

Trenco 818 Soundside Rd Edenton, NC 27932

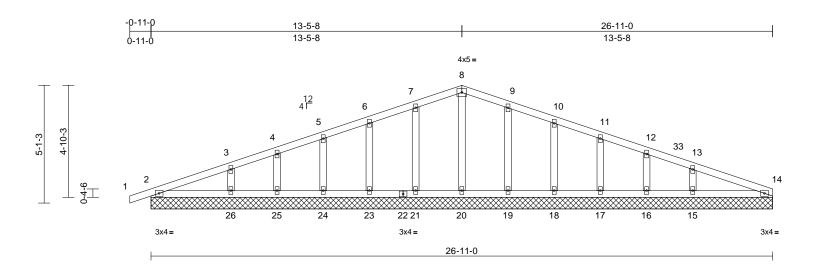
Re: Q2402406 Lashley 2024-SAN-038

The truss drawing(s) referenced below have been prepared by Truss Engineering Co. under my direct supervision based on the parameters provided by Carolina Structural Systems, LLC.

Pages or sheets covered by this seal: I68689390 thru I68689410

My license renewal date for the state of North Carolina is December 31, 2024.

North Carolina COA: C-0844


October 4,2024

Tony Miller

IMPORTANT NOTE: The seal on these truss component designs is a certification that the engineer named is licensed in the jurisdiction(s) identified and that the designs comply with ANSI/TPI 1. These designs are based upon parameters shown (e.g., loads, supports, dimensions, shapes and design codes), which were given to MiTek or TRENCO. Any project specific information included is for MiTek's or TRENCO's customers file reference purpose only, and was not taken into account in the preparation of these designs. MiTek or TRENCO has not independently verified the applicability of the design parameters or the designs for any particular building. Before use, the building designer should verify applicability of design parameters and properly incorporate these designs into the overall building design per ANSI/TPI 1, Chapter 2.

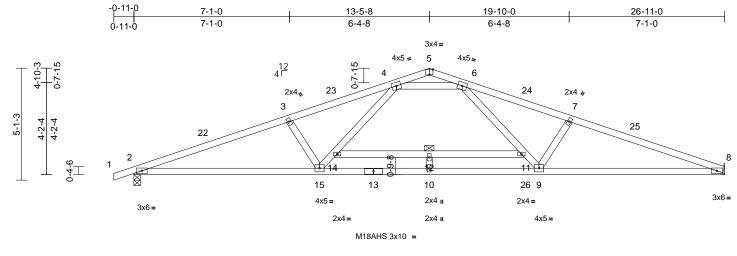
Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	A01	Common	2	1	Job Reference (optional)	168689390

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:52 ID:Ew8OeiAtwQ9kchSjS1891KzZ464-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Scale = 1:49.9

Loading		(psf)	Spacing	2-0-0		CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP	
TCLL (roof)		20.0	Plate Grip DOL	1.00		тс	0.11	Vert(LL)	n/a	-	n/a	999	MT20	244/190	
TCDL		10.0	Lumber DOL	1.15		BC	0.11	Vert(CT)	n/a	-	n/a	999			
BCLL		0.0*	Rep Stress Incr	YES		WB	0.04	Horz(CT)	0.00	14	n/a	n/a			
BCDL		10.0	Code	IRC201	5/TPI2014	Matrix-AS							Weight: 124 lb	FT = 20%	
I	2x4 SP No 2x4 SP No Rigid ceilin (size) Max Horiz Max Uplift Max Uplift (lb) - Maxir Tension 1-2=0/17, 2 4-5=-44/61 7-8=-54/13	.2 .2 wood shea g directly 2=26-11- 15=26-11- 17=26-11 21=26-11 24=26-11 24=26-11 24=26-11 25=26-11 25=26 (LC 2=-36 (LC 2=-36 (LC 2=-36 (LC 23=-21 (L 23=-21 (L) 23=-21 (L)), $14=26-11-0$, -0, $16=26-11-0$, -0, $16=26-11-0$, -0, $20=26-11-0$, -0, $23=26-11-0$, -0, $25=26-11-0$, -0, $25=26-11-0$, -0, $27=26-11-0$, -0, $27=26-10-10$, -0, 22 , $16=113$ (LC 1), -0, 22 , $16=113$ (LC 1), -0, 22 , $26=144$ (LC 1), -0, 22 , $26=144$ (LC 1), -0, 22 , $20=144$ (LC 1), -0, 22 , $20=144$ (LC 1), -0, 21 , $25=119$ (LC 1), -0, 21 , $27=183$ (LC 1)	W 1) 2) , , , , , , , , , , , , , , , , , ,	EBS Unbalanced this design. Wind: ASCE Vasd=95mp B=32ft; L=4: MWFRS (di 3-5-8, Exter 17-5-8, Exter 18-5-8, Exter 17-5-8, Exter 18-5-8, Exter 1	2-26=-8/52, 25-26 23-24=-8/52, 21-2 19-20=-8/52, 18-1 16-17=-8/52, 15-1 8-20=-104/0, 7-21 5-24=-126/61, 4-2 9-19=-127/109, 10 11-17=-127/60, 12 13-15=-188/142 roof live loads hav 7-10; Vult=120m h; TCDL=6.0psf; E 3ft; eave=2ft; Cat. rectional) and C-C for (2) 3-5-8 to 13- rior (2) 17-5-8 to 2 t exposed ; end ve C for members and own; Lumber DOL ned for wind loads uds exposed to wind d Industry Gable E jualified building de e 2x4 MT20 unless res continuous bot spaced at 2-0-0 o as been designed ad nonconcurrent has been designed m chord in all area by 2-00-00 wide w ny other members are assumed to building to building to building to be the signed m chord in all area by 2-00-00 wide w	3=-8/52, 9=-8/52, 6=-8/52, e=-127/10 5=-97/51 2-16=-94, we been of ph (3-sec 3CDL=6. II; Exp B Corner (5-8, Corr 26-11-0 z writical left d forces 2 e=1.60 pl in the	20-21=-8/52, 17-18=-8/52, 14-15=-13/57 19, 6-23=-118, 3, 3-26=-181/1 8/80, /50, considered for cond gust) 0psf; h=28ft; 3, 1-0 to her (3) 13-5-8 one; cantileve and right & MWFRS for ate grip ane of the trus al to the face) ils as applicat s per ANSI/TF se indicated. d bearing. D psf bottom other live load e load of 20.0 a rectangle veen the bottor	7 /80, 119, r r ss ss), ble, PI 1. ds.)psf	bea 2, 1 at jc 30 ll joint 11) Bev surf 12) This stru cho the LOAD C	ring plat Ib uplift Ib uplift b uplift a; b uplift a; ; 18, 22 plift at jc; ; 14. eled pla acc with ctural w rd and 1 bottom o CASE(S)	te capa at joir 21 lb u at joint 16 upli bint 15 te or s esign ood sh /2" gy/ chord.) Sta	able of withstand tt 14, 20 lb uplift plift at joint 24, 1 26, 20 lb uplift at ft at joint 17, 14 l , 36 lb uplift at joint chord at joint(s) requires that a m reathing be appli psum sheetrock ndard NGIN SEA 0235	inimium of 7/16" ed directly to the top be applied directly to NOTION	int lift i, t at 8 at Pio

October 4,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTP11 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	A02	Common	6	1	l6 Job Reference (optional)	8689391

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:53 ID:zDIIVhpx4CSX5aT2_sdB5_zZ498-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

Scale = 1:52.5

Plate Offsets (X, Y): [5:0-2-0,Edge]

