

Trenco 818 Soundside Rd Edenton, NC 27932

Re: 24090147-01 49 Serenity-Roof-B330 E CP TMB GLH

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carter Components (Sanford, NC)).

Pages or sheets covered by this seal: I68686553 thru I68686595

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844

October 7,2024

Gilbert, Eric

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	A01	Common	4	1	Job Reference (optional)	168686553

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:46 Page: 1 ID:CttcSzQgwNcSj9X9hY?FsHzF_uO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f -0-10-8 0-10-8 40-10-8 6-10-5 13-5-3 20-0-0 26-6-13 40-0-0 33-1-11 6-10-5 6-6-13 6-6-13 6-6-13 6-6-13 6-10-5 0-10-8 5x6= 6 5x8. 5x8 🧔 27 28 26 29 5 7 12 61 10-8-0 2x4、 2x4 🎣 4 8 3x5 🥫 25 30 3x5 9 2 10 0-8-0 Ò 11 16 31 1532 14 3313 34 12 3x5= 4x6= 3x8= 4x6= 3x5= 6x8 II 6x8 II

40-0-0 10-1-12 20-0-0 29-10-4 10-1-12 9-10-4 9-10-4 10-1-12 Scale = 1:73.1

Plate Offsets (X, Y): [2:0-4-1,Edge], [5:0-4-0,0-3-0], [7:0-4-0,0-3-0], [10:0-4-1,Edge]

	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[0.0 1 0,0 0 0], [,	-9-1								
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.87	Vert(LL)	-0.37	14-16	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	1.00	Vert(CT)	-0.64	14-16	>754	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.41	Horz(CT)	0.15	10	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH								
BCDL	10.0										Weight: 213 lb	FT = 20%
LUMBER 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) TOP CHORD 2x4 SP No.1 BOT CHORD 2x4 SP No.1 II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 3-1-8. Interior (1) 3-1-8												

WEBS	2x4 SP No.3 *Except* 14-6:2x4 SP No.2		and C-C Exterior(2E) -0-10-8 to 3-1-8, Interior (1) 3-1-8	
SLIDER	Left 2x4 SP No.3 1-6-0, Right 2x4 SP No.3 1-6-0		to 16-0-0, Exterior(2R) 16-0-0 to 24-0-0, Interior (1) 24-0-0 to 36-10-8, Exterior(2E) 36-10-8 to 40-10-8 zone;	
BRACING TOP CHORD	I-o-U Structural wood sheathing directly applied or		cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS	
	2-2-0 oc purlins.		for reactions shown; Lumber DOL=1.60 plate grip	
BOT CHORD			DOL=1.60	
	bracing.	3)	TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate	
WEBS	1 Row at midpt 7-14, 5-14		DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;	
REACTIONS	(size) 2=0-5-8, 10=0-5-8		Cs=1.00; Ct=1.10	
	Max Horiz 2=-165 (LC 15) Max Uplift 2=-170 (LC 14), 10=-170 (LC 15)	4)	Unbalanced snow loads have been considered for this design.	
	Max Grav 2=1809 (LC 3), 10=1809 (LC 3)	5)	This truss has been designed for greater of min roof live	
FORCES	(lb) - Maximum Compression/Maximum		load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on	
	Tension		overhangs non-concurrent with other live loads.	
TOP CHORD	1-2=0/23, 2-4=-3431/321, 4-6=-3226/333,	6)	· · · · · · · · · · · · · · · · · · ·	
DOTOUDDD	6-8=-3226/333, 8-10=-3431/321, 10-11=0/23		chord live load nonconcurrent with any other live loads.	
BOT CHORD		7)	* This truss has been designed for a live load of 20.0psf	
WEBS	12-14=-109/2524, 10-12=-185/2978 6-14=-114/1658, 7-14=-853/247,		on the bottom chord in all areas where a rectangle	
WLD3	7-12=-25/626, 8-12=-301/191,		3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.	A'R
	5-14=-853/247, 5-16=-25/626, 4-16=-301/191	8)	One H2.5A Simpson Strong-Tie connectors	S.O.
		5)		

NOTES

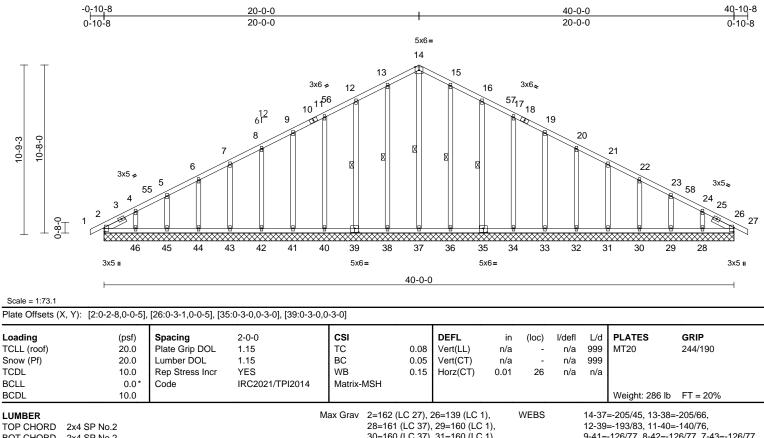
10-9-3

1) Unbalanced roof live loads have been considered for this design.

LOAD CASE(S) Standard

and does not consider lateral forces.

recommended to connect truss to bearing walls due to


UPLIFT at jt(s) 2 and 10. This connection is for uplift only

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **PCB Building Component Scietur Information**. Building from the Structure Building Component Advance interpretention. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	A02	Common Supported Gable	1	1	Job Reference (optional)	168686554

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:47 ID:94aeZ53wRfHxaJ4LIBSgWSzF_tZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

LUMBER TOP CHORD BOT CHORD OTHERS SLIDER BRACING TOP CHORD BOT CHORD WEBS	Left 2x4 SP No 1-6-0 Structural woo 6-0-0 oc purlin	rectly applied or 10-0-0 oc	FORCES	$\begin{array}{llllllllllllllllllllllllllllllllllll$	this desig 2) Wind: AS	CE 7-16; Vult=130mph (3-second gust)
REACTIONS	29= 32= 35= 38= 41= 44= 47= Max Horiz 2=1 Max Uplift 2=-2 29= 31= 33= 35= 38= 40= 42= 44=	$\begin{array}{l} \text{D}\text{-}0\text{-}0, 26=40\text{-}0\text{-}0, 28=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 30=40\text{-}0\text{-}0, 31=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 33=40\text{-}0\text{-}0, 34=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 39=40\text{-}0\text{-}0, 40=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 39=40\text{-}0\text{-}0, 40=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 42=40\text{-}0\text{-}0, 43=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 42=40\text{-}0\text{-}0, 43=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 42=40\text{-}0\text{-}0, 46=40\text{-}0\text{-}0, \\ 40\text{-}0\text{-}0, 51=40\text{-}0\text{-}0, \\ 65\text{-}\text{LC}\text{-}14), 47=165\text{-}\text{LC}\text{-}14) \\ \text{21} \text{-}(\text{LC}\text{-}10), 28=\text{-}80 \text{-}\text{LC}\text{-}15), \\ \text{-}36 \text{-}\text{LC}\text{-}15), 30\text{=}-46 \text{-}\text{LC}\text{-}15), \\ \text{-}43 \text{-}\text{-}\text{LC}\text{-}15), 32\text{=}-44 \text{-}\text{LC}\text{-}15), \\ \text{-}43 \text{-}\text{LC}\text{-}15), 36\text{-}-35 \text{-}\text{LC}\text{-}15), \\ \text{-}39 \text{-}\text{LC}\text{-}14), 39\text{=}-47 \text{-}\text{LC}\text{-}14), \\ \text{-}44 \text{-}\text{LC}\text{-}14), 43\text{=}-43 \text{-}\text{LC}\text{-}14), \\ \text{-}44 \text{-}\text{LC}\text{-}14), 43\text{=}-33 \text{-}\text{LC}\text{-}14), \\ \text{-}46 \text{-}\text{LC}\text{-}14), 45\text{=}-33 \text{-}\text{LC}\text{-}14), \\ \text{-}96 \text{-}\text{LC}\text{-}14), 47\text{=}-21 \text{-}\text{LC}\text{-}10) \end{array}$	TOP CHORD	5-6=-129/94, 6-7=-96/108, 7-8=-74/131, 8-9=-62/154, 9-11=-72/178, 11-12=-85/222, 12-13=-104/271, 13-14=-121/311, 14-15=-121/311, 15-16=-104/271, 16-17=-85/222, 17-19=-72/177, 19-20=-60/132, 20-21=-48/86, 21-22=-44/41, 22-23=-66/27, 23-24=-99/35, 24-26=-144/59, 26-27=0/23	II; Exp B; and C-C to 16-0-0, 24-0-0 to cantileven right expo	3mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. Enclosed; MWFRS (envelope) exterior zone Corner(3E) -0-10-8 to 3-1-8, Exterior(2N) 3-1-8 , Corner(3R) 16-0-0 to 24-0-0, Exterior(2N) 36-10-8, Corner(3E) 36-10-8 to 40-10-8 zone; r left and right exposed ; end vertical left and seed; C-C for members and forces & MWFRS ons shown; Lumber DOL=1.60 plate grip 0 HCAR SEAL 036322

October 7,2024

Page: 1

Continued on page 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and property incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent ouclings with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI Quality Criteria and DSE2** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbaccomponents.com)

A MITek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	A02	Common Supported Gable	1	1	Job Reference (optional)	168686554

- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this design.
- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- 7) All plates are 2x4 MT20 unless otherwise indicated.
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 2, 39 lb uplift at joint 38, 47 lb uplift at joint 39, 44 lb uplift at joint 40, 43 lb uplift at joint 41, 44 lb uplift at joint 42, 43 lb uplift at joint 43, 46 lb uplift at joint 44, 33 lb uplift at joint 45, 96 lb uplift at joint 46, 35 lb uplift at joint 36, 48 lb uplift at joint 35, 44 lb uplift at joint 34, 44 lb uplift at joint 37, 46 lb uplift at joint 34, 44 lb uplift at joint 31, 46 lb uplift at joint 30, 36 lb uplift at joint 29, 80 lb uplift at joint 28 and 21 lb uplift at joint 2.
- LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:47 ID:94aeZ53wRfHxaJ4LIBSgWSzF_tZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	B01	Common	6	1	Job Reference (optional)	168686555

17-8-0

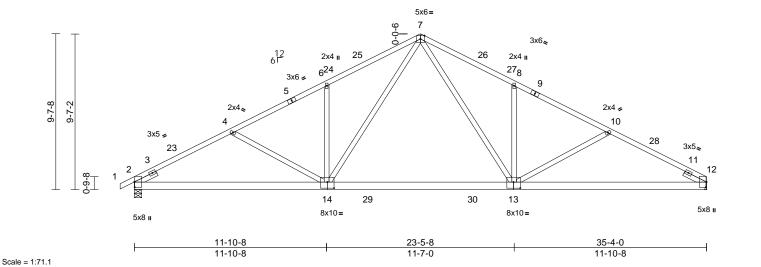
5-9-8

17-8-11

0-0-11 2412

Carter Components (Sanford, NC), Sanford, NC - 27332,

6-1-0


6-1-0

11-10-8

5-9-8

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:47

Page: 1 ID:y79L5AQEhcoDvWq4rkqkWPyX0A6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 23-5-8 29-3-0 35-4-0 5-8-13 5-9-8 6-1-0

Plate Offsets (X, Y): [2:0-3-15,0-0-5], [12:0-3-15,0-0-5], [13:0-5-0,0-4-8], [14:0-5-0,0-4-8]

	(,,, ,). [=:0 0 10]0 0 0	,], [. <u>_</u>],	[10:0 0 0	• • •],[• •••									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	21/TPI2014	CSI TC BC WB Matrix-MSH	0.76 0.76 0.40	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.30 -0.48 0.07	(loc) 13-14 13-14 12	l/defl >999 >880 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 216 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER		,	No.3 4	Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design.	snow loads have b	Lum D0 B; Fully een co	DL=1.15 Plate v Exp.; Ce=0. Insidered for t	e 9; :his					
BRACING TOP CHORD	Structural wood she 2-2-0 oc purlins.	athing directly applie	5 ed or	load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.									
BOT CHORD		applied or 10-0-0 or		 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads. 7) * This truss has been designed for a live load of 20.0psf 									
REACTIONS	(size) 2=0-5-8, Max Horiz 2=153 (LC Max Uplift 2=-152 (L Max Grav 2=1595 (L	15)	on the botton 3-06-00 tall l chord and a	m chord in all areas by 2-00-00 wide wil ny other members, ler(s) for truss to tru	where I fit betv with BC	a rectangle ween the bott CDL = 10.0ps	tom						
FORCES	(lb) - Maximum Com Tension	npression/Maximum	9) Provide med	chanical connection e capable of withsta	(by oth	ers) of truss						
TOP CHORD	1-2=0/23, 2-4=-2917 6-7=-2662/368, 7-8= 8-10=-2632/267, 10-	=-2664/370,	,	 12. 10) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to 									
BOT CHORD WEBS		L	UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces. LOAD CASE(S) Standard								ROUT		
this desigr	ed roof live loads have	been considered for	r							4	Ù	QROFESS	
2) VVIIIU. ASC	C = 1 - 10, vult=130mpm	i (o-second gust)									2 C	SFA	L 1 2

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-7-14, Interior (1) 2-7-14 to 14-1-10, Exterior(2R) 14-1-10 to 21-2-6, Interior (1) 21-2-6 to 31-9-10, Exterior(2E) 31-9-10 to 35-4-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

anna ann E annun 199 SEAL 036322 GI 11111111 October 7,2024

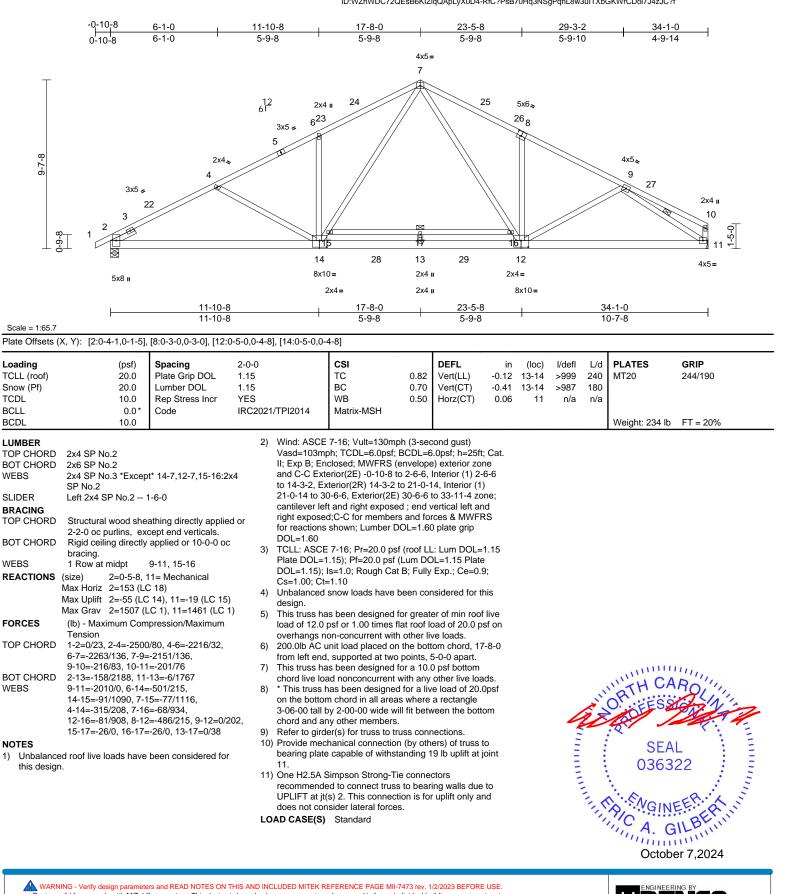
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	B02	Common	4	1	Job Reference (optional)	168686556

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:47 ID:IGOyRRsNWU?INSJE84?yfiyX0Aq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

GINEERING

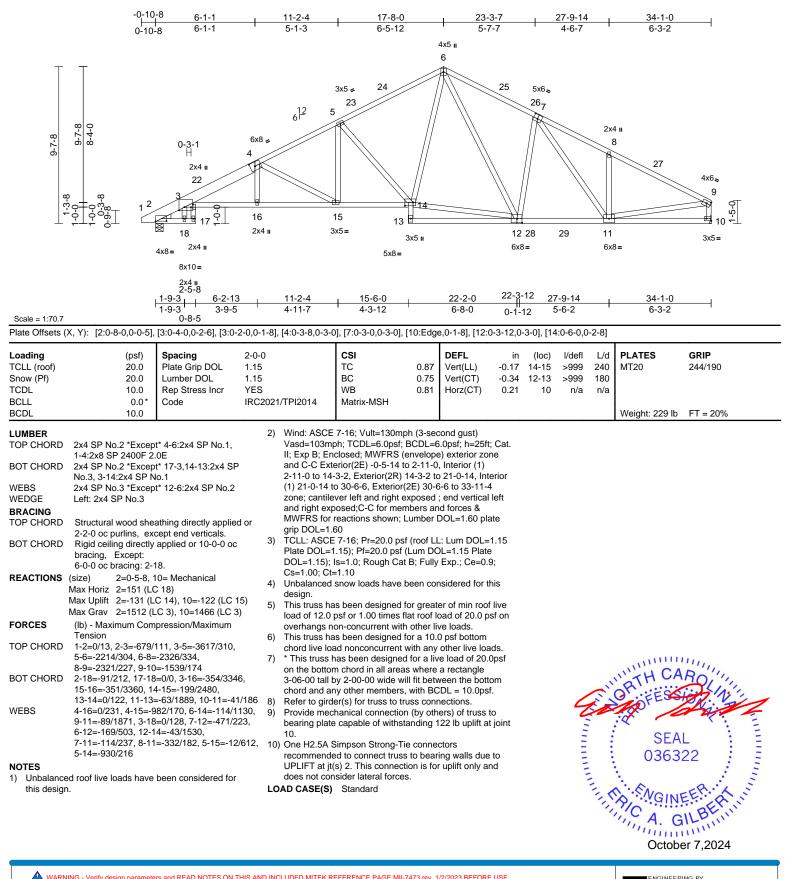

	-0-10-8 	<u>6-1-0</u> 6-1-0		<u>11-10-8</u> 5-9-8		<u>17-8-0</u> 5-9-8		23-5-8 5-9-8			<u>29-3-0</u> 5-9-8			5-4-0 6-1-0	36-2-8 0-10-8
	0-10-8	6-1-0		5-9-0		3-9-0	5x6=	5-9-0			5-9-0		Ċ	5-1-0	0-10-8
9-7-8	3x5 = 3 2	28	2x4 4	6 ¹² 3x6 5	2x4 II 6 ²⁹	30	7	31	2x4 32g	, ,	8×6≈ 9		2x4 ¢ 10		x5 s 11
							19		18	\square				¥	12 13
0	Ŕ				16 8x10=	34	15 2x4 I I	35	14 2x4=						X
	5x8 II				2x4	=	2x4 II 2x4 II		2x4= 8x1	0=					5x8 II
			<u>11-10-8</u> 11-10-8			<u>17-8-0</u> 5-9-8		<u>23-5-8</u> 5-9-8					85-4-0 1-10-8		—
e = 1:65.7 Offsets (X_Y)	: [2:0-4-1,0-1-	5] [12:0-4-1		0-5-0 0-4-81	[16:0-5-0.0-										
ling	(psf)	Spacing		2-0-0	[1010 0 0,0	CSI	-	DEFL	in	(loc)	l/defl	L/d	PLATES	GRI	2
_ (roof) v (Pf) L	20.0 20.0 10.0	Plate Gr Lumber Rep Stre	ip DOL DOL	1.15 1.15 YES		TC BC WB	0.89 0.71 0.38	Vert(LL) Vert(CT) Horz(CT)	-0.16 -0.50 0.08	15 15 12	>999 >851 n/a	240 180 n/a	MT20	244/	
- L	0.0° 10.0	* Code		IRC2021/T	PI2014	Matrix-MSH							Weight: 234	lb FT=	20%
CHORD 2x6 S 2x/ SP ER Lef CHORD Str 2-2 CHORD Rit CHORD Str 3 S 1 F CTIONS (size Max Max Max CES (lb) Te CHORD 1-2 6-7 8-1 S 6-1 S 6-1 7-1	Horiz 2=147 (Uplift 2=-52 (Grav 2=1566) - Maximum Consion 2=0/23, 2-4=-26 2=-2392/139, 7- 0=-2344/35, 10 5=-154/2269, 10 6=-503/215, 10 7=-77/1123, 4- 8=-77/1123, 4- 4=-503/215, 10	1-6-0, Righ heathing dire tly applied or 17-18 3, 12=0-5-8 (LC 14), 12=- (LC 1), 12= ompression/I (23/82, 4-6=- 8=-2392/135)-12=-2623/8 (2-15=-27/22 3-17=-91/105 4-18=-90/105	nt 2x4 SP f ectly applie r 10-0-0 oc 52 (LC 15) 1566 (LC - Maximum 2344/35, 3, 32, 12-13= 169 33, 33, 33, 38,	x4 a No.3 Ir d or fc 3) T 3) T 3 d or fc 4) L 4) L 6) 5) T 1) 6 6) 2 ff 7) A 6) 2 7) A 8) T c 9) * 0 3 0 2 7) A 6 9) *	asd=103mp ; Exp B; Enc nd C-C Exte -7-14 to 14 interior (1) 21 6-2-8 zone; ertical left ar ODL=1.60 pla CLL: ASCE late DOL=1. DOL=1.15); II: s=1.00; Ct= Inbalanced s esign. his truss has bad of 12.0 p verhangs nc 00.0lb AC u om left end, II plates are hord live loa This truss h n the bottom	7-16; Vult=130n h; TCDL=6.0psf losed; MWFRS iror(2E) -0-10-8 I-10, Exterior(2F -2-6 to 32-8-2, E cantilever left ar dright exposed FRS for reaction ate grip DOL=1.1 7-16; Pr=20.0 ps s=1.0; Rough Ca 1.10 show loads have s been designed s been designed s been designed a honconcurrent as been designed of honconcurrent as honconcurrent as honconcurrent as honconcurrent as honconcur	BCDL=€ (envelope to 2-7-14 3) 14-1-11 Exterior(21 di right ex ;C-C for r s s shown; 30 sf (roof LI f (Lum DC at B; Fully been con l for great flat roof I in n the botti o points, i ss otherwii for a 10, t with any d for a liv as where will fit betw s.	i.Opsf; h=25ft a) exterior zor, Interior (1) 10 to 21-2-6, E) 32-8-2 to posed ; end nembers and Lumber L: Lum DOL= L=1.15 Plate Exp.; Ce=0.5 insidered for the er of min roof pad of 20.0 p: ve loads. om chord, 17 5-0-0 apart. se indicated. 0 psf bottom other live load e load of 20.0 a rectangle veen the bottom	1.15 e); live sf on /-8-0 ds. Dpsf				SI ORTH C SI O36	CARO	

