40:56 2024 Page 2 TducpU8Kk01ojsecTdBkUyUqJb

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

D'Onofrio Drive, Madison, WI 53719.

ſ	Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY MEADOW LANE ANGIEF	۲, NC
	24-8566-R01	R09	Piggyback Base	1	1	Job Reference (optional) # 53246	
			Run: 8.4 ID:	30 s Feb 1 ydjkN6vu	2 2021 Prir /dZf_Qy5l	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:41:00 2024 Pac IICaT4RzWPfe-u_g_iPh2IWbVzq6WcJiqmfeqvLNakXAEX5bOtFyU	je 2 qJX

10/9/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELB	BY MEADOW LANE ANGIER, NO
24-8566-R01	R10	Roof Special	1	1	Job Reference (optional)	# 53246
		Run ID:G	8.430 s Feb HOhT5MOv	12 2021 Prin 1FkLKIPfX	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Th (2c9QzXMNI-IZM6KRjx2Rz4qHr5HRFXOF	u Oct 10 12:41:03 2024 Page 2 HGNiYPFxwjgD3q2UayUqJU

Job	Truss	Truss Type		Qty	Ply LO	T 0.0017 HON	EYCUTT HILL	S 371 SHELBY ME	ADOW LANE ANGIER. NC
24-8566-R01	R11	Roof Special		1	1				# 53246
				Run: 8 430 s Feb 2	Jol 12 2021 Print: 8	630 s Jul 12 2	(optional)	ustries Inc. Thu Oct	π JJ2+0
	0.40.0	45	40.0.0	ID:GHOhT5N	10v4FkLKIPfX	2c9QzXMNI	-EyUtl6IBa3[Dn3b?UPsI?TiMjyl	V4jPmvzgNJ9YSyUqJS
	0-10-8 8-1	-15	8-1-1	1-3-0 <u>26-</u> 1-3-0 6-3	3-0	5-0-8		2-0 0-11-0	
			5×0 —						Scale = 1.80 7
			5x8 —						00010 - 1.00.7
		8.00	2 5						
[
			T0	₹3 <u>5</u> x6 =	5x8				
ſ		3x8 🖉			7 [4				1
		4x6 🖉 4		26		\gg			
?		3 19	WB	\\W4 \$	// `	$\mathbb{N} \longrightarrow \mathbb{N}$	2x4		
11-5		F		// /we		8W/	8 aT5		
8-7-2			N2	A //		1			8-7-2
			X		\ <i> </i>			4x6 ×	-
	2	VV1				//	vv9	⁹ 10	_
67	1 HW1	B1				B4	W	/10	ာ ထ
		27 20	28 19 18 2	9 47 30 35 14	15 13 31 32	33			. 0 ,
		21 2×4 3x8 =	4x4 =	17 2×4 11	6x10 =		12 6x8 —	3×4	
	6x6 =		3x6 =	2x4 2	2x4 =		0.00 —	374 11	
				3x8	=				
	. 8-1	-15 , 1	5-0-0 20-0	-0 25-0-0		31-9-8	36-	·11-8	
Plata Officita (X X) [7:	8-1	-15 6	10-1 5-0-	0 5-0-0		6-9-8	5-	2-0	
I OADING (nef)	.0-3-12,0-2-0], [9.0	-2-14,0-2-0]							
TCLL (roof) 20.0	SPACIN Plate Gr	G- 2-0-0 in DOI 1.15	CSI. TC 0.69	DEFL.	in (loc)	l/defl >712 2	L/d	PLATES MT20	GRIP 244/190
Snow (Pf) 20.0 TCDI 10.0	Lumber	DOL 1.15	BC 0.96	Vert(CT)	-0.99 16-18	>448	180	11120	210,100
BCLL 0.0 *	Rep Stre Code IR	ess Incr YES C2021/TPI2014	WB 1.00 Matrix-AS	Horz(CT)	0.08 11	n/a	n/a	Weight: 25	1 lb FT = 20%
BCDL 10.0									
TOP CHORD 2x4 SP N	lo.2			TOP CHORD	Structural w	ood sheath	ning directly	applied, except	end verticals.
BOT CHORD 2x4 SP S	S *Except*	SP No 1		BOT CHORD	Rigid ceiling	g directly ap idet	oplied. 6-13 7-1	12 3-10 5-15	
WEBS 2x4 SP N	lo.3 *Except*			WEbb	MiTek rec	ommends t	hat Stabilize	ers and required	cross bracing
WEDGE W3,W6,V	V4: 2x4 SP No.1				be installe	d during tru	iss erection	, in accordance	with Stabilizer
Left: 2x4 SP No.3					Installation	n guide.			
REACTIONS. (lb/size)	2=1609/0-3-8 (n	nin. 0-2-5). 11=1632/0-3	-0 (min. 0-2-3)						
Max Hor	z 2=243(LC 11)		- (
Max Upi Max Gra	$\pi 2 = -68(LC 12), 11$ v 2 = 1938(LC 20),	1=-94(LC 13) 11=1853(LC 3)							
	omn Max Tan	All forces 250 (lb) or los	a avaant whan abown						
TOP CHORD 2-3=-28	345/122, 3-4=-228	9/117, 4-25=-2197/130,	5-25=-2174/157, 5-6=	- -3807/415,					