	(x, i): [0:0 2 0,Eugo]												
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/	/TPI2014	CSI TC BC WB Matrix-AS	0.61 0.83 0.35	DEFL Vert(LL) Vert(CT) Horz(CT)		(loc) 12-14 12-14 8	l/defl >928 >433 n/a	L/d 240 180 n/a	PLATES MT20 M18AHS Weight: 125 lb	GRIP 244/190 186/179 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD BOT CHORD BOT CHORD WEBS NOTES	2x4 SP No.1 *Excep 2x4 SP No.2 *Excep Structural wood she Rigid ceiling directly (size) 2=0-3-8, 4 Max Horiz 2=51 (LC Max Uplift 2=-71 (LC Max Grav 2=1221 (I (Ib) - Maximum Com Tension 1-2=0/17, 2-3=-2868 4-5=-212/12, 5-6=-2 7-8=-2875/81, 4-6=-	ot* 12-10:2x4 SP No. eathing directly applie applied. 8= Mechanical 11) C 12), 8=-41 (LC 12) LC 1), 8=1164 (LC 1 npression/Maximum 8/77, 3-4=-2666/66, 1/114, 6-7=-2672/69 1755/122 15=0/2009, 9-10=0/2 4=-126/0, 11-12=-124 /781, 7-9=-435/139,	2 3 7) 8) 9) 10) 11) 0, 11) 0, LO ₀	on the bottom 3-06-00 tall b chord and ar Bearings are Refer to girdd Provide mecl bearing plate 8 and 71 lb u This truss de structural wo chord and 1/2 the bottom cl Graphical pu	rlin representatior ation of the purlin a I.	is where ill fit betv Joint 2 SI russ conr n (by oth tanding 4 a minim applied d ock be a n does no	a rectangle veen the bott P No.1 nections. ers) of truss 1 lb uplift at um of 7/16" irrectly to the opplied directl ot depict the	to joint top y to					
 Unbalance this design Wind: ASI Vasd=95r B=32ft; L= MWFRS (3-4-3, Internet 17-8-11, I left and rig exposed; reactions DOL=1.60 Provide ar 4) All plates This truss 	CE 7-10; Vult=120mph nph; TCDL=6.0psf; BC =43ft; eave=5ft; Cat. II; (directional) and C-C E erior (1) 3-4-3 to 13-5-8 nterior (1) 17-8-11 to 2 ght exposed ; end verti C-C for members and f shown; Lumber DOL=	a (3-second gust) :DL=6.0psf; h=28ft; Exp B; Enclosed; xterior (2) -0-11-0 to 3, Exterior (2) 13-5-8 :6-11-0 zone; cantile :cal left and right 'orces & MWFRS for 1.60 plate grip revent water ponding s otherwise indicated r a 10.0 psf bottom	to ver I. d.									SEA 0235	ER. ER.

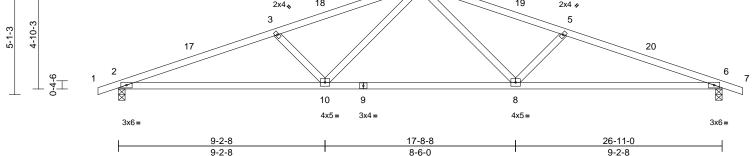
- 4) All plates are MT20 plates unless otherwise indicated.
- 5) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone

and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

October 4,2024

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	A03	Common	7	1	Job Reference (optional)	168689392


Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:53 ID: Zjks8vbimAeJOZxYH0HREizZ487-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?ff

Page: 1

27-10-0

0-11-0

19-10-0 26-11-0 7-1-0 13-5-8 7-1-0 6-4-8 6-4-8 7-1-0 4x5 u 4 4¹² 18 19 2x4 🍬 2x4、 3 5

Scale = 1:51.4

Loading TCLL (roof)	(psf) 20.0	Spacing Plate Grip DOL	2-0-0 1.00	CSI TC	0.51	DEFL Vert(LL)	in -0.16	(loc) 10-13	l/defl >999	L/d 240	PLATES MT20	GRIP 244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.87	Vert(CT)	-0.38	10-13	>851	180		
BCLL BCDL	0.0* 10.0	Rep Stress Incr Code	YES IRC2015/TPI2014	WB Matrix-AS	0.18	Horz(CT)	0.08	6	n/a	n/a	Weight: 112 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly	applied. 6=0-3-8 C 10) .C 12), 6=-123 (LC 1	ed. LOAD CASE(\$		standing 1 at a minim applied di	23 lb uplift a um of 7/16" irectly to the	it joint top				-	
FORCES	(lb) - Maximum Com Tension	pression/Maximum										
TOP CHORD												
BOT CHORD	,	,										
WEBS	4-8=-11/729, 5-8=-4 3-10=-473/152	73/152, 4-10=-11/72	29,									
this desigr	ed roof live loads have n. CE 7-10; Vult=120mph		r									

- Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-11-0 to 3-4-3, Interior (1) 3-4-3 to 13-5-8, Exterior (2) 13-5-8 to 17-8-11, Interior (1) 17-8-11 to 27-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- 3) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2.

Mining Mining

October 4,2024

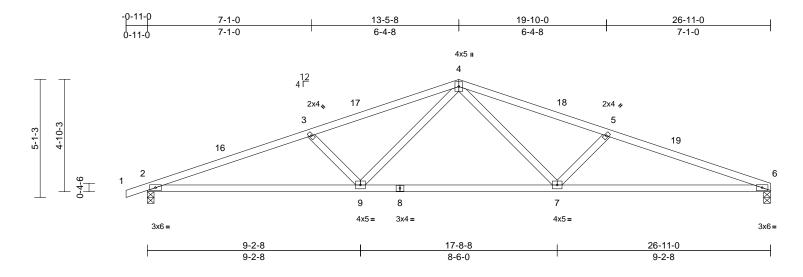
SEAL

023594

and a second second

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


and the second s

О

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	A04	Common	2	1	Job Reference (optional)	168689393

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:53 ID:leTJ96LbAESWq5hSw1OzkmzZ479-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

04 07:19:53 Page: 1 Doi7J4zJC?f

Scale = 1:49.8

Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TF	CSI TC BC WB Pl2014 Matrix-AS	0.52 0.88 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.38 0.08	(loc) 7-12 7-12 6	l/defl >999 >845 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 111 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD WEBS BRACING TOP CHORD REACTIONS FORCES TOP CHORD BOT CHORD WEBS	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 2=0-3-8, (Max Horiz 2=51 (LC Max Uplift 2=-124 (L Max Grav 2=1133 (I (lb) - Maximum Com Tension 1-2=0/17, 2-3=-2566 4-5=-2276/229, 5-6=	applied. 6=0-3-8 11) .C 12), 6=-94 (LC 12 .C 1), 6=1076 (LC 1 pression/Maximum 9/265, 3-4=-2271/226 2575/269 89/1608, 6-7=-205/	be 6 7) TI st ed. cf LOAE	rovide mechanical conn earing plate capable of v and 124 lb uplift at joint his truss design requires ructural wood sheathing hord and 1/2" gypsum sl e bottom chord. D CASE(S) Standard	withstanding 9 2. s that a minim g be applied d	14 lb uplift at um of 7/16" irectly to the	joint top					
this design 2) Wind: ASC Vasd=95n B=32ft; L= MWFRS (3-4-3, Inte	ed roof live loads have n. CE 7-10; Vult=120mph mph; TCDL=6.0psf; BC =43ft; eave=5ft; Cat. II; directional) and C-C E erior (1) 3-4-3 to 13-5-8 nterior (1) 17-8-11 to 2	(3-second gust) DL=6.0psf; h=28ft; Exp B; Enclosed; xterior (2) -0-11-0 to 8, Exterior (2) 13-5-8	to								OTTH CA	

reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

 This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

left and right exposed ; end vertical left and right

exposed;C-C for members and forces & MWFRS for

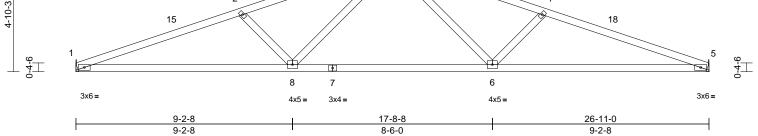
- 4) * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSUTPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