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	B03	Common	6	1	Job Reference (optional)	168686557

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:47 ID:WZhWDC72QEsB6KIZiqQApLyX0D4-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

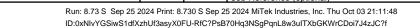
21:11:47 Page: 1

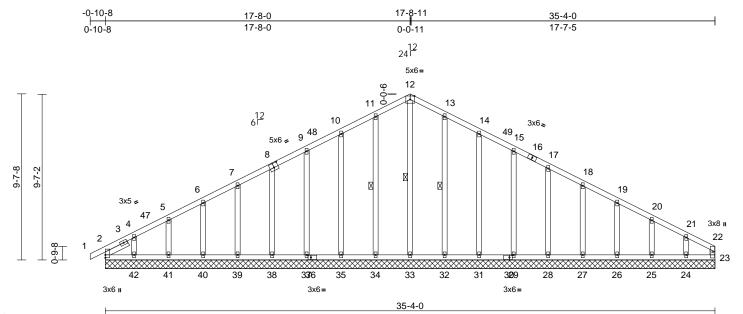
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	B04	Roof Special	2	1	Job Reference (optional)	168686558

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:48 ID:_9?Jy9N9IoTo44KDIVOFwgyX0JC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1


818 Soundside Road


Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	B05	Common Supported Gable	1	1	Job Reference (optional)	168686559

Scale = 1:66.8

Plate Offsets (X, Y): [8:0-3-0,0-3-0], [30:0-2-0,0-1-8], [36:0-2-0,0-1-8]

Plate Olisets (A, T). [0.0-3-0,0-3	-0], [30.0-2-0,0-1-6], [3	0.0-2-0,0-1-0]							
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf 20.0 20.0 10.0 0.0 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr * Code	1-11-4 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.09 BC 0.07 WB 0.19 Matrix-MSH	Vert(CT) n/a		- n/a - n/a	L/d 999 999 n/a	PLATES MT20 Weight: 238 II	GRIP 244/190 b FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS SLIDER BRACING TOP CHORD BOT CHORD WEBS REACTIONS	6-0-0 oc purlins, Rigid ceiling dire bracing. 1 Row at midpt (size) 2=35-4 25=35 28=35 32=35 32=35 339=35 42=35 Max Horiz 2=146 Max Uplift 2=-35 25=-32 25=-32 25=-34 35=-44 38=-44 38=-44 40=-44	1-6-0 sheathing directly appli except end verticals. ctly applied or 10-0-0 o 12-33, 11-34, 13-3; l-0, 23=35-4-0, 24=35- 4-0, 29=35-4-0, 31=35 4-0, 37=35-4-0, 34=35 4-0, 37=35-4-0, 41=35 4-0, 40=35-4-0, 41=35 4-0, 43=35-4-0 (LC 16), 43=146 (LC 1 (LC 10), 24=-93 (LC 15) 3 (LC 15), 26=-45 (LC 2 (LC 15), 24=-93 (LC 15) 3 (LC 14), 37=-41 (LC 2 (LC 14), 37=-41 (LC 2 (LC 14), 37=-41 (LC 2) (LC 14), 37=-41 (LC 2) (LC 14), 41=-33 (LC 2) 3 (LC 14), 43=-35 (LC 2)	c FORCES 2 4-0, TOP CHORD 5-4-0, 5-4-0, 5-4-0, 8) BOT CHORD 15), 15), 15), 15), 15), 15), 14), 14), 14),	26=154 (LC 37) 28=155 (LC 37) 31=221 (LC 22) 33=188 (LC 28) 35=222 (LC 21) 38=155 (LC 1), 40=154 (LC 36) 42=137 (LC 30) (lb) - Maximum Compressi Tension 0 1-2=0/23, 2-4=-182/79, 4-5 5-6=-103/93, 6-7=-77/115, 9-10=-76/210, 10-11=-95/2 11-12=-112/296, 12-13=-1 13-14=-95/256, 14-15=-76 15-17=-61/167, 17-18=-50 18-19=-39/79, 19-20=-51/2 21-22=-114/43, 22-23=-62), 25=158 (LC 22),), 27=156 (LC 22),), 29=170 (LC 22),), 32=236 (LC 21),), 37=168 (LC 21),), 37=168 (LC 21),), 41=159 (LC 21),), 43=154 (LC 27) ion/Maximum 5=-132/80,), 7-9=-67/167, 256, 12/296,)/123, 36, 20-21=-70/28,)/6 118, 40-41=-27/118,)/117,)	 th t	his design. /ind: ASC asd=103n ; Exp B; E nd C-C Cc -7-14 to 1- xterior(2N 5-2-4 zone ertical left proces & MN OL=1.60 russ design nly. For s ee Standa r consult c CLL: ASC late DOL= (OL=1.15) s=1.00; C	E 7-16,6 pph; TC ncloseen rrner(3 4-1-10,) 21-2-2; canti WFRS Jolate gr Ind fo tuds ex 7-16 (-1.15); i, is=1.(1,15); i, is=1.2)	; Vult=130mph CDL=6.0psf; BC d; MWFRS (em E) -0-10-8 to 2- , Corner(3R) 14 6 to 31-7-14, C liever left and rii hft exposed;C-C for reactions sh rip DOL=1.60 r wind loads in xposed to wind ustry Gable End d building desig ; Pr=20.0 psf (L D; Rough Cat B; loads have bee	the plane of the truss (normal to the face), d Details as applicable, iner as per ANSI/TPI 1. oof LL: Lum DOL=1.15 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9;

Continued on page 2 Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTeR% connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPH Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) with the Section of the prevent collapse contervent for the Section of them been section of the prevent of the prevent of them been section of the prevent of the prevent of the prevent of them been section of the prevent and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

Page: 1

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH				
24090147-01	B05	Common Supported Gable	1	1	Job Reference (optional)	168686559			

- 6) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.
- All plates are 2x4 MT20 unless otherwise indicated. 7)
- 8) Gable requires continuous bottom chord bearing.
- 9) Gable studs spaced at 2-0-0 oc.
- 10) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 11) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 12) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 35 lb uplift at joint 2, 39 lb uplift at joint 34, 45 lb uplift at joint 35, 41 lb uplift at joint 37, 43 lb uplift at joint 38, 43 lb uplift at joint 39, 44 lb uplift at joint 40, 33 lb uplift at joint 41, 103 lb uplift at joint 42, 36 lb uplift at joint 32, 46 lb uplift at joint 31, 42 lb uplift at joint 29, 43 lb uplift at joint 28, 42 lb uplift at joint 27, 45 lb uplift at joint 26, 33 lb uplift at joint 25, 93 Ib uplift at joint 24 and 35 lb uplift at joint 2.

LOAD CASE(S) Standard

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Thu Oct 03 21:11:48 ID:0xNIvYGSiwS1dfXzhUf3asyX0FU-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 2

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	B06	Нір	1	1	Job Reference (optional)	68686560

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:48 ID:O7ZmBgGCILJRRnETvX0gdUyX0fI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

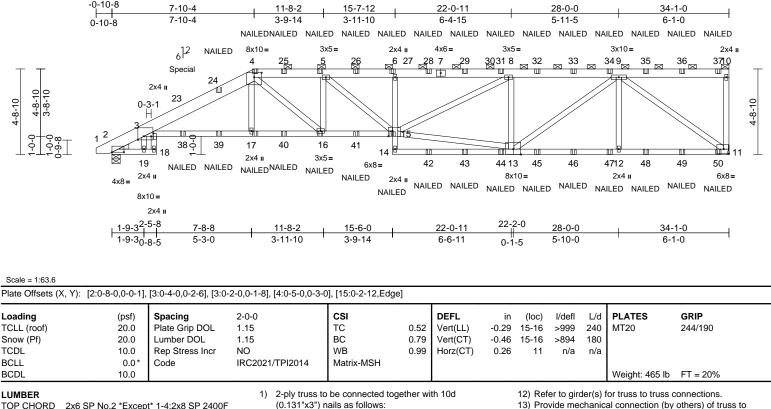
	-0-10-8 	<u>6-1-1</u> 6-1-1		<u>11-2-4</u> 5-1-3	<u>14-8-12</u> 3-6-8		0-7-4 -10-8			<u>-9-14</u> -2-10			34-1-0 6-3-2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2 1 2 4x8=	0-3-1 H 2x4 II 23 18 18 19 2x4 II	6/2 6×8 = 4 4 17 2×4 II	25	3x5 = 4x 5 = 26 6 1 5x8=	2x4 II	27 💌	6x8=	28 +1 2 xx5 =	\$	29	3x5 x 8 30 31 11 6x8=	32	3x10 ¢ 9 10 3x5 µ
	<u>1-9-3</u> 1-9-3	3 3-9-5		<u>11-2-4</u> 4-11-7	<u> 15-6-0</u> 4-3-12		<u>20-9-0</u> 5-3-0	22-2-0 1-5-0		27-9-1 5-7-14			<u>34-1-0</u> 6-3-2	
Scale = 1:65.1 Plate Offsets (X, Y): [2.0-8-0 0-0-21	0-8-5	0-2-0 0-1	-8] [4.0-3-8 0-1	3-0] [7:0-5-0 0-1-	7] [11.0-3	8-8 0-3-01 [15	·0-5-12 0	1-2-12]					
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES	21/TPI2014	CSI TC BC WB Matrix-MSH	0.97 0.79 0.78	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.18	(loc) 15-16 15-16 15-10	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/19 3 lb FT = 2	
1-4:2x BOT CHORD 2x4 S No.3, WEBS WEDGE Left: 2 BRACING TOP CHORD TOP CHORD Struct (2-2-C) BOT CHORD BOT CHORD Rigid bracin 6-0-0 WEBS 1 Row REACTIONS (size) FORCES (lb) - I TOP CHORD 1-2=00 5-6=-2 7-8= 9-10= BOT CHORD BOT CHORD 2-19= 10-11 14-15 WEBS 4-17= 13-15 7-13= 8-11= 8-11=	8 SP 2400F 2. P No.2 'Except 3-15:2x4 SP No.3 ural wood sheat t end verticals, 0 max.): 6-7. ceiling directly. g, Except: oc bracing: 2-1 v at midpt 2=0-5-8, 1 2=2-5-8, 1 2=126 (LC bilft 2=-137 (LC av 2=1563 (L Maximum Comp on /13, 2-3=-661/9 2046/298, 6-7=: 1944/277, 8-9=: -1465/177 -80/198, 18-19: =-343/3179, 15 =0/86, 13-14=0 =-28/127 0/231, 5-15=-8 =-33/1587, 7-11 -92/160, 8-13=: -226/109, 9-11: -966/193, 5-16:	* 18-3,15-14:2x4 S o.1 athing directly applie and 2-0-0 oc purlir applied or 10-0-0 o 9. 8-13 0= Mechanical 2 18) 0= Mechanical 2 18) 0= Mechanical 2 18) 0= Mechanical 2 18) 0= Mechanical 2 18) 0= Mechanical 2 19, 0= 1,129 (LC C 41), 10=-129 (LC C 41), 10=-129	P ed, 15 c 15) C 41) 6 7 7 7 7 8 7 7 , 5 9 44, 1 50, 1 50, 1 2 109, 1	and C-C Ex 2-11-0 to 9- Interior (1) 2 33-11-4 zor vertical left forces & MV DOL=1.60 [8) TCLL: ASC Plate DOL= DOL=1.15); Cs=1.00; C 9) This truss h load of 12.0 overhangs n 6) Provide ade 7) This truss h chord live lo 8) * This truss on the botto 3-06-00 tall chord and a 9) Refer to gird 10) Provide me bearing plat 10.	I snow loads have as been designed psf or 1.00 times on-concurrent w equate drainage to as been designed wad nonconcurren has been designed wad nonconcurren has been designed wad nonconcurren has been designed by 2-00-00 wide my other member der(s) for truss to chanical connecti e capable of with Simpson Strong- led to connect tru (s) 2. This conne nsider lateral forc urlin representati tation of the purlir	to 2-11-C R) 9-10-1: Exterior(2 and right is lic-C for riss shown; 60 ss f (roof L f (Lum DC) at B; Fully be been co d for great flat roof I th other li p prevent th other li p prevent to standing Tis conne ss to bear ction is for es. on does n	, Interior (1) 5 to 25-5-1, E) 30-6-6 to sexposed ; enc nembers and Lumber L: Lum DOL= DL=1.15 Plate v Exp.; Ce=0.9 nsidered for the verification of the second or of min roof oad of 20.0 p ve loads. water ponding o psf bottom other live load ve load of 20.1 a rectangle ween the botthe nections. ners) of truss to 129 lb uplift at ctors ing walls due r uplift only ar ot depict the s	1.15 e); his sf on g. ds. Opsf om to to to					CAR SSI EAL 6322	

A WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITTER REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANS/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH				
24090147-01	B07	Нір	1	1	Job Reference (optional)	68686561			

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:48 Carter Components (Sanford, NC), Sanford, NC - 27332, Page: 1 ID:734XCasyw?wIDbFSy0UmkEyX0jh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f 6-1-1 11-4-12 15-7-12 19-8-10 23-11-4 29-5-14 34-1-0 6-1-1 5-3-11 4-3-0 4-0-14 4-2-10 5-6-10 4-7-2 4x6= 2x4 II 3x5= 5x8= 0-1-15 .1-15 H 6 27 28 29 7 5 8 6¹² 6-5-6x8 🞜 2x4 II 0-3-1 H 4²⁶ 30 5-3-15 9 6-3-15 6-5-14 2x4 II Ŧ 31 2245 32 3x6. 10 16 0 19 - 18 17 15 ŧ. 2x4 II 3x5= 20 14 13 12 5x8= 2x4 II 3x5= 5x8= 5x10= 2x4 II 4x8= 3x5 II 8x10= 2x4 ॥ 2-5-8 1-9-3 15-6-0 24-1-0 29-5-14 34-1-0 6-2-13 11-3-0 4-7-2 1-9-3 3-9-5 5-0-3 4-3-0 8-7-0 5-4-14 0-8-5 Scale = 1:63.8 Plate Offsets (X, Y): [2:0-8-0,0-0-5], [3:0-4-0,0-2-6], [3:0-2-0,0-1-8], [4:0-3-8,0-3-0], [5:0-2-12,0-0-8], [8:0-2-12,0-1-4], [13:0-2-3,0-1-8], [16:0-2-12,0-3-4]

oading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
CLL (roof)	20.0	Plate Grip DOL	1.15		тс	0.63	Vert(LL)	-0.18	13-15	>999	240	MT20	244/190
now (Pf)	20.0	Lumber DOL	1.15		BC	1.00	Vert(CT)	-0.43	13-15	>950	180		
CDL	10.0	Rep Stress Incr	YES		WB	0.96	Horz(CT)	0.23	11	n/a	n/a		
CLL	0.0*	Code		1/TPI2014	Matrix-MSH		- (-)						
CDL	10.0	0000										Weight: 225 lb	FT = 20%
UMBER OP CHORD	2x4 SP No.2 *Excep	+* 4 1.2.2 SD 2400E	2)		7-16; Vult=130r bh; TCDL=6.0ps			Cat	LOAD	CASE(S)	Sta	ndard	
JF CHORD	2.0E	1 4-1.2X0 SF 2400F			closed; MWFRS								
OT CHORD	2x4 SP No.2 *Excep	t* 19-3 6-15 [.] 2x4 SP	No 3		erior(2E) -0-5-14								
/EBS	2x4 SP No.3				-15, Exterior(2R			ior					
/EDGE	Left: 2x4 SP No.3				19-1-7, Exterior								
RACING	Lond Extrem 140.0			Interior (1) 28	3-9-1 to 30-6-6,	Exterior(28	E) 30-6-6 to						
OP CHORD	Structural wood abo	othing directly applie	dor	33-11-4 zone	; cantilever left	and right e	xposed ; end						
JF CHORD	Structural wood sheat 3-2-10 oc purlins, ex				nd right exposed								
	2-0-0 oc purlins (3-5		anu	forces & MW	FRS for reaction	ns shown;	Lumber						
OT CHORD					ate grip DOL=1.								
JI CHURD	Rigid ceiling directly	applied of 10-0-0 oc	; 3)		7-16; Pr=20.0 p		.: Lum DOL=	1.15					
	bracing, Except:	0	,		.15); Pf=20.0 ps								
	6-0-0 oc bracing: 2-2				s=1.0; Rough C								
	2-2-0 oc bracing: 3-1			Cs=1.00: Ct=		, ,							
EACTIONS	()	1= Mechanical	4)	Unbalanced	snow loads have	e been cor	sidered for th	nis					
	Max Horiz 2=102 (LC		,	design.									
	Max Uplift 2=-142 (L				s been designed	d for areate	er of min roof	live					
	Max Grav 2=1470 (L	.C 41), 11=1430 (LC	41) ''		osf or 1.00 times								
ORCES	(lb) - Maximum Com	pression/Maximum			on-concurrent w			51 011					
	Tension		6)		uate drainage t			r					
OP CHORD	1-2=0/13, 2-3=-619/	101. 3-5=-3175/347.			s been designed			J.					11.2
	5-6=-2462/346, 6-7=		')		ad nonconcurrer			eh					1111
	7-8=-1688/281, 8-9=		8)		as been design							IN TH CA	Rollin
	9-10=-1916/247, 10-		0)		n chord in all are			pai			5	R	all'
OT CHORD	2-20=-67/189, 19-20		23		y 2-00-00 wide			h				U. FESS	02. 11 1
01 0110112	17-18=-324/2931, 16		,		y other member			5111			à	CP /	Mill-
	15-16=0/155, 6-16=-		09 a)		er(s) for truss to		ections			-		:0	K
	12-13=-73/1651, 11-				hanical connecti			~		-			
/EBS	4-17=-1026/198, 5-1				capable of with						:	SEA	L : :
LDO	5-16=-118/568, 13-1	,		11.	capable of with	stanuing i	54 ib upilit at	joint		1	:	0363	22 : 3
	7-16=-84/455, 7-13=	,	657 44		Simon a car Carao a	T:				1		0303	~~ : :
	8-12=-238/228, 9-12		007, 1		Simpson Strong-			4.0					3 - C
	10-12=-150/1639, 4-		na		d to connect tru						2	·	A 1. 3
	10 12-100/1009, 4-	10-0/220, 3-20=0/1	00		s) 2. This conne		upint only ar	iu			2.0	NO.	EFTIX
OTES					sider lateral for		4				1		5. CA .
	ed roof live loads have	been considered for	· 12		rlin representati			size			1	CA O	II BEIN
this design	n.				tion of the purlir	h along the	top and/or					A. G	11-111
				bottom chorc								1111111	1111
													er 7,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

A MITER Affilia 818 Soundside Road Edenton, NC 27932 1-5-0

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	B08	Half Hip Girder	1	2	Job Reference (optional)	68686562

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Thu Oct 03 21:11:50 ID:GjP6OJza?RNHjySeiY6DZvyX06p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Top chords connected as follows: 2x8 - 2 rows

oc. 2x4 - 1 row at 0-9-0 oc.

unless otherwise indicated.