6-26=-1	953/151, 7-26=-1	953/151, 7-8=-2096/233 105/2425, 20, 21-, 105/2	, 8-9=-2105/123, 9-11	=-1805/124					
19-29=(0/1403, 17-29=0/1	403, 17-30=0/1403, 14	30=0/1403, 14-31=0/	1403, 13-31=0/1403	3,				
13-32=0 16-35=-	0/1775, 32-33=0/1	775, 12-33=0/1775, 18- 107/442	34=-107/442, 16-34=-	107/442,					
WEBS 18-19=-	-40/924, 5-18=-1/1	099, 6-13=-2563/360, 7	-13=0/989, 8-12=-312	2/179, 3-19=-679/22	23,				
9-12=-2	2/1681, 3-21=0/32	2, 5-15=-382/2383, 13-	15=-475/2566						
NOTES- (10)									
 Unbalanced roof live Wind: ASCE 7-16: VL 	loads have been o ult=120mph (3-sec	considered for this desig ond dust) Vasd=95mpt	n. : TCDL=5.0psf: BCDL	=5.0psf: h=23ft: Ca	at. II: Exp B: I	Enclosed: N	/WFRS		
(envelope) gable end	zone and C-C Ex	terior(2E) -0-10-8 to 3-1	1-2, Interior(1) 3-11-2	to 11-5-6, Exterior(2R) 11-5-6 to	0 16-3-0,	(05)	ANNUMINIA CASH	the.
Exterior(2E) 16-3-0 to 33-0-14 to 37-10-8 zo	0 20-6-0, Interior(1 one: cantilever left) 20-6-0 to 21-11-6, Ext and right exposed : end	erior(2R) 21-11-6 to 3 vertical left and right	1-9-8, Interior(1) 31 exposed:C-C for m	-9-8 to 33-0-1 embers and	14, Exterior forces & M	(2E) WFRS for	IN ATH LAAC	LAUR
reactions shown; Lun	nber DOL=1.60 pla	ate grip DOL=1.60					Dull 1	ROFESSION	La Part
3) TCLL: ASCE 7-16; Pi Cat B; Partially Exp.;	r=20.0 psf (roof LL Ce=1.0; Cs=1.00;	Ct=1.10	DOL=1.15); Pf=20.0 p	sf (Lum DOL=1.15	Plate DOL=1	1.15); IS=1.0	J; Rough	GEAL	
4) This truss has been d	lesigned for greate	er of min roof live load o	f 12.0 psf or 2.00 time	s flat roof load of 2	0.0 psf on ov	rerhangs	1111	28147	
5) Provide adequate dra	ainage to prevent v	vater ponding.					HIII		
6) This truss has been of 7) * This truss has been	lesigned for a 10.0) psf bottom chord live l	bad nonconcurrent with	h any other live loa	ads.	hy 1_0 0	ide will fit.	2 ANGINEER	S.M.
between the bottom of	chord and any othe	er members, with BCDL	= 10.0psf.		igie 0-0-0 idli	5y 1-0-0 W		AR K MO	APPAnnet
8) Provide mechanical of 9) This truss design reg	connection (by othe	ers) of truss to bearing um of 7/16" structural w	plate capable of withst	anding 100 lb uplift	t at joint(s) 2,	11. 1/2" מעספע	ım	Hummin	1
sheetrock be applied	directly to the bott	om chord.	eea oncauning be app			п∠ уурэц		10/9/20	024
100 Thisses designed we continued on page 2	In papaineters also	Eamples berge lise. This	design is based only upor	n parameters shown, a	nd is for an ind	ividual buildi	ng componen	t to be installed and	lloaded
vertically. Applicability o of individual web member	a design parameters a s only. Additional te	nd proper incorporation of moorary bracing to ensure	component is responsibilititation to the temperature temper	ty of building designer	 not truss des of the erector 	agner or truss	engineer. Bi ermanent brad	racing shown is for cing of the overall s	ateral support
responsibility of the buildi	ng designer. For gen	eral guidance regarding fab	rication, quality control, s	torage, delivery, erecti	ion and bracing	, consult ANS	SI/TPI 1 Nati	onal Design Stande	ard for Metal
Plate Connected Wood Tr	russ Construction and	d BCSI 1-03 Guide to Good	Practice for Handling, I	nstalling & Bracing of	f Metal Plate C	onnected Wo	od Trusses fi	rom Truss Plate Ins	titute, 583