October 4,2024

SEAL

023594


Jummunun

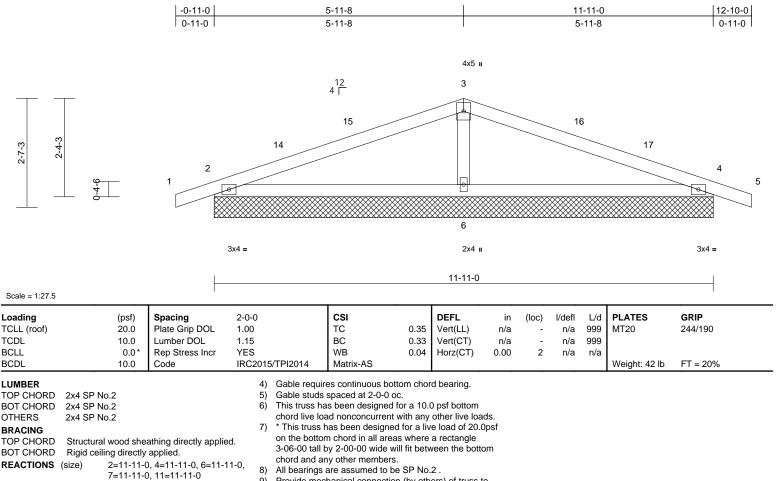
Vinner Martin

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	A05	Common	6	1	Job Reference (optional)	168689394

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:53 ID:leTJ96LbAESWq5hSw1OzkmzZ479-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

7-1-0 13-5-8 19-10-0 26-11-0 7-1-0 6-4-8 6-4-8 7-1-0 4x5 II 3 12 4 Г 17 16 2x4 🅢 2x4。 2 4 15 18

Scale = 1:49


Scale = 1:49													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/T	FPI2014	CSI TC BC WB Matrix-AS	0.52 0.88 0.18	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.16 -0.38 0.08	(loc) 8-11 8-11 5	l/defl >999 >845 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 110 lb	GRIP 244/190 FT = 20%
	Max Horiz 1=-48 (LC Max Uplift 1=-94 (LC Max Grav 1=1077 (L	applied. anical, 5= Mechanica C 10) C 12), 5=-94 (LC 12) LC 1), 5=1077 (LC 1)	d. c I L OA	bearing plate 1 and 94 lb u This truss de structural wo		anding 9 a minim applied d	94 lb uplift at j um of 7/16" irectly to the t	oint top					
FORCES TOP CHORD BOT CHORD WEBS	(lb) - Maximum Com Tension 1-2=-2578/271, 2-3= 3-4=-2278/230, 4-5= 1-8=-206/2413, 6-8= 3-6=-14/735, 4-6=-4 2-8=-477/155	=-2278/230, =-2578/271 =-91/1611, 5-6=-206/											
 this design 2) Wind: ASC Vasd=95m B=32ft; L=/ MWFRS (o Interior (1) 17-8-11, In left and rigil exposed;C reactions s DOL=1.60 3) This truss I chord live I 4) * This truss on the bott 3-06-00 tal chord and 	d roof live loads have	(3-second gust) DL=6.0psf; h=28ft; Exp B; Enclosed; xterior (2) 0-0-0 to 4- rior (2) 13-5-8 to 6-11-0 zone; cantilev cal left and right orces & MWFRS for 1.60 plate grip r a 10.0 psf bottom ith any other live load or a live load of 20.0 where a rectangle fit between the botto	3-3, ver Is. psf									SEA 0235	94

Octob

October 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TP11 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BC2E Building Component Schut beformation, available from the Structure Building Component Advanciation (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	B01	Common Supported Gable	1	1	Job Reference (optional)	168689395
Carolina Structural Systems (Sta	r, NC)), Ether, NC - 27247,				5 2024 MiTek Industries, Inc. Fri Oct 04 07:19:53	Page: 1
			n_ZdEVrr¥Z	Z45m-RTC?F	sB70Hq3NSgPqnL8w3ulTXbGKWrCDoi7J4zJC?f	

- 8) All bearings are assumed to be SP No.2.
 9) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 61 lb uplift at joint 2, 61 lb uplift at joint 4, 20 lb uplift at joint 6, 61 lb uplift at joint 2 and 61 lb uplift at joint 4.
 - This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.
 LOAD CASE(S) Standard
- FORCES
 (Ib) Maximum Compression/Maximum Tension

 TOP CHORD
 1-2=0/17, 2-3=-172/124, 3-4=-172/127, 4-5=0/17

 BOT CHORD
 2-6=-33/134, 4-6=-35/134

 WEBS
 3-6=-281/169

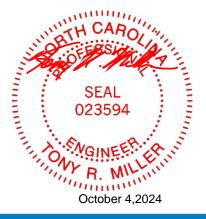
 NOTES
 10

1)

Max Grav

Max Horiz 2=-24 (LC 10), 7=-24 (LC 10)

Max Uplift 2=-61 (LC 12), 4=-61 (LC 12),


11=-61 (LC 12)

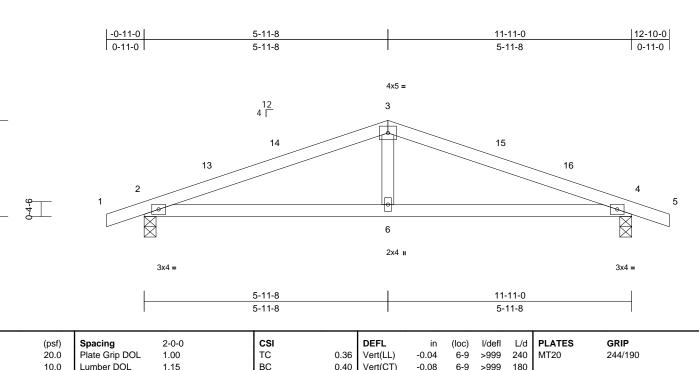
6=-20 (LC 12), 7=-61 (LC 12),

2=296 (LC 1), 4=296 (LC 1), 6=472

(LC 1), 7=296 (LC 1), 11=296 (LC

- Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) -0-11-0 to 3-4-3, Exterior (2) 3-4-3 to 5-11-8, Corner (3) 5-11-8 to 10-2-11, Exterior (2) 10-2-11 to 12-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed; C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)


TRENGINEERING BY A MITEK Affiliate 818 Soundside Road

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	B02	Common	2	1	Job Reference (optional)	168689396

2-4-3

2-7-3

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:53 ID:mGesZ_aa8ZJ24mU3uSDutHzZ45Z-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

0.10

Horz(CT)

0.01

4

n/a n/a

Weight: 42 lb

FT = 20%

E	30	C	DL	-	

TCLL (roof)

TCDI

BCLL

Scale = 1:28.2 Loading

LUMBER	
TOP CHORD	2x4 SP No.2
BOT CHORD	2x4 SP No.2
WEBS	2x4 SP No.3
BRACING	
TOP CHORD	Structural wood sheathing directly applied.
BOT CHORD	Rigid ceiling directly applied.
REACTIONS	(size) 2=0-3-8, 4=0-3-8
	Max Horiz 2=24 (LC 11)
	Max Uplift 2=-71 (LC 12), 4=-71 (LC 12)
	Max Grav 2=532 (LC 1), 4=532 (LC 1)
FORCES	(lb) - Maximum Compression/Maximum
	Tension
TOP CHORD	1-2=0/17, 2-3=-874/138, 3-4=-874/138,
	4-5=0/17
BOT CHORD	2-6=-69/798, 4-6=-69/798
WEBS	3-6=0/262
NOTES	
1) Unbalance	ed roof live loads have been considered for
this desig	۱.

0.0*

10.0

Rep Stress Incr

Code

YES

IRC2015/TPI2014

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-11-0 to 3-4-3, Interior (1) 3-4-3 to 5-11-8, Exterior (2) 5-11-8 to 10-2-11, Interior (1) 10-2-11 to 12-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2 .

6) Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 71 lb uplift at joint 2 and 71 lb uplift at joint 4.