0-9-0 oc.

this design.

Cs=1.00: Ct=1.10

design

2)

3)

5)

6)

7)

8)

9)

11)

staggered at 0-9-0 oc, 2x6 - 2 rows staggered at 0-9-0

Bottom chords connected as follows: 2x4 - 1 row at

Web connected as follows: 2x4 - 1 row at 0-9-0 oc.

All loads are considered equally applied to all plies,

CASE(S) section. Ply to ply connections have been

provided to distribute only loads noted as (F) or (B),

Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone;

cantilever left and right exposed ; end vertical left and

right exposed; Lumber DOL=1.60 plate grip DOL=1.60

TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on

Provide adequate drainage to prevent water ponding.

chord live load nonconcurrent with any other live loads.

* This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

All plates are 2x4 MT20 unless otherwise indicated.

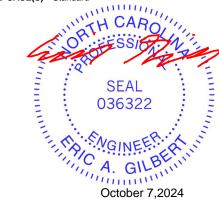
overhangs non-concurrent with other live loads.

10) This truss has been designed for a 10.0 psf bottom

chord and any other members.

Wind: ASCE 7-16; Vult=130mph (3-second gust)

except if noted as front (F) or back (B) face in the LOAD


13) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 1029 lb uplift at

ioint 11. 14) LGT2 Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 2. This connection is for uplift only and does not consider lateral forces

15) Graphical purlin representation does not depict the size or the orientation of the purlin along the top and/or bottom chord.

- 16) "NAILED" indicates 3-10d (0.148"x3") or 3-12d (0.148"x3.25") toe-nails per NDS guidlines.
- 17) LGT2 Hurricane ties must have two studs in line below the truss
- 18) Hanger(s) or other connection device(s) shall be provided sufficient to support concentrated load(s) 288 Ib down and 87 lb up at 3-11-0 on top chord. The design/selection of such connection device(s) is the responsibility of others.

LOAD CASE(S) Standard

818 Soundside Road

Edenton, NC 27932

Continued on page 2

TOP CHORD

BOT CHORD

WFBS

WEDGE

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

WEBS

NOTES

REACTIONS (size)

2.0E

2x4 SP No.3

bracing.

Tension

Left: 2x4 SP No.3

2x6 SP No.2 *Except* 1-4:2x8 SP 2400F

2x4 SP No.2 *Except* 18-3,6-14:2x4 SP

Structural wood sheathing directly applied or

2=0-5-8, 11= Mechanical

Max Uplift 2=-814 (LC 12), 11=-1029 (LC 9)

(lb) - Maximum Compression/Maximum

4-5=-6578/2220, 5-6=-7293/2496,

6-8=-7212/2471, 8-9=-5165/1786,

9-10=-76/53, 10-11=-405/186

14-15=0/166, 6-15=-685/307,

4-17=-97/443, 4-16=-628/1628,

5-16=-864/366, 5-15=-385/934,

3-19=-21/150, 8-13=-1829/749,

9-12=0/358, 9-11=-4126/1435,

9-13=-784/2256

13-15=-1726/4799, 8-15=-778/2256,

Max Grav 2=2736 (LC 19), 11=2967 (LC 33)

1-2=0/20, 2-3=-1178/372, 3-4=-5909/1897,

2-19=-171/291, 18-19=0/0, 3-17=-1852/5372,

16-17=-1848/5353, 15-16=-2285/6578,

12-14=-1198/3366, 11-12=-1198/3366

6-0-0 oc purlins, except end verticals, and

2-0-0 oc purlins (5-6-6 max.): 4-10.

Rigid ceiling directly applied or 6-0-0 oc

No.3. 3-15:2x4 SP No.1

Max Horiz 2=163 (LC 11)

Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE WARNING Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overal bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 49 Serenit		49 Serenity-Roof-B330 E CP TMB GLH		
24090147-01	B08	Half Hip Girder	1	2	Job Reference (optional)	168686562

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:50 ID:GjP6OJza?RNHjySeiY6DZvyX06p-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

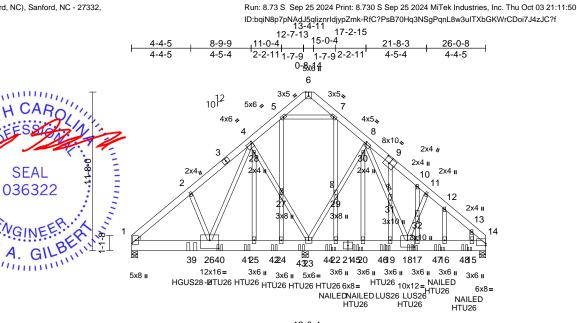
Page: 2

1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

Vert: 1-4=-60, 4-10=-60, 18-20=-20, 3-15=-20, 11-14=-20

Concentrated Loads (lb)


- Vert: 4=-96 (F), 15=-74 (F), 6=-96 (F), 17=-74 (F), 16=-74 (F), 5=-96 (F), 23=-248 (F), 24=-17 (F),
- 25=-96 (F), 26=-96 (F), 28=-125 (F), 29=-125 (F),
- 31=-125 (F), 32=-125 (F), 33=-125 (F), 34=-125 (F), 35=-125 (F), 36=-125 (F), 37=-142 (F), 38=-57 (F),
- 39=-95 (F), 40=-74 (F), 41=-74 (F), 42=-39 (F), 43=-39 (F), 44=-39 (F), 45=-39 (F), 46=-39 (F), 47=-39 (F), 48=-39 (F), 49=-39 (F), 50=-45 (F)

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	C01	Common Girder	1	2	Job Reference (optional)	168686563

With the state of the

	5-9-0	12-9-4 13-0	-4 20-3-8	26-0-8
	5-9-0	7-0-4 0-3-	.0 7-3-4	5-9-0
Scale = 1:84.7		0.0	8	
Plate Offsets (X, Y): [4:0-1-4.0-1-12].	[6:0-3-7.Edge], [8:0-0-12.0-1-12], [9:0-5-	0.0-4-8]. [14:Edge.0-1-1	13]. [18:0-6-0.0-6-0]. [2	6:0-8-0.0-7-4]

Plate Offsets (2	X, Y): [4:0-1-4,0-1-12], [6:0-3-7,Edge], [8:0	0-0-12,0-1	-12], [9:0-5-0,0)-4-8], [14:Edge,0	-1-13], [1 	8:0-6-0,0-6-0],	, [26:0-8	3-0,0-7	′-4J			
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	1-11-4 1.15 1.15 NO IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.28 0.41 0.98	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.04 -0.07 0.00	(loc 26-35 25-26 14	5 >999 6 >999	L/d 240 180 n/a	PLATES MT20 Weight: 625 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS WEDGE BRACING TOP CHORD BOT CHORD JOINTS	2x6 SP No.2 2x10 SP 2400F 2.0E 2x4 SP No.3 *Excep 2x4 SP No.3 Left: 2x4 SP No.3 Structural wood she 6-0-0 oc purlins.	rt* 23-4,23-8:2x4 SP athing directly applie applied or 10-0-0 oc	No.2 d or		4-26=-1219/4631 4-28=-2404/755, 23-27=-3216/781 29-30=-3250/242 8-31=-311/4008, 18-32=-1123/192 5-27=-583/55, 24 25-28=-42/929, 7 22-29=-574/98, 10 17-32=-49/557, 1 13-15=-20/316, 5	27-28=-3 , 23-29=- , 8-30=-2 18-31=-3 , 11-32=- -27=-711 -29=-457 0-30=0/8 -32=-42/3 2-16=-38	325/783, 3152/243, 423/252, 26/4084, 880/154, /57, /98, 37, 9-31=-10/5 310, /579,		P D C 7) U da 8) A 9) G 10) T 10) T 11) * 01 3	late DOL= IOL=1.15); is=1.00; Ci Inbalancec esign. Il plates ar iable studs his truss h hord live lo This truss n the botto -06-00 tall	1.15); Is=1.0 Is=1.0 Isnow re 3x6 s space s space s as bee bad not has be or cho by 2-0	Fr=20.0 psf (roc Pf=20.0 psf (Lum); Rough Cat B; F loads have been MT20 unless othe ed at 2-0-0 oc. en designed for a nconcurrent with i een designed for a with a lareas wh 00-00 wide will fit h	of LL: Lum DOL=1.15 DOL=1.15 Plate ully Exp.; Ce=0.9; considered for this erwise indicated. 10.0 psf bottom any other live loads. a live load of 20.0psf
	$\begin{array}{llllllllllllllllllllllllllllllllllll$				 2-ply truss to be connected together with 10d (0.131"x3") nails as follows: Top chords connected as follows: 2x6 - 2 rows staggered at 0-9-0 oc. Bottom chords connected as follows: 2x10 - 5 rows staggered at 0-7-0 oc. Web connected as follows: 2x4 - 1 row at 0-9-0 oc. All loads are considered equally applied to all plies, except if noted as front (F) or back (B) face in the LOAD CASE(S) section. Ply to ply connections have been provided to distribute only loads noted as (F) or (B), unless otherwise indicated. Unbalanced roof live loads have been considered for this design. Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone; cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60 				12) L0 co ai co 13) O re U	GT2 Simps onnect trus nd 23. This onsider lat one H2.5A ecommend PLIFT at ji	son St ss to b s conn eral fo Simps led to o t(s) 14	earing walls due t ection is for uplift rces. on Strong-Tie cor connect truss to b	ors recommended to to UPLIFT at jt(s) 1 only and does not nnectors earing walls due to is for uplift only and
			5)		ned for wind loads								

only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

October 7,2024

Page: 1

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	C01	Common Girder	1	2	Job Reference (optional)	168686563

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Thu Oct 03 21:11:50

ID:bqiN8p7pNAdJ5qliznrIdjypZmk-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

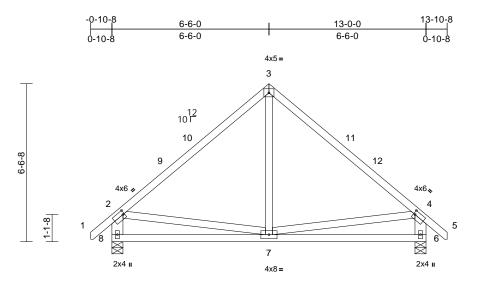
Page: 2

Carter Components (Sanford, NC), Sanford, NC - 27332,

- 14) Use Simpson Strong-Tie LUS26 (4-10d Girder, 3-10d Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 18-10-3 from the left end to 20-10-3 to connect truss(es) to front face of bottom chord.
- 15) Use Simpson Strong-Tie HGUS28-2 (36-16d Girder, 6-16d Truss) or equivalent at 4-5-4 from the left end to connect truss(es) to back face of bottom chord.
- 16) Use Simpson Strong-Tie HTU26 (10-16d Girder, 14-10dx1 1/2 Truss) or equivalent spaced at 6-0-0 oc max. starting at 6-6-0 from the left end to 24-6-0 to connect truss(es) to back face of bottom chord.
- 17) Use Simpson Strong-Tie HTU26 (20-10d Girder, 14-10dx1 1/2 Truss, Single Ply Girder) or equivalent spaced at 2-0-0 oc max. starting at 18-6-0 from the left end to 20-6-0 to connect truss(es) to back face of bottom chord.
- 18) Fill all nail holes where hanger is in contact with lumber.19) "NAILED" indicates 3-10d (0.148"x3") or 3-12d
- (0.148 x3.) of 3-12d (0.148 x3.) of 3-12d (0.148 x3.) of 3-12d (0.148 x3.25") toe-nails per NDS guidlines.
- 20) LGT2 Hurricane ties must have two studs in line below the truss.

LOAD CASE(S) Standard

- 1) Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15
 - Uniform Loads (lb/ft) Vert: 1-6=-58, 6-14=-58, 33-36=-19
 - Concentrated Loads (lb) Vert: 18=-1442 (B), 22=4 (F), 20=4 (F), 19=4 (F),
 - 17=-38 (F), 16=-38 (F), 15=-38 (F), 39=-2948 (B), 40=-1410 (B), 41=-1505 (B), 42=-1339 (B), 43=-1339 (B), 44=-1442 (B), 45=-1442 (B), 46=-1442 (B),
 - 47=-1442 (B), 48=-1442 (B)


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	D01	Common	4	1	Job Reference (optional)	168686564

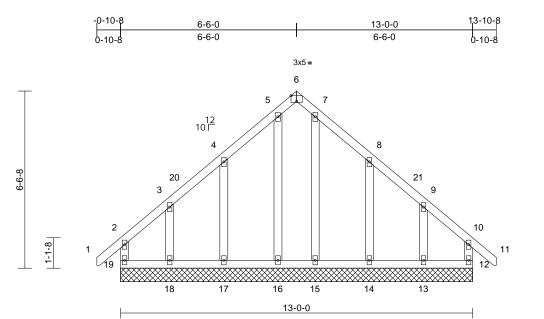
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:51 $ID: wb1oEU3ot9zDodjcIXhweSzF_Yu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

Page: 1

	6-6-0	13-0-0	
	6-6-0	6-6-0	
Scale = 1:47.7			
Plate Offsets (X, Y): [2:0-0-12,0-2-0], [4:0-0-12,0-2-0]			

Plate Offsets ((X, Y): [2:0-0-12,0-2-0], [4:0-0-12,0-2-0]											
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.80 0.35 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.06 0.00	(loc) 7-8 7-8 6	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 79 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD WEBS NOTES 1) Unbalancu this desigu 2) Wind: ASO Vasd=103 II; Exp B; and C-C E to 3-6-0, E	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 *Excep Structural wood she 6-0-0 oc purlins, exx Rigid ceiling directly bracing. (size) 6=0-5-8, 8 Max Horiz 8=177 (LC Max Uplift 6=-53 (LC Max Uplift 6=-53 (LC Max Grav 6=648 (LC (lb) - Maximum Com Tension 1-2=0/40, 2-3=-577/ 4-5=0/40, 2-3=-577/ 7-8=-226/387, 6-7=- 3-7=0/255, 2-7=-121 ed roof live loads have	athing directly applie cept end verticals. applied or 10-0-0 oc 3=0-5-8 C 13) C 15), 8=-53 (LC 14) C 22), 8=648 (LC 21) apression/Maximum 133, 3-4=-577/133, 173, 4-6=-593/169 161/370 1/263, 4-7=-127/265 been considered for (3-second gust) CDL=6.0psf; h=-25ft; ivelope) exterior (1) 2-2 6-0, Interior (1) 9-6-0	ed or 6) ; 7) 8)	design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss h on the bottor 3-06-00 tall th chord and ar One H2.5A S recommende UPLIFT at jtt	snow loads have b as been designed for psf or 1.00 times fit on-concurrent with is been designed for ad nonconcurrent v has been designed in chord in all areas by 2-00-00 wide will by other members. Simpson Strong-Tie ed to connect truss (s) 8 and 6. This co t consider lateral for Standard	or great at roof le other li or a 10. vith any for a liv s where l fit betw e conne to bear nnectio	er of min rood pad of 20.0 p ve loads. 0 psf bottom other live loa e load of 20.1 a rectangle veen the bott ctors ing walls due	f live ads. Opsf com		4		Weight: 79 lb	ROUTIN
right expo for reactio DOL=1.60 3) TCLL: AS Plate DOL	CE 7-16; Pr=20.0 psf (L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E	and forces & MWFR PL=1.60 plate grip roof LL: Lum DOL=1 um DOL=1.15 Plate	S .15							111111			EER AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



A. GIL October 7,2024

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	D02	Common Supported Gable	1	1	Job Reference (optional)	168686565

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:51 ID:hs_OLPz9_OqUDEXuG81pmYzF_Z1-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

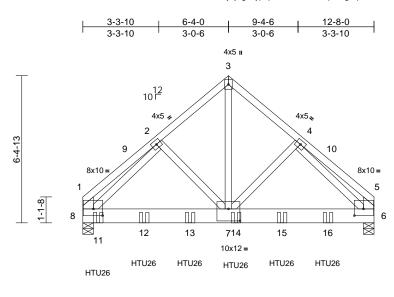
Scale = 1:42.5

Plate Offsets (X, Y): [6:0-2-8,Edge]

	x, i). [0.0 2 0,20g0]				-									
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MR	0.18 0.08 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 12	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 84 lb	GRIP 244/190 FT = 20%	
	15=13-0-0 18=13-0-0 Max Horiz 19=-175 (Max Uplift 12=-59 (L 14=-87 (L 18=-125 (L 14=268 (L 14=268 (L 14=268 (L 16=199 (L	cept end verticals. applied or 6-0-0 oc), 13=13-0-0, 14=13-), 16=13-0-0, 17=13- 0, 19=13-0-0 LC 12) C 11), 13=-122 (LC 1- C 15), 17=-86 (LC 1- LC 14), 19=-73 (LC 1-	0-0, 3) 0-0, 4) 15), 4) 10) 26), 5) 22), 5) 21), 6)	Vasd=103mj II; Exp B; En and C-C Cor to 3-6-0, Cor 10-9-14, Cor left and right exposed;C-C reactions sho DOL=1.60 Truss design only. For stu see Standaru or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct Unbalanced design. This truss ha	7-16; Vult=130m; bh; TCDL=6.0psf; closed; MWFRS (ner(3E) -0-9-14 to ner(3E) 10-9-14 to exposed ; end ve c for members and own; Lumber DOL ed for wind loads ids exposed to win d Industry Gable E talified building de 7-16; Pr=20.0 psf Is=1.0; Rough Cat =1.10 snow loads have to been designed psf or 1.00 times f	BCDL=6 envelopp p 2-2-2, E p-6-0, Exx p 13-9-14 rtical left d forces a =1.60 pl in the pl nd (norm End Deta signer a f (roof LL (Lum DC t B; Fully been con for great	i.Opsf; h=25ft; a) exterior zor ixterior(2N) 2: terior(2N) 2: terior(2N) 9: 4 zone; cantild and right MWFRS for ate grip ane of the tru: al to the face ils as applical s per ANSI/TF J=1.15 Plate Exp.; Ce=0.5 msidered for the er of min roof	c Cat. ne -2-2 -0 to ever ss), ble, PI 1. 1.15 -9; his live	bea 19, upli join	tring plat 59 lb up ft at join t 13. CASE(S)	e capa lift at j t 18, 8	able of withstandi oint 12, 86 lb upli 7 lb uplift at joint ndard	others) of truss t ng 73 lb uplift at j it at joint 17, 125 14 and 122 lb upl	oint Ib
FORCES	(lb) - Maximum Com Tension		,	overhangs n	on-concurrent with 2x4 MT20 unless	n other li	ve loads.	si on				OR EES	RO	
TOP CHORD	6-7=-81/185, 7-8=-10 9-10=-92/88, 10-11=	01/252, 5-6=-81/184 02/252, 8-9=-60/129 =0/37, 10-12=-123/90	8) 9)	Gable requir Truss to be f braced agair	es continuous bot ully sheathed from ist lateral moveme spaced at 2-0-0 o	tom chor n one fac ent (i.e. c	d bearing. e or securely				25	10-1	De Ni	
BOT CHORD	18-19=-86/128, 17-1 16-17=-86/128, 15-1 14-15=-86/128, 13-1 12-13=-86/128 5-16=-167/7, 7-15=- 3-18=-156/146, 8-14 9-13=-147/159	6=-86/128, 14=-86/128, 167/0, 4-17=-226/172	11 12	 This truss has chord live load * This truss has on the bottor 3-06-00 tall b 	is been designed ad nonconcurrent has been designed in chord in all area by 2-00-00 wide w hy other members	for a 10. with any d for a liv is where ill fit betw	other live loa e load of 20.0 a rectangle	Opsf		THE REAL			•	willing
NOTES 1) Unbalance this design	ed roof live loads have	been considered for										10000	ILBERT	