D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILL	LS 371 SHELBY MEADOW LANE ANGIER, N
24-8566-R01	R11	Roof Special	1	1	Job Reference (optional)	# 53246
		Run; i ID	3.430 s Feb :GHOhT5N	2 2021 Prir Ov4FkLK	nt: 8.630 s Jul 12 2024 MiTek Ind PfX2c9QzXMNI-EyUtl6IBa3	dustries, Inc. Thu Oct 10 12:41:05 2024 Page 2 Dn3b?UPsI?TiMjyM4jPmvzgNJ9YSyUqJS

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT H	ILLS 371 SHELBY MEADOW LANE ANGIER, NC
24-8566-R01	R12	Roof Special	1	1		# 53246
			Run: 8.430 s Feb	 12 2021 Pri	Job Reference (optional) nt: 8.630 s Jul 12 2024 MiTek I	ndustries, Inc. Thu Oct 10 12:41:08 2024 Page 1
	-0 _r 10-8 8-1-15	16-3-0	ID:GHOhT5M 23-6-0	Ov4FkLKI	PfX2c9QzXMNI-fX9?N8n3 9-9-0 36-1	s_cMw2j34?rj5L_BoZ5DcBlPMLXp9nyUqJP 1-8 37-10 _r 8
	0-10-8 8-1-15	8-1-1	7-3-0	6	5-3-0 7-2	-8 0-11-0
		5x8 =				Scale = 1:80.7
		8 00 12				
Т		5				
		3x8 / 72	T 3 25			
	43	κ6 // Δ		5x6 =	5x8 =	
N I		3	W4	ا	T4 7	T
11-5	//			26		27
9	T	W2				τ5 7×8 \ Υ
6-7		W1		W46	W7 WB	80
	2		B a			We It m
	HW1 B1		Via 5 📼		Bet W	
	28	20 19 29 18 17 39	16 31 19	¹⁵ 12	342 33 11	10
	5x6	$2x4 \parallel 3x8 \equiv 4x4 \equiv 2x4 \equiv$	2x4 ^{3x8}	= 7x8 = 2x4 =	5x5 =	3x6 =
			2x4	2.01		
	0.4.45	15.0.0 00.0	25.0.0		20.0.0 20.4	4.0
	8-1-15	6-10-1 5-0-0	5-0-0		<u>29-9-0</u> <u>36-1</u> 4-9-0 7-2	-8
Plate Offsets (X,Y) [7:	:0-5-12,0-2-0], [8:0-3-0,0-1-1	[2], [10:Edge,0-1-8]				1
TCLL (roof) 20.0	SPACING- Plate Grip DOI	2-0-0 CSI .	DEFL.	in (l	oc) I/defl L/d -17 >649 240	PLATES GRIP MT20 244/190
Snow (Pf) 20.0 TCDL 10.0	Lumber DOL	1.15 BC 0.97	Vert(CT)	-1.07 15	-17 >412 180	W120 244/130
BCLL 0.0 *	Rep Stress Incr Code IRC2021/TF	YES WB 0.73 PI2014 Matrix-AS	Horz(CT)	0.08	10 n/a n/a	Weight: 237 lb FT = 20%
LUMBER-			BRACING-			
TOP CHORD 2x4 SP N	lo.2 *Except*		TOP CHORD	Structur	al wood sheathing direct	ly applied, except end verticals.
BOT CHORD 2x4 SP S	SP SS SS *Except*		BOI CHORD	6-0-0 oc	biling directly applied. Ex	(Cept:
B1: 2x4 S WEBS 2x4 SP N	SP No.2, B4: 2x4 SP No.1		WEBS	1 Row a	at midpt 6-12, 3	3-18, 5-14
WEDOC	SP No.2			be inst	talled during truss erection	on, in accordance with Stabilizer
Left: 2x4 SP No.3				Installa	ation guide.	
REACTIONS. (lb/size)	2=1611/0-3-8 (min. 0-2-4)	. 10=1637/0-3-0 (min. 0-2-2)				
Max Hor	z 2=243(LC 11)	40)				
Max Opi Max Gra	v2=1928(LC 20), 10=-92(LC v2=1928(LC 20), 10=1818(LC 3)				
FORCES. (lb) - Max C	omp /Max Ten - All forces	250 (lb) or less except when shown				
TOP CHORD 2-3=-28	326/136, 3-4=-2274/131, 4-2	4=-2183/145, 5-24=-2159/172, 5-25=	-3705/341,			
6-25=-3 8-10=-1	1795/315, 6-26=-2515/140, <i>i</i> 1736/137	7-26=-2515/140, 7-27=-2063/132, 8-2	27=-2168/113,			
BOT CHORD 2-28=-1 18-30=(104/2409, 20-28=-104/2409, 0/1730 16-30=0/1730 16-3	19-20=-104/2409, 19-29=-104/2409, 1=0/1730 13-31=0/1730 13-32=0/17	18-29=-104/2409 730 12-32=0/173	9, 0		