WB

Matrix-AS

This truss design requires that a minimum of 7/16" 7) structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	B03	Common Girder	1	2	Job Reference (optional)	168689397

Loading

TCDL

BCLL

BCDL

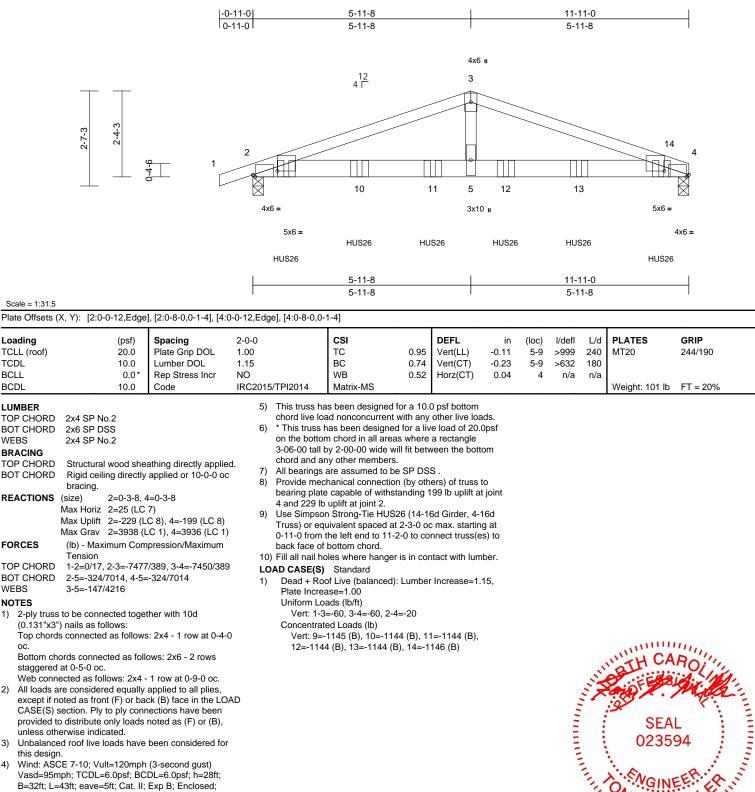
WEBS

BRACING

FORCES

WEBS

NOTES


oc.

2)

LUMBER

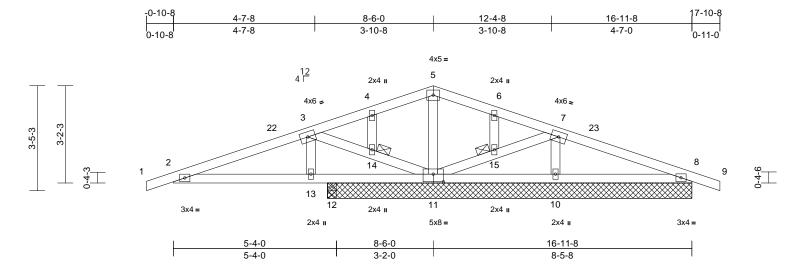
TCLL (roof)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:??hGS3hD1KRmf8gowru?kAzZ45Q-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

- Unbalanced roof live loads have been considered for 3) this design.
- Wind: ASCE 7-10; Vult=120mph (3-second gust) 4) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional); cantilever left and right exposed ; end vertical left and right exposed; Lumber DOL=1.60 plate grip DOL=1.60

munn

October 4,2024


WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

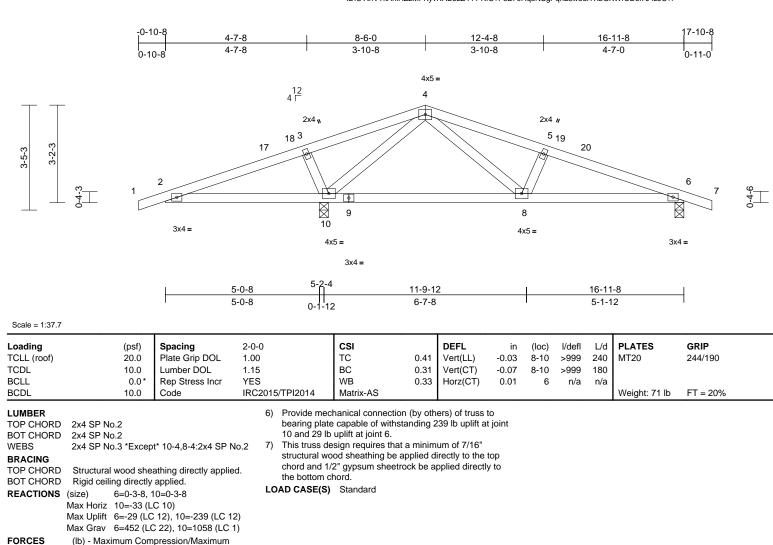
Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	C01	Common Structural Gable	1	1	Job Reference (optional)	168689398

Run: 8.73 E Nov 16 2023 Print: 8.730 E Nov 16 2023 MiTek Industries, Inc. Fri Oct 04 11:40:50 ID:iwH2YUpVgPiLshRjVy3L8HzZ45G-XBEruaKeH3mmsTTLwJsrBF8AHjZEgfLg54Gt2eyWoti Page: 1

October 4,2024

818 Soundside Road Edenton, NC 27932

Scale = 1:37.7


Plate Offsets (X, Y): [11:0-4-0,0-3-0]

	1										-	
Loading(psf)TCLL (roof)20.0TCDL10.0DOUL0.0	Plate Grip DOL 1 Lumber DOL 1	-0-0 .00 .15		CSI TC BC	0.44	DEFL Vert(LL) Vert(CT)	in 0.02 -0.02	(loc) 10-21 10-21	l/defl >999 >999	L/d 240 180	PLATES MT20	GRIP 244/190
BCLL 0.0* BCDL 10.0		'ES RC2015/TP	PI2014	WB Matrix-AS	0.12	Horz(CT)	0.00	8	n/a	n/a	Weight: 78 lb	FT = 20%
BOT CHORD JOINTS Rigid ceiling directly 1 Brace at Jt(s): 14, 15 REACTIONS All bearings 11-11-0. (lb) - Max Horiz 11=-33 (L Max Uplift All uplift 1 8, 12, 19 11=-275 (Max Grav All reaction (s) 8, 10, 12=353 (L) FORCES FORCES (lb) - Max. Comp./M (lb) or less except w TOP CHORD 2-22=-463/642, 3-22	except 12=0-3-8 .C 10) 100 (lb) or less at joint(s) except 10=-167 (LC 21), (LC 12) ons 250 (lb) or less at join 19 except 11=974 (LC 1 LC 21) lax. Ten All forces 250 /hen shown. 2=-452/693, -482/823, 5-6=-487/821, =-135/264 13=-623/477, 15=-613/423,)=-155/280	 Va B= MN 3-4 Ga 5) Th on 3-6 7) Pr be (sh) 7) Pr be (sh) 8) Th R8 9) Th stress 	asd=95mph =32ft; L=43: WFRS (dire 4-11, Interin 2-7-3, Interin dright exp for membe for membe for membe for membe for membe for membe for membe for membe for membe for stus or stus about qui able studs s his truss ha ord live loa This truss ha ord live loa This truss ha ord and an of the botton 06-00 tall b hord and an ord and an ord and an at the botton 06-00 tall b hord and an at the botton 08-00 tall b hord and an at the botton 18-00 tall b hord an at the botton 18-00 tall b hord an at the botton 18-00 tall b hord and an at the botton 18-00 tall b hord an at the botton 18-00 tall b hord an at		CDL=6.(Exp B Exterior -0, Exter 10-8 zcc left and VFRS for grip Do or grip Do d (norm d Deta gner as or a 10.0 ith any for a liv where fit betw (by oth nding 1 ance w ections dard AN a minim	Dipsf; h=28ft; Enclosed; (2) -0-10-8 to (2) -0-10-8 to rior (2) 8-6-0 ine; cantileve I right expose or reactions DL=1.60 ane of the tru al to the face ils as applical s per ANSI/TF 0 psf bottom other live loa e load of 20.0 0 lb uplift at 66. ith the 2015 R502.11.1 a ISI/TPI 1. um of 7/16" rectly to the t	to r left pd;C- uss), ble, Pl 1. ds. Opsf om o joint nd		M. antimus.		SEA 0235	