NOTES

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



October 7,2024

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH		
24090147-01	E01	Common Girder	1	2	Job Reference (optional)	168686566	

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:51 ID:22T36Dt8B0CinE4y4jVg5VypZpe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

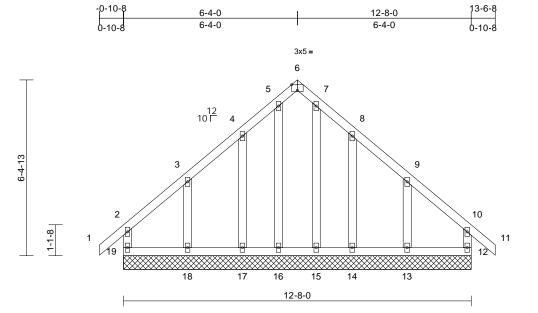
Page: 1

6-4-0 12-8-0 6-4-0 6-4-0

Plate Offsets (X, Y): [1:0-4-12,0-3-8], [5:0-4-12,0-3-8], [7:0-6-0,0-6-4]

Scale = 1:50.1

			1										1	
Lo	ading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
	LL (roof)	20.0	Plate Grip DOL	1.15		тс	0.56	Vert(LL)	-0.04	7-8	>999	240	MT20	244/190
	ow (Pf)	20.0	Lumber DOL	1.15		BC	0.39	Vert(CT)	-0.08	7-8	>999	180		
TC	()	10.0	Rep Stress Incr	NO		WB	0.60	Horz(CT)	0.01	6	n/a	n/a		
BC		0.0*	Code		1/TPI2014	Matrix-MSH	0.00		0.01	0				
BC		10.0	Couc	11(0202	1/11/2014								Weight: 197 lb	FT = 20%
		10.0											Wolgin. for ib	11-2070
LU	MBER			4)	Wind: ASCE	7-16; Vult=130mp	h (3-seo	cond gust)						
	P CHORD	2x4 SP No.2			Vasd=103m	oh; TCDL=6.0psf; I	BCDL=6	.0psf; h=25ft	; Cat.					
BO	T CHORD	2x8 SP 2400F 2.0E			II; Exp B; En	closed; MWFRS (e	envelope	e) exterior zor	ne;					
WE	BS	2x4 SP No.3 *Excep	t* 8-1,6-5:2x6 SP No	.2,		t and right expose								
		7-3:2x4 SP No.2			right expose	d; Lumber DOL=1.	60 plate	grip DOL=1.	60					
BR	ACING													
то	P CHORD	Structural wood she	athing directly applie	dor ⁵⁾		7-16; Pr=20.0 psf								
		6-0-0 oc purlins, ex	cept end verticals.			.15); Pf=20.0 psf (
BO	T CHORD	Rigid ceiling directly	applied or 10-0-0 oc		DOL=1.15); Cs=1.00; Ct=	Is=1.0; Rough Cat	B; Fully	Exp.; Ce=0.9	9;					
		bracing.		6)		snow loads have b		sidered for th	nie					
RE	ACTIONS			0,	design.	Show loads have t			113					
		Max Horiz 8=-148 (L	,	7		is been designed f	or a 10) psf bottom						
		Max Uplift 6=-425 (L		<u>2)</u>		ad nonconcurrent v			ds.					
		Max Grav 6=4578 (L	_C 6), 8=5586 (LC 5)	8)	8) * This truss has been designed for a live load of 20.0psf									
FO	RCES	(lb) - Maximum Com	pression/Maximum	- /		n chord in all areas								
		Tension			3-06-00 tall b	y 2-00-00 wide wi	ll fit betw	veen the botte	om					
то	P CHORD	1-2=-1830/211, 2-3=	,			y other members.								
		3-4=-4085/452, 4-5=	,	9)		Simpson Strong-Tie								
	TOUODD	1-8=-1231/160, 5-6=				ed to connect truss								
	T CHORD	7-8=-315/2959, 6-7=				s) 8 and 6. This co		n is for uplift o	only					
VVE	BS	2-8=-2398/227, 4-6= 3-7=-500/4928, 2-7=		.		t consider lateral fo							minin	1111
		3-7=-300/4926, 2-7=	-10/329, 4-1=-11/33	9 10		n Strong-Tie HTU2			~				OR SES	Rollin
	TES					2 Truss) or equivale at 0-8-0 from the			C			N	R	
1)		to be connected toget	ther with 10d			s(es) to back face						N	O'.FESS	ton Ville
) nails as follows:	2. 2. 4 . 4 . and a t 0. 0. 4	۰ 1 [.]		bles where hanger			her			25	110 /	1 in the second
		s connected as follows rows staggered at 0-9			DAD CASE(S)	-			501.				.0	T: -
		ords connected as follo		1)	• • • •	ow (balanced): Lun	abor Inc	rooco-1 15	Diato		-		OF A	1 2
		at 0-5-0 oc.	0w3. 2x0 - 210w3	1)	Increase=1			iease=1.15, i	late				SEA	L <u>1</u> E .
		ected as follows: 2x4 -	1 row at 0-9-0 oc		Uniform Lo								0363	22 : =
2)		re considered equally				=-60, 3-5=-60, 6-8:	20				-			: :
-/		oted as front (F) or ba		AD		ed Loads (lb)	- 20					-	N	1
		ection. Ply to ply conr				-1398 (B), 12=-13	93 (B)	131393 (B)				- 1	Nº En	Rik S
		distribute only loads				3 (B), 15=-1393 (B)						25	GIN	EF. AN
		erwise indicated.				(_,, .0 .000 (D	,,					11	(C	BEIN
3)	Unbalance	d roof live loads have	been considered for										A. G	ILLIN
	this design												<i></i>	um.
													Ostab	


October 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	E02	Common Supported Gable	1	1	Job Reference (optional)	168686567

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:51 ID:VKOF62y3jk3RPIIH2yoZM2ypb8k-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:42

Plate Offsets (X, Y): [6:0-2-8,Edge]

Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.17	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.08	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.09	Horz(CT)	0.00	12	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MR								
BCDL	10.0											Weight: 85 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 12=12-8-(15=12-8-(18=12-8-(Max Horiz 19=-172 (Max Uplift 12=-45 (L 18=-129 (Max Grav 12=168 (L	applied or 6-0-0 oc), 13=12-8-0, 14=12-8), 16=12-8-0, 17=12-8), 19=12-8-0 LC 12) C 11), 13=-126 (LC 14 C 15), 17=-72 (LC 14 LC 14), 19=-56 (LC 16 C 25), 13=226 (LC 26	(-0, 3) (-0, 4) (5), 4) (0, 5), 5)	Vasd=103mj II; Exp B; En and C-C Cor to 3-4-0, Cor 10-4-0, Corn and right exp C for membe shown; Lumi Truss design only. For stu see Standard or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct ²	7-16; Vult=130mp ob; TCDL=6.0psf; closed; MWFRS (e ner(3E) -0-10-8 to ner(3R) 3-4-0 to 9 er(3R) 10-4-0 to 1: oosed ; end vertica ers and forces & M ber DOL=1.60 plat ned for wind loads uds exposed to wird d Industry Gable E ialified building des : 7-16; Pr=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.15); Pf=20.0 psf (.10); Snow loads have b	BCDL=6 envelope 2-4-0, Ex 3-6-8 zo I left and WFRS f e grip D in the pla in the pla id (norm nd Deta signer as i (roof LL Lum DC B; Fully	.0psf; h=25ft; exterior zon ixterior(2N) 2- terior(2N) 9-4- ne; cantilever d right expose or reactions DL=1.60 ane of the trus at to the face) ils as applicat s per ANSI/TF :: LUM DOL=1 DL=1.15 Plate Exp.; Ce=0.9	ne -4-0 -0 to -left d;C- ss), ole, PI 1. 1.15 0;	bea 19, upli	rring plat 45 lb up ft at join t 13.	te capa olift at jo t 18, 73	al connection (by able of withstandi oint 12, 72 lb upli 3 lb uplift at joint	/ others) of truss to ing 56 lb uplift at joint ft at joint 17, 129 lb 14 and 126 lb uplift at
	16=140 (L	.C 22), 15=140 (LC 22 .C 21), 17=221 (LC 2 .C 25), 19=177 (LC 26	2),	design. This truss ha	is been designed f psf or 1.00 times fl	or great	er of min roof	live					16.
FORCES	(lb) - Maximum Com Tension	pression/Maximum		overhangs n	on-concurrent with	other liv	/e loads.					WHY CA	Pall
TOP CHORD	2-19=-142/145, 1-2= 3-4=-84/187, 4-5=-1 6-7=-89/194, 7-8=-1	0/39, 2-3=-107/98, 23/294, 5-6=-89/194, 23/293, 8-9=-83/188, 0/39, 10-12=-135/137	. ,	Gable requir Truss to be f braced agair	2x4 MT20 unless es continuous bott ully sheathed from ist lateral moveme spaced at 2-0-0 oc	om chor one fac nt (i.e. d	d bearing. e or securely			4	AL IN		
BOT CHORD	18-19=-82/115, 17-1 16-17=-82/115, 15-1 14-15=-82/115, 13-1 12-13=-82/115	6=-82/115,	11) This truss ha chord live loa) * This truss h	is been designed f ad nonconcurrent v nas been designed n chord in all areas	or a 10.0 with any I for a liv	other live load e load of 20.0			11111		SEA 0363	
WEBS	5-16=-164/27, 7-15= 3-18=-185/171, 8-14 9-13=-177/182	163/28, 4-17=-188/1 =-188/149,	52,	3-06-00 tall b	by 2-00-00 wide wi by other members.	ll fit betv		m				SEA 0363	EERER
	ed roof live loads have n.	been considered for										A. C	ILBLUT

October 7,2024

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	F01	Common	4	1	Job Reference (optional)	168686568

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:51 ID:nqLL14Jf5JAmMe82YAnlwAzF_pM-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-4-0	6-11-8	13-7-0	13-11-0
0-4-0	6-7-8	6-7-8	0-4-0

Scale = 1:34.2

Plate Offsets (X, Y): [2:Edge,0-0-14], [2:0-2-5,Edge], [4:Edge,0-0-14], [4:0-2-5,Edge]

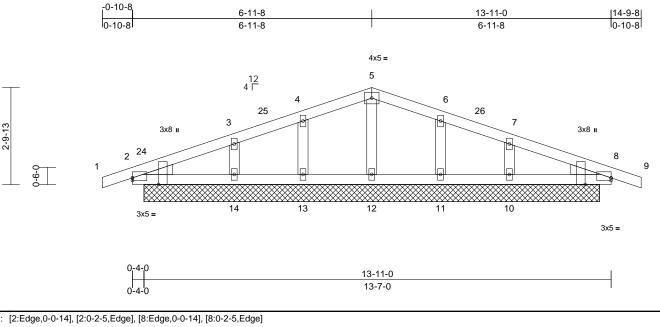
Plate Offsets (X, Y): [2:Edge,0-0-14], [2:	2:0-2-5,Edge], [4:Ed	ge,0-0-1	4], [4:0-2-5,E0	dgej							-	-
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 Pla 20.0 Lu 10.0 Re	late Grip DOL umber DOL ep Stress Incr	2-0-0 1.15 1.15 YES IRC202 ⁷	1/TPI2014	CSI TC BC WB Matrix-MSH	0.72 0.56 0.10	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.09 -0.13 0.02	(loc) 6-11 6-11 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 51 lb	GRIP 244/190 FT = 20%
FORCES TOP CHORD BOT CHORD WEBS NOTES 1) Unbalance this design	2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheathir 4-1-1 oc purlins. Rigid ceiling directly app bracing. (size) 2=0-3-0, 4=0- Max Horiz 2=41 (LC 14) Max Uplift 2=-221 (LC 10 Max Grav 2=708 (LC 21 (lb) - Maximum Compres Tension 1-2=0/17, 2-3=-901/594, 4-5=0/17 2-6=-458/775, 4-6=-458/ 3-6=-116/268	plied or 8-6-15 oc -3-0 0), 4=-221 (LC 11) 1), 4=708 (LC 22) ission/Maximum 4, 3-4=-901/594, 3/775 en considered for	6) 7) 8)	Plate DOL= DOL=1.15); Cs=1.00; Ct: Unbalanced design. This truss ha load of 12.0 overhangs n This truss ha chord live loa * This truss la on the botton 3-06-00 tall I chord and an One H2.5A S recommended UPLIFT at jtt	snow loads have b as been designed for psf or 1.00 times fla on-concurrent with as been designed for ad nonconcurrent w has been designed m chord in all areas by 2-00-00 wide will ny other members. Simpson Strong-Tie ed to connect truss (s) 2 and 4. This coo t consider lateral fo	Lum DC B; Fully een col or great at roof I other li or a 10. vith any for a liv where I fit betw conne to bear nnectio	DL=1.15 Plate Exp.; Ce=0.9 nsidered for the er of min roof pad of 20.0 p ve loads. 0 psf bottom other live loa re load of 20.1 a rectangle veen the botthe ctors ing walls due	e 9; f live sf on ds. Dpsf om to			and the second	NITH CA	
	CE 7-16; Vult=130mph (3-s mph; TCDL=6.0psf; BCDL		at.							9	D	It f	Store 1

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-10-8 to 2-1-8, Interior (1) 2-1-8 to 3-11-8, Exterior(2R) 3-11-8 to 9-11-8, Interior (1) 9-11-8 to 11-9-8, Exterior(2E) 11-9-8 to 14-9-8 zone; cantilever left and right exposed ; end vertical left and right exposed; porch left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

TRENGINEERING BY A Mi Tek Affiliate 818 Soundside Road Edenton, NC 27932


Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	F02	Common Supported Gable	1	1	Job Reference (optional)	168686569

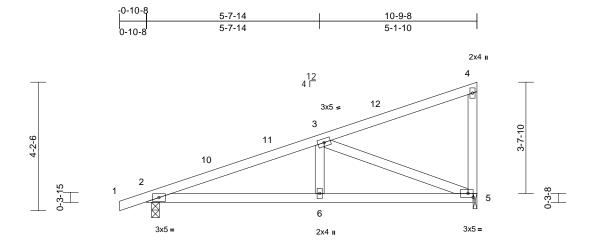
2-11-0

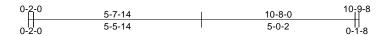
Scale = 1:33.5

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:51 ID:UUQhZhEGk9Im0a6ieC968izF_pT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Plate Offsets (2	X, Y): [2:Edge,0-0-14]], [2:0-2-5,Edge], [8:Ed	ge,0-0-1	4], [8:0-2-5,Ec	lge]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES RC2021	/TPI2014	CSI TC BC WB Matrix-MSH	0.29 0.19 0.08	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a -0.01	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 59 lb	GRIP 244/19 FT = 2		
	 2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 Left: 2x4 SP No.3 Right: 2x4 SP No.3 Structural wood sheathing directly applied of 10-0-0 oc purlins. Rigid ceiling directly applied or 6-0-0 oc bracing. 			 cantilever left and right exposed; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1. 4) TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 5) Unbalanced snow loads have been considered for this design. 6) This truss has been designed for greater of min roof live 						12) Non Standard bearing condition. Review required. LOAD CASE(S) Standard					
FORCES	(lb) - Maximum Com Tension 1-2=0/17, 2-3=-220/4		7) 8) 9)	Gable studs This truss ha	e 2x4 MT20 unless spaced at 2-0-0 or as been designed f	c. or a 10.	0 psf bottom						1 the		
		122/395, 6-7=-170/392,	, 10) * This truss h	ad nonconcurrent v nas been designed n chord in all areas	l for a liv	e load of 20.0					SE/ 036:		1	
BOT CHORD	2-14=-365/260, 13-1 12-13=-365/260, 11- 10-11=-365/260, 8-1	12=-365/260,	11	3-06-00 tall to chord and and	by 2-00-00 wide wi by other members. Simpson Strong-Tie	ll fit betv	veen the botto	om		1111			0		
WEBS	5-12=-360/181, 4-13 3-14=-275/153, 6-11 7-10=-212/127	=-146/110,	11	recommende UPLIFT at jt(connection is	(s) 2, 8, 12, 13, 14, s for uplift only and	to bear 11, 10,	ing walls due and 8. This					SE 036	GILBE	Ruman	
NOTES				forces.								20111	ber 7,20)24	


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


ENGINEERING BY REENCO A MiTek Affiliate 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	G01	Monopitch	6	1	Job Reference (optional)	168686570

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:9J?nSM2QtleiTNQUoeql4rzF_lq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:37.6

Loading	(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.45	Vert(LL)	0.05	6-9	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.42	Vert(CT)	-0.08	6-9	>999	180		
TCDL	10.0	Rep Stress Incr	YES		WB	0.51	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC20	21/TPI2014	Matrix-MSH								
BCDL	10.0											Weight: 49 lb	FT = 20%
LUMBER			5) This truss ha	as been designed	for a 10.	0 psf bottom						
TOP CHORD	2x4 SP No.2				ad nonconcurrent								
BOT CHORD			6		has been designe			Opsf					
WEBS	2x4 SP No.3				n chord in all area								
BRACING					by 2-00-00 wide w		veen the bott	om					
TOP CHORD			ed or _		ny other members assumed to be:,								
	5-8-1 oc purlins, ex		7		int(s) 5 considers								
BOT CHORD	Rigid ceiling directly bracing.	applied or 8-3-12 o	c d	using ANSI/	FPI 1 angle to gra	in formul	a. Building						
REACTIONS	(size) 2=0-3-0,	5=0-1-8	0		ould verify capacity hanical connectio			-					
	Max Horiz 2=148 (LO	C 13)	9		e at joint(s) 2, 5.			0					
	Max Uplift 2=-184 (L	.C 10), 5=-169 (LC 1	10) 1		Simpson Strong-T	ie conne	ctors						
	Max Grav 2=539 (L0	C 21), 5=555 (LC 21) '		ed to connect trus			to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		UPLIFT at jt	(s) 2 and 5. This c t consider lateral f	onnectio							
TOP CHORD		493, 3-4=-104/66,	L	OAD CASE(S)		01063.							
BOT CHORD		172/880											
WEBS	3-6=-105/242, 3-5=-												
	0 0= 100/242, 0 0=	510/002											
NOTES		(2 accord such)											
	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B		Cat										
	Enclosed; MWFRS (er											minin	Mun.
	Exterior(2E) -0-10-8 to											"TH CA	Rollin
	, Exterior(2E) 7-7-12 to										AN'	R	Stall -
	left and right exposed		d							/	5.	U EEOS	Con Ving
right expo	osed; porch left and right	nt exposed;C-C for								4	Ìð	181 -	Kill
	and forces & MWFRS		;							-		·Q.	
	OL=1.60 plate grip DC											SEA	. : =
	SCE 7-16; Pr=20.0 psf (=			• -
	L=1.15); Pf=20.0 psf (L									Ξ		0363	322 : 3
DOL=1.18 Cs=1.00;	5); Is=1.0; Rough Cat E	s; Fully Exp.; Ce=0.9	1,								i (•	1 E
,	ct=1.10	on considered for th	aic								1	·	A 1. 5
design.	eu shuw ludus lidve De		110									NGINI	FERRICAS
	s has been designed fo	r greater of min roof	live								1	A GIN	ET N
	2 0 psf or 1 00 times fla											1. CAR	II BEIN

- 2) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


the second second GI 111111111 October 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	G02	Monopitch Supported Gable	1	1	Job Reference (optional)	168686571

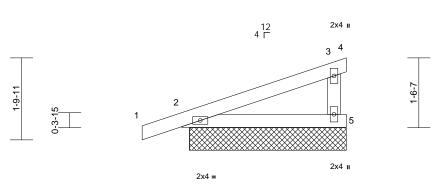
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:_?Pus1XWS1h0GXUA82Y8iGzF_IC-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