12-33=0	0/1721, 11-33=0/1721	- 0400/044 7 40-0/4050 0 40- 075	000 0 44-0450	-, -		
5-14=-2	283/2280, 12-14=-328/2201,	3-20=0/312	222, 8-11=0/1592	Ζ,		
NOTES- (10)						
1) Unbalanced roof live	loads have been considered	d for this design.	E 0nof: h=22ft. C	of III Eve	P. Englaged: MWERS	antiplice.
(envelope) gable end	zone and C-C Exterior(2E)	-0-10-8 to 3-11-2, Interior(1) 3-11-2 to	o 11-5-6, Exterior	(2R) 11-5	-6 to 21-0-10, Interior(1)	WINNATH CARO
21-0-10 to 24-11-6, E left and right exposed	exterior(2R) 24-11-6 to 33-0- I;C-C for members and force	14, Exterior(2E) 33-0-14 to 37-10-8 z es & MWFRS for reactions shown; Lu	one; cantilever lei ımber DOL=1.60	ft and righ plate grip	nt exposed ; end vertical DOL=1.60	OFESSION Ngill
3) TCLL: ASCE 7-16; Pr	r=20.0 psf (roof LL: Lum DO	L=1.15 Plate DOL=1.15); Pf=20.0 ps	f (Lum DOL=1.15	Plate DC	0L=1.15); Is=1.0; Rough	and A second
4) This truss has been d	lesigned for greater of min r	oof live load of 12.0 psf or 2.00 times	flat roof load of 2	0.0 psf o	n overhangs	SEAL E
5) Provide adequate dra	other live loads. Ainage to prevent water pond	ding.			(HIII)	
6) This truss has been of 7) * This truss has been	designed for a 10.0 psf botto	m chord live load nonconcurrent with	any other live loa	ads. Inde 3-6-0) tall by 1-0-0 wide will fu	A MOINEER C
between the bottom c	chord and any other member	rs, with BCDL = 10.0psf.				MARK K. MORRAUM
8) Provide mechanical c9) This truss design required	connection (by others) of true uires that a minimum of 7/16	ss to bearing plate capable of withsta 5" structural wood sheathing be appli	nding 100 lb uplif ed directly to the t	t at joint(s	s) 2, 10. and 1/2" gypsum	Winter Balling
sheetrock be applied	directly to the bottom chord					10/9/2024
Continued on page 2 Vertically. Applicability of	f design parameters and read holes	before use! This design is based only upon neorporation of component is responsibility	parameters shown, a of building designer	nd is for an	n individual building compon s designer or truss engineer	ent to be installed and loaded Bracing shown is for lateral support
of individual web member	s only. Additional temporary bra	acing to ensure stability during construction	is the responsibility	of the erec	ctor. Additional permanent b	pracing of the overall structure is the
responsibility of the buildi Plate Connected Wood Tr	ing designer. For general guidan	ce regarding fabrication, quality control, sto 3 Guide to <i>Good Practice for Handling</i> Inc.	rage, delivery, erect	ion and bra f Metal Pla	icing, consult ANSI/TPI 1 Notes that the connected Wood Trusses	ational Design Standard for Metal from Truss Plate Institute 583
D'Onofrio Drive, Madison	n, WI 53719.	5 Salac to Good I ractice jor Handling, In	maning a bracing of	, menut F ll	ac connecteu woou trusses	nom 11055 1 are filsulute, 303

	Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY I	MEADOW LANE ANGIER, NO
	24-8566-R01	R12	Roof Special	1	1	Job Reference (optional)	# 53246
Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:41:08 2024 Pac ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-fX9?N8n3s_cMw2j34?rj5L_BoZ5DcBIPMLXp9nyU							Oct 10 12:41:08 2024 Page 2 BoZ5DcBIPMLXp9nyUqJP

D'Onofrio Drive, Madison, WI 53719.

Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583

Job	Truss	Truss Type	Qty	Ply LOT 0.001	7 HONEYCUTT HILL	S 371 SHELBY MEADOW LANE ANGIER, NC			
24-8566-R01	R14	Roof Special Girder	1	1	rence (ontional)	# 53246			
			Run: 8.430 s Feb	12 2021 Print: 8.630 s J	lul 12 2024 MiTek Ind	ustries, Inc. Thu Oct 10 12:41:13 2024 Page 1			
-0-	10 ₇ 8 8-1-15	16-3-0	24-4-1	27-0-0	33-3-0	<u>36-11-8 37-10-8</u>			
0-	10-8 8-1-15	8-1-1	8-1-1	2-7-15	6-3-0				
		5x6 =				Scale = 1:77.5			
		8.00 12							
]									
		3x8 1/2							
	4xi	6/ 4	73	4x6 📎					
2		3		6		×6 —			
1		W3	/	75x8	= NAI	LED			
ĺ	TI	W2	W2		T4				
2		W1		wh i	W5	4x0 × 010			
-4	2			////4	w w				
	HW1 B1		B2		B3				
C,	⊠ 21	17 ¹⁶ 22 15	23	14 ¹³	1	2 11			
	5x6	$2x4 \parallel 3x8 = 4x8 =$		$4x4 \equiv$	5x	8 = 3x4			
				4x8 =	NAI	LED			
	8-1-15	16-3-0	24-4-1	3	3-3-0	36-11-8			
Plate Offsets (X,Y) [8:0	8-1-15)-4-4,0-2-4], [9:0-2-14,0-2-0	8-1-1	8-1-1	8-	10-15	3-8-8			
LOADING (psf)	SPACING	200 CSI	DEEL	in (loc) l/de	fl I/d				
TCLL (roof) 20.0 Snow (Pf) 20.0	Plate Grip DOL	1.15 TC 0.97	Vert(LL)	-0.20 14-15 >99	9 240	MT20 244/190			
TCDL 10.0	Rep Stress Incr	1.15 BC 0.91 NO WB 0.61	Vert(CT) Horz(CT)	-0.37 12-14 >99 0.11 11 n/	9 180 /a n/a				
BCDL 0.0	Code IRC2021/TP	I2014 Matrix-MSH				Weight: 214 lb FT = 20%			
LUMBER-	0 *		BRACING-	0.4	h				
TOP CHORD 2X4 SP N T2: 2x4 S	P No.1, T3: 2x4 SP SS		BOT CHORD	Rigid ceiling dire	ctly applied or 10-	o-0 oc bracing, Except:			
BOT CHORD 2x4 SP No B2 ⁻ 2x4 S	o.2 *Except* P No 1		WEBS	6-0-0 oc bracing: 1 Row at midpt	11-12. 3-15 6-1	15 7-12			
WEBS 2x4 SP No	p.3			MiTek recomme	ends that Stabilize	ers and required cross bracing			
Left: 2x4 SP No.3				be installed duri	ing truss erection e.	, in accordance with Stabilizer			
REACTIONS. (lb/size)	2=1525/0-3-8 (min. 0-1-15), 11=1535/0-3-0 (min, 0-1-13)		J					
Max Horz	2=243(LC 9)	(11)							
Max Opin Max Grav	2=1626(LC 42), 11=1535(L	C 1)							
FORCES. (Ib) - Max. Co	omp./Max. Ten All forces 2	250 (lb) or less except when shown.							
TOP CHORD 2-3=-23	34/169, 3-4=-1631/182, 4-5: 71/218_8-9=-1561/228_9-1	=-1515/222, 5-6=-1657/207, 6-7=-26 =-1522/226	43/264,						
BOT CHORD 2-21=-1	76/2002, 17-21=-176/2002,	16-17=-176/2002, 16-22=-176/2002	, 15-22=-176/2002	<u>,</u>					