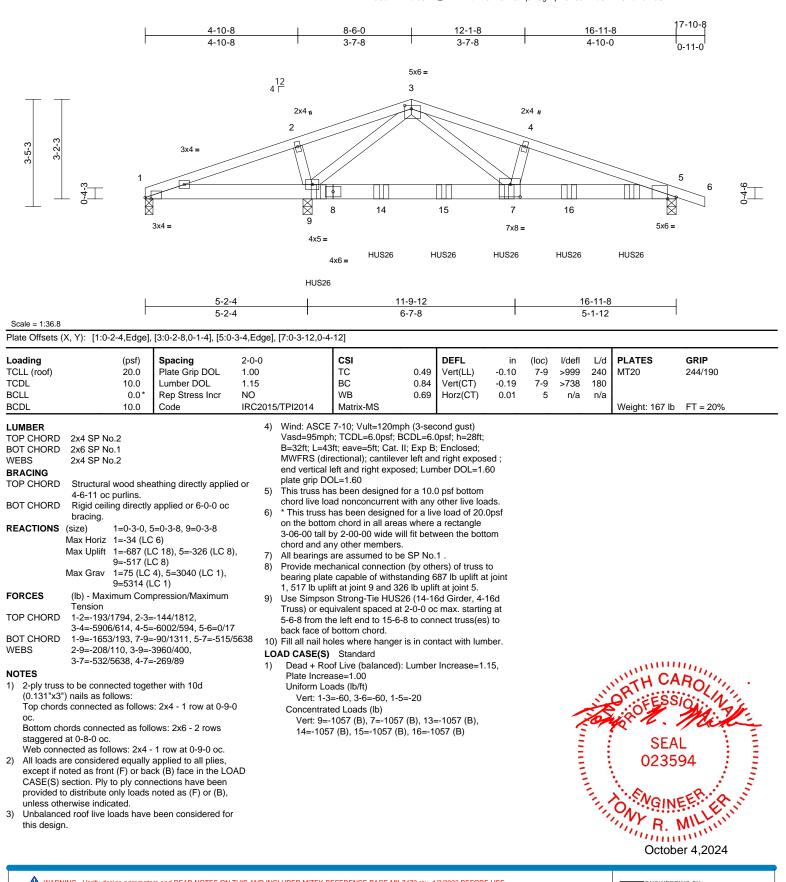
Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	C02	Common	2	1	I686 Job Reference (optional)	89399

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:UYtnVTkAnIHZzMFKyvRADJzZ444-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

Tension TOP CHORD 1-2=0/17, 2-3=-489/661, 3-4=-487/761, 4-5=-644/0, 5-6=-732/0, 6-7=0/17 BOT CHORD 2-10=-579/495, 8-10=-111/238, 6-8=0/675 WEBS 3-10=-294/141, 4-10=-970/401, 4-8=-17/548, 5-8=-260/107

NOTES

- 1) Unbalanced roof live loads have been considered for this design.
- 2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-10-8 to 3-4-11, Interior (1) 3-4-11 to 8-6-0, Exterior (2) 8-6-0 to 12-9-3, Interior (1) 12-9-3 to 17-10-8 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.
- * This truss has been designed for a live load of 20.0psf on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2 .


818 Soundside Road

Edenton, NC 27932

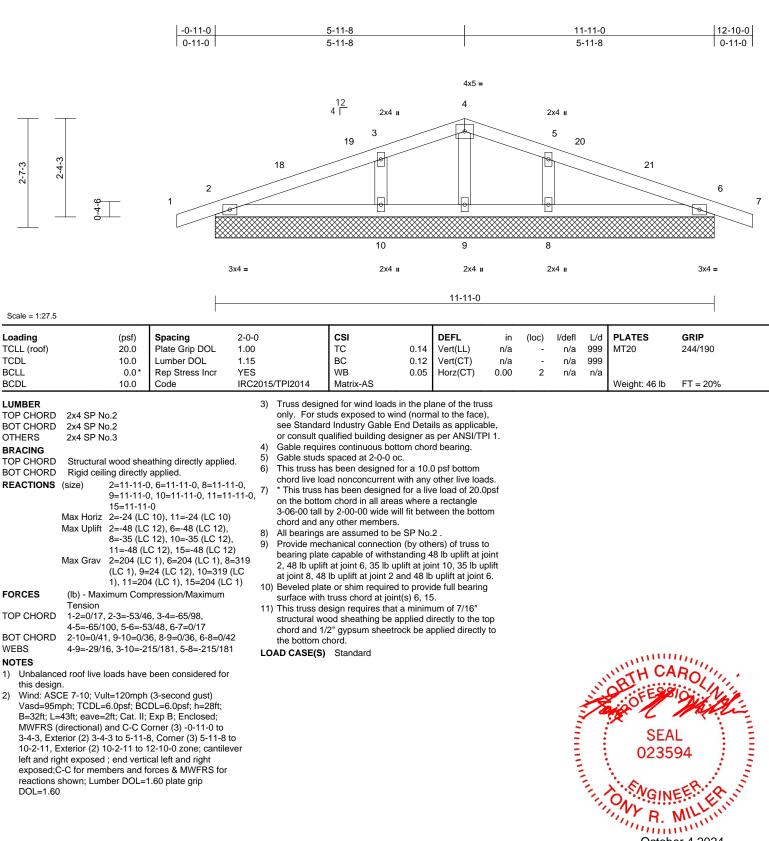
WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	C03	Common Girder	1	2	Job Reference (optional)	168689400

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:FR?x0GsVtK?NdfsCvxb_VwzZ42d-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcaccomponents.com)

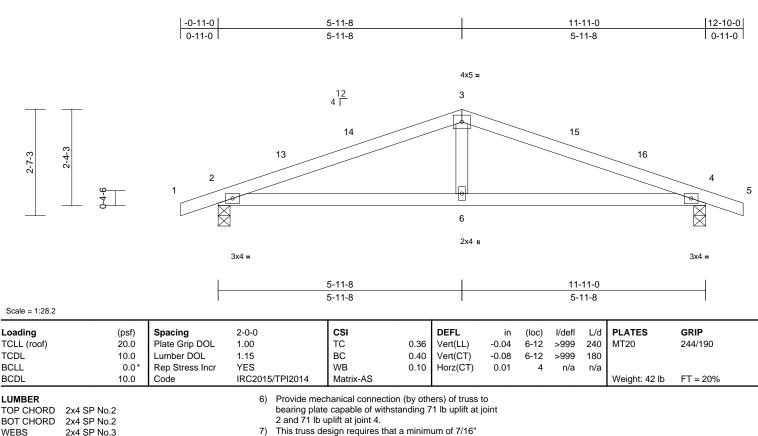
A MiTek Affil 818 Soundside Road


Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	D01	Common Supported Gable	1	1	Job Reference (optional)	l68689401

1)

2)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:i693RdirYz9O7IW2ERW8n1yWt_7-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f



October 4,2024

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall bilding design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	D02	Common	5	1	Job Reference (optional)	168689402

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:Tfe57MptfR9F4X8bi6f06jyWt_?-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

TOP CHORD Structural wood sheathing directly applied. BOT CHORD Rigid ceiling directly applied. REACTIONS (size) 2=0-3-8, 4=0-3-8

Max Horiz 2=-24 (LC 10) Max Uplift 2=-71 (LC 12), 4=-71 (LC 12) Max Grav 2=532 (LC 1), 4=532 (LC 1) FORCES (Ib) - Maximum Compression/Maximum

Tension TOP CHORD 1-2=0/17, 2-3=-874/138, 3-4=-874/138, 4-5=0/17

BOT CHORD 2-6=-69/797, 4-6=-69/797 WFBS 3-6=0/262

NOTES

2-7-3

Loading

TCDI

BCLL

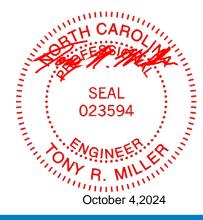
BCDL

WEBS

BRACING

LUMBER

TCLL (roof)

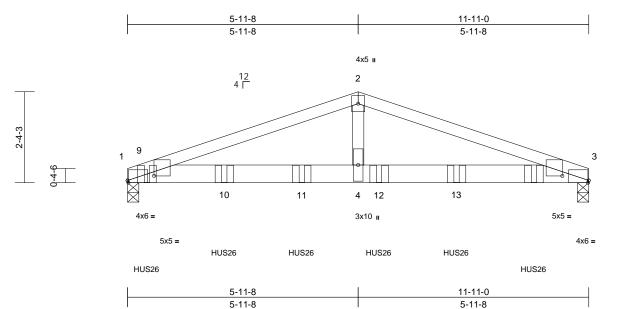

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) -0-11-0 to 3-4-3, Interior (1) 3-4-3 to 5-11-8, Exterior (2) 5-11-8 to 10-2-11, Interior (1) 10-2-11 to 12-10-0 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

This truss has been designed for a 10.0 psf bottom 3) chord live load nonconcurrent with any other live loads.