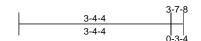
Page: 1

10-8-0	10-9-8
10-8-0	0-1-8

Scale = 1:35

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing2-CPlate Grip DOL1.1Lumber DOL1.1Rep Stress IncrYECodeIRC	5 5	CSI TC BC WB Matrix-MSH	0.18 0.06 0.05	DEFL Vert(LL) Vert(CT) Horz(CT)	in n/a n/a 0.00	(loc) - - 8	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 49 lb	GRIP 244/190 FT = 20%
	6-0-0 oc purlins, ex Rigid ceiling directly bracing. (size) 2=10-7-8 10=10-7- 13=10-7- Max Horiz 2=148 (LI Max Uplift 2=-26 (LC 9=-34 (LC 11=-32 (L 13=-26 (L 9=227 (LI 9=227 (LI	r applied or 10-0-0 oc 8 =10-7-8, 9=10-7-8, 8, 11=10-7-8, 12=10-7-8, 8 C 13), 13=148 (LC 13) C 10), 13=-13 (LC 11), C 10), 10=-34 (LC 14), C 10), 12=-44 (LC 14), C 10) C 21), 8=84 (LC 21), C 21), 10=223 (LC 21), LC 21), 12=216 (LC 1),	 Vasd=103m II; Exp B; Er and C-C Co to 7-7-12, C left and right exposed;C-C reactions sh DOL=1.60 2) Truss design only. For st see Standar or consult q 3) TCLL: ASCE Plate DOL=1.15); Cs=1.00; Ct 4) Unbalanced design. 5) This truss ha load of 12.0 overhangs r 	F7-16; Vult=130mp ph; TCDL=6.0psf; laclosed; MWFRS (emer(3E) -0-10-8 to orner(3E) -0-10-8 to orner(3E) -7-7-12 to t exposed ; end ver C for members and own; Lumber DOL: ned for wind loads uds exposed to wir d Industry Gable E ualified building des 7-16; Pr=20.0 psf (Is=1.0; Rough Cat =1.10 snow loads have t as been designed f psf or 1.00 times fl ion-concurrent with e 2x4 MT20 unless	BCDL=6 envelopp 2-1-8, E o 10-7-1; tical left forces o =1.60 pl in the pl dd (norm nd Deta signer a: (roof Ll 'Lum DC B; Fully been cor or great at roof lu	.0psf; h=25ft; exterior zor ixterior(2N) 2 z zone; cantilé and right MWFRS for ate grip ane of the tru: al to the face ils as applical s per ANSI/TF :: Lum DOL=: DL=1.15 Plate Exp.; Ce=0.5 nsidered for the er of min roof bad of 20.0 ps re loads.	ne -1-8 ever ss), ble, , 1.15 1.15); live					
FORCES	(lb) - Maximum Con Tension		Gable studs	spaced at 2-0-0 or as been designed f	o.						TH CA	B
TOP CHORD BOT CHORD	1-2=0/17, 2-3=-132/ 4-5=-78/105, 5-6=-7 7-8=-68/38		 9) * This truss on the botto 	ad nonconcurrent v has been designed m chord in all areas	l for a liv s where	e load of 20.0 a rectangle)psf		4	AN'	ORTH CA	No sin
	9-10=-46/82, 8-9=-4	6/82	chord and a	by 2-00-00 wide wi ny other members.								
WEBS	6-9=-186/114, 5-10= 3-12=-164/143	=-181/133, 4-11=-159/123	bearing plate	chanical connection e capable of withst							SEA 0363	• -
NOTES			11) One H2.5A recommend UPLIFT at jt for uplift only	uplift at joint 2. Simpson Strong-Tie ed to connect truss (s) 8, 9, 10, 11, and and does not con rd bearing condition Standard	to bear d 12. Th sider lat	ing walls due is connection eral forces.			100		A.C.A.C	EERA


October 7,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	G03	Monopitch Supported Gable	1	1	Job Reference (optional)	168686572

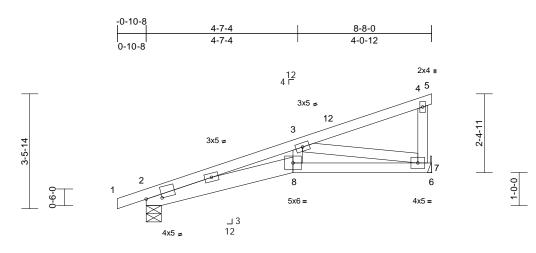
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:05Rb2nqdzWbg0FxJai2r9FzF_oh-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Scale = 1:25.4

		i			i								
Loading	(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15		TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	n/a	-	n/a	999		
TCDL	10.0	Rep Stress Incr	YES		WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
BCLL	0.0*	Code	IRC2021	I/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 14 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		4) 5)	design. This truss ha load of 12.0 overhangs n	snow loads have s been designed psf or 1.00 times f pn-concurrent with	for great lat roof le n other li	er of min roo bad of 20.0 p	f live					
TOP CHORD	Structural wood she 3-7-8 oc purlins, ex		edor 6) 7)		spaced at 2-0-0 o s been designed) psf bottom						
BOT CHORD	Rigid ceiling directly		; 8)		ad nonconcurrent has been designed								
	bracing.				n chord in all area by 2-00-00 wide w by other members hanical connection capable of withst at joint 2 and 50 Simpson Strong-Ti	ill fit betw n (by oth anding 2 lb uplift a	veen the bott ers) of truss :55 lb uplift a it joint 2.	to					
FORCES	(lb) - Maximum Com Tension	pression/Maximum	10	recommende	ed to connect trus	s to bear	ing walls due						
TOP CHORD	1-2=0/24, 2-3=-61/5 3-5=-428/353	8, 3-4=-88/63,	11	does not con	 s) 5. This connect sider lateral force d bearing condition 	s.		nu					
BOT CHORD	2-5=-15/66			AD CASE(S)	•								
NOTES					Clandara								
Vasd=103 II; Exp B; I and C-C C to 3-7-8 zc	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B Enclosed; MWFRS (er Corner(3E) -0-10-8 to 2 one; cantilever left and t and right exposed;C-	CDL=6.0psf; h=25ft; ivelope) exterior zon -1-8, Exterior(2N) 2- right exposed ; end	е								AN AN	OP. FESS	ROUT

- forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 2) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

Page: 1


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)


A MiTek Aff 818 Soundside Road Edenton, NC 27932

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	H01	Monopitch	9	1	Job Reference (optional)	168686573

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:Dy_JjEEKvGAptckEgqDBdczF_tK-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

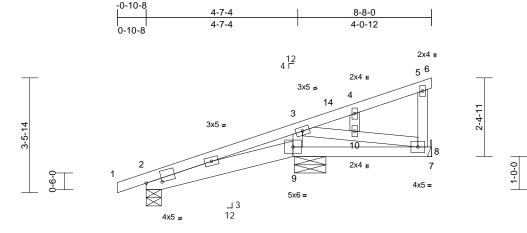
Scale = 1:35

Plate Offsets (X, Y): [2:0-5-12,0-1-0]

												-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.33 0.39 0.43	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.06 -0.09 0.03	(loc) 8 8 7	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 41 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS NOTES	 2x6 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-8-12 oc purlins, e Rigid ceiling directly bracing. (size) 2=0-5-8, 7 Max Horiz 2=108 (L0 Max Uplift 2=-75 (L0 Max Grav 2=462 (L0 (Ib) - Maximum Com Tension 1-2=0/17, 2-3=-1495 4-5=-8/0, 4-7=-179/5 	athing directly applie xcept end verticals. applied or 7-10-7 or 7= Mechanical C 11) C 10), 7=-67 (LC 14) C 21), 7=478 (LC 21) pression/Maximum 5/573, 3-4=-60/53, 34 e-558/1308, 6-7=0/0	c 7) 8)) 9) 1(load of 12.0 overhangs r This truss h chord live loi * This truss on the botto 3-06-00 tall chord and a 9 Refer to girc 9 Bearing at jo using ANSI/ designer sh 9 Provide mee bearing plat 7. 0) One H2.5A recommend UPLIFT at jt	as been designed psf or 1.00 times ion-concurrent wit as been designed ad nonconcurrent has been designe m chord in all aree by 2-00-00 wide w ny other members der(s) for truss to t oint(s) 2 considers TPI 1 angle to gra ould verify capacit chanical connectio e capable of withs Simpson Strong-T ed to connect trus (s) 2. This connec insider lateral force) Standard	flat roof le h other lin for a 10.1 with any d for a liv as where vill fit betw s. russ conr parallel in formul y of bear n (by oth tanding 6 ie conne s to bear tion is foi	bad of 20.0 p ve loads.) psf bottom other live load e load of 20. a rectangle ween the bott nections. o grain value a. Building ng surface. ers) of truss i7 lb uplift at ctors ing walls due	osf on ads. .0psf tom e to joint e to					
Vasd=10 II; Exp B; and C-C 1-11-13 t cantileve right expo for reaction DOL=1.6	SCE 7-16; Vult=130mph)3mph; TCDL=6.0psf; B ; Enclosed; MWFRS (er Exterior(2E) -0-10-8 to to 5-8-0, Exterior(2E) 5- r left and right exposed osed;C-C for members ions shown; Lumber DC 30 SCE 7 16; Br 20.0 pcf (CDL=6.0psf; h=25ft; ivelope) exterior zor 1-11-13, Interior (1) 8-0 to 8-8-0 zone; ; end vertical left an and forces & MWFR DL=1.60 plate grip	d S							<u>U</u>		ORTH CA	• -

- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 3) Unbalanced snow loads have been considered for this design.

SEAL 036322 October 7,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	H02	Monopitch Structural Gable	1	1	Job Reference (optional)	168686574

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:j7LOAWWFe1s7RV5MhJbHFGzF_qO-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0-5-8				8-8-0
	4-5-8	5-5-8	8-4-12	
0-5-8	4-0-0	1-0-0	2-11-4	0-3-4

Scale = 1:35

Plate Offsets (X, Y): [2:0-5-12,0-1-0]

		-										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER TOP CHORI	(psf) 20.0 20.0 10.0 0.0* 10.0 D 2x4 SP No.2	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code		4 CSI TC BC WB Matrix-MP ASCE 7-16; Pr=20.0 DOL=1.15); Pf=20.0 p		Vert(CT) Horz(CT)		(loc) 8-9 8-9 8	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 42 lb	GRIP 244/190 FT = 20%
BOT CHORI WEBS OTHERS BRACING TOP CHORI BOT CHORI REACTIONS	 D 2x6 SP No.2 *Excep 2x4 SP No.3 2x4 SP No.3 D Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 	eathing directly applied iccept end verticals. v applied or 10-0-0 oc 8= Mechanical, 9=0-11 C 11) C 10), 8=-30 (LC 14),	or 50 Gable 6) Gable 1-8 70 Hold 1-8 70 Hold 70 Fins tr 1-8 70 Hold 70 Fins tr 1-8 70 Hold 70 Hold 71	I.15); Is=1.0; Rough (00; Ct=1.10 anced snow loads hav uss has been designed 12.0 psf or 1.00 time ings non-concurrent to studs spaced at 2-0-0 uss has been designed tive load nonconcurrent truss has been designed bottom chord in all a	Cat B; Fully ve been co ed for great es flat roof I with other Ii 0 oc. ed for a 10. nt with any ned for a liv reas where	Exp.; Ce=0. hsidered for the er of min roo oad of 20.0 p ve loads. 0 psf bottom other live load of 20.0 p ve loads of 20.0 p a rectangle	9; this of live osf on ads. .0psf					
FORCES TOP CHORI BOT CHORI WEBS	Max Grav 2=242 (Ld 9=468 (Ld (lb) - Maximum Com Tension D 1-2=0/17, 2-3=-162/ 4-5=-39/45, 5-6=-8// D 2-9=-114/205, 8-9=-	C 21), 8=230 (LC 21), C 21) npression/Maximum /58, 3-4=-59/41, 0, 5-8=-136/67	chord 9) Refer 10) Bearin using a design 11) Provid bearin 113, 8 and	0 tall by 2-00-00 wide and any other membe o girder(s) for truss to g at joint(s) 2 conside ANSI/TPI 1 angle to g er should verify capa e mechanical connec g plate capable of wit 70 lb uplift at joint 9. 2.5A Simpson Strong.	ers. o truss coni ers parallel grain formul city of bear tion (by oth hstanding 3	nections. to grain value a. Building ing surface. iers) of truss 30 lb uplift at	e to				WTH CA	Route
Vasd=10 II; Exp B and C-C 1-11-13 cantileve right exp for react DOL=1.0 2) Truss de	SCE 7-16; Vult=130mph 03mph; TCDL=6.0psf; B 8; Enclosed; MWFRS (er Exterior(2E) -0-10-8 to to 5-8-0, Exterior(2E) 5- er left and right exposed posed;C-C for members ions shown; Lumber DC 60 esigned for wind loads in or studs exposed to wing	CDL=6.0psf; h=25ft; C nvelope) exterior zone 1-11-13, Interior (1) 8-0 to 8-8-0 zone; ; end vertical left and and forces & MWFRS DL=1.60 plate grip to the plane of the truss	UPLIF Sat. does r LOAD CA	mended to connect tr T at jt(s) 2. This conn ot consider lateral fo SE(S) Standard	ection is fo					A A A A A A A A A A A A A A A A A A A	SEA 0363	• -

- 1-11-13 to 5-8-0, Exterior(2E) 5-8-0 to 8-8-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss 2) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

GI

40000 October 7,2024

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	J01	Jack-Open	9	1	Job Reference (optional)	168686575

4-3-12

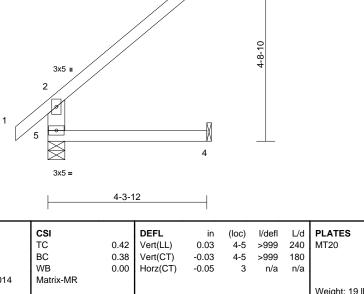
4-3-12

12 10 Г

-0-10-8

0-10-8

4-8-10


1-1-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

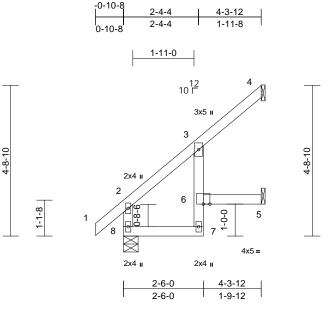
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:V2oQBoPYH7utveOVByLi8wyX0o9-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

3

Page: 1

Scale = 1:31.3

Loading (psf)	Spacing 2-0-0)	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof) 20.0	Plate Grip DOL 1.15		тс	0.42	Vert(LL)	0.03	4-5	>999	240	MT20	244/190
Snow (Pf) 20.0	Lumber DOL 1.15		BC	0.38	Vert(CT)	-0.03	4-5	>999	180		
TCDL 10.0	Rep Stress Incr YES		WB	0.00	Horz(CT)	-0.05	3	n/a	n/a		
BCLL 0.0*	Code IRC2	021/TPI2014	Matrix-MR								
BCDL 10.0										Weight: 19 lb	FT = 20%
4-3-12 oc purlins, ex BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3= Mechan 5=0-5-8 Max Horiz 5=10-5-8 Max Horiz Max Uplift 3=-98 (LC Max Grav 3=185 (LC)	applied or 10-0-0 oc nical, 4= Mechanical, : 14)	 on the bottor 3-06-00 tall b chord and ar 7) Bearings are 8) Refer to gird 9) Provide meci 		where I fit betw Joint 5 L Uss con (by oth	a rectangle veen the botte Jser Defined nections. ers) of truss t	om to					
(LC 21) FORCES (Ib) - Maximum Com	oression/Maximum										
Tension											
TOP CHORD 2-5=-307/90, 1-2=0/4 BOT CHORD 4-5=0/0	2, 2-3=-154/91										
NOTES											
 Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; BC II; Exp B; Enclosed; MWFRS (em and C-C Exterior(2E) zone; cantil exposed ; end vertical left and rig members and forces & MWFRS f Lumber DOL=1.60 plate grip DOI TCLL: ASCE 7-16; Pr=20.0 psf (r Plate DOL=1.15); Pf=20.0 psf (LU DOL=1.15); Is=1.0; Rough Cat B: Cs=1.00; Ct=1.10 Unbalanced snow loads have bee design. This truss has been designed for load of 12.0 psf or 1.00 times flat overhangs non-concurrent with o This truss has been designed for chord live load nonconcurrent wit 	DL=6.0psf; h=25ft; Cat. velope) exterior zone ever left and right ht exposed;C-C for ior reactions shown; L=1.60 oof LL: Lum DOL=1.15 Im DOL=1.15 Plate ; Fully Exp.; Ce=0.9; en considered for this greater of min roof live roof load of 20.0 psf on ther live loads. a 10.0 psf bottom							With the second		SEA 0363	


October 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type Qty Ply 49 Serenity-R		49 Serenity-Roof-B330 E CP TMB GLH		
24090147-01	J02	Jack-Open	5	1	Job Reference (optional)	168686576

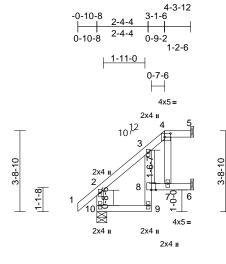
Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:v4QigB16ac_HhtWXtyIRNOyX0oe-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

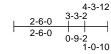
Page: 1

Scale = 1:36.1

Scale = 1.50.1													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/7	TPI2014	CSI TC BC WB Matrix-MR	0.27 0.33 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.03 -0.05 -0.03	(loc) 7 7 4	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 22 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-3-12 oc purlins, e Rigid ceiling directly bracing. (size) 4= Mecha 8=0-5-8 8ax Horiz 8=141 (LC Max Uplift 4=-71 (LC Max Grav 4=156 (LC 	athing directly applie xcept end verticals. applied or 10-0-0 or anical, 5= Mechanica C 14) C 14), 5=-35 (LC 14) C 21), 5=94 (LC 21),	6) ed or 7) c 8) c 9) al, LOA	chord live loa * This truss h on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate	s been designed d nonconcurrent as been designe n chord in all area y 2-00-00 wide w y other members assumed to be:, er(s) for truss to nanical connectio capable of withs plift at joint 5. Standard	with any d for a liv as where rill fit betw Joint 8 t truss con n (by oth	other live load e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss	Opsf tom to					
FORCES	8=327 (L0 (Ib) - Maximum Com	,											
TOP CHORD	Tension 2-8=-296/67, 1-2=0/ 3-4=-95/87	39, 2-3=-211/0,											
BOT CHORD		8/40, 3-6=-47/69, 5-	6=0/0										
NOTES		(a 1))											
Vasd=103 II; Exp B; and C-C I exposed members Lumber D 2) TCLL: AS	CE 7-16; Vult=130mph 3mph; TCDL=6.0psf; B' Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and rig and forces & MWFRS DOL=1.60 plate grip DC SCE 7-16; Pr=20.0 psf (CDL=6.0psf; h=25ft; hvelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown L=1.60 roof LL: Lum DOL=1	ie ; 1.15							4	in the second second	OR OFESS	1 may
	L=1.15); Pf=20.0 psf (L 5); Is=1.0; Rough Cat E Ct-1 10									1111		0363	• -
	ced snow loads have be	een considered for th	nis										
4) This truss load of 12	s has been designed for 2.0 psf or 1.00 times fla js non-concurrent with o	t roof load of 20.0 ps									in the	SEA 0363	EEP. ALUNIN

- 2) OL=1.15 20.0 pst (root Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- Unbalanced snow loads have been considered for this 3) design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.