WEBS 3-17=0/4	140/2247, 14-23=-140/2247 145, 3-15=-806/213, 5-15=-{	, 13-14=-228/2690, 12-13=-228/269 99/1300, 6-15=-1232/271, 6-14=-43/	0 '947, 7-14=-849/15	57,					
7-12=-1	720/137, 8-12=0/567, 9-12=	134/1345							
NOTES- (11)		for the desire							
2) Wind: ASCE 7-16; Vu	lt=120mph (3-second gust)	Vasd=95mph; TCDL=5.0psf; BCDL:	=5.0psf; h=23ft; Ca	at. II; Exp B; Enclo	sed; MWFRS				
(envelope) gable end : 3) TCLL: ASCE 7-16: Pr	zone; cantilever left and righ =20.0 psf (roof LL · Lum DOI	nt exposed ; end vertical left and right =1 15 Plate DOI =1 15) [.] Pf=20 0 ps	nt exposed; Lumbe of (Lum DOI =1 15	Plate DOI =1 15)	grip DOL=1.60 Is=1 0 [.] Rough				
Cat B; Partially Exp.; (Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10								
non-concurrent with of	ther live loads.				igs	Service And Internet			
 5) Provide adequate drai 6) This truss has been do 	nage to prevent water pond esigned for a 10.0 psf bottor	ing. n chord live load nonconcurrent with	n any other live loa	ds	Inn	A CONTRACTOR AND A CONTRACTOR A			
7) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit SEAL									
between the bottom chord and any other members, with BCDL = 10.0pst. 8) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) except (jt=lb) 2=129, 28147									
11=223. 9) "NAILED" indicates 3-	10d (0.148"x3") or 3-12d (0.	148"x3.25") toe-nails per NDS quidl	ines.		IIIIIX				
10) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).									
(1) Trusses designed with	IT 2018 INC also comply wi	11 ZU 13 IKU.				Mark. Monum			
LOAD CASE(S) Standar	d					10/9/2024			
Warning !Verify design	n narameters and read notes h	afore use. This design is based only upon	narameters shown a	nd is for an individual	building componen	t to be installed and loaded			

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY MEADOW LANE ANGIER, NC
24-8566-R01	R14	Roof Special Girder	1	1	Job Reference (optional) # 53246
Run: 8.430 s Feb 12 ID:GHOhT5MOv4F					nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:41:13 2024 Page 2 (2c9QzXMNI-?UzuQrrChWEf0qc0tYRuoOh?aapFHTv8WcFaq?yUqJK

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15 Uniform Loads (plf)

Vert: 1-5=-60, 5-7=-60, 7-8=-60, 8-9=-60, 9-10=-60, 11-18=-20 Concentrated Loads (lb) Vert: 12=2(B)

10/9/2024

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, NC
24-8566-R01	R22	Hip Girder	1	1	Job Reference (optional)	# 53246
	•	Pup	2 130 c Ech	12 2021 Dri	at: 8 630 c. Jul 12 2024 MiTek Industries Inc.	Thu Oct 10 12:41:30 2024 Page 2

Run: 8.430 s Feb 12 2021 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:41:30 2024 Page 2 ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-0mUK?f2thkNEZRPHMcEt_zuzDRfWm7gfQms_xWyUqJ3

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-4=-60, 4-9=-60, 9-10=-60, 11-20=-20