- * This truss has been designed for a live load of 20.0psf 4) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 5) All bearings are assumed to be SP No.2 .

LOAD CASE(S) Standard


Page: 1

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent bucking of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	D03	Common Girder	1	2	Job Reference (optional)	168689403

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:empFR7xm4pYhvDTirwMb21yWszq-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

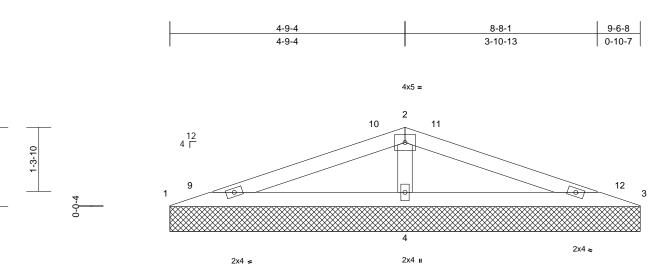
Scale = 1:29.8

Plate Offsets (X, Y): [1:0-0-4,Edge], [1:0-8-3,0-1-7], [3:0-0-4,Edge], [3:0-8-3,0-1-7]

	[,2090]; [010 0 0;0 1 1	1								
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1.1Lumber DOL1.Rep Stress IncrNo	-0-0 00 .15 O RC2015/TPI2014	BC	0.78 0.67 0.79	DEFL Vert(LL) Vert(CT) Horz(CT)	in -0.10 -0.20 0.03	(loc) 4-6 4-6 3	l/defl >999 >718 n/a	L/d 240 180 n/a	PLATES MT20 Weight: 98 lb	GRIP 244/190 FT = 20%
3-8-2 oc purlins.	7) .C 8), 3=-337 (LC 8) .LC 1), 3=3422 (LC 1) ppression/Maximum =-6820/683 =-604/6415 ther with 10d s: 2x4 - 1 row at 0-8-0 lows: 2x6 - 2 rows - 1 row at 0-9-0 oc. applied to all plies, .ck (B) face in the LOAD nections have been noted as (F) or (B),	 Vasd=95mpł B=32ft; L=43 MWFRS (dirr end vertical I plate grip DC 5) This truss ha chord live loa 6) * This truss ha chord live loa 6) * This truss ha chord and ar 7) All bearings 14 chord and ar 7) All bearing plate 1 and 337 lb 9) Use Simpson Truss) or equ 0-6-0 from th front face of 10) Fill all nail hoc LOAD CASE(S) 1) Dead + Roo Plate Increa Uniform Loa Vert: 1-2: Concentratt 	Is been designed for ad nonconcurrent wit has been designed for n chord in all areas v by 2-00-00 wide will f yoy other members. The assumed to be S hanical connection (le e capable of withstan uplift at joint 3. n Strong-Tie HUS26 Livalent spaced at 2- te left end to 10-6-0 t bottom chord. Standard of Live (balanced): Lu ase=1.00	DL=6.(Exp B; Exp B; d; Lum d; Lum d; Lum or a liv where fit betw where fit betw SP DS: by oth dding 3 (14-1f 0-0 oc to coni in con umber 20 F), 10=	Dpsf; h=28ft; Enclosed; d right expos- suber DOL=1.6 D psf bottom other live loa e load of 20.0 a rectangle veen the botto S. ers) of truss t 80 lb uplift at Sd Girder, 4-1 : max. startin, nect truss(es) dtact with lum Increase=1.	60 ds. Dpsf om joint 6d g at) to ber.				SEA 0235	

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

818 Soundside Road Edenton, NC 27932


111111111 October 4,2024

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038
Q2402406	V01	Valley	1	1	I68689404 Job Reference (optional)

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:3cZW1NfzVjB2PrWPoRrXflzZ45S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-6-8

Page: 1

2X

Scal	e –	1.23	4

1-7-5

econo = meorr												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC 0	.22	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC 0	.22	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB 0	.05	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 28 lb	FT = 20%
	2x4 SP No.2 Structural wood she Rigid ceiling directly (size) 1=9-6-8, 3 Max Horiz 1=-15 (LC Max Uplift 1=-7 (LC (LC 12) Max Grav 1=110 (LC 4=596 (LC	3=9-6-8, 4=9-6-8 C 10) 12), 3=-7 (LC 12), 4= C 21), 3=110 (LC 22), C 1)	on the bottor 3-06-00 tall to chord and ar 8) All bearings 9) Provide mec bearing plate 7 lb uplift at j 10) This truss de structural wo chord and 11/ the bottom c		No.2 No.2 othe ng 7 at join inimu ed di	a rectangle veen the botto 2 . ers) of truss to 1 b uplift at joi nt 4. um of 7/16" rectly to the t	o nt 1, op					
FORCES	(lb) - Maximum Corr	npression/Maximum										
TOP CHORD	Tension 1-2=-171/319, 2-3=-	171/319										
BOT CHORD	1-4=-264/155, 3-4=-											

WEBS 2-4=-430/141 NOTES

1) Unbalanced roof live loads have been considered for this design.

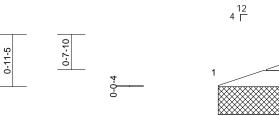
2) Wind: AŠCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) 0-0-12 to 4-3-15, Interior (1) 4-3-15 to 4-10-0, Exterior (2) 4-10-0 to 9-1-3, Interior (1) 9-1-3 to 9-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

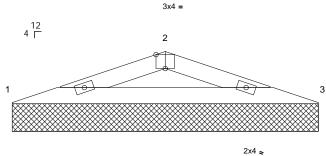
- Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- 4) Gable requires continuous bottom chord bearing.
- 5) Gable studs spaced at 2-0-0 oc.
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see **ANSI/TPI1 Quality Criteria and DSB-22** available from Truss Plate Institute (www.tpinst.org) and **BCSI Building Component Safety Information** available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	V02	Valley	1	1	Job Reference (optional)	168689405

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID: 3cZW1NfzVjB2PrWPoRrXflzZ45S-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f


4-8-1


1-10-13

5-6-8

0-10-7

5-6-8

2x4 🚅

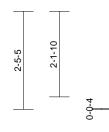
2-9-4 2-9-4

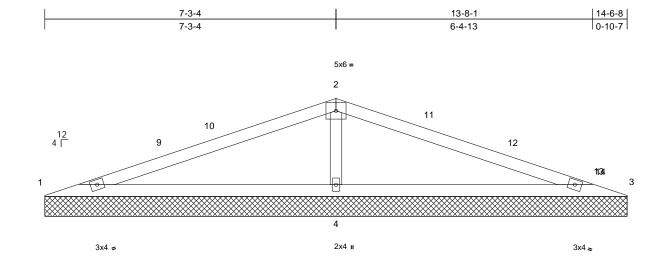
Scale	= 1:20.9	

Plate Offsets (X, Y): [2:0-2-0,Edge]