GI A. GIL October 7,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	J03	Jack-Open	1	1	Job Reference (optional)	168686577

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:fpKRfUW7iOZN1GkGsQ0L8JyX0pJ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.9

Plate Offsets (X, Y): [4:0-3-4,0-2-0]

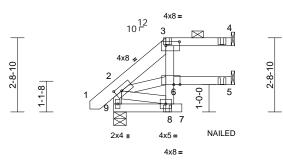
Loading TCLL (roof) Snow (Pf) TCDL	(psf) 20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES		CSI TC BC WB	0.19 0.25 0.02	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.03 -0.03 -0.03	(loc) 7-8 7-8 5	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20	GRIP 244/190
BCLL BCDL	0.0* 10.0	Code	IRC2021/	TPI2014	Matrix-MSH							Weight: 24 lb	FT = 20%
LUMBER TOP CHORE BOT CHORE WEBS BRACING TOP CHORE BOT CHORE REACTIONS	 2x4 SP No.2 2x4 SP No.2 *Excep 2x4 SP No.3 Structural wood she 4-3-12 oc purlins, e 2-0-0 oc purlins: 4-5 Rigid ceiling directly bracing. 	athing directly applie xcept end verticals, applied or 10-0-0 or anical, 6= Mechanica _C 14) C 11), 6=-40 (LC 14) 37), 6=-115 (LC 38), _C 38)	5) and or 6) and 7) 5, 8) 1, 9) 10) 11)	design. This truss ha load of 12.0 µ overhangs ni Provide adec This truss ha chord live loa * This truss tha chord live loa * on the bottor 3-06-00 tall b chord and ar Bearings are Refer to gird Provide mec bearing plate	snow loads have I s been designed f port 1.00 times fi port concurrent with quate drainage to p s been designed n chord in all area by 2-00-00 wide wi y other members. assumed to be: , er(s) for truss to th hanical connectior o capable of withst plift at joint 6.	or great lat roof lo other lin prevent o or a 10. with any l for a liv s where ll fit betv Joint 10 russ con o (by oth	er of min rooi oad of 20.0 p ve loads. vater pondin 0 psf bottom other live loa e load of 20. a rectangle veen the bott User Define- nections. ers) of truss	f live isf on g. ads. Opsf om d . to					
TOP CHORE	Tension		,		rlin representation ation of the purlin a			size					
BOT CHORD	3-4=-55/68, 4-5=0/0 9-10=-86/88, 8-9=-1 6-7=0/0		1.04	AD CASE(S)								, minim	11111
WEBS	4-7=-105/76											"TH UF	ROUL
this desig 2) Wind: AS Vasd=10 II; Exp B; and C-C exposed members Lumber I 3) TCLL: AS Plate DO	ced roof live loads have gn. SCE 7-16; Vult=130mph I3mph; TCDL=6.0psf; Bi ; Enclosed; MWFRS (er Exterior(2E) zone; cant ; end vertical left and rig s and forces & MWFRS DOL=1.60 plate grip DC SCE 7-16; Pr=20.0 psf (DL=1.15); Pf=20.0 psf (DL=1.15); lsf=1.0; Rough Cat	(3-second gust) CDL=6.0psf; h=25ft; vvelope) exterior zon ilever left and right ght exposed;C-C for for reactions shown DL=1.60 roof LL: Lum DOL=1	Cat. e .15							4		SEA 0363	EER HILL

Lumber DOL=1.60 plate grip DOL=1.60 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 3) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

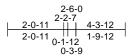
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932

October 7,2024


A. GI The Given

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	J04	Jack-Open Girder	1	1	Job Reference (optional)	168686578


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:XhtzWA7?n34ikbRAdmSN_3yX0r6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

-0-10-8 | 1-10-15 4-3-12 0-10-8 1-10-15 2-4-13

NAILED NAILED

Scale = 1:42.3

Plate Offsets (X, Y): [2:0-2-14,0-2-0], [3:0-6-0,0-1-12], [6:0-2-12,Edge]

Loading	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15		CSI TC	0.85	DEFL Vert(LL)	in -0.07	(loc) 7	l/defl >726	L/d 240	PLATES MT20	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15		BC	0.05	Vert(CT)	-0.11	7	>436	180		
TCDL	10.0	Rep Stress Incr	NO		WB	0.06	Horz(CT)	0.12	4	n/a	n/a		
BCLL	0.0*	Code	IRC202	1/TPI2014	Matrix-MP								
BCDL	10.0											Weight: 28 lb	FT = 20%
UMBER			4)	Unbalanced	snow loads have	been cor	sidered for t	his		Vert: 1-2	2=-60,	2-3=-60, 3-4=-6	0, 7-9=-20, 5-6=-20
OP CHORD	2x6 SP No.2 *Excer	ot* 3-4:2x4 SP No.2		design.					Co	oncentra	ted Lo	ads (lb)	
BOT CHORD	2x4 SP No.2		5)		as been designed					Vert: 3=	-101 (l	B), 4=-81 (B), 5=	-56 (B), 8=-32 (B)
VEBS	2x4 SP No.3				psf or 1.00 times			sf on					
RACING					on-concurrent wi								
OP CHORD	Structural wood she	athing directly appli	ed or 6)		quate drainage to			g.					
		except end verticals,			as been designed								
	2-0-0 oc purlins: 3-4	1.			ad nonconcurren								
BOT CHORD	Rigid ceiling directly	applied or 10-0-0 o	c 8)		has been designe			Upst					
	bracing.			on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom									
REACTIONS	(size) 4= Mecha	anical, 5= Mechanica	al,				veen the bott	om					
	9=0-5-8		9)		ny other member		loor Dofined						
	Max Horiz 9=71 (LC	53)	- /		e assumed to be: er(s) for truss to			•					
	Max Uplift 4=-85 (L0	C 9), 5=-7 (LC 8), 9=			hanical connection			-					
	(LC 12)		I		e capable of with								
	Max Grav 4=308 (L	C 33), 5=77 (LC 1),	9=362		blift at joint 5.	stanuing c	o in uplint at j	om					
	(LC 34)		11		Simpson Strong-		otore						
ORCES	(lb) - Maximum Con	npression/Maximum	14		ed to connect true			to					
	Tension				(s) 9. This conne								
OP CHORD	2-9=-337/47, 1-2=0/	/52, 2-3=-175/35, 3-4	4=0/0		sider lateral forc		upint only u						
BOT CHORD	8-9=-89/109, 7-8=0/	/0, 5-6=0/0	13		Irlin representation		ot depict the	size					11.
VEBS	6-8=-8/119, 3-6=0/1	56, 2-8=-100/94,			ation of the purlin							WITH CA	1111
	2-6=-51/3			bottom chor		along in						ORTH CA	Bolly
OTES			14	4) "NAILED" in	dicates 3-10d (0.	148"x3") (or 3-12d				S	A	Si State
) Unbalanc	ed roof live loads have	been considered fo			5") toe-nails per N						52	FESC	10 million
this desig				5) Hanger(s) o	other connection	n device(s) shall be			4			
	CE 7-16; Vult=130mpl	n (3-second gust)			ficient to support			9 lb			-		
Vasd=103	Bmph; TCDL=6.0psf; B	CDL=6.0psf; h=25ft	Cat.	down and 3	5 lb up at 4-3-0 c	n top cho	rd, and 56 lb			-		SEA	i :
II; Exp B;	Enclosed; MWFRS (e	nvelope) exterior zor	ne;	down and 19) lb up at 4-3-0 c	n bottom	chord. The			=	:		•
a a m til a v a m	left and right exposed	; end vertical left an			tion of such conr	ection de	vice(s) is the			1		0363	322 :
cantilever													
	sed; Lumber DOL=1.6	60 plate grip DOL=1.		responsibilit	of others. CASE(S) section						- 0		

 TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 16) In the LOAD CASE(S) section, loads applied to the face of the truss are noted as front (F) or back (B).

LOAD CASE(S) Standard

 Dead + Snow (balanced): Lumber Increase=1.15, Plate Increase=1.15

Uniform Loads (lb/ft)

TRENCO A MiTek Affiliat

818 Soundside Road Edenton, NC 27932

G

October 7,2024

Minimum

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	J05	Jack-Open	1	1	Job Reference (optional)	168686579

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:52 ID:I3HEZACKhiVUdwdZAo5Zu1yX0sI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

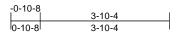
2-5-8 3-10-4 2-5-8 1-4-12

Scale = 1:34.5

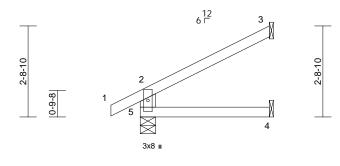
Scale = 1:34.5												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.15	TC	0.18		-0.01	7	>999	240	MT20	244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.25	- (-)	-0.02	7	>999	180		
TCDL	10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.01	5	n/a	n/a		
BCLL	0.0*	Code	IRC2021/TPI	2014 Matrix	-MR							
BCDL	10.0						-		_		Weight: 17 lb	FT = 20%
LUMBER			5) Thi	s truss has been	designed for a 10	0.0 psf bottom						
TOP CHORD				rd live load nonce								
BOT CHORD	2x4 SP No.2 *Excep	ot* 7-3:2x4 SP No.3		nis truss has beer			.0psf					
WEBS	2x6 SP No.2			he bottom chord								
BRACING			aha	6-00 tall by 2-00- rd and any other		tween the bot	tom					
TOP CHORD				arings are assume		User Defined	4					
	3-10-4 oc purlins, e		Ó D-4	er to girder(s) for								
BOT CHORD	Rigid ceiling directly bracing.	applied of 10-0-0 o		vide mechanical			to					
REACTIONS	0	anical, 5= Mechanica		ring plate capabl		36 lb uplift at	joint					
REACTIONO	(3120) 4= Mcone 8=0-5-8		⁄ 4 a	nd 11 lb uplift at j								
	Max Horiz 8=75 (LC	14)		H2.5A Simpson								
	Max Uplift 4=-36 (LC	C 14), 5=-11 (LC 14)		ommended to cor LIFT at jt(s) 8. Th								
	8=-19 (LC	,	doe	s not consider lat		or upint only c						
	Max Grav 4=119 (L0 8=325 (L0			CASE(S) Stand								
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD	2-8=-300/127, 1-2=0 3-4=-42/47	0/47, 2-3=-155/0,										
BOT CHORD	7-8=-71/84, 6-7=-3/4	41, 3-6=-30/55, 5-6=	:0/0									
NOTES												
	CE 7-16; Vult=130mph										WITH CA	in the
	3mph; TCDL=6.0psf; B									-	ITH UF	ROUL
	Enclosed; MWFRS (er		ne							15	A SEGO	in the last
	Exterior(2E) zone; cant ; end vertical left and ri								6	12	190	NA
	and forces & MWFRS								-	V		min
	OL=1.60 plate grip DC		,						1			. i i i i i
2) TCLL: AS	SCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=	1.15								SEA	
	L=1.15); Pf=20.0 psf (L										0363	22 : =
	5); Is=1.0; Rough Cat E	3; Fully Exp.; Ce=0.9	9;						-			- 1 2
Cs=1.00;	Ct=1.10 ed snow loads have be	on considered for th	, io							2	No. of the second second	1 3
design.	eu shuw luaus have be		115								NO.	FER. X S
	s has been designed fo	r greater of min roof	live							1	A GIN	F. 64 N
	2 0 psf or 1 00 times fla									1	ICA -	BEN

- DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10 3) Unbalanced snow loads have been considered for this
- design.
- 4) This truss has been designed for greater of min roof live load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

G


11111111 October 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Schut Information, purplication component of component development properties. and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	J06	Jack-Open	1	1	Job Reference (optional)	168686580

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:53 ID:OqywyfxXsyjc_YyKtBiO?PyX0se-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

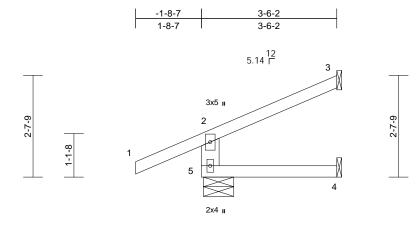
Page: 1

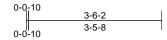
Special

3-10-4

Scale =	1:34.4
---------	--------

Scale = $1:34.4$													
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TP	PI2014	CSI TC BC WB Matrix-MR	0.27 0.15 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.01 -0.02 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD BOT CHORD REACTIONS FORCES TOP CHORD BOT CHORD BOT CHORD NOTES 1) Wind: ASG Vasd=103 II; Exp B; I and C-C E exposed ; members Lumber DD 2) TCLL: ASC Plate DOL DOL=1.15 Cs=1.00; (3) Unbalance design. 4) This truss load of 12 overhangs	2x4 SP No.2 2x4 SP No.2 2x6 SP No.2 Structural wood she 3-10-4 oc purlins, e Rigid ceiling directly bracing. (size) 3= Mecha 5=0-5-8 Max Horiz 5=75 (LC Max Uplift 3=-76 (LC (LC 21) (lb) - Maximum Corr Tension 2-5=-298/144, 1-2=(4-5=0/0 CE 7-16; Vult=130mph imph; TCDL=6.0psf; B Enclosed; MWFRS (er ixterior(2E) zone; cant end vertical left and ri end spow loads have be has been designed fo .0 psf or 1.00 times fla s non-concurrent with o	r applied or 10-0-0 or anical, 4= Mechanica 14) C 14), 5=-19 (LC 14) C 21), 4=84 (LC 7), 5 apression/Maximum 0/47, 2-3=-87/49 a (3-second gust) CDL=6.0psf; h=25ft; velope) exterior zon ilever left and right ght exposed; C-C for for reactions shown DL=1.60 (roof LL: Lum DOL=1 um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9 een considered for th r greater of min roof t roof load of 20.0 ps other live loads.	on 3-4 ch 7) Be 3. 7) Be 3. 10) Or 9) Pr 5 3. 10) Or 9) Pr 5 3. 10) Or 9) Pr 6 3. 10) Or 9) 11) Ha 10 40 40 40 40 40 40 40 40 40 40 40 40 40	the bottom 06-00 tall b ord and an earings are efer to gird ovide mecle earing plate the H2.5A S commende PLIFT at jt(bes not con anger(s) or ovided suff own and 61 own and 61	CASE(S) section, ire noted as front (Standard ow (balanced): Lun .15	s where Il fit betw Joint 5 L uss con a (by oth anding 7 e conner to bear ion is for 3. device(s oncentre top cho pottom c ction de loads a F) or ba	a rectangle veen the bott Jser Defined nections. ers) of truss t 6 lb uplift at j ctors ing walls due uplift only ar) shall be atted load(s) 7 rd, and 19 lb hord. The vice(s) is the oplied to the st ck (B).	om to joint eto nd 77 lb				SEA 0363	ROLL 22 EER. R. MILL
	has been designed fo load nonconcurrent w		ls.									201111	


October 7,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

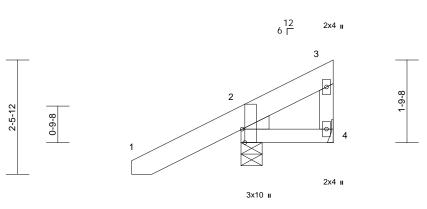
Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	J07	Jack-Open	1	1	Job Reference (optional)	168686581

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:53 ID:kR7g9IzLiNeyOFqyCNGemXyX0tu-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.8

Scale = 1:29.8											
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL Lumber DOL Rep Stress Incr	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC BC WB Matrix-MR	0.40 0.11 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.01 -0.01 0.01	(loc) 4-5 4-5 3	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 15 lb	GRIP 244/190 FT = 20%
BOT CHORD 3-6-2 oc purlins, exc BOT CHORD Rigid ceiling directly bracing. REACTIONS (size) 3= Mecha 5=0-9-7 Max Horiz 5=66 (LC Max Uplift 3=-45 (LC	applied or 10-0-0 oc nical, 4= Mechanical, 11)	chord live loa 6) * This truss h on the bottor 3-06-00 tall b chord and ar 7) Bearings are 8) Refer to gird 9) Provide mec bearing plate 5 and 45 lb u LOAD CASE(S)	is been designed i ad nonconcurrent has been designee n chord in all area by 2-00-00 wide w by other members assumed to be: , er(s) for truss to t hanical connection o capable of withst plift at joint 3. Standard	with any d for a liv as where ill fit betv Joint 5 L russ con n (by oth	other live loa e load of 20. a rectangle veen the bott Jser Defined nections. ers) of truss	0psf om to					
 FORCES (Ib) - Maximum Com Tension TOP CHORD 2-5=-371/240, 1-2=0 BOT CHORD 4-5=0/0 NOTES 1) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; Bd II; Exp B; Enclosed; MWFRS (en and C-C Corner (3) -1-8-7 to 2-6 3-5-6 zone; cantilever left and rig vertical left and right exposed;C- forces & MWFRS for reactions si DOL=1.60 plate grip DOL=1.60 2) TCLL: ASCE 7-16; Pr=20.0 psf (Li DOL=1.15); Pf=20.0 psf (Li DOL=1.15); Is=1.0; Rough Cat B Cs=1.00; Ct=1.10 3) Unbalanced snow loads have be design. 4) This truss has been designed for load of 12.0 psf or 1.00 times flat overhangs non-concurrent with c 	, (3-second gust) CDL=6.0psf; h=25ft; Ca velope) exterior zone -8, Exterior(2R) 2-6-8 t ght exposed ; end C for members and hown; Lumber roof LL: Lum DOL=1.1 um DOL=1.15 Plate ; Fully Exp.; Ce=0.9; een considered for this r greater of min roof livit t roof load of 20.0 psf co	to 5						W. TITTING.		SEA 0363	EER. A.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent outlapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	K01	Jack-Closed	3	1	Job Reference (optional)	168686582

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:53 ID:5qqpIGIqPiFCjIDmL6TpVIypb7j-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

2-0-0

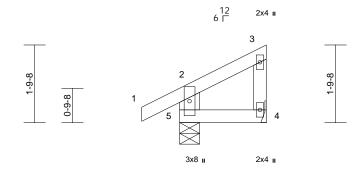
Scale = 1:25	
--------------	--

Plate Offsets (X, Y): [2:0-3-8,Edge]

Plate Olisets (X, Y): [2:0-3-8,Edge]											
Loading (psf) TCLL (roof) 20.0 Snow (Pf) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.Lumber DOL1.Rep Stress IncrYE	0-0 15 15 ES C2021/TPI2014	CSI TC BC WB Matrix-MP	0.22 0.06 0.00	DEFL Vert(LL) Vert(CT) Horz(CT)	in 0.00 0.00 0.00	(loc) 4-7 4-7 2	l/defl >999 >999 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
2-0-0 oc purlins, ex BOT CHORD Rigid ceiling directly bracing.	4= Mechanical 13) C 14), 4=-38 (LC 20) C 21), 4=32 (LC 10)	 on the bottor 3-06-00 tall b chord and ar 7) All bearings and 8) Refer to girdd 9) Provide mech bearing plate 4. 10) One H2.5A S recommende UPLIFT at jt(has been designed f n chord in all areas by 2-00-00 wide will by other members. are assumed to be l er(s) for truss to trus hanical connection is capable of withstar Simpson Strong-Tie ed to connect truss t s) 2. This connectio sider lateral forces. Standard	where fit betv User D ss conr (by oth nding 3 conne to bear on is for	a rectangle veen the botto efined . nections. ers) of truss to 8 lb uplift at jo ctors ng walls due	om o pint to					
Tension TOP CHORD 1-2=0/89, 2-3=-90/1 BOT CHORD 2-4=-69/40											
 NOTES 1) Wind: ASCE 7-16; Vult=130mph Vasd=103mph; TCDL=6.0psf; B II; Exp B; Enclosed; MWFRS (er and C-C Exterior(2E) zone; cant exposed ; end vertical left and rig members and forces & MWFRS Lumber DOL=1.60 plate grip DC 2) TCLL: ASCE 7-16; Pr=20.0 psf (L DOL=1.15); Is=1.0; Rough Cat E Cs=1.00; Ct=1.10 3) Unbalanced snow loads have be design. 4) This truss has been designed fo load of 12.0 psf or 1.00 times fla overhangs non-concurrent with o chord live load nonconcurrent wit 	CDL=6.0psf; h=25ft; Cat. nvelope) exterior zone illever left and right ght exposed;C-C for for reactions shown; DL=1.60 (roof LL: Lum DOL=1.15 .um DOL=1.15 Plate 3; Fully Exp.; Ce=0.9; een considered for this r greater of min roof live t roof load of 20.0 psf on other live loads. r a 10.0 psf bottom							Man Hanne		SEA 0363	EEP C

October 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	K02	Jack-Closed	3	1	Job Reference (optional)	168686583

-0-10-8 0-10-8 2-0-0

2-0-0

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:53 ID:VtS5FgN0jBLcVXLp15PXIDypb8C-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1.26.6

BRACING

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

Cs=1.00; Ct=1.10

desian.

NOTES

2)

3)

4)

5)

REACTIONS (size)

bracing.