Concentrated Loads (lb)

Vert: 4=-51(B) 6=-51(B) 9=-51(B) 18=-58(B) 7=-51(B) 15=-29(B) 12=-29(B) 23=-58(B) 24=-15(B) 25=-51(B) 26=-51(B) 27=-51(B) 28=-51(B) 29=-51(B) 30=-51(B) 31=-51(B) 32=-51(B) 33=-15(B) 34=-68(B) 35=-74(B) 36=-29(B) 38=-29(B) 38=-29(B) 39=-29(B) 40=-29(B) 41=-29(B) 42=-29(B) 43=-29(B) 44=-74(B) 45=-74(B) 45=-

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY ME	ADOW LANE ANGIER, NO
24-8566-R01	R24A	Common	5	1	Job Reference (optional)	# 53246
		Run: 8 ID:0	.630 s Jul 1 SHOhT5M	2 2024 Prir Ov4FkLKI	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct IPfX2c9QzXMNI-qwsbFj7dGa7OHMsRjtLHDE8	10 12:41:36 2024 Page 2 35msjlAz_XohJI79yUqlz

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHE	ELBY MEADOW LANE ANGIER, NC
24-8566-R01	R25	Hip Girder	1	2	Job Reference (optional)	# 53246
		Run: ID:0	8.430 s Feb HOhT5MO	12 2021 Pri v4FkLKIPf	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. X2c9QzXMNI-7GnEj6C0dk0OdRundrzv	Thu Oct 10 12:41:43 2024 Page 2 w0jwHng2LJ0xZQHWAtFyUqIs

NOTES- (15)

11) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 2-0-0 oc max. starting at 1-1-4 from the left end to 7-1-4 to connect truss(es) R18 (1 ply 2x4 SP), R19 (1 ply 2x4 SP), R20 (1 ply 2x4 SP), R21 (1 ply 2x4 SP) to back face of bottom chord. 12) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent at 9-1-4 from the left end to connect truss(es) R22 (1 ply 2x6 SP) to back

face of bottom chord.

13) Fill all nail holes where hanger is in contact with lumber.

14) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.

15) Trusses designed with 2018 IRC also comply with 2015 IRC.

LOAD CASE(S) Standard

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (plf) Vert: 1-2=-60, 2-5=-60, 5-7=-60, 12-15=-20

Concentrated Loads (lb)

Vert: 11=-15(F) 10=-1262(B) 8=-15(F) 23=-1262(B) 24=-1262(B) 25=-15(F) 26=-15(F) 27=-1262(B) 28=-15(F) 29=-1946(B) 30=-15(F) 31=-15(F)

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applied Shifty of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHEL	BY MEADOW LANE ANGIER, NC
24-8566-R01	R26	Monopitch Structural Gable	1	1	Job Reference (optional)	# 53246
		Run: 8 ID:G	.630 s Jul 1 HOhT5M0	2 2024 Prir Dv4FkLKI	nt: 8.630 s Jul 12 2024 MiTek Industries, Inc. T PfX2c9QzXMNI-bSKcxSDfO18FEaTzBZ	Thu Oct 10 12:41:44 2024 Page 2 U9YwTMI4SV2YTiexFjPiyUgIr

12) Trusses designed with 2018 IRC also comply with 2015 IRC.

13) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

14) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

6) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Warning !---Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded Continued on page 2. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Truss Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

Job	Truss	Truss Type	Qty	Ply	LOT 0.0017 HONEYCUTT HILLS 371 SHELBY ME	EADOW LANE ANGIER, NO
24-8566-R01	R27	Monopitch	7	1	Job Reference (optional)	# 53246
Run: 8.630 s Jul 12 2024 Print: 8.630 s Jul 12 2024 MiTek Industries, Inc. Thu Oct 10 12:41:45 2024 Page ID:GHOhT5MOv4FkLKIPfX2c9QzXMNI-3eu?8oEH9LG6sk2AIG?O580X3Uokn?nstb?Hy8yUq						

10) Trusses designed with 2018 IRC also comply with 2015 IRC.

11) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.

12) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the

loads indicated.