Plate Offsets (X, Y): [2:0-2-0,Edge	;] 								
Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Plate Grip DOL1Lumber DOL1Rep Stress IncrY	-0-0 .00 .15 /ES RC2015/TPI2014	CSI TC 0 BC 0 WB 0 Matrix-AS	23 Vert(TL)	in (loo n/a n/a 0.01	c) l/defl - n/a - n/a 3 n/a	L/d 999 999 n/a	PLATES MT20 Weight: 14 lb	GRIP 244/190 FT = 20%
BOT CHORD Rigid ceiling direct REACTIONS (size) 1=5-6-8, Max Horiz 1=8 (LC Max Uplift 1=-19 (L Max Grav 1=222 (I	, 3=5-6-8 11) .C 12), 3=-19 (LC 12)	bearing plate 1 and 19 lb u 10) This truss de structural wo		ig 19 lb uplift at jo nimum of 7/16" d directly to the t	oint op			<u>.</u>	
Tension TOP CHORD 1-2=-523/163, 2-3= BOT CHORD 1-3=-144/489 NOTES 1) Unbalanced roof live loads hav this design. 2) Wind: ASCE 7-10; Vult=120mp Vasd=95mph; TCDL=6.0psf; B B=32ft; L=43ft; eave=5ft; Cat. I MWFRS (directional) and C-L cantilever left and right exposed right exposed; C-C for members	e been considered for h (3-second gust) CDL=6.0psf; h=28ft; l; Exp B; Enclosed; Exterior (2) zone; d ; end vertical left and								
 for reactions shown; Lumber D DOL=1.60 3) Truss designed for wind loads i only. For studs exposed to win see Standard Industry Gable E or consult qualified building des 4) Gable requires continuous bott 5) Gable studs spaced at 2-0-0 or 6) This truss has been designed f chord live load nonconcurrent v 7) * This truss has been designed on the bottom chord in all areas 3-06-00 tall by 2-00-00 wide wi chord and any other members. 8) All bearings are assumed to be 	in the plane of the truss d (normal to the face), nd Details as applicable, signer as per ANSI/TPI 1. om chord bearing. c. or a 10.0 psf bottom with any other live loads. I for a live load of 20.0psf s where a rectangle II fit between the bottom							SEA 0235	94

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science United for the Structure Buckling Component Advance Truss Plate Institute (www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)




October 4,2024

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	V03	Valley	1	1	Job Reference (optional)	168689406

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:pGMYkQJLecCobnX4odMVfLzZ47B-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

14-6-8

Scale = 1:28.8												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.54	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.50	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.11	Horiz(TL)	0.01	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 44 lb	FT = 20%

LU	M	B	ER
----	---	---	----

TOP CHORD	2x4 SP N	0.2
BOT CHORD	2x4 SP N	0.2
OTHERS	2x4 SP N	0.2
BRACING		
TOP CHORD	Structural	I wood sheathing directly applied.
BOT CHORD	Rigid ceili	ing directly applied.
REACTIONS	(size)	1=14-6-8, 3=14-6-8, 4=14-6-8
	Max Horiz	1=24 (LC 11)
	Max Uplift	1=-18 (LC 22), 3=-36 (LC 21),
		4=-94 (LC 12)
	Max Grav	1=125 (LC 21), 3=80 (LC 22),
		4=1017 (LC 1)
FORCES	(lb) - Max	imum Compression/Maximum
	Tension	
TOP CHORD	1-2=-243/	/663, 2-3=-236/662
BOT CHORD	1-4=-567/	/271, 3-4=-567/271
WEBS	2-4=-791/	/393

NOTES

1) Unbalanced roof live loads have been considered for this design.

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-12 to 4-3-15, Exterior (2) 4-3-15 to 7-4-0, Corner (3) 7-4-0 to 11-7-3, Exterior (2) 11-7-3 to 13-9-3 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 4-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.

All bearings are assumed to be SP No.2 . 8)

Provide mechanical connection (by others) of truss to bearing plate capable of withstanding 18 lb uplift at joint 1, 36 lb uplift at joint 3 and 94 lb uplift at joint 4.

10) This truss design requires that a minimum of 7/16" structural wood sheathing be applied directly to the top chord and 1/2" gypsum sheetrock be applied directly to the bottom chord.

LOAD CASE(S) Standard

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design and the second way the approximation of design and the second and and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	V04	Valley	1	1	Job Reference (optional)	168689407

1-5-10

1-9-5

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:54 ID:HSwwymKzPwKfDx6GMKtkCZzZ47A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

9-8-1

4-4-13

10-6-8

0-10-7

12

2x4 🕿

3

4x5 = 2 10 11 12 9 Ľ 4

5-3-4

5-3-4

2x4 =

10-6-8

Scale - 1.24 9

Scale = 1:24.9													
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC201	5/TPI2014	CSI TC BC WB Matrix-AS	0.27 0.27 0.06	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 4	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 31 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.2 Structural wood shea Rigid ceiling directly	applied. 3=10-6-8, 4=10-6-8 10) 12), 3=-7 (LC 12), 4= 2 21), 3=115 (LC 22)	10 =-60	on the botto 3-06-00 tall chord and a All bearings Provide mee bearing plat 7 lb uplift at 0) This truss d structural we		as where will fit betw s. De SP No on (by oth standing 7 uplift at jo applied d	a rectangle veen the bott 2 . ers) of truss 7 lb uplift at jo int 4. um of 7/16" irectly to the	to bint 1,					
FORCES TOP CHORD BOT CHORD WEBS NOTES	(lb) - Maximum Com Tension 1-2=-183/381, 2-3=-1 1-4=-318/205, 3-4=-3 2-4=-498/297	183/381											
1) Unbalance this design	ed roof live loads have n. CE 7-10: \/ult=120mph												

2) Wind: ASCE 7-10; Vult=120mph (3-second gust) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=2ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Corner (3) 0-0-12 to 4-3-15, Exterior (2) 4-3-15 to 5-4-0, Corner (3) 5-4-0 to 9-7-3, Exterior (2) 9-7-3 to 10-7-4 zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- Truss designed for wind loads in the plane of the truss 3) only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc. 6)
- This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	V05	Valley	1	1	Job Reference (optional)	168689408

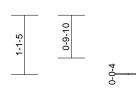
3-3-4

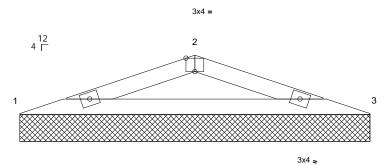
3-3-4

Carolina Structural Systems (Star, NC)), Ether, NC - 27247,

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:55 ID:HSwwymKzPwKfDx6GMKtkCZzZ47A-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

5-8-1


2-4-13



Page: 1

6-6-8

0-10-7

6-6-8

3x4 -

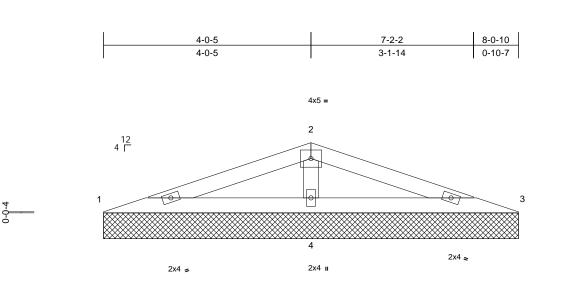
Scale = 1:21.5

Plate Offsets (X, Y): [2:0-2-0,Edge]

Loading (psf) TCLL (roof) 20.0 TCDL 10.0 BCLL 0.0* BCDL 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.34 0.28 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.01	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 17 lb	GRIP 244/190 FT = 20%
LUMBER TOP CHORD 2x4 SP No.2 BOT CHORD 2x4 SP No.2 BRACING TOP CHORD Structural wood shea BOT CHORD Rigid ceiling directly REACTIONS (size) 1=6-6-8,3 Max Horiz 1=10 (LC Max Uplift 1=-23 (LC Max Grav 1=262 (LC	applied. 3=6-6-8 11) : 12), 3=-23 (LC 12)	bearing plate 1 and 23 lb 10) This truss de d structural we		anding 2 a minim pplied d	3 lb uplift at j um of 7/16" irectly to the t	oint					
FORCES (lb) - Maximum Com Tension TOP CHORD 1-2=-642/189, 2-3=-7642/189, 2-3=-762/189, 2-3=-762/189, 2-3=-762/189, 2-3=-762/189, 2-	642/189 been considered for										
 Vasd=95mph; TCDL=6.0psf; BCI B=32ft; L=43ft; eave=5ft; Cat. II; MWFRS (directional) and C-C Excantilever left and right exposed right exposed; C-C for members a for reactions shown; Lumber DO DOL=1.60 Truss designed for wind loads in 	Exp B; Enclosed; xterior (2) zone; ; end vertical left and and forces & MWFR: L=1.60 plate grip	S							- MARINE	UTH CA	RO
 only. For studs exposed to wind see Standard Industry Gable End or consult qualified building desig Gable requires continuous bottor Gable studs spaced at 2-0-0 oc. This truss has been designed for chord live load nonconcurrent wit * This truss has been designed for on the bottom chord in all areas s 3-06-00 tall by 2-00-00 wide will t chord and any other members. 	(normal to the face), d Details as applicab gner as per ANSI/TP m chord bearing. r a 10.0 psf bottom th any other live loac or a live load of 20.0 where a rectangle	, le, l 1. ds. psf						South the		SEA 0235	94 EER. HA