Tension

3-4=-60/32

4-5=-21/32

Max Horiz 5=60 (LC 13)

Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone

and C-C Exterior(2E) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for

members and forces & MWFRS for reactions shown;

Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate

DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9;

Unbalanced snow loads have been considered for this

This truss has been designed for greater of min roof live

This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

load of 12.0 psf or 1.00 times flat roof load of 20.0 psf on overhangs non-concurrent with other live loads.

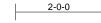
TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15

Lumber DOL=1.60 plate grip DOL=1.60

Structural wood sheathing directly applied or

4= Mechanical, 5=0-5-8

2-0-0 oc purlins, except end verticals.


Rigid ceiling directly applied or 6-0-0 oc

Max Uplift 4=-21 (LC 11), 5=-30 (LC 14)

Max Grav 4=54 (LC 21), 5=214 (LC 21)

(lb) - Maximum Compression/Maximum

2-5=-191/120, 1-2=0/43, 2-3=-42/31,

(psf) 20.0	Spacing Plate Grip DOL	2-0-0	csi								
	Plate Grip DOL				DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
00.0		1.15	TC	0.12	Vert(LL)	0.00	4-5	>999	240	MT20	244/190
20.0	Lumber DOL	1.15	BC	0.02	Vert(CT)	0.00	4-5	>999	180		
10.0	Rep Stress Incr	YES	WB	0.00	Horz(CT)	0.00	4	n/a	n/a		
0.0*	Code	IRC2021/TPI2014	Matrix-MR								
10.0										Weight: 11 lb	FT = 20%
10.0 W 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle									Weight: 11 lb	FT = 20%	
5	0.0* 10.0 SP No.2 SP No.2	0.0* Code 10.0 SP No.2	0.0* Code IRC2021/TPI2014 10.0 6) * This truss SP No.2 on the bott SP No.2 3-06-00 tall	0.0* Code IRC2021/TPI2014 Matrix-MR 10.0 6) * This truss has been design on the bottom chord in all are SP No.2 on the bottom chord in all are 3-06-00 tall by 2-00-00 wide	0.0* Code IRC2021/TPI2014 Matrix-MR 10.0 6) * This truss has been designed for a liv on the bottom chord in all areas where SP No.2 SP No.2 3-06-00 tall by 2-00-00 wide will fit betw	0.0* Code IRC2021/TPI2014 Matrix-MR 10.0 6) * This truss has been designed for a live load of 20.0 on the bottom chord in all areas where a rectangle on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom	0.0* Code IRC2021/TPI2014 Matrix-MR 10.0 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom	0.0* Code IRC2021/TPI2014 Matrix-MR 10.0 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle SP No.2 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom	0.0* Code IRC2021/TPI2014 Matrix-MR 10.0 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle SP No.2 SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom	0.0* Code IRC2021/TPI2014 Matrix-MR 10.0 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle SP No.2 3-06-00 tall by 2-00-00 wide will fit between the bottom	0.0* Code IRC2021/TPI2014 Matrix-MR Weight: 11 lb 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle SP No.2 6) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom

7) All bearings are assumed to be User Defined .

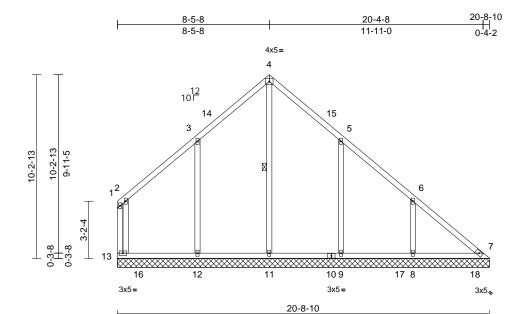
8) Refer to girder(s) for truss to truss connections.

 Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 21 lb uplift at joint 4.

 One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 5. This connection is for uplift only and does not consider lateral forces.

LOAD CASE(S) Standard

SEAL 036322 October 7,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

A MiTek Affiliate

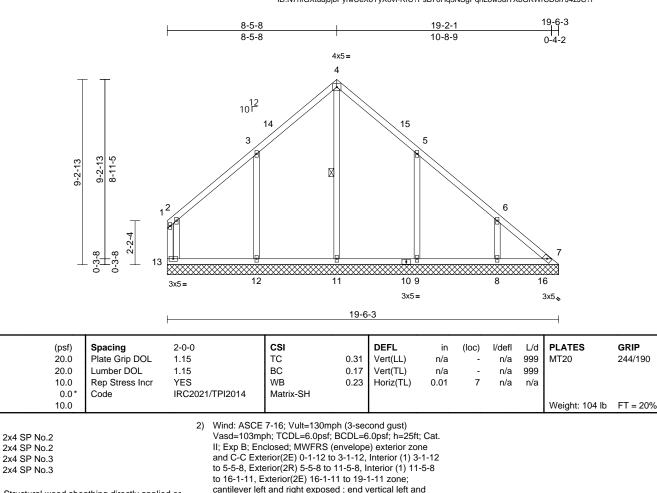
Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V1	Valley	1	1	Job Reference (optional)	168686584

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:53 ID:0RPBnd0Q4Pp01Gtzd?sLc4yX0v6-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2014	CSI TC 0.31 BC 0.20 WB 0.32 Matrix-SH	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 7	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 117 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS OTHERS BRACING TOP CHORD WEBS REACTIONS	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3 2x4 SP No.3 2x4 SP No.3 Structural wood she 6-0-0 oc purlins, ex Rigid ceiling directly bracing. 1 Row at midpt (size) 7=20-8-10 11=20-8-1 13=20-8-1 13=20-8-1 Max Horiz 13=-269 (Max Uplift 7=-119 (L 9=-162 (L 12=-175 (Max Grav 7=267 (LC 9=493 (LC 12=528 (L (lb) - Maximum Com Tension 1-13=-107/104, 1-2=	applied or 10-0-0 oc 4-11), 8=20-8-10, 9=20-8- 10, 12=20-8-10, 10 LC 10) C 11), 8=-167 (LC 15 C 15), 11=-72 (LC 12 LC 14), 13=-76 (LC 12 C 24), 8=465 (LC 25), C 6), 11=448 (LC 26), LC 5), 13=255 (LC 24	Vasd=103m II; Exp B; Er and C-C Ex to 5-5-8, Ex to 17-4-1, E I or left and righ exposed;C-1 reactions sh DOL=1.60 3) Truss desig only. For st see Standar or consult q 4) TCLL: ASCI Plate DOL=), Cs=1.00; Cl 4) 5) Unbalanced design. 6) All plates ar 7) Gable studs 9) This truss h chord live lo 4, 10) * This truss	T-16; Vult=130mph (3-se ph; TCDL=6.0psf; BCDL= closed; MWFRS (envelop erior(2E) 0-1-12 to 3-1-12 erior(2R) 5-5-8 to 11-5-8, kterior(2E) 17-4-1 to 20-4- exposed; end vertical lef C for members and forces own; Lumber DOL=1.60 p usd exposed to wind (norr d Industry Gable End Deta jalified building designer a E 7-16; Pr=20.0 psf (roof L 1.15); Pf=20.0 psf (Lum D) Is=1.0; Rough Cat B; Fully =1.10 snow loads have been co e 2x4 MT20 unless otherw res continuous bottom cho spaced at 4-0-0 oc. as been designed for a 10 ad nonconcurrent with any has been designed for a li m chord in all areas where	6.0psf; h=25ft; (e) exterior zone Interior (1) 3-1 Interior (1) 11-5 1 zone; cantilev t and right & MWFRS for late grip lane of the trus: hal to the face), alis as applicabl is per ANSI/TPI L: Lum DOL=1. DL=1.15 Plate / Exp.; Ce=0.9; nsidered for thi ise indicated. rd bearing. 0 psf bottom / other live load ve load of 20.0p	e -12 5-8 rer s le, 15 s s.				Weight: 117 Ib	
BOT CHORD WEBS	4-11=-279/149, 3-12	-203/247, 7-8=-203/2 =-380/228,	chord and a 11) Provide med	by 2-00-00 wide will fit bet ny other members, with B chanical connection (by oth	CDL = 10.0psf. ners) of truss to			2			2 and a
NOTES 1) Unbalance this design	ed roof live loads have	-366/213, 6-8=-316/2 been considered for	13, 119 lb u	e capable of withstanding plift at joint 7, 72 lb uplift a 12, 162 lb uplift at joint 9 Standard	t joint 11, 175 lt)			A A A A A A A A A A A A A A A A A A A	SEA 0363	EER AL

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


818 Soundside Road Edenton, NC 27932

G 11111111 October 7,2024

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V2	Valley	1	1	Job Reference (optional)	168686585

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Thu Oct 03 21:11:53 ID:N7hfGXtuujJjbPyfwUeX6YyX0vI-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

BRACING									
TOP CHORD	Structura	wood sheathing directly applied or							
	6-0-0 oc p	ourlins, except end verticals.							
BOT CHORD	Rigid ceil	ing directly applied or 10-0-0 oc							
	bracing.								
WEBS	1 Row at	midpt 4-11							
REACTIONS	(size)	7=19-6-3, 8=19-6-3, 9=19-6-3,							
		11=19-6-3, 12=19-6-3, 13=19-6-3							
	Max Horiz	13=-233 (LC 10)							
	Max Uplift	7=-122 (LC 11), 8=-138 (LC 15),							
		9=-169 (LC 15), 11=-58 (LC 12),							
		12=-180 (LC 14), 13=-77 (LC 14)							
	Max Grav	7=219 (LC 24), 8=367 (LC 30),							
		9=475 (LC 6), 11=454 (LC 26),							
		12=490 (LC 5), 13=237 (LC 24)							
FORCES	(lb) - Maximum Compression/Maximum								

Tension TOP CHORD 1-13=-82/107, 1-2=-70/63, 2-3=-182/100, 3-4=-267/274, 4-5=-266/300, 5-6=-269/236, 6-7=-285/241 BOT CHORD 12-13=-178/219, 11-12=-178/219, 9-11=-178/219, 8-9=-178/219, 7-8=-178/219

- WEBS 4-11=-289/135, 3-12=-379/230, 2-13=-300/176, 5-9=-376/220, 6-8=-269/175 NOTES

Scale = 1:57.4 Loading

TCLL (roof)

Snow (Pf)

LUMBER

TOP CHORD

BOT CHORD

TCDL

BCLL

BCDL

WFBS

OTHERS

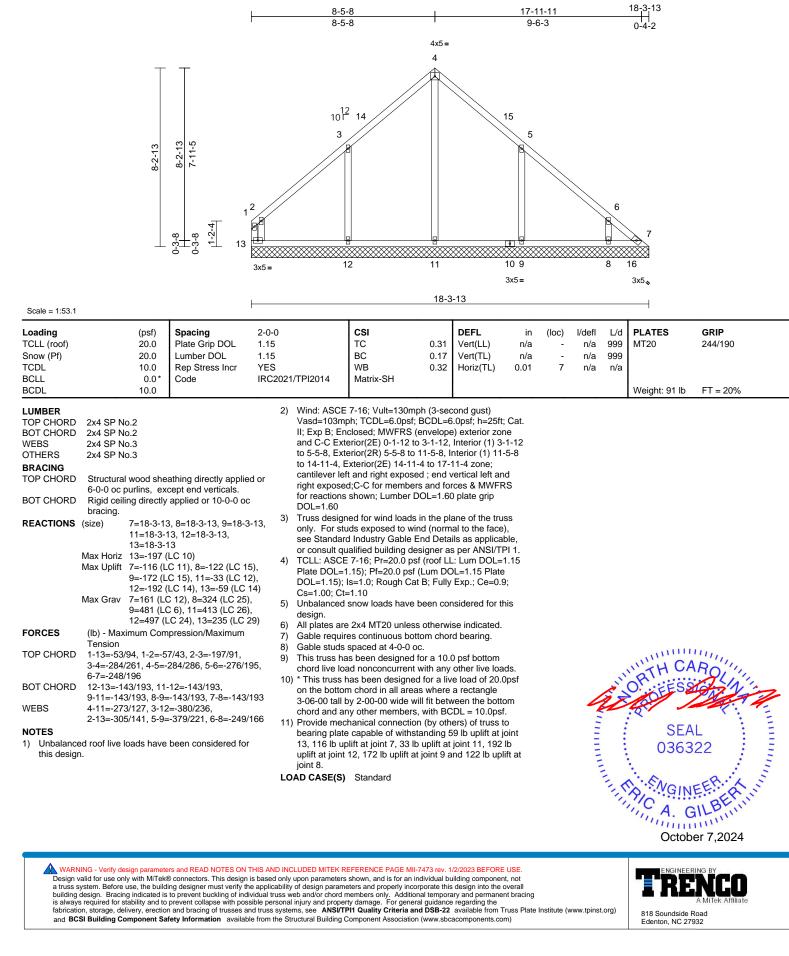
1) Unbalanced roof live loads have been considered for this design.

- cantilever left and right exposed ; end vertical left and right exposed:C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 4) Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10
- 5) Unbalanced snow loads have been considered for this design.
- All plates are 2x4 MT20 unless otherwise indicated. 6)
- Gable requires continuous bottom chord bearing. 7)
- Gable studs spaced at 4-0-0 oc. 8)
- This truss has been designed for a 10.0 psf bottom 9) chord live load nonconcurrent with any other live loads.
- 10) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf.
- 11) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 77 lb uplift at joint 13, 122 lb uplift at joint 7, 58 lb uplift at joint 11, 180 lb uplift at joint 12, 169 lb uplift at joint 9 and 138 lb uplift at ioint 8.

LOAD CASE(S) Standard

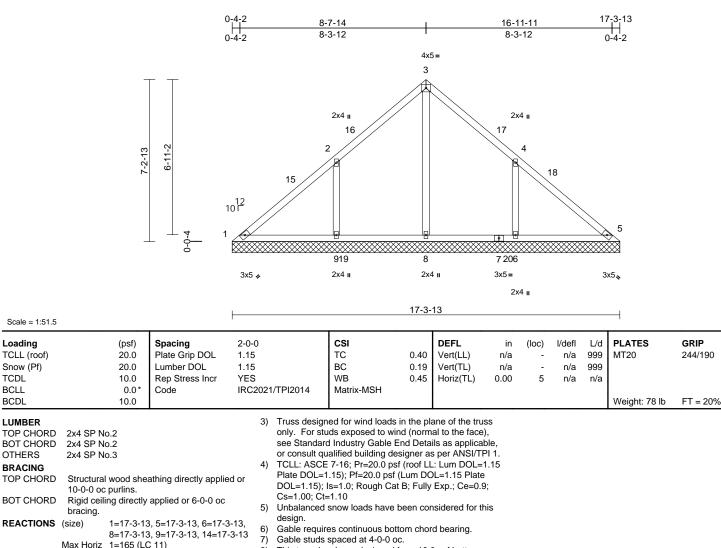
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V3	Valley	1	1	Job Reference (optional)	168686586


8-5-8

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries. Inc. Thu Oct 03 21:11:53 ID:U4wjsLdjrGfiZBrdBZmcm7yX0vd-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


17-11-11

Page: 1

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V4	Valley	1	1	Job Reference (optional)	168686587

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:53 ID:ur0Znx2c8WcWppAPNUvMp?yX0wN-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

- Max Horiz 1=165 (LC 11) 1=-58 (LC 10), 6=-189 (LC 15), Max Uplift 9=-195 (LC 14) 1=87 (LC 35), 5=1 (LC 25), 6=529 Max Grav (LC 25), 8=666 (LC 24), 9=532 (LC 24), 14=1 (LC 25)
- FORCES (Ib) - Maximum Compression/Maximum Tension TOP CHORD 1-2=-105/391, 2-3=-17/334, 3-4=0/313, 4-5=-159/324 BOT CHORD 1-9=-213/81, 8-9=-213/79, 6-8=-213/79, 5-6=-213/79 WEBS 3-8=-489/0. 2-9=-399/227. 4-6=-399/225
- NOTES

Scale = 1:51.5 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

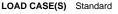
BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD


TCDL

BCLL

BCDL

- Unbalanced roof live loads have been considered for 1) this design.
- Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) -0-2-6 to 2-9-10, Interior (1) 2-9-10 to 5-5-8, Exterior(2R) 5-5-8 to 11-5-8, Interior (1) 11-5-8 to 13-8-14, Exterior(2E) 13-8-14 to 16-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- This truss has been designed for a 10.0 psf bottom 8)
- chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf 9)
- on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members, with BCDL = 10.0psf. 10) Provide mechanical connection (by others) of truss to
- bearing plate capable of withstanding 58 lb uplift at joint
- 11) One H2.5A Simpson Strong-Tie connectors recommended to connect truss to bearing walls due to UPLIFT at jt(s) 9 and 6. This connection is for uplift only and does not consider lateral forces.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V5	Valley	1	1	Job Reference (optional)	168686588

Scale = 1:44.3 Loading

TCLL (roof)

Snow (Pf)

LUMBER

OTHERS

BRACING

TOP CHORD

BOT CHORD

TOP CHORD

BOT CHORD

FORCES

TOP CHORD

BOT CHORD

this design.

DOL=1.60

WEBS

NOTES

1)

2)

4-5=-123/123

5-6=-68/107

1-8=-68/130, 7-8=-68/107, 6-7=-68/107,

3-7=-238/0. 2-8=-377/200. 4-6=-377/198

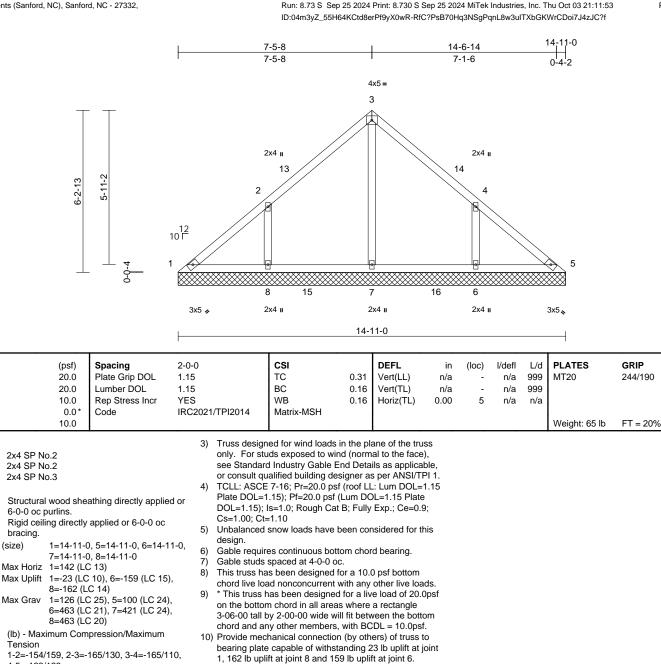
Unbalanced roof live loads have been considered for

Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Interior (1) 3-0-5 to

Wind: ASCE 7-16; Vult=130mph (3-second gust)

4-5-13, Exterior(2R) 4-5-13 to 10-5-13, Interior (1) 10-5-13 to 11-11-5, Exterior(2E) 11-11-5 to 14-11-5 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip


REACTIONS (size)

TCDL

BCLL

BCDL

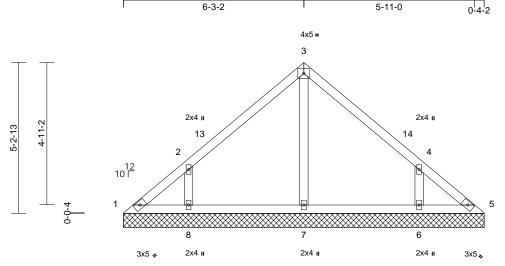
Page: 1

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V6	Valley	1	1	Job Reference (optional)	168686589

6-3-2


Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:54 ID:bV5wJXyDoMkWTk82TWHi1WyX0wU-RfC?PsB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f

12-2-1

12-6-3 0-4-2 2x4 II

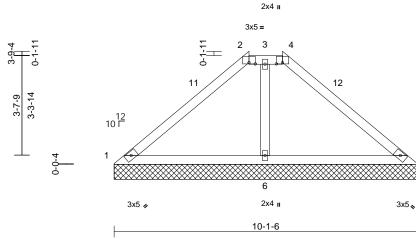
Page: 1

12-6-3

-					
Sca	le	=	1	:40	

Loading		(psf)	Spacing	2-0-0		csi		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)		20.0	Plate Grip DOL	1.15		тс	0.32	Vert(LL)	n/a	-	n/a	999	MT20	244/190
Snow (Pf)		20.0	Lumber DOL	1.15		BC	0.12	Vert(TL)	n/a	-	n/a	999		
TCDL		10.0	Rep Stress Incr	YES		WB	0.09	Horiz(TL)	0.00	5	n/a	n/a		
BCLL		0.0*	Code	IRC202	1/TPI2014	Matrix-MSH								
BCDL		10.0											Weight: 52 lb	FT = 20%
LUMBER				3)	Truss design	ed for wind loads	in the pl	ane of the tru	SS					
TOP CHORD	2x4 SP N	0.2		,	only. For stu	ids exposed to wi	nd (norm	al to the face),					
BOT CHORD	2x4 SP N	0.2			see Standard	d Industry Gable E	End Deta	ils as applica	ble,					
OTHERS	2x4 SP N	0.3				alified building de								
BRACING				4)		7-16; Pr=20.0 ps								
TOP CHORD	Structura	I wood she	athing directly applie	d or		.15); Pf=20.0 psf								
	6-0-0 oc p	purlins.	• • • •			ls=1.0; Rough Ca	t B; Fully	' Exp.; Ce=0.9	9;					
BOT CHORD	Rigid ceil	ing directly	applied or 10-0-0 oc	;	Cs=1.00; Ct=		h		hin.					
	bracing.			5)	design.	snow loads have	been cor	nsidered for t	nis					
REACTIONS	(size)	1=12-6-3,	5=12-6-3, 6=12-6-3	, 6)		es continuous bot	tom choi	d bearing						
		7=12-6-3,		7)		spaced at 4-0-0 c		a bearing.						
	Max Horiz	(,	8)		is been designed		0 psf bottom						
	Max Uplift		10), 5=-2 (LC 11),	- /		ad nonconcurrent			ids.					
		(C 15), 8=-142 (LC 1	Ý 41		nas been designe								
	Max Grav		25), 5=78 (LC 24),		on the bottor	n chord in all area	s where	a rectangle						
		6=434 (LC 8=434 (LC	21), 7=267 (LC 20)	,	3-06-00 tall b	y 2-00-00 wide w	ill fit betw	ween the bott	om					
FORCES		,	,			ny other members								
FURGES	Tension	amum Com	pression/Maximum	10	<i>'</i>	hanical connectio		,						
TOP CHORD		/104 2-3=-	211/117, 3-4=-211/1	17		capable of withs								
	4-5=-98/6	,	211/11/,01-211/1	,		at joint 5, 142 lb u	plift at jo	int 8 and 138	di					
BOT CHORD			77, 6-7=-35/77,		uplift at joint									
	5-6=-35/7	,	,,	L	DAD CASE(S)	Standard							, minin	11111
WEBS	3-7=-180/	/0, 2-8=-38	8/210, 4-6=-388/210										TH CA	ROUL
NOTES												1	'a''	
												~	O' FEE	ican .

- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- 2) Wind: ASCE 7-16, Vull=150hph (3-sectond gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 3-0-5, Exterior(2R) 3-0-5 to 9-6-8, Exterior(2E) 9-6-8 to 12-6-8 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60


Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V7	Valley	1	1	Job Reference (optional)	168686590

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:54 ID:FYH1Gqu4zq5DNzG5gzhXKTyX0wZ-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5

Page: 1

Scale =	1:38.4
---------	--------

Plate Offsets (X, Y): [2:0-2-8.0-0-8], [4:0-2-8.0-0-8]

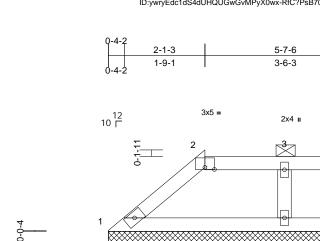
3-9-4

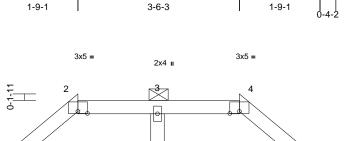
Plate Offsets	(X, Y): [2:0-2-8,0-0-8],	[4:0-2-8,0-0-8]										
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC2021/TPI2	CSI TC BC WB Matrix-MS	0.53 0.42 0.17 H	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 37 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she 10-0-0 oc purlins, ex 2-0-0 oc purlins (10- Rigid ceiling directly bracing.	ccept 0-0 max.): 2-4. applied or 6-0-0 oc 5=10-1-6, 6=10-1-6 11) 15), 6=-61 (LC 14) 2 20), 5=187 (LC 21) 2 40)	Plat DOL Cs= 5) Unb dor 6) Prov 7) Gab 8) Gab 9) This choi 10) * Th on ti 3-06 t, choi 11) Prov	Vide adequate draina le requires continuou le studs spaced at 4- truss has been desi- d live load nonconcu- is truss has been desi- re bottom chord in al i-00 tall by 2-00-00 w d and any other mer- vide mechanical conr	0 psf (Lum DC ph Cat B; Fully have been cor ge to prevent is bottom chor -0-0 oc. gned for a 10. rrrent with any signed for a liv I areas where ride will fit betw nbers.	DL=1.15 Plate Exp.; Ce=0.9 hsidered for the water ponding d bearing. D psf bottom other live loa e load of 20.1 a rectangle ween the botthe ers) of truss f	e 9; g. ds. Opsf om					
TOP CHORD BOT CHORD	Tension 1-2=-162/277, 2-3=0 4-5=-196/274 1-6=-163/164, 5-6=-)/107, 3-4=0/110,	5 an 12) Graj or th	ring plate capable of d 61 lb uplift at joint obical purlin represer the orientation of the p form chord.	6. ntation does no	ot depict the s						
WEBS NOTES	3-6=-636/273		LOAD C	ASE(S) Standard								Dille
this desig 2) Wind: AS Vasd=103 II; Exp B; and C-C (7-1-11, Co and right o C for men	ed roof live loads have n. CE 7-16; Vult=130mph Bmph; TCDL=6.0psf; Bt Enclosed; MWFRS (en Corner(3E) 0-0-5 to 3-0 orner(3E) 7-1-11 to 10- exposed ; end vertical I nbers and forces & MW umber DOL=1.60 plate	(3-second gust) CDL=6.0psf; h=25ft; ivelope) exterior zon -5, Corner(3R) 3-0-5 1-11 zone; cantileve left and right expose /FRS for reactions	Cat. e 5 to r left						Willing	T	SEA 0363	
	igned for wind loads in studs exposed to wind									11	ANGIN	EFERER

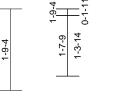
- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Corner(3E) 0-0-5 to 3-0-5, Corner(3R) 3-0-5 to 7-1-11, Corner(3E) 7-1-11 to 10-1-11 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

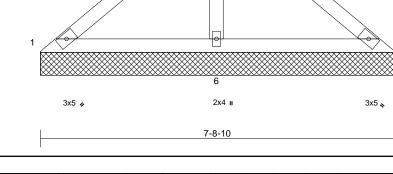
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V8	Valley	1	1	Job Reference (optional)	168686591


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:54 ID:ywryEdc1dS4dUHQUGwGvMPyX0wx-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f




7-8-10


5

7-4-8

Scale = 1:25.1

Plate Offsets (X, Y): [2:0-2-8,0-0-8], [4:0-2-8,0-0-8]

	(^, 1). [2.0-2-8,0-0-8], [4	4.0-2-0,0-0-0]										-	
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL	20.0 20.0 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MP	0.14 0.24 0.05	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 25 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood sheat 6-0-0 oc purlins, exce 2-0-0 oc purlins (6-0-0 Rigid ceiling directly a bracing.	ept 0 max.): 2-4. applied or 10-0-0 oc 5=7-8-10, 6=7-8-10 3) 14), 5=-30 (LC 15), 11) 40), 5=220 (LC 40)	5) 6) 7) 8) 9)	only. For str see Standar or consult qr TCLL: ASCE Plate DOL= DOL=1.15); Cs=1.00; Ct Unbalanced design. Provide ade Gable requir Gable studs This truss ha chord live lo	snow loads have l quate drainage to es continuous bott spaced at 4-0-0 or as been designed f ad nonconcurrent nas been designed	nd (norm ind Deta signer as f (roof LL (Lum DC B; Fully been cor prevent isom chor c. for a 10. with any f for a liv	al to the face ils as applical s per ANSI/TF :L=NNDOL=: L=1.15 Plate Exp.; Ce=0.9 asidered for the water ponding d bearing.), ble, Pl 1. 1.15 9; his g. ds.					
this desigr	(lb) - Maximum Comp Tension 1-2=-288/82, 2-3=-144 4-5=-289/83 1-6=-52/213, 5-6=-52/ 3-6=-236/105 ed roof live loads have b	oression/Maximum 8/87, 3-4=-148/87, /215 peen considered for	12	3-06-00 tall I chord and an) Provide med bearing plate 1, 30 lb uplif		ill fit betw n (by oth anding 2 b uplift a n does no	veen the botto ers) of truss t 7 lb uplift at j it joint 6. ot depict the s	o oint			1111	NITH CA	ROLVIII

Wind: ASCE 7-16; Vult=130mph (3-second gust) 2) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat.

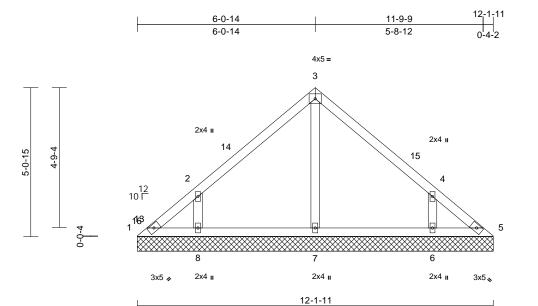
- II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-0-5 to 2-1-8, Exterior(2R) 2-1-8 to 5-7-11, Exterior(2E) 5-7-11 to 7-8-14 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
 - WARNING Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

G 40000 October 7,2024

SEAL

036322

The manual states of the second


818 Soundside Road Edenton, NC 27932

Verman

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V9	Valley	1	1	Job Reference (optional)	168686592

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:54 ID:FzBHp5cRse4BbFmx28JXNeypbAT-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:39.3

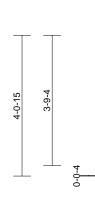
Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL		(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202	1/TPI2014	CSI TC BC WB Matrix-MSH	0.31 0.12 0.08	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 5	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 50 lb	GRIP 244/190 FT = 20%
	2x4 SP N Structura 6-0-0 oc Rigid ceil bracing. (size) Max Horiz Max Uplift	0.2 0.3 I wood shee purlins. ing directly 1=12-1-11 7=12-1-11 1=-114 (L 1=-38 (LC 6=-136 (L	athing directly applie applied or 10-0-0 oc I, 5=12-1-11, 6=12-1 I, 8=12-1-11 C 10) :10), 5=-5 (LC 11), C 15), 8=-138 (LC 1- 30), 5=-73 (LC 24), 6	rd or 5) -11, 6) 7) 8) 4) 9)	only. For stu see Standarr or consult qu TCLL: ASCE Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced design. Gable requir Gable studs This truss ha chord live loa * This truss f	snow loads have es continuous bol spaced at 4-0-0 c is been designed ad nonconcurrent has been designe	nd (norm End Deta esigner as sf (roof LL (Lum DC (Lum DC t B; Fully been cor ttom chor cc. for a 10.0 with any d for a liv	al to the face ils as applica s per ANSI/TI : Lum DOL= DL=1.15 Plate Exp.; Ce=0.9 nsidered for the d bearing. D psf bottom other live loa e load of 20.0), ble, PI 1. 1.15); his ds.					
FORCES TOP CHORD BOT CHORD	(Ib) - Max Tension 1-2=-114, 4-5=-91/6 1-8=-32/7	(LC 21), 7 20) timum Com (100, 2-3=- 33 75, 7-8=-32	217/116, 3-4=-217/1 73, 6-7=-32/73,	2 (LC 10 16,	3-06-00 tall t chord and ar Provide mec bearing plate		vill fit betv 5. n (by oth tanding 3	veen the botto ers) of truss t 88 lb uplift at j	o oint					10
WEBS NOTES		/0, 2-8=-39	6/212, 4-6=-397/218									- II	OPTH CA	ROIN

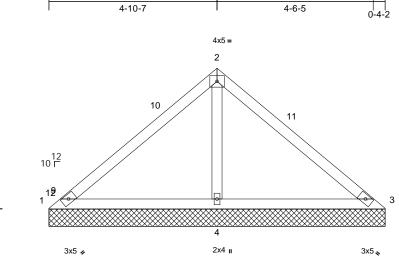
- Unbalanced roof live loads have been considered for this design.
 Wind: ASCE 7-16; Vult=130mph (3-second gust)
- Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-4-13, Exterior(2R) 3-4-13 to 9-2-0, Exterior(2E) 9-2-0 to 12-2-0 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V10	Valley	1	1	Job Reference (optional)	168686593

4-10-7


Carter Components (Sanford, NC), Sanford, NC - 27332,


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:54 ID:JPfp5rCAKhFEzn?MPxh1szypb9i-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-4-12

9-8-14 0-4-2

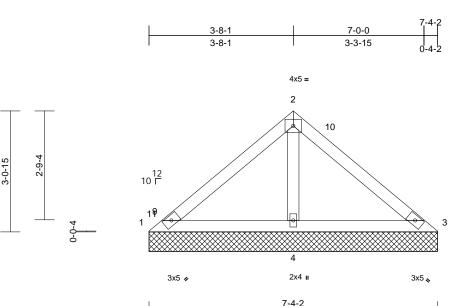
Page: 1

9-8-14

Scale = 1:33.4

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.15	CSI TC	0.46	DEFL Vert(LL)	in n/a	(loc)	l/defl n/a	L/d 999	PLATES	GRIP 244/190
Snow (Pf)	20.0	Lumber DOL	1.15	BC	0.40	Vert(LL)	n/a	-	n/a	999 999	101120	244/190
TCDL	10.0	Rep Stress Incr	YES	WB	0.43	Horiz(TL)	0.01	4	n/a	999 n/a		
BCLL	0.0*	Code	IRC2021/TPI2014	Matrix-MSH	0.13		0.01	-	n/a	n/a		
BCDL	10.0	obuc	1102021/1112014								Weight: 37 lb	FT = 20%
	2x4 SP No.2 2x4 SP No.3 Structural wood she 9-8-14 oc purlins. Rigid ceiling directly bracing. (size) 1=9-8-14, Max Horiz 1=-91 (LC Max Uplift 1=-61 (LC Max Grav 1=74 (LC (LC 20)	applied or 6-0-0 oc 3=9-8-14, 4=9-8-14 2 10) 2 21), 3=-50 (LC 20), C 14) 20), 3=94 (LC 21), 4	Plate DOL= DOL=1.15); Cs=1.00; Ct 5) Unbalanced design. 6) Gable requi 7) Gable studs 8) This truss his chord live lo 9) * This truss on the botto 3-06-00 tall chord and a 10) Provide med	F-16; Pr=20.0 ps 1.15); Pf=20.0 ps Is=1.0; Rough Car =1.10 snow loads have res continuous bot spaced at 4-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members shanical connection e capable of withsi	(Lum DC t B; Fully been cor tom chor c. for a 10.0 with any d for a liv s where ill fit betv n (by oth	DL=1.15 Plate Exp.; Ce=0.9 hsidered for the d bearing. D psf bottom other live load e load of 20.1 a rectangle ween the botther ers) of truss f	e); ds. Dpsf om					
FORCES	(lb) - Maximum Com Tension	pression/Maximum		t at joint 3 and 108	3 lb uplift	at joint 4.						
TOP CHORD	1-2=-113/379, 2-3=-	115/376	LOAD CASE(S)	Standard								
BOT CHORD	1-4=-247/173, 3-4=-	247/173										
WEBS	2-4=-645/270											
NOTES												
,	ed roof live loads have	been considered for	•								IIIII	U11.
this design		(0,									WHILL CA	Pall
	CE 7-16; Vult=130mph mph; TCDL=6.0psf; B		Cat								alr	
	Enclosed; MWFRS (er									K.	O' FESS	ON'
	Exterior(2E) 0-4-13 to 3		•							25		12:11
	6-9-3, Exterior(2E) 6-9								0		<u>v</u> -	
	left and right exposed								-		SEA	1 ÷ E
	sed;C-C for members ns shown; Lumber DO		5						= =		0202	· · · · · ·
DOL=1.60									1		0363	22 ; :
3) Truss desi	igned for wind loads in	the plane of the trus	S						-			1 - E
	studs exposed to wind								5	1	N. En	Riks
	ard Industry Gable En									11		EF AN
or consult	qualified building desig	gner as per ANSI/TP	т.							1	CA C	II BEIN
											", A. G	11-111

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)



GI minimite

October 7,2024

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V11	Valley	1	1	Job Reference (optional)	168686594

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:54 ID:gMSi8YGJ8DtW4YuKCUHCZ1ypb9d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:29.3

Loading TCLL (roof) Snow (Pf) TCDL BCLL BCDL LUMBER	(psf) 20.0 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.15 1.15 YES IRC202 4)	1/TPI2014	CSI TC BC WB Matrix-MP	0.26 0.27 0.09	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 27 lb	GRIP 244/190 FT = 20%
TOP CHORD BOT CHORD OTHERS BRACING	2x4 SP No.2 2x4 SP No.2 2x4 SP No.3		5)	Plate DOL=1 DOL=1.15); Cs=1.00; Ct= Unbalanced	l.15); Pf=20.0 psf (Is=1.0; Rough Cat	Lum DC B; Fully	DL=1.15 Plate Exp.; Ce=0.9	;					
TOP CHORD BOT CHORD	Structural wood she 7-4-2 oc purlins. Rigid ceiling directly bracing.	• • • • •	d or 6) 7) 8)	Gable studs This truss ha	es continuous botto spaced at 4-0-0 oc as been designed fo ad nonconcurrent v	c. or a 10.0) psf bottom	10					
	(size) 1=7-4-2, 3 Max Horiz 1=-67 (LC Max Uplift 1=-29 (LC 4=-73 (LC Max Grav 1=72 (LC 4=538 (LC	2 21), 3=-17 (LC 20), 2 14) 20), 3=103 (LC 21),	9) 10	* This truss h on the bottor 3-06-00 tall h chord and an) Provide med	has been designed in chord in all areas by 2-00-00 wide wil hy other members. hanical connection	for a liv s where Il fit betv i (by oth	e load of 20.0 a rectangle veen the botto ers) of truss to	psf m					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-87/231, 2-3=-9 1-4=-182/153, 3-4=- 2-4=-427/197	pression/Maximum 0/231	LC		e capable of withsta t at joint 3 and 73 ll Standard			oint					

NOTES

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-16; Vult=130mph (3-second gust) Vasd=103mph; TCDL=6.0psf; BCDL=6.0psf; h=25ft; Cat. II; Exp B; Enclosed; MWFRS (envelope) exterior zone and C-C Exterior(2E) 0-4-13 to 3-8-6, Exterior(2R) 3-8-6 to 4-4-6, Exterior(2E) 4-4-6 to 7-4-6 zone; cantilever left and right exposed; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

SEAL 036322

October 7,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	49 Serenity-Roof-B330 E CP TMB GLH	
24090147-01	V12	Valley	1	1	Job Reference (optional)	168686595

2-5-10

2-5-10

Carter Components (Sanford, NC), Sanford, NC - 27332,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Thu Oct 03 21:11:54 ID:JRrFCrmjZLMExIXWtIhtvSyX2sg-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

4-7-3

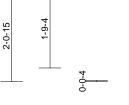
2-1-8

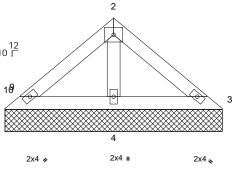
4-11-5

Page: 1

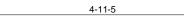
12 10 Г 1-9-4 10 1 0-0-4 4 2x4 🍫 2x4 🛚 2x4 💊

Scale = 1:26.2


90
20%
1,
14
NEL
3
1
: =


- Truss designed for wind loads in the plane of the truss only. For stude exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- TCLL: ASCE 7-16; Pr=20.0 psf (roof LL: Lum DOL=1.15 Plate DOL=1.15); Pf=20.0 psf (Lum DOL=1.15 Plate 4) DOL=1.15); Is=1.0; Rough Cat B; Fully Exp.; Ce=0.9; Cs=1.00; Ct=1.10

The second se The manner SEAL 036322 GI 111111111 October 7,2024


818 Soundside Road Edenton, NC 27932

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

4x5 =