 Web bracing shown is for lateral support of individual web members only. Refer to BCSI - Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing.
 SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS

4) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRĂCINĞ OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

LOADING (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0 * BCDL 10.0	SPACING- 2-0-0 Plate Grip DOL 1.15 Lumber DOL 1.15 Rep Stress Incr YES Code IRC2021/TPI2014	CSI. TC 0.75 BC 0.73 WB 0.00 Matrix-P	DEFL. Vert(LL) Vert(CT) Horz(CT)	in (loc) n/a - n/a - 0.00 2	l/defl L n/a 9 n/a 9 n/a r	L/d 199 199 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
LUMBER- TOP CHORD 2x4 SP SS BOT CHORD 2x4 SP No. WEBS 2x4 SP No.	2 3		BRACING- TOP CHORD BOT CHORD	Structural w end verticals Rigid ceiling MiTek reco be installed	ood sheathi s. directly app ommends th d during trus	ing directl plied or 1 nat Stabili ss erectio	y applied or 7-7-14 c 0-0-0 oc bracing. zers and required cro n. in accordance with	c purlins, except

Installation guide.

REACTIONS. (lb/size) 3=297/8-9-0 (min. 0-1-8), 2=297/8-9-0 (min. 0-1-8) Max Horz 3=-60(LC 10) Max Uplift3=-43(LC 15), 2=-36(LC 11) Max Grav 3=384(LC 21), 2=384(LC 21)

FORCES. (lb) - Max. Comp./Max. Ten. - All forces 250 (lb) or less except when shown. TOP CHORD 1-3=-310/137

NOTES- (8-12)

- Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- 7) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
- 8) Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the structural design of the truss to support the loads indicated.
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED
- MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES. IN ADDITION TO THESE MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OR ENGINEER FOR ADDITIONAL BRACING CONSIDERATIONS.

LOAD CASE(S) Standard

Warning !—Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer – not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 *National Design Standard for Metal Plate Connected Wood Truss Construction* and BCSI 1-03 Guide to *Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses* from Truss Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.

NOTES-

- 1) Wind: ASCE 7-16; Vult=120mph (3-second gust) Vasd=95mph; TCDL=5.0psf; BCDL=5.0psf; h=23ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) gable end zone and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 2) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Partially Exp.; Ce=1.0; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) Gable requires continuous bottom chord bearing.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 6) * This truss has been designed for a live load of 30.0psf on the bottom chord in all areas where a rectangle 3-6-0 tall by 1-0-0 wide will fit between the bottom chord and any other members.
- Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 100 lb uplift at joint(s) 3, 2.
 Trusses designed with 2018 IRC also comply with 2015 IRC.
- 9) Graphical bracing representation does not depict the size, type or the orientation of the brace on the member. Symbol only indicates that the member must be braced.
- 10) Bearing symbols are only graphical representations of a possible bearing condition. Bearing symbols are not considered in the
- 11) Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling,
- Web bracing shown is for lateral support of individual web members only. Refer to BCSI Guide to Good Practice for Handling, Installing, Restraining & Bracing of Metal Plate Connected Wood Trusses for additional bracing guidelines, including diagonal bracing. SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED MINIMUM BRACING REQUIREMENTS OF TOP CHORD, BOTTOM CHORD, AND WEB PLANES IN ADDITION FOR RECOMMENDED MINIMUM GUIDELINES, ALWAYS CONSULT THE PROJECT ARCHITECT OF THE CONSIDERATIONS. 12) SEE BCSI-B3 SUMMARY SHEET- PERMANENT RESTRAING/BRACING OF CHORDS & WEB MEMBERS FOR RECOMMENDED

LOAD CASE(S) Standard

Warning !-- Verify design parameters and read notes before use. This design is based only upon parameters shown, and is for an individual building component to be installed and loaded vertically. Applicability of design parameters and proper incorporation of component is responsibility of building designer - not truss designer or truss engineer. Bracing shown is for lateral support of individual web members only. Additional temporary bracing to ensure stability during construction is the responsibility of the erector. Additional permanent bracing of the overall structure is the responsibility of the building designer. For general guidance regarding fabrication, quality control, storage, delivery, erection and bracing, consult ANSI/TPI 1 National Design Standard for Metal Plate Connected Wood Trusse Construction and BCSI 1-03 Guide to Good Practice for Handling, Installing & Bracing of Metal Plate Connected Wood Trusses from Trusse Plate Institute, 583 D'Onofrio Drive, Madison, WI 53719.