October 4,2024

Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038	
Q2402406	V06	Valley	1	1	Job Reference (optional)	168689409


1-0-10

1-4-6

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:55 ID:T6bE_kOYg_t4?JX2iz22kYyWt_X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f

Page: 1

8-0-10

Scale -	= 1:22.4

Scale = 1:22.4												
Loading	(psf)	Spacing	2-0-0	CSI		DEFL	in	(loc)	l/defl	L/d	PLATES	GRIP
TCLL (roof)	20.0	Plate Grip DOL	1.00	TC	0.16	Vert(LL)	n/a	-	n/a	999	MT20	244/190
TCDL	10.0	Lumber DOL	1.15	BC	0.19	Vert(TL)	n/a	-	n/a	999		
BCLL	0.0*	Rep Stress Incr	YES	WB	0.06	Horiz(TL)	0.00	4	n/a	n/a		
BCDL	10.0	Code	IRC2015/TPI2014	Matrix-AS							Weight: 23 lb	FT = 20%
LUMBER TOP CHORD BOT CHORD OTHERS BRACING TOP CHORD BOT CHORD REACTIONS	2x4 SP No.2 2x4 SP No.3 Structural wood she Rigid ceiling directly (size) 1=8-0-10, Max Horiz 1=-13 (LC Max Uplift 1=-7 (LC (LC 12)	applied. 3=8-0-10, 4=8-0-10 10) 12), 3=-7 (LC 12), 4 C 21), 3=100 (LC 22 C 1)	ed. =-42 on the botto 3-06-00 tall chord and a 8) All bearings 9) Provide mea bearing plat 7 Ib uplift at 10) This truss do structural we chord and a 100 Structural we structural we chord and a	ood sheathing be /2" gypsum shee shord.	eas where will fit betw rrs. be SP No. cion (by oth nstanding 7 uplift at joi nat a minim e applied di	a rectangle veen the botto 2 . ers) of truss t 7 lb uplift at jo nt 4. um of 7/16" irectly to the t	om to iint 1,					

TOP CHORD BOT CHORD WEBS

NOTES

1) Unbalanced roof live loads have been considered for this design.

1-2=-139/270, 2-3=-139/270

1-4=-238/126, 3-4=-238/126

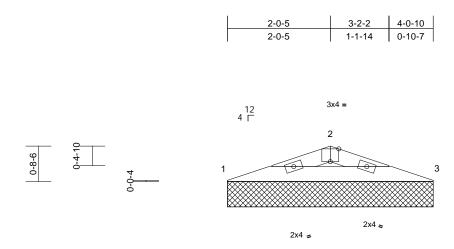
Tension

2-4=-308/110

Wind: ASCE 7-10; Vult=120mph (3-second gust) 2) Vasd=95mph; TCDL=6.0psf; BCDL=6.0psf; h=28ft; B=32ft; L=43ft; eave=5ft; Cat. II; Exp B; Enclosed; MWFRS (directional) and C-C Exterior (2) zone; cantilever left and right exposed ; end vertical left and right exposed;C-C for members and forces & MWFRS for reactions shown; Lumber DOL=1.60 plate grip DOL=1.60

- 3) Truss designed for wind loads in the plane of the truss only. For studs exposed to wind (normal to the face), see Standard Industry Gable End Details as applicable, or consult qualified building designer as per ANSI/TPI 1.
- Gable requires continuous bottom chord bearing. 4)
- 5) Gable studs spaced at 2-0-0 oc.
- 6) This truss has been designed for a 10.0 psf bottom chord live load nonconcurrent with any other live loads.

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MiTek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and PCB Building Component Science Michael Component Advancing Component Advancing Component Advancing and PCB and Component Advancing Component Compone and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)


Job	Truss	Truss Type	Qty	Ply	Lashley 2024-SAN-038				
Q2402406	V07	Valley	1	1	Job Reference (optional)	168689410			

Run: 8.73 S Sep 25 2024 Print: 8.730 S Sep 25 2024 MiTek Industries, Inc. Fri Oct 04 07:19:55 $ID:T6bE_kOYg_t4?JX2iz22kYyWt_X-RfC?PsB70Hq3NSgPqnL8w3uITXbGKWrCDoi7J4zJC?f$

4-0-10

Page: 1

Scale = 1:22.7

Plate Offsets (X, Y): [2:0-2-0,Edge]

	, Y): [2:0-2-0,Edge]										-	
Loading TCLL (roof) TCDL BCLL BCDL	(psf) 20.0 10.0 0.0* 10.0	Spacing Plate Grip DOL Lumber DOL Rep Stress Incr Code	2-0-0 1.00 1.15 YES IRC2015/TPI2014	CSI TC BC WB Matrix-AS	0.08 0.15 0.00	DEFL Vert(LL) Vert(TL) Horiz(TL)	in n/a n/a 0.00	(loc) - - 3	l/defl n/a n/a n/a	L/d 999 999 n/a	PLATES MT20 Weight: 10 lb	GRIP 244/190 FT = 20%
BOT CHORD 3 BRACING TOP CHORD BOT CHORD REACTIONS (s M	2x4 SP No.2 2x4 SP No.2 Structural wood she Rigid ceiling directly size) 1=4-0-10, fax Horiz 1=-6 (LC fax Uplift 1=-14 (LC fax Grav 1=162 (LC	applied. , 3=4-0-10 10) C 12), 3=-14 (LC 12)	bearing pl 1 and 14 10) This truss structural chord and the botton LOAD CASE		standing 1 It a minim applied di	4 lb uplift at j um of 7/16" rectly to the t	joint top					
TOP CHORD	(lb) - Maximum Corr Tension 1-2=-345/111, 2-3=- 1-3=-93/356											
 this design. Wind: ASCE Vasd=95mpl B=32ft; L=43 MWFRS (dir cantilever let right expose 	roof live loads have 7-10; Vult=120mph h; TCDL=6.0psf; BC 3ft; eave=5ft; Cat. II; rectional) and C-C E ft and right exposed d;C-C for members s shown; Lumber DC	(3-second gust) DL=6.0psf; h=28ft; Exp B; Enclosed; xterior (2) zone; ; end vertical left an and forces & MWFR	d								NITH CA	ROLAN
 Truss design only. For stu see Standard or consult qu Gable requir Gable studs 	ned for wind loads in uds exposed to winc d Industry Gable En ualified building desi res continuous botto spaced at 2-0-0 oc. as been designed fo	I (normal to the face d Details as applical gner as per ANSI/TF m chord bearing.), ble,							E.	SEA 0235	

- F
- 6 chord live load nonconcurrent with any other live loads. * This truss has been designed for a live load of 20.0psf
- 7) on the bottom chord in all areas where a rectangle 3-06-00 tall by 2-00-00 wide will fit between the bottom chord and any other members.
- 8) All bearings are assumed to be SP No.2 .

WARNING - Verify design parameters and READ NOTES ON THIS AND INCLUDED MITEK REFERENCE PAGE MII-7473 rev. 1/2/2023 BEFORE USE. Design valid for use only with MITek® connectors. This design is based only upon parameters shown, and is for an individual building component, not a truss system. Before use, the building designer must verify the applicability of design parameters and properly incorporate this design into the overall building design. Bracing indicated is to prevent buckling of individual truss web and/or chord members only. Additional temporary and permanent bracing is always required for stability and to prevent collapse with possible personal injury and property damage. For general guidance regarding the fabrication, storage, delivery, erection and bracing of trusses and truss systems, see ANSI/TPI1 Quality Criteria and DSB-22 available from Truss Plate Institute (www.tpinst.org) and BCEL Building Component Science Use Component Categories (http://www.tpinst.org) and BCSI Building Component Safety Information available from the Structural Building Component Association (www.sbcacomponents.com)

